
Is the Optimal Implementation Inefficient?
Elementarily Not∗

Stefano Guerrini1 and Marco Solieri†2

1 LIPN, Université Paris 13 – Sorbonne Paris Cité, Paris, France
stefano.guerrini@univ-paris13.fr

2 Department of Computer Science, University of Bath, Bath, UK
ms@xt3.it

Abstract
Sharing graphs are a local and asynchronous implementation of lambda-calculus beta-reduction
(or linear logic proof-net cut-elimination) that avoids useless duplications. Empirical benchmarks
suggest that they are one of the most efficient machineries, when one wants to fully exploit
the higher-order features of lambda-calculus. However, we still lack confirming grounds with
theoretical solidity to dispel uncertainties about the adoption of sharing graphs. Aiming at
analysing in detail the worst-case overhead cost of sharing operators, we restrict to the case
of elementary and light linear logic, two subsystems with bounded computational complexity
of multiplicative exponential linear logic. In these two cases, the bookkeeping component is
unnecessary, and sharing graphs are simplified to the so-called “abstract algorithm”. By a modular
cost comparison over a syntactical simulation, we prove that the overhead of shared reductions is
quadratically bounded to cost of the naive implementation, i.e. proof-net reduction. This result
generalises and strengthens a previous complexity result, and implies that the price of sharing
is negligible, if compared to the obtainable benefits on reductions requiring a large amount of
duplication.

1998 ACM Subject Classification F.1.1 Models of Computation, F.1.3 Complexity Measures
and Classes, F.4.1 Mathematical Logic

Keywords and phrases optimality, sharing graphs, λ-calculus, complexity, linear logic

Digital Object Identifier 10.4230/LIPIcs.FSCD.2017.17

1 Introduction

1.1 Intelligence of sharing graphs
Redundancy and non-locality. An ideal implementation of a functional programming
language aims at satisfying two properties: sharing, i.e. to avoid the duplication of work, and
locality, i.e. to be parallelisable on architectures with multiple computing agents. Although
these properties are not orthogonal, a prerequisite for both is a fine-grained implementation
of material duplication. Consider the λ-calculus and take for instance the β-redex T =
(λx.M)(λy.N) and assume that x occurs k + 1 times in M . In the λ-term M{λy.NÒx}
obtained by reducing it, we have k new copies of N , and then, k additional copies of any
redex in it. Also, such a reduction step cannot be fired in parallel with any reduction in N .
To solve this kind of problems, we may consider switching to graph reduction. At the time

∗ Preliminary results of this work were previously presented [14] with a stronger yet unsolved claim.
† Work mainly carried out during: PhD studentship at Paris 13 and Bologna, ATER at Paris 7.

© Stefano Guerrini and Marco Solieri;
licensed under Creative Commons License CC-BY

2nd International Conference on Formal Structures for Computation and Deduction (FSCD 2017).
Editor: Dale Miller; Article No. 17; pp. 17:1–17:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FSCD.2017.17
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 Is the Optimal Implementation Inefficient? Elementarily Not

of writing, the technique is employed for instance in the Glasgow Haskell Compiler, namely
by the STG-machine at its core [21], whilst its essence dates back to the early seventies [24].
The key idea can be formalised with proof-nets of linear logic (LL), where T can be expressed
as in Figure 1a. With respect to the syntax tree of T we notice: the explicit connection of
the λ-link with its variable x; a ?-link connecting the k + 1 occurrences of x in M ; a box
(the dotted square) around the argument of the application (the @-link), to mean λy.N

is a duplicable term. Such information can be equivalently formalised by associating the
boxing depth to each link – e.g. the rightmost λ-link has index 1. Now, a linear-β reduction
step rewrites Figure 1a to Figure 1b. The box is now shared, thus reductions in N can be
performed without duplicating it. Unfortunately, this is still quite unsatisfactory. Indeed, if
an occurrence of x, which is represented in the figure as a premiss of the topmost contraction
?-link, appears in argument position within M , i.e. it is linked to a @-link, then we have a
“virtual β-redex”. In particular, this @-link and the λ-link will form a redex, once we reduce
the exponential redex between the ?-link and the promotion !-link. The problem is that firing
the latter entails the duplication of the whole box, and thus the loss of sharing benefits.

Sharing and locality. Sharing graphs [19, 13, 4] include instead, by their very design, the
solution to these problems of duplication. Back to our example, instead of performing the
duplication of the lowermost box, we can apply the “triggering” rule (t) shown in Figure 1b-c.
This introduces a link of a new kind ∣+⟩, called mux (multiplexer), that has k + 1 premisses
and index 1 as the content of the box. Muxes perform duplications of boxes in a local,
link-by-link way, following the approach introduced by interaction nets [18]. For instance, the
∣+⟩-link in the example can duplicate the λ-link only, by the (d +⊸) rule in Figure 1c-d. This
allows N being kept shared, whilst copies of the λ-link can now independently interact with
@-links in M . Also, from the (d +⊸) rule originates a sort of co-sharing link, the negative mux
with kind ∣-⟩ and the same index, which implements sharing of contexts (outputs), instead of
terms (inputs). In addition to the case of λ-links, there is one duplication for each other link
(@, !, ?), but it is applicable only when the mux faces its principal port, i.e. its conclusion,
depicted by an outgoing arrow. This makes duplication lazy – it is performed only when a
mux obstructs the formation of other redexes. The life of a ∣+⟩-link may end in two ways: by
being merged into it, when it reaches the premiss of a ?-link, or by annihilating with a facing
∣-⟩-links (i.e. the facing pair of links reduces to the identity). But positive muxes may also
need to swap with negative ones, i.e. they duplicate each other. Therefore, we mark muxes
with the index inherited from the exponential redex, e.g. 1 in our running example, so we
can distinguish two kinds of redexes with two opposite muxes: annihilation when indices
are equal, swap when they are different. In general, we would also need a supplemental
mechanism or information tracking, the so-called “oracle”, which manages indexes, as a
local implementation of digging and dereliction of LL. But this is not the case for proof-nets
for terms typed in the elementary and light variants of LL (ELL and LLL) [12, 6]. They
are obtained by a restriction on usual exponential boxes that makes indices immutable by
definition. Hence, for their sharing implementation we can simply consider the so-called
abstract algorithm of sharing graphs (ASG). Thanks to muxes, the sharing graph G that is
the normal form of T is a (possibly enormously) compressed representation of the proof-net
T we would have obtained by ordinary cut-elimination. To retrieve T from G, we need the
read-back (RB) – a set of additional rewriting rules for sharing graphs, which unlatch muxes
to let them freely duplicate downwardly, i.e. from the root of the term to its inputs.

⊳ This paper considers elementary proof-nets (EPN) to represent ELL and LLL typed terms,
or proofs (presented in Section 2), and their sharing implementation with ASG, including RB
(Section 3).

S. Guerrini and M. Solieri 17:3

(a)

@
• •

•

λ

•

M

• •⋯

?
•

!
•

λ

•

1

N

•• •. . .

→⊸

(b)

M

• •⋯

•

?
•

!
•

λ

•

1

N

•• •. . .

→t

(c)

M

• •⋯

•

+ 1

•

λ

•

1

N

•• •. . .

→d⊸

(d)

M

• •⋯

•

λ

•

1 λ

•

1

+ 1

•

N

•• •. . .

− 1

• •. . .

↪

(e)

M

• •⋯

•

λ

•

1 λ

•

1

+ 1

•

+ 1

•

N0

•• •. . .

Nk

•• •. . .

. . .

− 1

•
− 1

•

Figure 1 Examples: sharing reductions (a-d) on a proof-net; unshared graph (e) unfolding of d.

1.2 Efficiency of sharing graphs
Question. The possible benefits of sharing were astonishingly evident from the very first
sequential implementations of sharing graphs. For example, in the normalisation of λ-terms
benchmarks of BOHM [3] recorded polynomial times, against traditional languages (Caml
Light and Haskell) [4, Ch. 10] requiring exponential times. But sharing and locality may
come with a price. What is the price of sharing graphs? To answer this question, very
recently broadly surveyed by Asperti [1], we first need the notion of cost. We cannot use the
number of β steps, since, even though they are a reasonable [23] measure for the λ calculus
[9], in sharing graphs whole families of redexes are reduced simultaneously, (and this is the
reason why they realise the Lévy optimal reduction [20]). Nor can we use the number of such
parallel β-steps, since it would be an enormously parsimonious measure. Indeed, a polynomial
number of family reductions in the size s of a term may hide a concrete cost bigger than a
tower of exponentials of s, caused by the oracle rules [5] or by the local duplication rules [2].
Therefore, a study of the complexity of sharing graphs is necessarily limited by the state
of the art to take the form of a comparison to some existing reduction system, i.e. by the
approach of “ICC in the small” [10], and to use a cost measure based on standard rewriting
theory – counting the size of sub-graphs that are erased/introduced at each step. Hence, to
employ a reasonable measure we are possibly renouncing to parsimoniousness.
⊳ In Section 4.1 we shall define two cost functions for ASG and EPN reductions.

A first partial answer. In the only previous contribution which tackled the complexity study
of ASG [7], Baillot, Coppola and Dal Lago exploited the implicit computational complexity
of (the affine variants of) ELL and LLL. The cost of the cut-elimination of a proof-net N with
maximum boxing index d is related respectively by a Kalmar elementary function in the size
of N and rank d, in ELL, or by a polynomial function in the size of N and degree d, in LLL.
By means of a quantitative semantical tool [8] inspired by the geometry of interaction [11],
the authors proved that the cost of a normalisation with sharing graphs of ELL and LLL
proof-nets remains in the two aforementioned complexity classes. But they were not able to

FSCD 2017

17:4 Is the Optimal Implementation Inefficient? Elementarily Not

give any explicit bound to the overhead that sharing graphs might introduce in the worst
case – for instance, when it becomes less effective, since the reduction does not require a
relevant amount of duplications. Moreover, the technical approach hardly seems adaptable
to prove a similar result for the more general case featuring the “oracle”.

Contributions. We study the complexity of reducing (proof-nets representing) λ-terms
typed in the elementary or light linear logic and relate it to the cost of naive reduction. In
particular, we give a worst-case bound of the cost of sharing reduction as a quadratic function
in the cost of the naive reduction. Three are the axis along which this paper improves the
previous literature [7]:
1. Strength. We give a clear bound to the overhead of sharing reduction.
2. Generality. Our analysis considers strategy-agnostic reductions of arbitrary length, instead

of normalisation, and includes the read-back rules (which are sub-optimal). In this way
we get a more uniform, and perhaps fairest, complexity comparison.

3. Scalability. The technical approach bases on a quantitative extension of an elegant
syntactical simulation between sharing graphs and proof-nets; this provides modularity
for our complexity analysis, and appears to give room for further investigations also about
more general cases.

⊳ The complexity bound is obtained in Sections 4.2 and 4.3. Detailed proofs are omitted
for lack of space, but can be found in an extended version available on authors’ websites.

2 Intuitionistic elementary and light logics

We start by introducing proof-nets of ELL and LLL. We define first the two intuitionistic
and weakening-free logics by a levelled sequent calculus inspired by the approach of Guerrini,
Martini and Masini [15], which represents a typing system for λI terms. The absence of
weakening in λI will remove a considerable technical overhead that have no impact on the
complexity question (in the literature [7, for instance] garbage collection is indeed quite
commonly postponed at the end) nor on the proof technique. On the other hand, this will
greatly ease the exposition of ASG and their complexity analysis, since it removes reduction
rules and entails the uniqueness of the root in sharing graphs.

Then, we give the translation of sequent proofs in levelled proof-nets, that are directed
hypergraphs where every (occurrence of a) formula is a vertex and every inference rule is a
directed hyperedge (called link) that goes from the premisses of the rule to its conclusions.
Axioms and cuts correspond instead to a direct plugging of the two sub-proofs. Finally, we
will present cut-elimination as reduction of proof-nets.

2.1 Sequent calculus and typed lambda terms
I Definition 1 (Logics and typing). Given L a set of literal symbols, the formulas of ELL
and LLL are built from the following grammar.

T ∶∶= L ∣ T ⊸ T ∣ !T ∣ §T . (1)

A levelled formula is a pair Tn where T is a formula and n ∈ N. Given a set V of variables,
the set of terms is defined from the standard definition of the Λ calculus:

t ∶∶= V ∣ λV.t ∣ t t, (2)

S. Guerrini and M. Solieri 17:5

x ∶ An ⊢ x ∶ An
(Ax)

∆n+1
1 ,Γn

1 ⊢ t ∶ An ∆n+1
2 ,Γn

2 , x ∶ An ⊢ u ∶ Bn

∆n+1
1 ,∆n+1

2 ,Γn
1 ,Γn

2 ⊢ u[t/x] ∶ Bn
(Cut)

∆n+1,Γn,{x ∶ An} ⊢ t ∶ Bn

∆n+1,Γn ⊢ λx.t ∶ A⊸ Bn
(⊸)

∆n+1
1 ,Γn

1 ⊢ t ∶ An ∆n+1
2 ,Γn

2 , x ∶ Bn ⊢ u ∶ Cn

∆n+1
1 ,∆n+1

2 ,Γn
1 ,Γn

2 , y ∶ A⊸ Bn ⊢ u[yt/x] ∶ Cn
(-⊸)

(a) Common rules: axiom, cut, abstraction, application

Γn+1 ⊢ t ∶ An+1

Γn+1 ⊢ t ∶ !An
(!)

(b) Elementary promotion

{x ∶ An+1} ⊢ t ∶ An+1

{x ∶ An+1} ⊢ t ∶ !An
(!)

Γn+1,∆n+1 ⊢ t ∶ An+1

§Γn,∆n+1 ⊢ t ∶ §An
(§)

(c) Light promotion – Γ,∆ may be empty

∆n+1,Γn, (xi ∶ An+1)1≤i≤m ⊢ t ∶ Bn

∆n+1,Γn, y ∶ !An ⊢ t[y/xi
]1≤i≤m ∶ Bn

(?)

(d) Contraction

Figure 2 Levelled sequent calculus of ELL and LLL.

by constraining abstraction so that it bounds at least one occurrence (i.e. x must appear as a
free variable of t in order to write λx.t). The sequent calculus of the first-order, weakening-free,
intuitionistic fragment of ELL and LLL is defined in Figure 2 and represents a type assignment
system for the ΛI calculus.

I Remark 2 (LLL ⊂ ELL). Observe that § cannot appear in ELL formulas and that the light
version of the (!) rule is an instance of the elementary one. Moreover, any proof π of LLL
can be encoded in ELL by using the logical modality ! instead of §. For this reason and the
sake of simplicity, in the rest of the paper we shall refer only to the elementary version.

2.2 Proof-nets
I Definition 3 (Elementary proof-nets). Given a set of vertices, a link is a directed hyperedge,
i.e. a triple (V κn u), where: u is a vertex called conclusion, V is a non empty sequence
of vertices called premisses, κ is a label called kind, n ∈ N is called level. Depending on
the kind of a link l, a polarity is assigned to each of its vertices, i.e. an element of {ι, o}
(input and output), and the arity may be fixed, i.e. the number of vertices of l. In order
to keep a better correspondence with the underlying λ-calculus, the kinds of links will
correspond to the syntactical construct associated to the rule and not to the corresponding
logical connective. Also, links are depicted so that positioning follows the input/output
computational interpretation, o above, ι below; whilst arrows orientation follows the proof-
theoretical viewpoint, premisses inward, conclusions outward.

A proof-net of the fragment of ELL of our interest, to which we shall simply refer to as
an elementary proof-net (EPN), is the hyper-graph N obtained by the translation ⟦π⟧ of
some sequent proof π, as inductively defined as follows. Let R be the last rule of π, assume
its shape to be as in one of Figures 2a, 2b, and 2d. Also, let π1, π2 respectively be the
sub-proofs of π (if any) whose conclusions are the leftmost and rightmost premisses of R.
Then the translation of π is given by the case analysis in Figure 3. There we assume that
⟦π1⟧ , ⟦π2⟧ are disjoint, and also that, except when otherwise depicted, both are disjoint from
the vertices introduced by the inductive steps (i.e. new vertices are “fresh”). Although we
shall label vertices with their names, in the picture we used formulas to ease the reading and
stress the correspondence with the sequent proof.

FSCD 2017

17:6 Is the Optimal Implementation Inefficient? Elementarily Not

• An

(a) Ax-
iom

⟦π1⟧

•An • •. . .
∆n+1,Γn

λ

• A⊸ Bn

• Bn

n

(b) Abstraction

⟦π1⟧

• •⋯
∆n+1

1 ,Γn1

@
•A⊸ B • An

n

⟦π2⟧

• •. . .
∆n+1

2 ,Γn2
• Bn

• Cn

(c) Application

⟦π1⟧

• •. . .
An+1
i

• •. . .
∆n+1,Γn

• Bn

?
• !An

n + 1

(d) Contrac-
tion

⟦π1⟧

• •⋯
Γn+1

• An+1

!

• !An

n + 1

(e) Promo-
tion

⟦π1⟧

• •⋯
∆n+1

1 ,Γn1

⟦π2⟧

•A • •. . .
∆n+1

2 ,Γn2

• Bn

(f) Cut

Figure 3 Elementary proof-nets, as translated from sequent proofs. See Definition 3 and Figure 2.

The conclusions of ⟦π⟧ are the vertices corresponding to formulas appearing in the sequent
proved by π – input vertices stand for formulas on the left-hand side of the sequent, output
ones for those on the right-hand side. The set of the conclusions of N ∈ EPN is called its
interface and denoted by iface(N); any vertex of N not in iface(N) is an internal vertex of
N , and the corresponding set is denoted by int(G).

I Remark 4 (λ-terms). The input-output relation allows to associate a λ-term to a proof-net
– if we erase exponential links, we essentially obtain the syntax tree of the term.

I Definition 5 (Boxes). The level of a vertex v is denoted as `(v), and we shall write the
same for a link, meaning the level of its premiss(es). The maximum level of links in N is
written ∂(N). A box of level n in N ∈ EPN is a sub-graph B of N whose links and vertices
have level not smaller that n and that is maximal with respect to inclusion. The ι conclusion
v of B is called its principal door, whilst the o conclusions u1, . . . , uk auxiliary doors. We
shall then denote B as (u1, . . . , uk ⟨⟨B⟩⟩ v). Boxes are depicted with dotted squares.

I Definition 6 (Paths). A path from u0 to uk in a graph G is a sequence of vertices
(u0, . . . , uk) for which there is a sequence of links l0, . . . , lk−1 such that ui ≠ ui+1 and ui
belongs to both the vertices of li and those of li+1, for any 0 ≤ i < k − 1. A downward path is
a path such that: ui is not the first premiss of a λ-link and is an o-vertex of li+1; and ui+1 is
an ι-vertex of li+1, for any 0 ≤ i < k − 1. If these holds, then (uk, . . . , u0) is an upward path
from uk to u0. We shall write u ∼ v when there is a path from u to v, u↝ v when there is
a downward one, v ↝u when u ↝ v. A rooted path is a downward path starting from the
o-conclusion of G.

I Remark 7 (Boxes). Auxiliary doors of a box B are always premisses of an exponential link,
and that B is always connected: there exists a path between any two of its vertices. Also,
boxes properly nest: given two distinct boxes, either they are completely disjoint, or one is
included into the other. Our definition of box is slightly different from the standard one, as it
is does not include vertices with exponential formulas, but just take the interior of the box.

I Definition 8 (EPN reduction). The rewriting relation →EPN, which implements the cut-
elimination on proof-nets, is obtained by the context closure of the reduction rules (+⊸), (D)
respectively defined in Figures 4a and 4b.

I Notation 9. Reductions steps are denoted by Greek letters (e.g. ρ), sequences are marked
with overlines (ρ), reducts are denoted by functional notations (N → ρ(N)).

S. Guerrini and M. Solieri 17:7

λ

• u2

•u1

@
•w • v1

• v2

→⊸

• u2 = v2

• u1 = v1

(a) Multiplicative

?

•v0 • vh. . .

!

• z

B

• •⋯
U1 Uk

• w

•V1 • Vk. . .

?
• u1

?
• uk

. . .

→D

B0

• •⋯
U10Uk0

• v0

Bh

• •⋯
U1h

Ukh

• vh

. . .

•V1 • Vk. . .

?
• u1

?
• uk

. . .

(b) Exponential

Figure 4 EPN reduction.

I Proposition 10 (Stratification). In EPN, levels are preserved by reduction.

3 Abstract sharing graphs

We introduce abstract sharing graphs (ASG) and their reduction, and recall their most
important qualitative properties as an implementation of EPN.

3.1 Syntax and computation
I Definition 11 (Sharing and read-back reductions). The sharing reduction is the graph-
rewriting relation →ASG given by the context closure of the following reduction rules.
Logical (⊸), (!), (t), defined in Figures 4a and 5a. On unary contractions, (!) = (D).
Duplication (d +⊸), (d -⊸), (d!), (d?), respectively defined in Figures 5c, 5d, 5e, and 5f.
Muxes (a), (s), defined in Figure 5b.
The read-back reduction →RB is obtained from the mux interaction rules and the followings.
Read-back duplication (r +⊸), (r?), (m), defined in Figures 5g and 5h.
The RB-normal form of a graph G is called its read-back and written R(G). The reduction
→ASGR is the union of →ASG and →EPN. The set ASG of abstract sharing graphs is obtained
by the closure of EPN with respect to →ASGR.

3.2 Implementation of EPN
Sharing graphs with ASG and RB reductions represent a well-behaved rewriting system. →ASG
is locally confluent. →RB and →ASGR are confluent. All three are strongly normalising, and the
last two have normal forms in EPN [16, Thm.s 4, 11.i and 11.ii (for MELL)]. The traditional
way of normalising proofs or terms with sharing graphs maximises the amount of sharing
by postponing duplication as much as possible, thus performing first an ASG-normalisation
and then an RB one. This gives a correct implementation of EPN reduction and a complete
implementation of EPN normalisation.

I Theorem 12 (Correctness). If N ∈ EPN,G ∈ ASG and N →∗

ASG G, then N →∗

EPN R(G).

Proof. We refer to the original proof for λ-calculus [13], or the more syntactic one for MELL
[16, Thm. 13]. J

FSCD 2017

17:8 Is the Optimal Implementation Inefficient? Elementarily Not

?

•v0 • vk. . .

n

!
• u

• w

n

→t

k > 0

+ n

• u

•v0 • vk. . .

!←

k = 0

• v0 = u

(a) Exponential reductions

+ n

• w

•u0 • uk. . .

− m

•v0 • vh. . .

→s

m ≠ n

− m

•z0.0 • z0.h. . .

• u.0

− m

•zk.0 • zk.h. . .

• u.k

. . .

+ n

• v0

+ n

• vh

. . .

a←

m = n
•

u0 = v0
•

uk = vk
. . .

(b) Annihilation and swap

+ n

• w

•v0 • vk. . .

λ

• u2

•u1

→
d

+⊸

λ

• v0

• z2.0

λ

• vk

• z2.k

. . .

+ n

• u2− n

•z1.0 • z1.k. . .

• u1

• •

(c) Duplication of abstraction

@
•w • u1

• u2

− n

•v0 • vk. . .

→d
-⊸

− n

•z2.0 • z2.k. . .

• u2

@
•v0 • u2.0

@
•vk • u2.k

. . .

+ n

• u1

(d) Duplication of application

+ n

• w

•v0 • vk. . .

!
• u

m

→d!

!
• z0

• v0

m !
• zk

• vk

m. . .

+ n

• u

(e) Duplication of promotion

?
• w

•u0 • uh. . .

m

− n

•v0 • vk. . .

→d?

− n

•z0.0 • zk.0. . .

• u0

− n

•z0.h • zk.h. . .

• uh

. . .

?
• v0

?
• vk

m m. . .

(f) Duplication of contraction

+ n

• u2

•v0 • vk. . .

@
•u0 • u1

→r
-⊸

@
•z0.0 • z1.0

• v0

@
•z0.k • z1.k

• vk

. . .

+ n

• u0

+ n

• u1

(g) Duplication of application

• u0

+ n

• ui

•v0 • vh. . .

. . . • uk. . .

?
• w

m →r?
m > n

•v0 • vh. . .

− n

•z0.0 • z0.h. . .

• u0
− n

•zi−1.0 • zi−1.h. . .

• ui−1

. . .
− n

•zi+1.0 • zi+1.h. . .

• ui+1

− n

•zk.0 • zk.h. . .

• uk

. . .

?
• y0

m ?
• yh

m. . .

+ n

• w

m←

m = n

•v0 • vh. . .

•u0 • ui−1. . . •ui+1 • uk. . .

?
• w

n

(h) Merge with, or duplication of, contraction

Figure 5 ASG and RB reduction rules.

S. Guerrini and M. Solieri 17:9

I Theorem 13 (Normalisation completeness). If N, N̄ ∈ EPN where N Ð→ ∗

EPN N̄ , with N̄

normal, then there is Ḡ ∈ ASG being ASG-normal and such that N Ð→∗

ASG ḠÐ→∗

RB N̄ .

Proof. See Asperti and Guerrini [4, Thm. 7.9.3.ii]. J

If instead we consider →ASGR, sharing graphs can be shown to be more generally complete
with respect to the whole EPN-reduction (not just normalisation). It suffices to prioritise RB
redexes, thus enforcing exhaustive duplications of boxes.

I Theorem 14 (Completeness). For any N,N ′ ∈ EPN if N Ð→EPN N ′ then N Ð→+

ASGR N ′.

I Remark 15 (Optimality). Once equipped with a “call-by-need” strategy [4, §5.6], the number
of (⊸) steps performed by ASG is minimised so the reduction reaches Lévy-optimality [16,
Thm. 14 (for MELL)] [4, Thm. 5.6.4 (for λ-calculus)]. For the sake of generality, our focus
will not be limited to the optimal strategy, and we shall analyse sharing graphs with the
greatest strategy-agnosticism.

4 Computational complexity

4.1 Cost measures
We define two cost functions CASG and CEPN, respectively for the ASG and EPN reductions.
Both measures are essentially equivalent to the size of the rewriting operations required.
However, to ease the presentation without affecting fairness, only CEPN is formally defined as
such, whilst CASG has been accurately hand tuned.

I Definition 16 (Size and variations). The size of a graph G, written #G, is the sum of the
cardinality of the set of its vertices and the sum of the arities of its links. We remark that
for a box (u1, . . . , uk ⟨⟨B⟩⟩ v), all of its doors, principal and auxiliary ones, belong to the
sub-graph B and are accounted by #B. Given M a metric on a graph G, e.g. the size of G
or of some set of sub-graphs, and ρ a reduction step, ∆(ρ) denotes M(ρ(G)) −M(G).

I Definition 17 (EPN-reduction cost). The cost CEPN(ρ) of a EPN-reduction step ρ on a
levelled proof-net N is defined as the size of the symmetric difference between the vertices
and links of N and those of ρ(N). Namely, the cost of a given rule is computed in Table 1a.
The cost of a reduction sequence ρ̄ is the sum of the costs of each step it is composed of.

I Definition 18 (ASG- and RB-reduction costs). The cost CASG(σ) and CRB(σ) of a ASG- or
RB-reduction step σ is given in Table 1b.

4.2 Unshared simulation
Our complexity comparison is directly founded on the most natural correspondence between
sharing graphs and proof-nets: a syntactical simulation. Given a proof-net P , any ASG
reduction sequence σ on P can be simulated by a EPN sequence ρ on the same P . Since
the only difference between the two rewriting systems is the style of duplication, local or
global, respectively, σ(P) and ρ(P) may greatly differ in the number of copies of some
subgraphs. To understand precisely the relationship between σ(P) and ρ(P), we shall
employ an intermediate reduction system – the unshared graphs (UG) [16]. Let us taste the
main intuitions employing the example that we began to consider in Section 1.1 and Figure 1.
The key feature of UG is the fact that the exponential redex in Figure 1b would be rewritten
in k+ 1 copies of the box (as one usually does on proof-nets), plus k+ 1 unary muxes (instead

FSCD 2017

17:10 Is the Optimal Implementation Inefficient? Elementarily Not

Table 1 Costs assigned to classic and sharing reductions.

Rule CEPN(ρ)
(⊸) 9
(D) k ×#B + 2k + 4

(a) Classic reduction rules. In the case of (D),
k+1 is the number of premisses of the ?-link, and
B is the box enclosed by the !-link.

Rule CASG(σ)
(⊸) 9
(!) 6
(t) j + 4
(d!) 3k

(d +⊸), (d -⊸), (r -⊸) 5k
(d?), (r?) (2j + 3) × k
(a), (m) k

(s) k × l
(b) Sharing and read-back rules. j + 1, k + 1 and
l + 1 respectively are the number of premisses of
the ?-link, the first and the second ∣*⟩-link, where
involved.

?

•v0 • vh. . .

!

• z

B

• •⋯
U1 Uk

• w

•V1 • Vk. . .

?
• u1

?
• uk

. . .

→tD

+ n

• v0

+ n

• vh

B0

• •⋯
U1.0Uk.0

• w0

Bh

• •⋯
U1.hUk.h

• wh

. . .

•V1 • Vk. . .

?
• u1

?
• uk

. . .

Figure 6 UG reduction rule: duplication and triggering (where h > 1).

of one k-ary mux of Figure 1c). Have a peek at Figure 6. The new links are called lifts, and
play the mere role of markers for the presence of muxes in corresponding sharing graphs.
In particular, their propagation along the graph does not affect any other link, and if we
erase them we simply obtain a proof-net. For instance, the (dλ) step in Figure 1c-d, can be
simulated by k + 1 propagation steps that reach Figure 1e, that is the unfolding of Figure 1d.
Similarly, any reduction step inside N (which is shared) needs to be performed k + 1 times in
Ni. Yellow arrows illustrate such unfolding relation.

4.2.1 Unshared graphs

I Definition 19 (Unshared reduction and graphs). The unshared reduction is the rewriting
relation →UG obtained from →ASG by replacing the (t) rule with (tD), defined in Figure 6.
The unshared read-back →UR is the restriction of RB-reduction to UG (i.e. muxes are unary).
The union of these two relations is written as UGR. An unshared graph UG-graph for short,
is either a levelled proof-net, or the reduct of an unshared graph via UG- or UR-reduction.

4.2.2 Unfolding and simulating sharing graphs in unshared graphs

I Definition 20 (Sharing morphism). A sharing morphism M is a surjective homomorphism
on hypergraphs [17] from UG to ASG that preserves the kind and level of links. We say that
G ∈ ASG unfolds to U ∈ UG, written G ↪ U , if there is a sharing morphism M such that
M(U) = G. We shall use the same notation to relate vertices and links: if v ∈ V (G) and

S. Guerrini and M. Solieri 17:11

W ⊆ V (U) we write v ↪W to meanM(W) = v, while if m ∈ L(G) and N ⊆ L(U) we write
m↪ N whenM(N) =m.

I Lemma 21 (Unfolded simulation). For any N ∈ EPN, G ∈ ASG, if N σ̄Ð→∗

ASG G then there
exists U ∈ UG such that N µ̄Ð→∗

UG U and G↪ U . Moreover, for any G′ ∈ ASG, if G σ̄′Ð→∗

RB G′

then there exists U ′ ∈ UG such that U µ̄′Ð→∗

UR U ′ and G′ ↪ U ′. We call µ̄ and µ̄′ an unfolded
simulation of σ̄ and σ̄′, respectively, and write σ̄ ↪ µ̄ and σ̄′ ↪ µ̄′.

4.2.3 Simulating sharing graphs into proof-nets
I Definition 22 (Lift erasure). The lift erasure is the function ↦ that maps a U ∈ UG to the
N ∈ EPN obtained by equating any two vertices u, v for which there is (u ∣*⟩ v) ∈ L(U). The
function is extended to let it map vertices and links of U to those of N .

I Lemma 23 (Lift erasure simulation). For any N ∈ EPN, U ∈ UG, if N →∗

UG U then there is
a unique σ̄ ∶ N →∗

EPN N
′ such that U ↦ N ′.

I Definition 24 (Sharing implementation). Given N ∈ EPN,G ∈ ASG, we say N is implemented
by G, written G↣ N , if there is U ∈ UG such that G↪ U ↦ N .

I Theorem 25 (EPN-reduction simulates ASG-reduction). Let N be a proof-net. If N →∗

ASG G

then there exists N →∗

EPN N
′ such that G↣ N ′.

4.3 Quantitative unshared simulation
Given two simulating reduction sequences on the same proof-net, σ of ASG and ρ of EPN, we
can compare CASG(σ) to CEPN(ρ), finding a quadratic bound. In order to do so, we shall bring
the unshared simulation up to a quantitative level, so that these two costs can be expressed
as two different cost measures on unshared reduction, thus allowing a direct comparison.

4.3.1 Share
The first step is to define introduce a labelled reduction for UG which decorates lifts: at
the creation of a set of lifts we add to each of them a fresh label tracking their number and
relative indices. We interpret the 0-th lift as the master one, while all the others as sharing
ones. In the previous illustration in Figure 1e, we darkened master lifts. Then, given an
unshared graph U being the unfolding of a sharing graph G, we can build the sharing context
of a vertex v as the sequence of lift labels that are along its access path from the root of U .
Its sharing context allows us to understand:
1. if v is shared in G, i.e. if its context contains non master lifts (equivalently: “has v been

previously copied in U”?);
2. how much v is shared, i.e. the product of the number of lifts in the label, for any lift in

the context of v (“how many other copies of v are in U”?).
The set of such shared objects is called the share, and conceptually represents the subtraction
of the graph of G from that of U . In Figure 1e, we highlighted the share as a pale yellow
circle. Notice that it does not include N0, since its sharing context include a master lift, we
interpret it as a master copy of N (the stereotype).

I Definition 26 (Copy identity). We enrich →UGR with the copy identity labelling (CID). It
maps lifts to labels of the form xi∶k (positive) or xi∶k (negative), where x ∈ V a set of variable
symbols, whilst i, k ∈ N are the current and maximal index. Given U ∈ UG and µ a (tD)-step

FSCD 2017

17:12 Is the Optimal Implementation Inefficient? Elementarily Not

as in Figure 6, we set CID((vj ∣*⟩n uj)) = xj∶h, for any 0 ≤ j ≤ h, and for some x ∈ V not
occurring in the labels of U . Labels are negated in negative lifts: if l is a positive lift with
CID(l) = xj∶h and l′ is a negative residual of l w.r.t. a lift propagation rule (dκ) or (rκ),
then CID(l′) = xj∶h. In any other case, labels are preserved by reduction, in particular under
copying.

I Definition 27 (Sharing contexts). The sharing contexts C are the strings generated by the
binary concatenation operator ⋅ over labels, and including 1 as the identity element (i.e. the
empty string) and 0 as the absorbing element for concatenation. We add two equations
to detect whether (or not) labels are well-bracketed in a context by neutralisation, (or
nullification). For any labels a ≠ b,

a ⋅ a = 1 a ⋅ b = 0. (3)

Also, a is said positive, written a > 0, when it is empty or contains only positive labels.
A levelled sharing context, or simply an l-context, is a map γ from N to C, that is uniformly

null: if for some n ∈ N we have γ(n) = 0, then γ(m) = 0 for any m ∈ N. We write (γ) ∣n
to denote the restriction of γ on n: if m = n and γ(m) ≠ 0, then (γ) ∣n(m) = 1; otherwise
(γ) ∣n(m) = γ(m). Also, we denote with !na the lifting of a context a at level n. Namely, if
!na = γ then γ(n) = a, whilst γ(m) = 1 for any m ≠ n. More precisely, !na denotes !(!n−1a),
where we set that !1 = 1, that !0 = 0, and also that !(a ⋅ b) = !a ⋅ !b. We say that γ is positive,
written γ > 0, if γ(n) > 0 for any n. Given π ∶ u↝ v the l-context of π is defined as follows.

c (()) = 1 (4)

c (π ∶∶ (u, v)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

c (π) ⋅ !na if there is l = (u ∣+⟩n v) s.t. CID(l) = a
c (π) ⋅ !na if there is l = (v ∣-⟩n u) s.t. CID(l) = a
(c (π)) ∣n if there is (u ?n v)
c (π) if u, v belong to a link of kind in { +⊸, -⊸, !}

(5)

The l-context of a vertex in U ∈ UG is the context of any rooted path reaching it.

I Proposition 28 (Positivity). Let π be a rooted downward path in U ∈ UG. Then c (π) > 0.

I Proposition 29 (Path irrelevance). Let π,π′ be two rooted paths in some UG ending with
the vertex v. Then c (π) = c (π′).

I Definition 30 (Share and master). A lift labelled with xi∶k is master if i = 0, otherwise it
is shared. A context a is master if a is empty or contains only master labels x0∶m; otherwise,
it is a shared context. Finally, an l-context α is master if α(n) is master for any n ∈ N,
otherwise it is shared. A vertex is shared if its l-context is so, otherwise it is master; a link is
shared if it has at least one shared vertex, otherwise it is master. A share component is a
non-empty, connected, and maximal (w.r.t. inclusion) sub-graph whose vertices and links
are shared. The set of the share components of U ∈ UG is denoted as ShC(U), their union is
called the share, written Sh(U).

I Definition 31 (Share boundary and interior). Given U ∈ UG, a shared lift l = (u ∣*⟩ v) is a
boundary lift, written l ∈ bLft(U), when u ∉ Sh(U) ∋ v, whilst it is an interior lift, written
l ∈ iLft(U), when u, v ∈ Sh(U). A given v ∈ Sh(U) is boundary, written v ∈ BSh(U), if it is
the conclusion of a boundary lift, or it is linked by a lift to a boundary vertex. If additionally

S. Guerrini and M. Solieri 17:13

Table 2 Metrics of UGR reduction: variation in the size of interior share, EPN-cost, variation
in the number of boundary share components (Lemma 34); ASG-cost (Definition 35). Notations:
µ is the reduction step, U is the net containing the redex, dκ, rκ stands for a duplication rule; if
involved: h + 1 is the number of premisses of the ?-link, B is the box subnet, l, l′ are the lifts. Also,
intervals are enclosed in brackets, sets in braces.

Rule(s) Proviso ∆iSh(µ) C
EPN
UG (µ) ∆BShC(µ) C

ASG
UG (µ)

(⊸)
µ ∉ Sh(U) 0 9 0 9
µ ∈ Sh(U) −9 +∆BShC(µ) 18 −∆BShC(µ) [0,2] 0

(!) µ ∉ Sh(U) 0 6 0 6
µ ∈ Sh(U) −6 12 [0,1] 0

(tD)
µ ∉ Sh(U) h ×#E(B) − h 3h + 4 {0, h} h + 4
µ ∈ Sh(U) h ×#E(B) − 3h − 6 5h + 10 0 0

(d!) l ∈ bLft(U) −3 +∆BShC(µ) 3 −∆BShC(µ) [0,1] 3
(d +
⊸), (d -

⊸), (r -
⊸) l ∈ bLft(U) −5 +∆BShC(µ) 5 −∆BShC(µ) [0,2] 5

(d?), (r?) l ∈ bLft(U) −2h − 3 +∆BShC(µ) 2h + 3 −∆BShC(µ) [0, h + 1] 2h + 3
(dκ), (rκ) l ∉ bLft(U) 0 0 0 0

(a)
l, l′ ∈ bLft(U) 0 0 −1 1
otherwise 0 0 0 0

(s)
l, l′ ∉ bLft(U),

−1 +∆BShC(µ) 1 −∆BShC(µ) [0,1] 1
l, l′ ∈ bLft(µ(U))

otherwise 0 0 0 0

(m)
l ∈ bLft(U) 0 0 −1 1
otherwise 0 0 0 0

v is linked to a link other than a lift, then it is boundary-limit, written v ∈ BLSh(U). In
such a case, the boundary lift chain of v is the longest sequence of lifts that induces a path
from v to the conclusion of a boundary lift. If Sh(U) ∋ v ∉ BSh(U) and v is a ι-vertex
of a lift, then v is a pseudo-boundary vertex, the set of which is denoted by bSh(U). If
Sh(U) ∋ v ∉ BSh(U) ∪ bSh(U), then v is an interior vertex, the set of which is iSh(U). A
share component having no interior vertices is a boundary component, and BShC(U) denotes
the set of such components.

4.3.2 Reading proof-net cost and sharing cost on unshared reduction
Now we transpose CEPN and CASG as two cost notions on UG reduction. On the proof-net side
we define CEPN

UG , by subtracting from CEPN the variations in the size of the internal share. The
first intuition is that the #iSh(⋅) represents a buffer for the amount of duplication work that
is performed in big steps by EPN and delayed in small steps by ASG. In such a way, we obtain
a definition of CEPN

UG that is bounded by constant on any step, including (tD). The second
intuition is that a reduction inside iSh(⋅) cost up to twice the cost it would have CEPN, since
we need to account not only for the usual graph-rewriting cost, but also for the duplication
cost previously performed of the involved links. Finally, we define and compute another
notion of cost, CBShC

UG , which accounts the amount of reductions on boundary lifts in boundary
share components. For the moment it only enables simplifications in the computation of
CEPN

UG , but it will play a crucial role later.

I Definition 32 (EPN metrics on UG). Recall the notions of size and variation from
Definition 16. Given U

µÐ→ UGR U ′, the partial EPN-cost of µ, is defined as CEPN
UG (µ) =

CEPN(ρ) − ∆iSh(µ), while the full one is defined as CEPN
UG (µ) = CEPN

UG (µ) + #iSh(U). The
boundary-share-components cost of µ is CBShC

UG (µ) = ∣∆BShC(µ)∣.

I Fact 33 (Correctness of CEPN
UG). Let N µ̄Ð→ ∗

UG U and N ρ̄Ð→ ∗

UG N ′ such that µ̄ ↦ ρ̄. Then
CEPN(ρ̄) = C

EPN
UG (µ̄).

FSCD 2017

17:14 Is the Optimal Implementation Inefficient? Elementarily Not

I Lemma 34 (Metrics on UGR-reduction). Let µ be a UGR step. The possible values of
∆iSh(µ), CEPN

UG (µ) and ∆BShC(µ) are in Table 2.

On the sharing graphs side we define CASG
UG as follows: logical redexes are accounted for

only if they are a master copy; other redexes are accounted for only if the involved lift is a
boundary one. Intuitively, we distribute a k + 1-ary mux duplication into k propagations of
boundary lifts, and a step of another kind into the unique master copy of its redex.

I Definition 35 (Cost on unshared graph). Let µ be a UGR-reduction step. The ASG-cost of
µ, written CASG

UG (µi), is defined in the rightmost column of Table 2.

Let N ∈ EPN, U ∈ UG and G ∈ ASG such that N σ̄Ð→∗

ASG G and N µ̄Ð→∗

UGR U , with σ̄ ↪ µ̄.

I Lemma 36 (Master copy). If v ∈ V (G) and V ′ ↩ v, then V ′ contains a unique master.

I Lemma 37 (Correctness of CASG
UG). CASG(σ̄) = CASG

UG (µ̄).

4.3.3 Comparison of the two unshared costs
Finally, we now compare CEPN

UG (µ̄) and CASG
UG (µ̄), and find their difference to be bounded by

CBShC
UG (µ̄). By a mere local observation we find a linear bound in CEPN

UG for the portion of
CBShC

UG induced by logical, duplicating, merging and annihilation rules. For the portion caused
by swap rules, instead, we find a quadratic limitation. Therefore, the overhead of ASG with
respect to its EPN simulation admits a quadratic bound.

I Lemma 38. Let N ∈ EPN, U ∈ UG, s.t. N µ̄Ð→∗

UGR U . Then CASG
UG (µ̄) − CBShC

UG (µ̄) ≤ CEPN
UG (µ̄).

I Lemma 39 (Bound to CBShC
UG). For any N ∈ EPN and any sequence µ̄ of UGR-reduction on

N , there exists a quadratic function q such that CBShC
UG (µ̄) ≤ q(CEPN

UG (µ̄)).

I Theorem 40 (Complexity comparison). Let N,N ′ ∈ EPN, G ∈ ASG such that N σ̄Ð→∗

ASGR G

and N ρ̄Ð→∗

EPN N ′, where ρ̄↣ σ̄. Then CASG(σ̄) ≤ q (CEPN(ρ̄)) where q is a quadratic function.

5 Conclusions

Two reflections and four questions emerge from the study we have presented.

Discussion

1. A quite positive partial answer to the efficiency of sharing graphs comes from the quadratic
upper-limit to the complexity of their reductions. This is motivated by two arguments.
a. Hypotheses of our complexity measurement were purposely extremely conservative.

Indeed, we not only consider the read-back – an unavoidable portion of the reduction
work – by directly including their rewriting rules. But we also allow these rules to be
applied freely, also before the end of the β-normalisation, thus allowing duplications of
redexes in a sub-optimal fashion [20].

b. The worst-case overhead of sharing graphs are usually counterbalanced by other
benefits. Laziness in the strategy of duplication, for instance, has shown speed-ups
up to exponential size [3]. Locality and asynchronicity of the computational model,
moreover, allow parallelisable implementation with little effort.

S. Guerrini and M. Solieri 17:15

2. The cost of local duplication is legitimate. Normalisation with sharing graphs of some
ELL-typed λ-terms may cause an elementary explosion in the number of local duplication
rules (mux propagations) [2]. This should not surprise, because simply-typed terms in
general may require an implementation cost that is more than elementary [22]. To further
clarify this point, Lemma 38 shows that duplications performed by sharing graphs have a
cost that is linearly bounded by the cost of proof-net reduction.

Open questions

1. Can we improve the quadratic bound? Or there is instead a λ-term typeable in ELL or
LLL whose sharing normalisation requires indeed a cost that is quadratic with respect to
proof-nets normalisation?

2. Does a similar complexity upper-bound hold for the more general cases of λ-calculus and
MELL?

3. Complementarily, is there also a lower bound giving theoretical evidence of performance
gains?

4. Can our bound be directly related to the number of β-steps in the leftmost-outermost
strategy on the λ-calculus [9]? Are sharing graphs themselves are a reasonable and
parsimonious cost model the λ-calculus?

References
1 Andrea Asperti. About the efficient reduction of lambda terms. arXiv, January 2017.

1701.04240. URL: http://arxiv.org/abs/1701.04240.
2 Andrea Asperti, Paolo Coppola, and Simone Martini. (Optimal) duplication is not element-

ary recursive. Inform. and Comput., 193(1):21–56, 2004. doi:10.1016/j.ic.2004.05.001.
3 Andrea Asperti, Cecilia Giovannetti, and Andrea Naletto. The Bologna optimal higher-

order machine. Journal of Functional Programming, 6(6):763–810, November 1996. https:
//github.com/asperti/BOHM1.1. doi:10.1017/S0956796800001994.

4 Andrea Asperti and Stefano Guerrini. The Optimal Implementation of Functional Pro-
gramming Languages, volume 45 of Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press, 1998.

5 Andrea Asperti and Harry G. Mairson. Parallel Beta Reduction Is Not Elementary Recurs-
ive. Inf. Comput., 170(1):49–80, 2001. doi:10.1006/inco.2001.2869.

6 Andrea Asperti and Luca Roversi. Intuitionistic light affine logic. ACM Trans. Comput.
Logic, 3:137–175, January 2002. doi:10.1145/504077.504081.

7 Patrick Baillot, Paolo Coppola, and Ugo Dal Lago. Light logics and optimal reduction:
Completeness and complexity. Information and Computation, 209(2):118–142, February
2011. doi:10.1016/j.ic.2010.10.002.

8 Ugo Dal Lago. Context semantics, linear logic, and computational complexity. ACM
Transactions on Computational Logic (TOCL), 10(4):25:1–25:32, August 2009. doi:10.
1145/1555746.1555749.

9 Ugo Dal Lago and Beniamino Accattoli. (Leftmost-Outermost) Beta Reduction is Invariant,
Indeed. Logical Methods in Computer Science, 12, 2016. doi:10.2168/LMCS-12(1:4)2016.

10 Ugo Dal Lago and Simone Martini. On Constructor Rewrite Systems and the Lambda-
Calculus. In Automata, Languages and Programming, pages 163–174. Springer, July 2009.
doi:10.1007/978-3-642-02930-1_14.

11 J.-Y. Girard. Geometry of interaction I. Interpretation of system F. In R. Ferro, C. Bonotto,
S. Valentini, and A. Zanardo, editors, Logic colloquium 1988, volume 127 of Studies in

FSCD 2017

http://arxiv.org/abs/1701.04240
http://dx.doi.org/10.1016/j.ic.2004.05.001
https://github.com/asperti/BOHM1.1
https://github.com/asperti/BOHM1.1
http://dx.doi.org/10.1017/S0956796800001994
http://dx.doi.org/10.1006/inco.2001.2869
http://dx.doi.org/10.1145/504077.504081
http://dx.doi.org/10.1016/j.ic.2010.10.002
http://dx.doi.org/10.1145/1555746.1555749
http://dx.doi.org/10.1145/1555746.1555749
http://dx.doi.org/10.2168/LMCS-12(1:4)2016
http://dx.doi.org/10.1007/978-3-642-02930-1_14

17:16 Is the Optimal Implementation Inefficient? Elementarily Not

Logic and The Foundations of Mathematics, pages 221–260. North-Holland, 1989. doi:
10.2277/978-0521621120.

12 Jean-Yves Girard. Light linear logic. Information and Computation, 143(2):175–204, 1998.
doi:10.1006/inco.1998.2700.

13 Georges Gonthier, Martín Abadi, and Jean-Jacques Lévy. The geometry of optimal lambda
reduction. In Conference record of the Nineteenth Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL’92), pages 15–26, Albequerque,
New Mexico, January 1992.

14 Stefano Guerrini, Thomas Leventis, and Marco Solieri. Deep into optimality – complexity
and correctness of sharing implementation of bounded logics. Third International Workshop
on Developments in Implicit Complexity, 2012.

15 Stefano Guerrini, Simone Martini, and Andrea Masini. Modal Logic, Linear Logic, Optimal
Lambda-Reduction. In Logic and Foundations of Mathematics, number 280 in Synthese
Library, pages 271–282. Springer, 1999. doi:10.1007/978-94-017-2109-7_20.

16 Stefano Guerrini, Simone Martini, and Andrea Masini. Coherence for sharing proof-
nets. Theoretical Computer Science, 294(3):379–409, February 2003. doi:10.1016/
S0304-3975(01)00162-1.

17 Pavol Hell and Jaroslav Nesetril. Graphs and homomorphisms. Oxford Univ. Press, 2004.
18 Yves Lafont. Interaction nets. In Proceedings of the 17th ACM SIGPLAN-SIGACT sym-

posium on Principles of programming languages, POPL’90, pages 95–108, New York, NY,
USA, 1990. ACM. doi:10.1145/96709.96718.

19 John Lamping. An algorithm for optimal lambda calculus reduction. In Proc. of Seven-
teenth Annual ACM Symposyum on Principles of Programming Languages, pages 16–30,
San Francisco, California, January 1990. doi:10.1145/96709.96711.

20 Jean-Jacques Lévy. Optimal reductions in the lambda-calculus. In Jonathan P. Seldin and
J. Roger Hindley, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism, pages 159–191. Academic Press, 1980.

21 Simon L. Peyton Jones. Implementing lazy functional languages on stock hardware: the
Spineless Tagless G-machine. Journal of Functional Programming, 2(2):127–202, April 1992.
doi:10.1017/S0956796800000319.

22 Richard Statman. The typed λ-calculus is not elementary recursive. Theoretical Computer
Science, 9(1):73–81, 1979. doi:10.1016/0304-3975(79)90007-0.

23 Peter van Emde Boas. Machine models and simulations, Handbook of theoretical computer
science (vol. A): algorithms and complexity. MIT Press, Cambridge, MA, 1991.

24 C.P. Wadsworth. Semantics and pragmatics of the lambda-calculus. PhD thesis, University
of Oxford, 1971.

http://dx.doi.org/10.2277/978-0521621120
http://dx.doi.org/10.2277/978-0521621120
http://dx.doi.org/10.1006/inco.1998.2700
http://dx.doi.org/10.1007/978-94-017-2109-7_20
http://dx.doi.org/10.1016/S0304-3975(01)00162-1
http://dx.doi.org/10.1016/S0304-3975(01)00162-1
http://dx.doi.org/10.1145/96709.96718
http://dx.doi.org/10.1145/96709.96711
http://dx.doi.org/10.1017/S0956796800000319
http://dx.doi.org/10.1016/0304-3975(79)90007-0

	Introduction
	Intelligence of sharing graphs
	Efficiency of sharing graphs

	Intuitionistic elementary and light logics
	Sequent calculus and typed lambda terms
	Proof-nets

	Abstract sharing graphs
	Syntax and computation
	Implementation of EPN

	Computational complexity
	Cost measures
	Unshared simulation
	Unshared graphs
	Unfolding and simulating sharing graphs
	Simulating sharing graphs

	Quantitative unshared simulation
	Share
	Reading proof-net cost and sharing cost on unshared reduction
	Comparison of the two unshared costs

	Conclusions

