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Abstract
Differential linear logic was introduced as a syntactic proof-theoretic approach to the analysis of
differential calculus. Differential categories were subsequently introduce to provide a categorical
model theory for differential linear logic. Differential categories used two different approaches for
defining differentiation abstractly: a deriving transformation and a coderiliction. While it was
thought that these notions could give rise to distinct notions of differentiation, we show here that
these notions, in the presence of a monoidal coalgebra modality, are completely equivalent.
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1 Introduction

Differential linear logic [5, 6] was introduced as a syntactic proof-theoretic approach to the
analysis of differential calculus. Differential categories [2] were subsequently introduced to
provide a categorical model theory for differential linear logic. In [2] two approaches to defining
differentiation abstractly were introduced, these being based on a deriving transformation
and a coderiliction. Fiore in [7] proposed an alternative approach to differentiation using
what he called a creation operator – this was an operator having the same type as a deriving
transformation but with a rather different axiomatization. He argued that, in the presence
of a monoidal coalgebra modality and biproducts, his notion of differentiation provided
a substantially better theory. However, as will be shown below, the notion of a creation
operator is actually completely equivalent to that of a deriving transformation (with the
interchange rule) as presented in [2]. Furthermore, these are, in that setting, equivalent to
having a codereliction.

To show these notions are all equivalent it is necessary to explore, in some detail,
the relation between a codereliction – essentially Fiore’s “creation map” – and a deriving
transformation (essentially Fiore’s “creation operator”). It is straightforward to show that
having a codereliction always implies the presence of a deriving transformation. The reverse,
however, is more difficult and this is the main technical accomplishment of this paper. Its
consequence is that contrary to the suggestion put forward in [7] there is only one notion of
differentiation in linear logic.
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13:2 There Is Only One Notion of Differentiation

First we should pause to consider Fiore’s argument that one may as well work in a setting
with biproducts. He argued that, as one can always complete an additive category to a
category with biproducts, one may as well assume biproducts are present. Of course, when
one considers differentiation, one also needs to be able to extend the coalgebra modality. It
is standard that one can extend a monoidal coalgebra modality to the biproduct completion
using the Seely isomorphisms. However, when the modality is not monoidal, there is
apparently no reason why it should extend. Significantly, the deriving transformation
assumed in [2] did not assume the coalgebra modality was monoidal. Thus, if one is to
entertain these more basic modalities, one must be cautious about using Fiore’s argument.
Here we certainly take such modalities seriously.

The paper starts by reminding the reader of the “original” definition of a differential
category. This relies on the idea of a coalgebra modality and a deriving transformation.
Familiarity with linear logic may tempt one to think that this is the “exponential” modality
of linear logic but it is not. It is a strictly weaker notion as the modality is not assumed
monoidal. There are many familiar examples of differential categories based on a monoidal
coalgebra modality [2] – such as (the opposite of) the free symmetric algebra monad on
vector spaces. The reader may wonder, however, whether there are any significant examples
of differential categories based a mere coalgebra modality. Two compelling examples – by no
means the only ones – are given by smooth functions via the free C∞-ring over vector spaces
(as mentioned in [2]) and the free Rota-Baxter algebra over modules (for more details on this
monad see [13]).

Here we refer to additive categories, with a monoidal coalgebra modality, as “additive
linear categories”: their biproduct completion is then an “additive monoidal storage category”
[4]. This latter was the setting being considered by Fiore in [7]. An additive monoidal
storage category (which has biproducts) is always an additive linear category (which may not
have biproducts) and both always have a canonical monoidal bialgebra modality. Here, to
facilitate the proofs, it is convenient to work with a further intermediate notion we called an
“additive bialgebra modality”: this is a bialgebra modality which has an additional coherence
requirement between the additive and bialgebra structure. It is with respect to this structure
that we prove that deriving transformations and coderelictions are equivalent.

Coderelictions always give deriving transformations, and it was known [2] that a deriving
transformation, for a bialgebra modality, is equivalent to a codereliction if and only if the
deriving transformation satisfies the ∇-rule. However, this latter rule was thought to be
a completely independent requirement. The key new observation is that, for an additive
bialgebra modality with a deriving transformation the ∇-rule is, in fact, implied. More
specifically, while a deriving transformation is assumed to satisfy five rules – [d.1]–[d.5]
below – which include the linear rule and the Leibnitz rule, over an additive bialgebra
modality, we prove that, for a deriving transformation which satisfies just the linear rule, the
∇-rule is equivalent to the Leibniz rule.

When an additive symmetric monoidal category has a monoidal coalgebra modality it
is straightforward to show that the modality is an additive bialgebra modality. Thus, for
additive linear categories deriving transformations and coderelictions are also equivalent.

Clearly additive bialgebra modalities and monoidal coalgebra modalities are closely related.
In particular, additive bialgebra modalities can always be extended to the biproduct comple-
tion (see Appendix C) and, furthermore, this biproduct completion has Seely isomorphisms
[11]. Thus, additive bialgebra modalities correspond to monoidal storage categories [4] (also
called new Seely categories [1, 10]) having the Seely isomorphisms. However, it is well-known
(as the name suggests) that monoidal storage categories have a monoidal coalgebra modality.
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Thus, additive bialgebra modalities are, in fact, monoidal coalgebra modalities.
To complete the main story of the paper, we observe that in an additive linear category

coderelictions and deriving transformations always satisfy the “strength laws”: these were
the subject of an addendum added to [7]. We provide a proof in the setting of additive
linear categories. Putting all this together one has that – contrary to the suggestion in [7] –
deriving transformations and creation operators are, in additive linear categories, completely
equivalent.

2 Conventions and the Graphical Calculus

We shall use diagrammatic order for composition: explicitly, this means that the composite
map fg is the map which first does f then g. Furthermore, to simplify working in symmetric
monoidal categories, we will allow ourselves to work in strict symmetric monoidal categories
and so will generally suppress the associator and unitor isomorphisms. For a symmetric
monoidal category we will use ⊗ for the tensor product, K for the unit, and σ : A⊗B → B⊗A
for the symmetry isomorphism.

We shall make extensive use of the graphical calculus [8] for symmetric monoidal categories
as this makes proofs easier to follow. We refer the reader to [12] for an introduction to
the graphical calculus in monoidal categories and its variations. Note, however, that our
diagrams are to be read down the page – from top to bottom – and we shall often omit
labelling wires with objects.

We will be working with coalgebra modalities: these are based on a comonad (!, δ, ε) where
! is the functor, δ is the comultiplicaton and ε is the counit. As in [2], we will use functor
boxes when dealing with string diagrams involving the functor !: a mere map f : A→ B will
be encased in a circle while !(f) : !A→ !B will be encased in a box:

f =

A

B

f !(f) =

!A

!B

f

3 Differential Categories

Tensor differential categories are structures over additive symmetric monoidal categories
with a coalgebra modality. We begin by recalling the components of this structure starting
with the notion of an additive category. Here we mean “additive” in the sense of being
commutative monoid enriched: we do not assume negatives nor do we assume biproducts
(this differs from the usage in [9] for example). This allows many important examples such
as the category of sets and relation or the category of modules for a commutative rig1.

I Definition 1. An additive category is a commutative monoid enriched category, that
is, a category in which each hom-set is a commutative monoid with an addition operation +
and a zero 0, and such that composition preserves the additive structure, that is: k(f+g)h=
kfh+kgh, 0f = 0 and f0 = 0. An additive symmetric monoidal category is a symmetric
monoidal category which is also an additive category in which the tensor product is compatible

1 Rigs are also known as a semirings: they are rings without negatives.
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13:4 There Is Only One Notion of Differentiation

with the additive structure in the sense that k ⊗ (f+g)⊗ h=k ⊗f ⊗ h+k ⊗g ⊗ h, 0⊗ h=0,
and h⊗ 0=0.

In a symmetric monoidal category, a cocommutative comonoid is a triple (C,∆, e)
consisting of an object C, a map ∆ : C → C ⊗ C called the comultiplication and a map
e : C → K called the counit such that the following diagrams commute:

C
∆ //

∆
��

C ⊗ C

∆⊗1
��

C

∆
��

C
∆ //

∆ ""

C ⊗ C

σ

��
C ⊗ C

1⊗∆
// C ⊗ C ⊗ C C C ⊗ C

e⊗1
oo

1⊗e
// C C ⊗ C

.

A morphism of comonoids f : (C,∆, e) → (D,∆′, e′) is a map f : C → D which preserves
the comultiplication and counit, that is, the following diagrams commute:

C
∆ //

f

��

C ⊗ C

f⊗f
��

C
f //

e
��

D

e

��
D

∆
// D ⊗D K

.

I Definition 2. A coalgebra modality [2] on a symmetric monoidal category is a quintuple
(!, δ, ε,∆, e) consisting of a comonad (!, δ, ε), a natural transformation ∆ with components
∆A : !A → !A ⊗ !A, and a natural transformation e with components eA : !A → K such
that for each object A, (!A,∆A, eA) is a cocommutative comonoid and δ preserves the
comultiplication, that is, δ∆ = ∆(δ ⊗ δ).

One can prove that δ also preserves the counit, δe = e, and so δ is actually a comonoid
homomorphism. Furthermore, requiring that ∆ and e be natural transformations is equivalent
to asking that for each map f : A → B, !(f) : !A → !B is a comonoid morphism. When
combined with the additive structure, this ensures that !A is a coalgebra in the classical
algebraic sense. Note that, for now, we do not assume that the functor ! of a coalgebra
modality is a monoidal functor (this will come later). The coKleisli maps for the comonad
are important: these maps are of the form f : !A→ B, which amongst these are the linear
maps εg : !A→ B where g : A→ B.

I Definition 3. A differential category is an additive symmetric monoidal category with
a coalgebra modality which comes equipped with a deriving transformation [2], that is,
a natural transformation d with components dA : !A⊗A→ !A, which is represented in the
graphical calculus as:

d :=

A

!A

====

!A

such that d satisfies the following equations:
[d.1] Constant Rule: de = 0

e

==== = 0
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[d.2] Leibniz Rule:

d∆ = (∆⊗ 1)(1⊗ σ)(d⊗ 1) + (∆⊗ 1)(1⊗ d)
====

∆
=

====

∆
+

====

∆

[d.3] Linear Rule: dε = e⊗ 1

ε

====

=
e

[d.4] Chain Rule:

dδ = (∆⊗ 1)(δ ⊗ 1⊗ 1)(1⊗ d)d
====

δ
= δ

∆

====

====

[d.5] Interchange Rule: (d⊗ 1)d = (1⊗ σ)(d⊗ 1)d

====

====

=
====

====

The first axiom [d.1] states that the derivative of a constant map is zero. The second
axiom [d.2] is the Leibniz rule or the product rule for differentiation. The third axiom [d.3]
says that the derivative of a linear map is constant. The fourth axiom [d.4] is the chain
rule. The last axiom [d.5] is the interchange law, which naively states that differentiating
with respect to x then y is the same as differentiation with respect to y then x. It should be
noted that [d.5] was not originally a requirement in [2] but was later added to the definition
to ensure that the coKleisli category of a differential category was a Cartesian differential
category [3]. It should also be noted that by the naturality of e and d, the constant rule
[d.1] is in fact derivable:

I Lemma 4. For a coalgebra modality on additive symmetric monoidal category, any natural
transformation dA : !A⊗A→ !A satisfies the constant rule [d.1].

Proof. By naturality and the additive structure: de = d!(0)e = (!(0)⊗ 0)de = 0de = 0. J

Therefore a deriving transformation is simply a natural transformation which satisfies the
Leibniz rule [d.2], the linear rule [d.3], the chain rule [d.4] and the interchange rule [d.5].

4 Bialgebra Modalities, coderelictions and the ∇-Rule

In [2], Blute, Cockett and Seely observed that if the coalgebra modality came equipped with a
bialgebra structure and a codereliction then one could obtain a deriving transformation. We
recall these ideas, starting with the notion of a bialgebra modality. In a symmetric monoidal

FSCD 2017



13:6 There Is Only One Notion of Differentiation

category, a (commutative) bialgebra is a quintuple (A,∇, u,∆, e) such that (A,∇, u) is a
commutative monoid, (A,∆, e) is a cocommutative comonoid, and the following diagrams
commute:

A

e
  

∆ // A⊗A

e⊗e
��

K

u⊗u !!

u // A

∇
��

K
u // A

e

��

A⊗A

∇

��

∆⊗∆ // A⊗A⊗A⊗A

1⊗σ⊗1
��

K A⊗A K A⊗A⊗A⊗A

∇⊗∇
��

A
∆

// A⊗A

I Definition 5. A bialgebra modality [2] on an additive symmetric monoidal category is
a coalgebra modality (!, δ, ε,∆, e) equipped with a natural transformation ∇ : !A⊗ !A→ !A,
and a natural transformation u : K → !A such that (!A,∇, u,∆, e) is a bialgebra for each
object A, and ε is compatible with ∇ in the following sense: ∇ε = ε⊗ e+ e⊗ ε.

By the naturality of ∇, ∆, u and e we note that for every map f , !(f) is both a monoid
and comonoid morphism. Also, in the original definition of a bialgebra modality in [2], it
was also required that ε be compatible with u, however this compatibility is provable by the
naturality of u and ε. The proof is similar to that of Lemma 4.

I Lemma 6. For a bialgebra modality uε = 0.

The key ingredient required to obtain a differential for a bialgebra modality is:

I Definition 7. A codereliction [2] for a bialgebra modality on an additive symmetric
monoidal category is a natural transformation ηA : A→ !A, such that the following equalities
hold:

[dC.1] Constant Rule: ηe = 0

η

e

= 0

[dC.2] Product Rule: η∆ = η ⊗ u+ u⊗ η

∆

η

= η u + u η

[dC.3] Linear Rule: ηε = 1

ε

η

=
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[dC.4] Chain Rule:

(1⊗ η)∇δ = (∆⊗ η)(1⊗∇)(δ ⊗ η)∇

η

δ

∇
=

∆

δ

η

∇

∇

η

As for the constant rule for the deriving transformation, the constant rule [dC.1] for a
codereliction can be derived (the proof is similar to that of Lemma 4):

I Lemma 8. For a bialgebra modality, any natural transformation ηA : A→ !A satisfies the
constant rule [dC.1].

Thus, a codereliction is simply a natural transformation which satisfies the product rule
[dC.2], the linear rule [dC.3] and the chain rule [dC.4]. In [7], Fiore uses an alternative
axiom for the chain rule [dC.4] which is stated as follows:
[dC.4’] Alternative Chain Rule: ∇δ = (u⊗ η)(δ ⊗ η)∇

δ

η

=
∇

η

∇

δ

u η

Although it was not noted in [7], in that setting both [dC.4] and [dC.4′] are equivalent. In
the setting of a mere bialgebra modality, it is clear that [dC.4] implies [dC.4′]: the reverse
implication, however, does not appear to hold. Thus, at this stage we prove the implication
in one direction:

I Lemma 9. Any natural transformation which satisfies the chain rule [dC.4] also satisfies
the alternative chain rule [dC.4′].

Proof. The bialgebra structure gives the following chain of equalities:

δ

η

=
δ

η
u

∇ = ∇δ

u

η∆

∇

η

= ∇
δ

u
η

∇

η

u

=
∇

η

∇

δ

u η

J

Let us now consider the relation between deriving transformations and bialgebra modalities.
This is captured by the ∇-rule [2]:

I Definition 10. For a bialgebra modality, a natural transformation dA : !A ⊗ A → !A is
said to satisfy the ∇-rule if:
[d.∇] ∇-Rule: (∇⊗ 1)d = (1⊗ d)∇

===

∇
=

∇

===

FSCD 2017



13:8 There Is Only One Notion of Differentiation

Notice this implies that d = (1⊗ u⊗ 1)(∇⊗ 1)d = (1⊗ u⊗ 1)(1⊗ d)∇. Thus, an immediate
consequence of satisfying the ∇-rule is interchange rule:

I Lemma 11. For a bialgebra modality, a natural transformation d which satisfies the ∇-rule,
[d.∇], also satisfies the interchange rule, [d.5].

Proof. By [d.∇] and the commutative monoid structure, we have the following equality:

===

===
=

∇

===

u

∇

===

u

=
∇

===

u

===

u

∇ =
∇

===

u

===

u

∇
=

∇

===

u

===

u

∇ =
===

===

J

Therefore, for a bialgebra modality, a natural transformation which satisfies the Leibniz
rule [d.2], the linear rule [d.3], the chain rule [d.4], and [d.∇] is a deriving transformation.
Furthermore, all deriving transformations which satisfy the∇-rule [d.∇] induce a codereliction
defined as:

eta := A
u⊗1 // !A⊗A d // !A η :=

u

===

Conversely, every codereliction induces a deriving transformation which satisfies the ∇-rule:

d := !A⊗A 1⊗η // !A⊗ !A ∇ // !A d :=
η

∇

Using the same proof in [2] – which was for monoidal storage categories – it is easily seen
that:

I Theorem 12. For an additive symmetric monoidal category with a bialgebra modality,
deriving transformations, which satisfy the ∇-rule [d.∇], are in bijective correspondence to
coderelictions by:

d 7−→ η := (u⊗ 1)d , η 7−→ d := (1⊗ η)∇ .

5 Additive Bialgebra Modalities

In this section we introduce the concept of an additive bialgebra modality. Our goal will
be to show that a deriving transformation for an additive bialgebra modality induces a
codereliction. Since a codereliction always implies a deriving transformation, this shows
that, for an additive bialgebra modality, deriving transformations and coderiction maps are
equivalent. A source of examples of additive bialgebra modalities will be derived in the
next section. Additive bialgebra modalities require additional coherence with the additive
structure:

I Definition 13. An additive bialgebra modality on an additive symmetric monoidal
category is a bialgebra modality which is compatible with the additive structure in the sense
that !(0) = eu and !(f + g) = ∆(!(f)⊗ !(g))∇.



J. R. B. Cockett and J.-S. Lemay 13:9

First we examine coderelictions for additive bialgebra modalities. When a natural
transformations η is a section of ε, that is, η satisfies [dC.3], we can define four natural
transformations: p0 = ε ⊗ e, p1 = e ⊗ ε, i0 = η ⊗ u, i1 = u ⊗ η. Notice that as η satisfies
the constant rule [dC.1] and the linear rule [dC.3] and from the properties of a bialgebra
modality that we have: ijpk = 0 when j 6= k and ijpj = 1, which is reminiscent of the
identities satisfied by the projection and injection maps of a biproduct. These maps will be
key to the proof of Lemma 15 below. For an additive bialgebra modality this means that
we have: !(ij)!(pk) = eu when j 6= k and !(ij)!(pj) = 1. This allows the derivation of the
following useful identity:

I Lemma 14. For an additive bialgebra modality and a natural transformations η which
satisfies the linear rule [dC.3]: (!(i0)⊗ !(i1))∇∆(!(p0)⊗ !(p1)) = 1.

Proof. By the bialgebra modality, we have the following equality:

∆

p1p0

∆

i1i0

=

p1p0

i1i0

∇

∆∆

∇

=

∇

∆∆

∇

i0 i1 i1

p1p0

i0

p1p0
=

∇

∆
e

u

e

u

∆

∇

=

J

Furthermore, for an additive bialgebra modality, the linear rule [dC.3] implies the product
rule [dC.2]:

I Lemma 15. For an additive bialgebra modality, any natural transformation, η, which
satisfies the linear rule, [dC.3], also satisfies the product rule, [dC.2].

Proof. Notice that by naturality of η, we have that:

η!(f + g) = (f + g)η = fη + gη = η!(f) + η!(g) .

Then, using ij and pk, we have the following:

η u + u η =
∆

η

e

u

+
∆

η

e

u

=
∆

η

i1

p1p0

i1
+

∆

η

i0

p1p0

i0

=
∆

η

p1p0

i1
+

∆

η

p1p0

i0
=

∆

η

p1p0

i0 + i1 =
∆

η

i0 + i1

p1p0

i0 + i1
=

∆

η

J

Therefore, for an additive bialgebra modality, a natural transformation which simply satisfies
the linear rule [dC.3] and the chain rule [dC.4] is a codereliction.

Turning our attention to deriving transformations for additive bialgebra modalities, we
begin by noticing that satisfying the Leibniz rule is equivalent to satisfying the ∇-rule:

FSCD 2017



13:10 There Is Only One Notion of Differentiation

I Theorem 16. For an additive bialgebra modality and a natural transformation d satisfying
the linear rule [d.3], the Leibniz rule [d.2] is satisfied if and only if the ∇-rule [d.∇] is
satisfied.

Proof.
[d.∇] ⇒ [d.2]: It is easy to see that since d satisfies [d.3] that (u⊗ 1)d satisfies [dC.3],
the linear rule for coderelictions. However, by Lemma 15, this implies that (u⊗ 1)d satisfies
[dC.2], the product rule for coderelictions. Therefore, we have:

===

∆
=

∆

===

u

∇

=
∆

∇

u

===

=

u

===

∇

∆

∇

∆

=
u

∇

∆

∇

===

u

+

u

===

∇

∆

∇

u

=
∆

===

u

∇
+

∆

===

u

∇ =
===

∆
+

===

∆

[d.2] ⇒ [d.∇]: By the properties of ij and pk, and the identity of Lemma 14, we have:

∇

===
=

∇

===

i0

p0 p1

∇

∆

i1

p1

i1

+

∇

===

i0

p0 p1

∇

∆

i1

p0

i1

︸ ︷︷ ︸
=0

=
===

i0

∇

∆

i1

⊗
i1

p1p0

∇

+
===

⊗

p0

i1

p1

∇

∇

i0

∆
i1

︸ ︷︷ ︸
=0

= ===

i0

∇

i1

⊗
i1

p1p0

∇

∆
= ===

i0

∇

i1

⊗
i1

p0 + p1

=

===

i0

∇

i1 i1

p0 + p1 p0 + p1 p0 + p1 =
===

∇

J

Therefore, we obtain the following theorem:

I Theorem 17. For an additive bialgebra modality, every deriving transformation satisfies
the ∇-rule [d.∇], thus is induced equivalently by a codereliction.

6 Additive Linear Categories

We now turn our attention to the case when the coalgebra modality is monoidal. Recall
that a symmetric monoidal functor [9] is a functor ! equipped with a natural transformation
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m⊗ : !A⊗ !B → !(A⊗B) and a map mK : K → !K satisfying certain coherences. This can
be extended to defining a symmetric monoidal comonad by asking that δ and ε be monoidal
natural transformations. For a full detailed list of the coherences for symmetric monoidal
comonads, see [1]. The string diagrams representations of m⊗ and mK are as follows:

m⊗ = ⊗
mK =

m

I Definition 18. A monoidal coalgebra modality on a symmetric monoidal category is
a symmetric monoidal comonad, (!, δ, ε,m⊗,mK), and a coalgebra modality, (!, δ, ε,∆, e),
satisfying
(i) ∆ and e are monoidal transformations, that is, the following diagrams commute:

K

e

��

!K

e

��
!A⊗ !B

m⊗

44

∆⊗∆
��

m⊗ // !(A⊗B)

∆

��

K
mK //

mK⊗mK ##

!K

∆
��

!A⊗ !A⊗ !B ⊗ !B

1⊗σ⊗1
��

!K ⊗ !K

!A⊗ !B ⊗ !A⊗ !B
m⊗⊗m⊗

// !(A⊗B)⊗ !(A⊗B)

(ii) ∆ and e are !-coalgebra morphisms, that is, the following diagrams commute:

!A

∆
��

δ // !!A
!(∆)
��

!A

e

��

δ // !!A
!(e)
��

!A⊗ !A
δ⊗δ
// !!A⊗ !!A

m⊗
// !(!A⊗ !A) K

mK

// !(K)

A linear category [1, 4] is a symmetric monoidal category with a monoidal coalgebra
modality; an additive linear category is a linear category which is also an additive
symmetric monoidal category.

A monoidal coalgebra modality on an additive linear category induces an additive bialgebra
modality. The multiplication and unit are respectively:

!A⊗ !A δ⊗δ // !!A⊗ !!A
m⊗ // !(!A⊗ !A)

!(ε⊗e+e⊗ε) // !A K
mK // !K

!(0) // !A

∇ :=

⊗
δ δ

e eεε +

u

:=

m

0

The converse statement is also, in fact, true: an additive bialgebra modality induces a
monoidal coalgebra modality. The monoidal structure m⊗ and mK are defined respectively
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as:

!A⊗!B

m⊗ :=
��

δ⊗δ // !A⊗!B
!(1⊗u)⊗!(u⊗1) // !(!A⊗!B)⊗!(!A⊗!B) ∇ // !(!A⊗!B)

δ

��
!(A⊗B) !(!A⊗!B)

!(ε⊗ε)
oo !(!(!A⊗!B)⊗!(!A⊗!B))

!(!(ε⊗e)⊗!(e⊗ε))
oo !!(!A⊗!B)

!(∆)
oo

K
u //

mK :=
��

!K

δ

��
!(K) !!K

!(e)
oo

Represented in string diagrams as:

⊗ :=

δ

u

ε

ε e

δ

u

∇

δ

∆

ε

e ε

m

:=
e

u

δ

I Theorem 19. For an additive symmetric monoidal category, monoidal coalgebra modalities
correspond bijectively to additive bialgebra modalities.

An indirect proof of this is discussed at the end of the introduction: a direct proof is long
and quite technical. The identities expressing compatibility between the bialgebra modality
and the monoidal coalgebra which were observed in [7] (Theorem 3.1) to hold in an additive
monoidal storage category also hold in an additive linear category (see Appendix A for a
proof):

I Lemma 20. In an additive linear category, the following diagrams commute:

!A

e

��

1⊗u // !A⊗ !B
m⊗

��

!A⊗ !A

δ⊗δ
��

∇ // !A

δ

��

!A⊗ !B ⊗ !B 1⊗∇ //

∆⊗1⊗1
��

!A⊗B

m⊗

��

K
u
// !(A⊗B) !!A⊗ !!A

m⊗

��

!!A !A⊗ !A⊗ !B ⊗ !B

1⊗σ⊗1
��

!(!A⊗ !A)
!(∇)

::

!A⊗ !B ⊗ !A⊗ !B

m⊗⊗m⊗

��

!(A⊗B)

!(A⊗B)⊗ !(A⊗B)
∇

66

We now turn our attention to the relation between the monoidal structure and the
differential structure. In [7] Fiore introduced another axiom relating η to the monoidal
structure:
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[dC.m] Monoidal Rule: (1⊗ η)m⊗ = (ε⊗ 1)η

η

⊗ =
⊗
η

ε

It turns out that coderelictions for the induced additive bialgebra modality always satisfy
the monoidal rule [dC.m]:

I Lemma 21. In an additive linear category, coderelictions on the induced additive bialgabra
modality satisfy the monoidal rule [dC.m].

Proof. By Lemma 14 and the fact that ∆ is a !-coalgebra morphism, we first have that:

⊗ =

i0

p1

∆

i1

∆

δ

p0

δ

ε

⊗
ε

=

ε

p0

∆

p1

i0 i1

ε

∇

δδ

⊗

∆

=
p1

i1

δ

ε

∇

∆

i0

p0

ε

where ij and pk are defined as in the previous section. Expressing m⊗ as above, then by the
linear rule [dC.3], chain rule [dC.4], the naturality of u and ∇, and the first diagram of
Lemma 20 we have the following equality :

η

⊗ =

i1

∇

ηi0

p1

∆

εε

δ

p0

=

∇

η

∆

∇

η

δ

i0 i1

p1

∆

εε

p0

=

∇

η

∆

∇

i1

δ

η

i0 i0

p1

∆

εε

p0

=

η

∆

∇

δ

η

i0 i1

u

∇
i0 i1
∇

p1

∆

εε

p0

=

∆

∇

δ

η

i0 i1

u

∇
i0 i1
∇

p0

ε

p1

ε

∆

η

p0

ε

p1

ε

∆

⊗

=

∆ η

u

∇

ε ε

η

⊗
⊗

=

∆ η

u

∇

ε ε

η

⊗e

=
⊗
η

ε

J

Conversely, the alternative chain rule [dC.4′] and the monoidal rule [dC.m] imply the
chain rule [dC.4].
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I Lemma 22. In an additive linear category, a natural transformation which satisfies the
alternative chain rule [dC.4′] and the monoidal rule [dC.m], on the the induced additive
bialgebra modality, also satisfies the chain rule [dC.4].

Proof. By the compatiblity relations of Lemma 20 and the coalgebra modality requirements
we have:

η

δ

∇
= ⊗

η

δ

δ

∇

= ⊗ ∇

δ

∇

δ η

u
η

= ⊗
∆

δ

∇

δ

ηu

η

⊗

∇

= ⊗

∆

∇

δ

ηu

η

⊗

∇

δ

δ

= ⊗

∆

δ

η
u

η

⊗

∇

δ δ

∇
∇

= ⊗

∆

u

η

∇

∇

δ

δ
∇

η

ε

=
∆

δ

η

∇

∇

η

J

I Corollary 23. For an additive linear category the following are equivalent for a natural
transformation η and the induced additive bialgebra modality:
(i) η is a codereliction;
(ii) η satisfies the linear rule [dC.3] and the chain rule [dC.4];
(iii) η satisfies the linear rule [dC.3], the alternative chain rule [dC.4′] and the monoidal

rule [dC.m].

Part (iii) is the definition of Fiore’s creation map: this shows that the original definition
of a codereliction is equivalent to Fiore’s creation map.

Finally we explore deriving transformations of additive linear categories. The compatibility
between a deriving transformation and the monoidal structure is described by the monoidal
rule – this is the strength rule which was the subject of Fiore’s addendum:
[d.m] Monoidal Rule: (1⊗ d)m⊗ = (∆⊗ 1⊗ 1)(1⊗ ε⊗ 1⊗ 1)(1⊗ σ ⊗ 1)(m⊗ ⊗ 1⊗ 1)d

⊗ ===
= ⊗

∆

⊗
===

ε

Fiore’s creation operator [7] was defined to satisfy the linear rule [d.3], the chain rule
[d.4], the ∇-rule [d.∇], and the monoidal rule [d.m] – in his addendum, he pointed out the
latter was redundant. It turns out that when a natural transformation satisfies both the
linear rule [d.3] and the chain rule [d.4], then the monoidal rule is equivalent to both the
∇-rule and the Leibniz rule:

I Theorem 24. For the induced additive bialgebra modality of an additive linear category
and a natural transformation satisfying the linear rule [d.3] and the chain rule [d.4], the
following are equivalent:
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(i) the Leibniz rule [d.2];
(ii) the ∇-rule [d.∇];
(iii) the monoidal rule [d.m]

Proof. Since this is an extension of Lemma 16, it suffices to show that the ∇-rule [d.∇] and
the monoidal rule [d.m] are equivalent.

[d.∇] ⇒ [d.m]: It is easy to see that since d satisfies the linear rule [d.3] and the chain
rule [d.4], (u⊗ 1)d satisfies the codereliction linear rule [dC.3] and chain rule [dC.4], and
therefore by Corollary 23 is a codereliction and which by Lemma 21 satisfies the codereliction
monoidal rule [dC.m]. Therefore, by the compatibility relations of Lemma 20, we have:

⊗ ===
=

===

∇⊗

u

= ⊗
∆

⊗
∇

u

===

=
⊗
∆

∇

u

===

⊗
ε

= ⊗
∆

⊗
===

ε

[d.m] ⇒ [d.∇]: By expanding ∇ using m⊗, we obtain the following equality:

∇

===
=

===

ε ε

⊗

+ e

δ

e

δ

=

ε ε

⊗

+ ee

δ ===

δ
===

∆

=

e

δ

===

+ ε e

δ

∆

ε

∆

⊗
ε

⊗
===

=

===

∆∆

===

ε ε

⊗

+ e

δ

e

δ
e ε

+

===

∆∆

===

ε ε

⊗

+ e

δ

e

δ

ε

e

︸ ︷︷ ︸
=0

=
e

∆

===

∇
=

===

∇

J

Finally, this gives the following theorem:

I Theorem 25. For the induced additive bialgebra modality of an additive linear category, all
deriving transformations satisfy the monoidal rule [d.m] and are induced by a codereliction.

7 Conclusion

Of course it would have been very much simpler if all these observations had been made
in [2], the original paper. Unfortunately, they were not. The suggestion in Marcelo Fiore’s
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paper [7] that something new and different had been found, made us realize that the relation
between deriving transformations and coderelictions had never been fully explored. Here we
have revisited this relation. Significantly, it is not that the notion of differentiation varies but
rather, as the setting varies, significantly different presentations of the differential become
possible. Philosophically this is certainly how thing should be ... and apparently it is how
they are!
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A Compatibilities of the Bialgebra Modality

We provide the proof of some compatibility relations between the bialgebra modality and
the monoidal structure:

I Lemma 26. In an additive linear category, the following diagrams commute:

!A

e

��

1⊗u // !A⊗ !B
m⊗

��

!A⊗ !A

δ⊗δ
��

∇ // !A

δ

��

!A⊗ !B ⊗ !B 1⊗∇ //

∆⊗1⊗1
��

!A⊗B

m⊗

��

K
u
// !(A⊗B) !!A⊗ !!A

m⊗

��

!!A !A⊗ !A⊗ !B ⊗ !B

1⊗σ⊗1
��

!(!A⊗ !A)
!(∇)

::

!A⊗ !B ⊗ !A⊗ !B

m⊗⊗m⊗

��

!(A⊗B)

!(A⊗B)⊗ !(A⊗B)
∇

66

Proof. For the first square on the left we use the naturality of m⊗, the unit laws of the
monoidal functor and that !(0) splits:

⊗

m

0
=

⊗
m

0
=

δ

0

ε
= 0 =

u

e

=

e

0

m

Now, for space and simplification, define φ = e⊗ ε+ ε⊗ e. Then for the middle square, we
use the naturality of m⊗, the comonad δ square and that δ is a monoidal transformation:

δ δ

⊗
φ

δ

=

δ δ

⊗
δ

!(φ)

=

δδ

⊗

⊗

!(φ)

δδ

=

δδ

⊗

⊗
φ

δδ

=

δδ

⊗

φ

δ

⊗
δ

For the square on the right we use that δ is a monoidal transformation, naturality of m⊗,
associativity and symmetry of m⊗, that e and ε are monoidal transformations and that ∆ is
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a !-coalgebra morphism:

∆

⊗ ⊗

e

⊗

+ eε

δ δ

ε

=

∆

e

⊗

+ eεε

δ

⊗

δ

⊗
δ

⊗

δ

⊗

=

∆

e

⊗

+
ε

⊗
δ δ

⊗
δ δ

⊗ ⊗
ε

⊗
e

⊗

=

∆

e

⊗

+
ε

⊗
δ δ

⊗
δ δ

⊗ ⊗
ε

⊗
e

⊗
=

⊗
⊗

δ δ

δ

∆

εε ee e eεε
+

=

δ

+

⊗

δ δ

εe

ε

e

⊗

eεe

ε

∆ ∆

=

δ

+

⊗

δ δ

εeε

⊗

εeε

=

δ

⊗

e

⊗

+ eε

δ δ

ε

ε

=

⊗

e

⊗

+ eε

δ δ

ε

J

B Seely Isomorphisms

In a symmetric monoidal category with finite products × and terminal object T, a coalgebra
modality has Seely isomorphisms [1, 4] if the natural transformations χ and χT defined
respectively as:

!(A×B) ∆ // !(A×B)⊗ !(A×B)
!(π0)⊗!(π1) // !A⊗ !B !(T) e // K

are isomorphisms, so !(A×B) ∼= !A⊗ !B and !(T) ∼= K.

I Definition 27. A monoidal storage category [4] is a symmetric monoidal category
with finite products and a coalgebra modality which has Seely isomorphisms.

Monoidal storage categories were called new Seely categories in [1, 10]. As explained in
[4], every coalgebra modality which satisfies the Seely isomorphisms is a monoidal coalgebra
modality, where m⊗ is

!A⊗ !B χ−1
// !(A×B) δ // !!(A×B)

!(χ) // !(!A⊗ !B)
!(ε⊗ε) // !(A⊗B)
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and mK is defined as

K
χ−1

T // !(T) δ // !!(T)
!(χT) // !(K)

Conversly, in the presence of finite products, every monoidal coalgebra modality satisfies the
Seely isomorphisms [1] where the inverse of χ is

!A⊗ !B δ⊗δ // !!A⊗ !!B
m⊗ // !(!A⊗ !B)

!(〈ε⊗e,e⊗ε〉) // !(A×B)

while the inverse of χT is

K
mK // !(K)

!(t) // !(T)

where t : K → T is the unique map to the terminal object. Therefore we obtain the following
theorem (Theorem 3.1.6 [4]):

I Theorem 28. Every monoidal storage category is a linear category and conversely, every
linear category with finite products is a monoidal storage category.

This together with Appendix C provides a rather indirect verification of Theorem 19.
We now turn our attention to monoidal storage categories with an additive structure:

I Definition 29. An additive monoidal storage category is a monoidal storage category
which is also an additive symmetric monoidal category.

Notice, this implies that additive monoidal storage categories have finite biproducts ×
and a zero object 0. As noted in [2], the coalgebra modality of an additive monoidal storage
category is an additive bialgebra modality where the multiplication and unit are defined
respectively as:

!A⊗ !A χ−1
// !(A×A)

!(∇×) // !(A) K
χ−1

0 // !0
!(0) // !A

Conversly, every additive bialgebra modality satisfies the Seely isomorphisms where χ−1 and
χ−1

0 are defined respectively as:

!A⊗ !B
!(ι0)⊗!(ι1) // !(A×B)⊗ !(A×B) ∇ // !(A×B) K

u // !0

It is easy to check that this indeed gives the Seely isomorphisms, therefore we have:

I Theorem 30. The following are equivalent:
(i) An additive monoidal storage category;
(ii) An additive linear category with finite biproducts;
(iii) An additive symmetric monoidal category with finite biproducts and an additive bialgebra

modality.

C Biproduct Completion

Every additive bialgebra modality induces an additive monoidal storage category the biproduct
completion. We first recall the biproduct completion for an additive category [9].
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Let X be an additive category. Define the biproduct completion of X, B[X], as the category
whose objects are list of objects of X: (A1, . . . , An), including the empty list (), and whose
maps are matrices of maps of X, including the empty matrix:

(A1, . . . , An)
[fi,j ] // (B1, . . . , Bm)

where fi,j : Ai → Bj . The composition in B[X] is the standard matrix multiplication:

[fi,j ][gl,k] = [
∑

fi,kgk,j ]

while the identity is the standard identity matrix:

(A1, . . . , An)
[δi,j ] // (A1, . . . , An)

where δi,j = 0 if i 6= j, and δi,i = 1. It is easy to see that B[X] does in fact have biproducts:

I Lemma 31. B[X] is a well-defined category with biproducts.

If X is an additive symmetric monoidal category, then so is B[X]. The monoidal unit is
the same as in X, the tensor product of objects is:

(A1, . . . , An)⊗ (B1, . . . , Bm) = (A1 ⊗B1, . . . , A1 ⊗Bm, . . . , An ⊗Bn)

while the tensor product of maps is the standard Kronecker product of matrices.

I Lemma 32. If X is an additive symmetric monoidal category, then so is B[X].

If X admits an additive bialgebra modality, then B[X] is an additive monoidal storage
category where the Seely isomorphisms are strict, i.e., equalities, and in particular is an
additive linear category. We give the additive bialgebra modality of B[X]. The functor
! : B[X]→ B[X] is defined on objects as:

!(A1, . . . , An) = !A1 ⊗ . . .⊗ !An

and on a map [fi,j ] : (A1, . . . , An)→ (B1, . . . , Bm), !([fi,j ]) is represented in string diagrams
below:

!B1

∇

∆

!A1 !Ai

∆

!An

∆

. . . . . .

!Bj

∇

!Bm

∇
. . . . . .

f1,1 fi,mfi,1 fi,j fn,m. . .. . . . . .. . .

The bialgebra structure is given by the standard tensor product of bialgebras, the comonad
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comultiplication !(A1, . . . , An)→ !!(A1, . . . , An) is represented in string diagrams as:

u

!A1

∆

∇

δ

δ

. . . u uu

δ

!An

. . .u u

δ

!Ai

. . .. . . . . .. . .

e . . . e. . .ee ε. . . . . .e . . .ε . . .e ε

!(!A1 ⊗ . . .⊗ !An)

while the comonad counit is the following matrix:

!A1 ⊗ . . .⊗ !An


εA1 ⊗ e⊗ . . .⊗ e

. . .

e⊗ . . .⊗ εAi
⊗ . . .⊗ e

. . .

e⊗ e⊗ . . .⊗ εAn


// (A1, . . . , An)

I Lemma 33. If X has an additive bialgebra modality, then B[X] is an additive monoidal
storage category.
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