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Abstract
A splittable good provided in n pieces shall be divided as evenly as possible among m agents,
where every agent can take shares of at most F pieces. We call F the fragmentation. For F = 1
we can solve the max-min and min-max problems in linear time. The case F = 2 has neat
formulations and structural characterizations in terms of weighted graphs. Here we focus on
perfectly balanced solutions. While the problem is strongly NP-hard in general, it can be solved
in linear time if m ≥ n − 1, and a solution always exists in this case. Moreover, case F = 2 is
fixed-parameter tractable in the parameter 2m − n. The results also give rise to various open
problems.
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1 Introduction

Suppose that we are given n pieces of a good, and these pieces have sizes x1, . . . , xn. The
good shall be divided among m agents, thereby respecting certain criteria and restrictions.
In a solution, let y1, . . . , ym denote the amounts that the agents receive, and let zij be the
amount that agent j receives from piece i. Clearly, we have yj =

∑n
i=1 zij for all agents j,

and
∑m

j=1 zij ≤ xi for all pieces i. All mentioned variables are non-negative. The agents are
identical, and so are the pieces of the good (apart from their different sizes).

Ideally we would like to divide the good evenly and completely, that is: y1 = . . . = ym and∑n
i=1 xi =

∑m
j=1 yj . Without further restrictions it is a trivial problem to find mn numbers

zij that satisfy these demands. But suppose that we also want to limit the fragmentation, in
the following sense. Let F be some fixed positive integer. Every agent shall get parts of at
most F distinct pieces. Formally, for every j we allow zij > 0 for at most F indices i. (These
indices can be chosen by the solution, but their number is limited by F .) However, every
piece may be divided among an unlimited number of agents.

One possible motivation is that pieces of land, at n different locations and with areas
x1, . . . , xn, shall be assigned to farmers in a fair way. Besides fairness, it would be desirable
for every single farmer to get only a few different fields, rather than several scattered ones,
such that the farmer does not have to divide activities between many different locations.
One may also think of applications in scheduling, where the xi are durations of n jobs that
shall be divided among m workers, in such a way that they get equal workloads, and every
worker is concerned with only a few different jobs, in order to limit context switching. Of
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9:2 Dividing Splittable Goods Evenly and With Limited Fragmentation

course, in such a scenario we have to assume that the jobs can be arbitrarily split and also
parallelized. An example where these assumptions are realistic is grading of the n exercises
of an exam by m graders.

Prominent problems in Discrete Optimization, in various application domains, deal with
cutting or connecting items from raw materials, e.g., the Cutting Stock and Skiving Stock
problems; see [6]. An action equivalent to cutting is packing items into containers, as in the
Bin Packing and Knapsack problems [5]. (In fact, Skiving Stock is also known as Dual Bin
Packing). However, the problems we consider here differ from all the mentioned problems
in one way or another, and to our best knowledge their complexities have not been studied
before. For instance, in the “Stock” problems we are given large amounts of items of only a
few different sizes, and in the Bin Packing and Knapsack problems the sizes of items to be
packed (or cut out) are prescribed.

The paper is organized as follows. In Section 2 we define splitting problems where the good
shall be divided completely and the minimum share shall be maximized, or vice versa. We call
a solution perfect if all shares are equal. In Section 3 we solve the case of fragmentation F = 1
in linear time. However, we first derive weaker O(n logn) time bounds, because this makes
the presentation easier, and the O(n) solution relies on the (barely practical) linear-time
selection but should still be of theoretical interest. In Section 4 we are concerned with the
case of fragmentation F = 2. Here we focus on structural properties of the problem of getting
perfect solutions, but this may also serve as a basis for, e.g., approximation algorithms for
the more general optimization versions. We describe solutions in a natural way by weighted
graphs. Then we present a linear-time elimination algorithm that finds a tree-like perfect
solution whenever m ≥ n− 1. Based on the graph-theoretic structure we also prove strong
NP-completeness of the general problem, and NP-completeness already for the special case
when m is slightly smaller than n− 1. For m being close to the smallest possible value n/2
we show fixed-parameter tractability. In Section 5 we point out possible directions of further
research.

2 Preliminaries

For clarity we provide formal definitions of the problems. We always silently presume that F
is a fixed positive integer called the fragmentation. Common to all problems are the input
and some of the constraints:

Splitting:
Given are n positive numbers x1, . . . , xn.
Find non-negative numbers zij and yj (for i = 1, . . . , n and j = 1, . . . ,m) subject to:
∀j : yj =

∑n
i=1 zij ,

∀i :
∑m

j=1 zij ≤ xi,
∀j : |{i | zij > 0}| ≤ F ,
and further constraints and objectives specified below.

To fully specify the actual problems we only mention these additional constraints, in
order to avoid repetitions.

Perfect Splitting: ∀i :
∑m

j=1 zij = xi, and all shares yj are equal.

We refer to a solution of Perfect Splitting as a perfect solution. In such a solution,
all agents get the same amount, and no goods are held back.

Min-Max Splitting: ∀i :
∑m

j=1 zij = xi, and the largest share, maxj yj , is minimized.

Max-Min Splitting: ∀i :
∑m

j=1 zij = xi, and the smallest share, minj yj , is maximized.
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In the last two problems, still all goods are distributed, but in general the agents get
different shares. If a perfect solution exists, then this is also the optimal solution to both
Min-Max and Max-Min Splitting. The Min-Max problem is more appropriate for
applications where some work must be divided completely, and the goal is not to load any
individual agents too much. The Max-Min problem aims at giving everyone a guaranteed
amount of a good, as large as possible. However, a solution may be perceived as unfair, in the
sense that other agents get significantly more because the entire good must be divided. Also,
the size of the smallest piece is a trivial upper bound on the objective value. To circumvent
these issues one may define modified Max-Min problems which aim at giving maximal but
equal amounts to all agents, possibly leaving the remainder of goods unused. One could also
relax the condition on fragmentation F and allow some outliers. However, we cannot study
all variants in this paper, and we focus on the basic problems.

3 The Case Without Fragmentation (F=1)

First we study Min-Max Splitting and Max-Min Splitting, which also subsumes the
special case of Perfect Splitting, for fragmentation F = 1.

As a trivial observation, either of the first two problems always permits an optimal
solution where, for every piece i, all zij > 0 are equal. Otherwise we can balance these
values without making the solution worse. Thus, such a solution is fully characterized by a
vector (p1, . . . , pn) with

∑n
i=1 pi = m, where pi is the number of indices j with zij > 0. For

every such i, j we obviously have yj = zij = xi/pi. Due to this observation on the possible
yj-values we define the following sequence Y .

I Definition 1. Y is the sequence of all numbers xi/p, where i = 1, . . . , n and p = 1, . . . ,m,
sorted in decreasing order. For k = 1, . . . ,mn let Y [k] denote the value at position k in Y .

The same value xi/p may come from different i and p, therefore a value may occur
multiple times in Y . However, we can break ties arbitrarily and sort equal values in any
order. Formally this can also be achieved by random and infinitesimal perturbations of the
values xi. We will henceforth assume that all values in Y are distinct, hence Y is strictly
monotone decreasing. This avoids circumstantial treatment of specific cases.

Intuitively, the pi should be roughly proportional to the given xi. But the efficient
computation of exact optimal solutions is a bit less obvious. We discuss this matter in the
following subsections.

3.1 Maximizing the minimum
The following lemma deals with the simple problem being inverse to Max-Min Splitting.

I Lemma 2. For any fixed y with 0 < y ≤ mini xi, let k be the maximum number of agents1
such that every agent can obtain an amount at least y. This number k satisfies:
(a) k =

∑n
i=1 pi, where pi := bxi/yc > 0.

(b) k is the maximum index with Y [k] ≥ y.
(c) Y [k] = mini xi/pi.

Proof. (a): For every i we can split the ith piece among at most bxi/yc agents. Summation
over all i yields the assertion. Due to the assumption on y we have pi > 0 for all i.

1 As y is fixed, for notational convenience we do not mention the argument y and call this number only k.
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9:4 Dividing Splittable Goods Evenly and With Limited Fragmentation

(b): Note that xi/si ≥ y holds for all i and all si ≤ pi, and there exist k such pairs (i, si).
Hence at least k members of Y are greater than or equal to y, that is, Y [k] ≥ y. Since
xi/(pi + 1) < y holds for all i, we also see that no further members of Y have this property.

(c): As seen above, the k values xi/si (si ≤ pi) are exactly those members of Y being
greater than or equal to y, that is, they are the first k items in Y , and clearly mini xi/pi is
the last of them. J

Lemma 2 yields a characterization of the optimal solution.

I Lemma 3. The optimal objective value for Max-Min Splitting with F = 1 is

max min
j
yj = min{Y [m],min

i
xi},

where the maximum is taken over all solutions.

Proof. First suppose that Y [m] < mini xi.
Then we can apply Lemma 2 to y := Y [m]. The maximum number k of agents that can

be served is, due to (b), equal to the maximum index k with Y [k] ≥ Y [m]. This implies
k = m. In other words, m agents can obtain an amount of at least Y [m] each.

Assume that m agents can obtain more, say an amount of y′ > y each, where still
y′ < mini xi. We apply Lemma 2 to y′. The maximum number k′ of agents that can be
served is, due to (b), equal to the maximum index k′ with Y [k′] ≥ y′ > y = Y [m]. This
implies k′ < m. Hence we have shown by contradiction that m agents cannot obtain any
amount larger than y.

The other case to consider is Y [m] ≥ mini xi. Now we can apply Lemma 2 to mini xi.
Part (c) implies that Y [k] = mini xi/pi ≤ mini xi ≤ Y [m], thus k ≥ m. That is, m agents
can be served with an amount at least mini xi. But due to the problem specification, mini xi

is also a trivial upper bound on the objective value, which finally proves the assertion also in
this case. J

The previous lemmas yield already an algorithm for Max-Min Splitting: First, it is
trivial to figure out whether m agents can get a share of at least mini xi each. If so, then
this solution is optimal, and we are done. If not, then Y [m] < mini xi. In this case, find the
value y := Y [m] and then determine the pi as in Lemma 2 (a), using this y.

However, in order to save time we want to get the value Y [m] without naively following
Definition 1 and generating all m − 1 preceding elements of Y . The intuition for a faster
approach is to search the optimal value near the average. In the following we can always
suppose Y [m] < mini xi.

I Lemma 4. Let ȳ :=
∑n

i=1 xi/m be the average amount given to the m agents, and let k
be the maximum number of agents such that every agent can actually obtain an amount at
least ȳ. Then Y [k] ≥ Y [m] and m− k ≤ n.

Proof. Clearly, ȳ ≥ minj yj holds in any solution, hence ȳ ≥ max minj yj (where the
maximum is taken over all solutions). Now Lemma 3 yields ȳ ≥ Y [m], and Lemma 2 applied
to ȳ gives Y [k] ≥ ȳ ≥ Y [m].

For i = 1, . . . , n we define qi := xi/ȳ, with integer and fractional part pi := bqic and
ri := qi − bqic, respectively. Lemma 2 (a) states that k =

∑n
i=1 pi. Thus we observe:

k =
n∑

i=1
pi =

n∑
i=1

(qi − ri) ≥
n∑

i=1
qi − n = m− n.

From this chain of inequalities we get m− k ≤ n. J
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Based on these inequalities we will now give an efficient algorithm for Max-Min
Splitting. We adopt the unit cost measure where comparisons and algebraic operations
with real numbers take constant time.

I Theorem 5. Max-Min Splitting with F = 1 can be solved in O(n logn) time.

Proof. First we compute ȳ and all pi (as defined in Lemma 2 with y := ȳ and xi/pi), as
well as k and Y [k] = mini xi/pi. The latter equation holds due to Lemma 2 (c). These
calculations cost O(n) time.

By Lemma 3, the optimal value is Y [m]. In the following we determine the value Y [m].
Note that k and Y [k] are known from the calculations above, and Y [k] ≥ Y [m] and m−k ≤ n
hold due to Lemma 4.

If m ≤ k, then Y [m] = Y [k], and we are done with this part. If m > k, then we only
have to find the next m− k members of Y after Y [k], and since m− k ≤ n, these are at most
n further members. Now we describe a possible way to identify Y [k], . . . , Y [m].

Let us sort the n ratios xi/pi in decreasing order and call this sequence R. Since
Y [k] = mini xi/pi, the last element of R is exactly Y [k]. We call it the marked element, for
later reference. In R we store not only the values xi/pi but also xi and pi separately. We
move a pointer in R from left to right. For every ratio encountered in R we compute the
ratio with incremented denominator (pi := pi + 1) and insert it at the correct position in R.
Note that this position is always to the right of the pointer; in particular, the new ratio may
become the new rightmost element of R. This step is repeated until the pointer reaches a
position m− k elements to the right of the marked element, and then we stop.

The analysis is simple: Since new ratios are always inserted to the right of the pointer,
and R comprises all elements of Y between the marked Y [k] and the pointer, it follows that
we are at Y [m] when we stop, and we can output its value. In order to support fast insertion
of a new ratio into R, we also host R in a balanced search tree. Therefore this procedure can
be done in O(n logn) time.

For every i we recompute pi by pi := bxi/Y [m]c, and the amount given to the pi agents
assigned to the ith piece is xi/pi. J

Some comments on the time bound are in order. Theorem 5 actually says that we need
O(n logn) time to compute the numbers of agents assigned to each piece and their shares,
in an optimal solution. Under the unit cost measure, this time bound is independent of
m which may be arbitrarily larger than n. The “physical” division, i.e., assigning positive
values to m variables zij , takes O(m) additional time in a trivial postprocessing phase.

Modifications of the algorithm can also solve a variant of Max-Min Splitting with
F = 1 where not all goods need to be distributed. Such an algorithm would not get to the
pieces being smaller than the objective value.

3.2 Minimizing the maximum
In order to minimize maxj yj we use the sequence Y from Definition 1 as well. For formal
reasons we also set Y [0] := ∞. The scheme is pretty much the same as for Max-Min
Splitting, but as the two problems are not symmetric, care must be taken for several details
that are different. Similarly as before, we start from the simple problem being inverse to
Min-Max Splitting.

I Lemma 6. For any fixed y > 0 that does not appear in Y , let k ≥ n be the minimum
number of agents needed such that every agent has to take an amount at most y. This number
k satisfies:

MFCS 2017



9:6 Dividing Splittable Goods Evenly and With Limited Fragmentation

(a) k =
∑n

i=1 pi, where pi := dxi/ye.
(b) k is the maximum index with Y [k − n] ≥ y.
(c) Y [k − n] = mini xi/(pi − 1).

Proof. (a): For every i we must split the ith piece among at least bxi/yc agents. Summation
over all i yields the assertion.

(b): Note that xi/si ≥ y holds for all i and all si ≤ pi − 1, and there exist k − n such
pairs (i, si). Hence at least k − n members of Y are greater than or equal to y, that is,
Y [k − n] ≥ y. Since xi/pi < y holds for all i, we also see that no further members of Y have
this property.

(c): As seen above, the k − n values xi/si (si ≤ pi − 1) are exactly those members of Y
being greater than or equal to y, that is, they are the first k − n items in Y , and clearly
mini xi/(pi − 1) is the last of them. J

Again we get a simple characterization of the optimal solution.

I Lemma 7. The optimal objective value for Min-Max Splitting with F = 1 is

min max
j
yj = Y [m− n+ 1],

where the maximum is taken over all solutions.

Proof. We apply Lemma 6 to y := Y [m−n+1]+δ with an infinitesimal δ > 0, added in order
to meet the requirement that y itself does not occur in Y . The minimum number k of agents
needed is, due to (b), equal to the maximum index k with Y [k − n] > Y [m− n+ 1]. This
implies k = m. In other words, m agents have to take an amount of at most Y [m−n+ 1] + δ

each. Since δ can be made arbitrarily small, their maximum load is bounded by Y [m−n+ 1].
Assume that the m agents have to take even less, say y′ < Y [m − n + 1]. We apply

Lemma 6 to y′. The minimum number k′ of agents needed is, due to (b), equal to the
maximum index k′ with Y [k′ − n] ≥ y′. Since, in particular, Y [m+ 1− n] ≥ y′, this implies
k′ ≥ m+ 1. This shows that more than m agents are needed to bound their maximum load
by any amount smaller than Y [m− n+ 1]. J

The proof of Theorem 5 showed already that we can determine Y [m] from ȳ in O(n logn)
time. By a similar procedure we can also determine Y [m − n + 1], which is optimal for
Min-Max Splitting due to Lemma 7. (Note that n is known from the instance.) Again this
costs only O(n logn) time, and the same remarks as earlier apply to the actual construction
of the solution. We can readily state:

I Theorem 8. Min-Max Splitting with F = 1 can be solved in O(n logn) time.

3.3 Splitting in linear time
An obvious question is whether O(n logn) time is actually needed. Re-inspecting the proof
of Theorem 5) we see: The non-trivial case is r := m − k > 0 (but r ≤ n), and there we
only need to find the rth largest ratio after the marked element Y [k]. Thus it may not be
necessary to keep our sequence R of ratios sorted. But a difficulty is that the sought element
is not simply the rth largest xi/(pi + 1), where the pi denote the initial values obtained from
ȳ. Rather, several ratios xi/p with the same index i but varying p may be larger than the
sought element. It is not immediately clear in which order we should generate new ratios
and do comparisons.
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But, in fact, we can achieve O(n) time. We present this improvement here separately, as
it does not look very practical (see below). Yet the optimal time bound may be of interest.
First we need a separation property of our sequence of ratios:

I Lemma 9. For positive numbers x, x′, p, q it is impossible that x > x′ and
x

q
>
x′

p
>

x′

p+ 1 >
x

q + 1 .

Proof. Clearly, the ratio of the two outer numbers is larger than the ratio of the two inner
numbers:

x

q
· q + 1

x
>
x′

p
· p+ 1

x′ .

It follows q < p. But this implies (q + 1)x′ < (p+ 1)x, which contradicts the last inequality
in the given chain. J

Now we outline a linear-time algorithm for Max-Min Splitting, improving upon the
implementation details in Theorem 5. First, a few preparations and definitions are needed. We
find the maximum xi in O(n) time. Without loss of generality let x1 = maxi xi. Considering
the sequence of ratios x1/q with integers q, to the right of the marked element Y [k], we
call every interval (x1/q, x1/(q + 1)] a bin. Note that every such interval includes its right
endpoint. For a set S of ratios, the generation step is the following procedure. For every
ratio xi/pi in S, we increment the denominator by 1 and compute the number q of the bin
that contains xi/(pi + 1). Using divisions this requires only O(1) time per element. The
Selection problem is to find the tth smallest number in an unsorted set, for a prescribed
number t.

First we apply the generation step to all initial values xi/pi (that is, with the pi obtained
from ȳ, as earlier). Then we scan the bins from left to right, i.e., for increasing q. For every q
we take all ratios that are currently in the qth bin and apply the generation step to them. At
the same time we count the total number of ratios seen so far, including the x1/q. As soon as
this number reaches r, we know that the sought ratio is in the current bin. Lemma 9 ensures
that every bin contains at most one ratio xi/p (p integer) for every index i, thus O(n) ratios
altogether. Let t := r− s, where s is the number of ratios in all previous bins. Hence we can
finally apply an O(n) time Selection algorithm [1] to the current bin, in order to find the
sought ratio at the tth position in this bin. For the closely related Min-Max Splitting
problem we can proceed similarly. This shows:

I Theorem 10. Max-Min Splitting and Min-Max Splitting with F = 1 can be solved
in O(n) time.

A caveat is that O(n)-time Selection algorithms suffer from a large hidden constant in
the time bound. Instead of a deterministic algorithm we may use the randomized Quickselect,
but then we only get O(n) expected time. One may wonder if O(n) worst-case time can be
accomplished without invoking Selection. However this is not possible. For instance, if
all xi are close to each other and n does not divide m, then finding Y [m] is equivalent to
finding the (m mod n)th largest xi.

Figuratively speaking, our splitting problems are “Selection-complete” under “simple”
linear-time reductions. This statement could be formalized in an algebraic model of com-
putation that cares about constant factors (e.g., by counting the exact depth in a decision
tree model). In a more general perspective it may be interesting to – in this way – strictly
classify problems that are all linear-time solvable but of different complexity when it comes
to constant factors.

MFCS 2017
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4 Perfect Solutions for Fragmentation F=2

In the following we study the case F = 2. It is natural to represent any instance of a splitting
problem, along with its solution, as a weighted graph:

I Definition 11. The solution graph of a solution to a splitting problem with F = 2 is a
graph with n vertices and m edges, specified as follows. We create a vertex of weight xi for
the ith piece. Every edge uv has two ports at the vertices u and v. The solution specifies a
set of m edges and 2m weights of their ports. Specifically, if the jth edge has a port at the
ith vertex, then the weight of this port is zij . Every yj is the sum of the weights of the two
ports of the jth edge. We consider yj as the weight of the jth edge. Similarly, the weights of
all ports at the ith vertex must sum up to xi. An edge can also be a loop at one vertex, and
in this case it is immaterial how its weight is divided into weights of the two ports.

In this section we want to characterize which instances, given by n positive vertex weights
x1, . . . , xn and an integer m, allow a perfect solution (see Section 2). Without loss of
generality we can assume

∑n
i=1 xi = m, hence a perfect solution must satisfy yj = 1 for all j.

That is, all edge weights are 1.

4.1 Many agents make it easy
I Theorem 12. Every instance of Perfect Splitting with F = 2 and m ≥ n − 1 has
a solution whose solution graph is a tree, possibly with loops attached to some vertices.
Moreover, such a solution can be computed in O(n) time.

Proof. We classify the vertices in several categories depending on their weights xi. Vertex i
is called large if xi > 1, normal if xi = 1, medium if 1/2 < xi < 1, and small if 0 < xi ≤ 1/2.

Our strategy works as follows. We create certain edges of weight 1, reduce the remaining
weights of the incident vertices accordingly (and obeying some simple rules), and recursively
solve the residual instances. We only need to show that the process terminates only when
the vertex weights are zero, and it can be implemented in O(n) time. In detail:

First suppose that m > n. Then there exists a large vertex i. Hence we can attach a
loop to it and update xi := xi − 1 and m := m− 1, while n is unchanged. By an inductive
argument, we can attach m− n loops to large vertices, until m = n is reached. The number
of loops attached to every large vertex can be decided, e.g., in a greedy fashion: Choose any
large vertex i and create dxie − 1 loops, take another large vertex, and so on, but stop as
soon as the total number of loops reaches m− n. The computations obviously require only
O(n) arithmetic operations.

Next suppose that m = n. If all vertices are normal, then we append another loop to
each vertex, and we are done. If not all vertices are normal, then there still exists some large
vertex, and we attach another loop to it, as above. Thus we reach m = n− 1.

From now on suppose that m = n− 1. Assume that we find two vertices i and j such
that xi + xj > 1 and xj < 1. Then we join these vertices by an edge of weight 1, which is
divided as follows. The port at vertex j gets the weight xj , and the port at vertex 1 gets the
rest 1− xj . Accordingly we update the vertex weights to xj := 0 and xi := xi − 1 + xj > 0.
This means, there remain n := n− 1 vertices with positive weights, and m := m− 1 edges to
fix. Hence the invariant m = n− 1 is preserved in the residual instance, and we can iterate
this procedure as long as possible.

It remains to prove the existence of such a pair of vertices i and j satisfying xi + xj > 1
and xj < 1, and to find some efficiently. Since m < n, at least one medium or small vertex
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exists. As long as some large or normal vertex exists, too, we obviously get a pair as desired.
Now suppose that all vertices are medium or small. We can also take a pair of medium
vertices, if it exists. Thus suppose in the sequel that all vertices are small, except at most
one medium vertex. Now the equation m = n− 1 restricts the possibilities as follows. If two
small vertices exist, then these are the only vertices: We have n = 2 and x1 = x2 = 1/2,
hence we can join the two vertices by a final edge. If only one vertex is small, then there
exists exactly one other vertex which is medium. Hence we still have n = 2 and x1 + x2 = 1,
and we can insert a final edge. The case that no vertex is small is impossible, since then
n = 1 and m = x1 > 0, a contradiction. Altogether this shows that we always find two
desired vertices until n = 2 is reached, and then we can finish up the solution.

The above proof does not only show the existence of a perfect solution wheneverm ≥ n−1,
but it describes already a simple elimination algorithm that computes a perfect solution.
In each step, the updates take O(1) time. The next edge is always built from two vertices
from certain categories (large, normal, medium, small). Since arbitrary vertices from the
respective categories can be chosen, it suffices to maintain four unsorted sets of vertices,
hence we can also update these sets and pick the needed vertices in O(1) time. Therefore
the overall time is O(n).

Consider the graph of non-loop edges inserted by the algorithm until any moment. Upon
insertion of every edge, the weights of its vertices were positive, and the weight of exactly
one of them drops to zero. This implies the invariant that every connected component of the
graph retains exactly one vertex with positive weight. From this it follows, furthermore, that
every new edge merges two connected components. Thus the final solution graph is a tree,
possibly with additional loops. J

Similarly to the time bounds for F = 1, we have not counted in the time for the trivial
postprocessing that actually splits the pieces: Constructing the O(m) loops costs O(m)
additional time. But the solution graph, i.e., the tree and the numbers of loops at its vertices,
are computed in O(n) time.

It is apparent from the algorithm that the tree, and thus the solution, is in general not
unique. This gives rise to interesting additional problems, also in view of the motivations in
Section 1. For instance, assuming that the vertices have pairwise distances (spatial distances,
dissimilarity of tasks, etc.) we may prefer perfect solutions where also some distance measure
(maximum, total, weighted, etc.) is minimized for the chosen edges.

4.2 Structural characterization and hardness

Apart from the last remark, Theorem 12 completely settles the case m ≥ n − 1. In the
following we also allow m < n (but m ≥ n/2, since otherwise not all goods can be divided
with fragmentation F = 2). The conditions in Theorem 12 suggest the following definition.

I Definition 13. Let V be a set of elements called vertices and indexed by 1, . . . , n. Every
vertex i has a weight positive weight xi. We call I ⊆ V an integral set if

∑
i∈I xi is an integer.

We call I ⊆ V a heavy set if
∑

i∈I xi ≥ |I| − 1.

In fact, the existence of perfect solutions can now be characterized as follows.

I Theorem 14. An instance (x1, . . . , xn) of Perfect Splitting with F = 2, where∑n
i=1 xi = m (and m is the number of agents), admits a solution if and only if V can be

partitioned into heavy integral sets.
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Proof. “only if”: Suppose that there exists a perfect solution. Since F = 2, the solution
can be represented as a solution graph G as in Definition 11, with vertex set V and with m
edges (some of which may be loops). Let C(k) denote the kth connected component of G,
where the indexing is arbitrary. Let nk and mk denote the number of vertices and edges,
respectively, in C(k). Since

∑n
i=1 xi = m, every agent gets an amount of 1. Hence, for every

k, the vertex set Vk of Ck is integral. Specifically, the sum of vertex weights in C(k) equals
mk which is trivially an integer. Due to connectivity we also have mk ≥ nk − 1, thus Vk is a
heavy set.

“if”: Suppose that V has a partitioning into integral sets Vk which are also heavy. The
latter means that mk ≥ nk − 1, where nk is the number of vertices of Vk, and mk denotes
their total weight. For every Vk we consider an instance of Perfect Splitting with the
given vertex weights and mk agents. Due to mk ≥ nk − 1 and Theorem 12, this instance has
a solution with mk agents. Since m =

∑
k mk, the solutions to all these k instances together

form a solution of the entire instance. J

While Perfect Splitting with F = 2 is easy for m ≥ n− 1 due to Theorem 12, the
complexity jumps for m < n − 1. The reason is that, unfortunately, it is hard to find a
partitioning as required in Theorem 14, as we show next. At first glance hardness might
appear counterintuitive because with fragmentation F = 2 it should always be possible,
within an elimination process as in Theorem 12, to take amounts missing to some zij = 1
from some other piece. But the catch is that all remaining pieces might be too small, and
then the fragmentation F = 2 is not sufficient. Anyway, by a reduction from 3-Partition
(which is a natural candidate that has been reduced earlier to similar packing and scheduling
problems [2]) we can show:

I Theorem 15. Perfect Splitting with F = 2 is strongly NP-complete, and so are
Max-Min Splitting and Min-Max Splitting.

Proof. We give a polynomial-time reduction from the strongly NP-complete 3-Partition
problem to Perfect Splitting. A triplet is a set of exactly three elements. An instance
P of 3-Partition consists of 3k positive rational numbers that shall be partitioned into
k triplets such that the sum of the numbers in each triplet is the same. The instance is a
multiset, i.e., the 3k numbers are not necessarily distinct. Without loss of generality let their
sum be k, hence the sum in each triplet must be 1. Thus we can further assume x ≤ 1 for all
x in P , otherwise P has, trivially, no solution. We also fix some small number d > 0, in fact,
any number with 0 < d < 1/3 will do.

For the reduction we take any given instance P with the above properties, and we
transform every number x from P into 2(1/3 + dx)/(1 + d). Let Q be the multiset of these
transformed numbers. They enjoy the following properties:
(a) Any three numbers from P sum up to 1 if and only if the three transformed numbers in
Q sum up to 2.
(b) The sum of all numbers in Q is 2(3k/3 + dk)/(1 + d) = 2k.
Let n := 3k and m := 2k. Now we can view Q as an instance of Perfect Splitting with
F = 2, where n is the number of pieces, and m = 2k is both the number of agents and the
total amount to distribute.

Assume that P has a solution. Then each of its k triplets has the sum 1. Due to (a), the
three transformed numbers in Q have the sum 2. Hence the triplets form a partitioning of Q
into heavy integral sets. By Theorem 14, Q has a perfect solution.

Conversely, suppose that Q has a perfect solution. Using Theorem 14 again, Q can be
partitioned into heavy integral sets. Since n−m = k and the sets are heavy, the partitioning
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must consist of at least k sets. Remember that x ≤ 1 for all x from P . Hence any single
number in Q is at most 2(1/3 + d)/(1 + d) < 1. Any two numbers in Q have a sum at least
(4/3)/(1 + d) > 1 and at most 4(1/3 + d)/(1 + d) < 2. Hence any integral set needs at least
three elements. It follows that Q is partitioned into exactly k triplets. Using again that these
sets are heavy, the sum in each triple is at least 2. Since, due to (b), the total sum equals
2k, the sum in each triplet is exactly 2. Using (a) again, it follows that each corresponding
triplet in P has the sum 1. That means, P has a solution.

Since Perfect Splitting is a special case of the two optimization problems, the last
assertion follows immediately. J

Usual NP-hardness holds already when m is slightly smaller than n− 1 (giving a clear
dichotomy together with Theorem 12), and the proof is less technical:

I Theorem 16. Perfect Splitting with F = 2 and m = n− t is NP-complete for every
fixed t ≥ 2, and so are Max-Min Splitting and Min-Max Splitting.

Proof. First let t = 2. Consider any instance where m = n− 2, and xi < 1 for all i. Any
partitioning into heavy integral sets necessarily consists of exactly two sets I and J , with∑

i∈I xi = |I|−1 and
∑

j∈J xj = |J |−1. Due to Theorem 14, such an instance has a solution
if and only if it can be partitioned into sets I and J with these properties.

On this basis we give a reduction from the NP-complete Subset Sum problem [2]. An
instance of Subset Sum consists of positive rational numbers y1 . . . , yn, and the goal is
to find a subset I of indices such that

∑
i∈I yi equals a prescribed value s. Subset Sum

is NP-complete already in the case that s =
∑n

k=1 yk/2. By scaling we can also assume∑n
k=1 yk = 2, such that we have to divide the sum into 1 + 1. Now we can also assume yk < 1

for all k, otherwise the instance has, trivially, no solution. Finally, we simply set xk := 1− yk

for all k. The equivalence to Perfect Splitting with F = 2 and m = n− 2 is evident.
For t > 2 we finally add 2(t− 2) further items xi = 1/2 to the instance. Arguments are

similar; note that the additional items must form t− 2 pairs, in a partitioning into heavy
integral sets. J

4.3 Few agents make it easy, too
The reductions showing hardness led to instances with m/n ≥ 2/3. The problem becomes
“easy” if m is close to the smallest possible value n/2. (Readers not being familiar with
fixed-parameter tractability are referred to a textbook like [7].)

I Theorem 17. Perfect Splitting with F = 2 is fixed-parameter tractable (FPT) in the
parameter t := 2m− n.

Proof. Consider graphs with n vertices and m edges. We refer to connected components
with two and three vertices as pairs and triplets, respectively. As a preparatory consideration
we construct extremal graphs where the number q of vertices not being in pairs is maximized.
We can assume that some pairs exist, since otherwise q = n is, trivially, maximal.

If some connected component C is not a tree, then we can remove an edge such that C
remains connected. We use this edge to join some pair to another component. This strictly
increases q. Hence assume that all connected components are trees. If some tree has at least
four vertices, then we can remove a leaf and its incident edge. The remainder of the tree
is still connected and is not a pair. We append the edge and the leaf to some pair, which
strictly increases q again. Hence, if q is maximized, then all connected components are pairs
and triples (unless q = n). With p pairs and t′ triples we have m = p+ 2t′ and n = 2p+ 3t′,
hence t = 2m − n = t′. Since the maximum q is shown to be q = 3t′ = 3t, we get that at
most 3t vertices are not in pairs.
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Now consider any instance of Perfect Splitting with F = 2, and any two indices i and
j with xi + xj = 1. Assume that the instance has a solution. We consider the partitioning
specified in Theorem 14 and refer to its heavy integral sets as bags.

Assume that i and j are in different bags, say, in I ∪ {i} and J ∪ {j}. We rearrange them
to new bags {i, j} and I ∪ J . The pair is obviously a heavy integral set. Since the original
bags were integral and the weight xi + xj = 1 has been removed, also I ∪ J is integral. Since
the original bags were heavy, I ∪ {i} and J ∪ {j} have sums at least |I| and |J |, respectively.
Hence I ∪ J has a sum at least |I|+ |J | − 1, which means that it is heavy. This shows, under
the above assumption, the existence of an alternative solution where {i, j} is a bag.

Assume that i and j are in the same bag, but together with further indices, say, K ∪{i, j}
with K 6= ∅ is a bag. We split it in two bags K and {i, j}. Clearly, K is integral. Since
K ∪ {i, j} was heavy, it has a sum at least |K|+ 1, such that at least a sum |K| remains
in K, which means that K is also heavy. This shows again the existence of an alternative
solution where {i, j} is a bag.

We are ready to devise an FPT algorithm: First we pair up indices i and j with
xi + xj = 1, as long as possible. (This is the “data reduction” phase, in the terminology of
FPT algorithms.) Then we solve the residual instance, that is, we search for a partitioning
as in Theorem 14, of the remaining indices. The given instance has a perfect solution if and
only if the residual instance has.

The pairing phase is correct due to the above exchange arguments: If a solution exists at
all, then it can be transformed into a solution where any desired pair {i, j} with xi + xj = 1
forms a bag. By traversing a sorted list of the weights simultaneously in ascending and
descending order, this phase is easily implemented in O(n logn) time. The residual instance
has a size at most 3t, and we may solve it naively. J

By way of contrast, Theorem 16 excludes an FPT (even an XP) algorithm in the parameter
t = n−m (unless P=NP).

5 Further Research

By Theorem 15, the optimization versions of or splitting problems with F = 2 (and n > m)
are strongly NP-complete and therefore do not allow FPTAS (unless P=NP). On the other
hand, the structural result in Theorem 14 together with the algorithms in Theorem 12
suggests that one should try and partition the set of pieces into n−m heavy subsets (bags)
and then assign agents to them such that the average amounts per agent in the bag are as
balanced as possible. The latter step would work as in case F = 1, treating the bags as pieces.
In general, the bags will not be integral, but the smaller the fractional parts of the sums are,
the better the solutions should be. Minimizing the fractional parts roughly resembles the
minimum makespan scheduling problem (although the objectives are also quite different).
The latter problem is well studied: It is also strongly NP-complete, but it has a PTAS, and
even an FPTAS when the number of machines (here corresponding to the number n−m of
bags) is fixed; see [3, 4]. Altogether, we conjecture that similar approximation schemes can
be obtained for our splitting problems. Another conjecture is that our FPT result for small
2m− n extends to the optimization versions.

Other open questions were mentioned in the technical sections. Furthermore, as we
have seen, the “graph-theoretic” case F = 2 is already subtle, but several results may be
generalized to F > 2.
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