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Abstract
We present Continuation Passing Style (CPS) translations for Plotkin and Pretnar’s effect hand-
lers with Hillerström and Lindley’s row-typed fine-grain call-by-value calculus of effect handlers
as the source language. CPS translations of handlers are interesting theoretically, to explain the
semantics of handlers, and also offer a practical implementation technique that does not require
special support in the target language’s runtime.

We begin with a first-order CPS translation into untyped lambda calculus which manages a
stack of continuations and handlers as a curried sequence of arguments. We then refine the initial
CPS translation first by uncurrying it to yield a properly tail-recursive translation and second by
making it higher-order in order to contract administrative redexes at translation time. We prove
that the higher-order CPS translation simulates effect handler reduction. We have implemented
the higher-order CPS translation as a JavaScript backend for the Links programming language.
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1 Introduction

Algebraic effects, introduced by Plotkin and Power [25], and their handlers, introduced by
Plotkin and Pretnar [26], provide a modular foundation for effectful programming. Though
originally studied in a theoretical setting, effect handlers are also of practical interest, as
witnessed by a range of recent implementations [2, 4, 8, 11, 13, 15, 17, 20]. Notably, the
Multicore OCaml project brings effect handlers to the OCaml programming language as a
means for abstracting over different scheduling strategies [8]. As a programming abstraction,
effect handlers can be viewed as a more modular alternative to monads [23, 29].

An algebraic effect is a signature of operations along with an equational theory on those
operations. An effect handler is a delimited control operator which interprets a particular
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18:2 Continuation Passing Style for Effect Handlers

subset of the signature of operations up to equivalences demanded by the equational theory.
In practice current implementations do not support equations on operations, and as such,
the underlying algebra is the free algebra, allowing handlers maximal interpretative freedom.
Correspondingly, in this paper we assume free algebras for effects.

There are many feasible implementation strategies for effect handlers. For instance,
Kammar et al.’s libraries make use variously of free monads, continuation monads, and
delimited continuations [13]; the server backend of the Links programming language uses an
abstract machine [11]; and Multicore OCaml relies on explicit manipulation of the runtime
stack [8]. Explicit stack manipulation is appealing when one has complete control over the
design of the backend. Similarly, delimited continuations are appealing when the backend
already has support for delimited continuations [13, 16]. However, if the backend does not
support delimited continuations or explicit stack manipulation, for instance when targeting
a backend language like JavaScript, an alternative approach is necessary.

In this paper we study how to translate effect handlers from a rich source lambda
calculus into a plain lambda calculus without necessarily requiring additional primitives.
Specifically, we study continuation passing style (CPS) translations for handlers. CPS does
not extend the lambda calculus, rather, CPS amounts to using a restricted subset of the plain
lambda calculus. Furthermore CPS is an established intermediate representation used by
compilers [1, 14], making it a realistic compilation target, and it provides a general framework
for implementing control flow, making it a good fit for implementing control operators such
as effect handlers. The only existing CPS translation for effect handlers we are aware of
is due to Leijen [17]. His work differs from ours in that he does not CPS translate away
operations or handlers, but rather uses a CPS translation to lift code into a free monad,
relying on a special handle primitive in the runtime. Leijen’s formalism includes features that
we do not. In particular, he performs a selective CPS translation in order to avoid overhead
in code that does not use algebraic effects. We have implemented a JavaScript backend for
Links, based on our formalism, which also performs a selective CPS translation. In this
paper we do not formalise the selective aspect of the translation as it is mostly orthogonal.

This paper makes the following contributions:
1. A concise curried CPS translation for effect handlers (§4.2.1). The translation has two

shortcomings: it is not properly tail-recursive and it yields administrative redexes.
2. A higher-order uncurried variant of the curried CPS translation, which is properly

tail-recursive and partially evaluates administrative redexes at translation time (§4.3).
3. A correctness proof for the higher-order CPS translation (§4.3).
4. An implementation of the higher-order CPS translation as a backend for Links [5] (§5).
The paper proceeds as follows. §2 gives a primer to programming with effect handlers. §3
describes a core calculus of algebraic effects and handlers. §4 presents the CPS translations,
correctness proof, and variations. §5 briefly describes our implementation. §6 concludes.

2 Modular interpretation of effectful computations

In this section we give a flavour of programming with algebraic effects and handlers. We
use essentially the syntax of our core calculus (§3) along with syntactic sugar to make the
examples more readable (in particular, we use direct-style rather than fine-grain call-by-
value). We consider two effects: nondeterminism and exceptions, the former given by a
nondeterministic choice operation Choose; the latter by an exception-raising operation Fail.

We combine nondeterminism and exceptions to model a drunk attempting to toss a coin.
The coin toss and whether it succeeds is modelled by the Choose operation. The drunk
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dropping the coin is modelled by the Fail operation.

drunkToss : Toss ! {Choose : Bool;Fail : Zero}
drunkToss = if do Choose then

if do Choose then Heads else Tails
else absurd do Fail

This code declares an abstract computation drunkToss, which potentially invokes two abstract
operations Choose and Fail using the do primitive. The type signature of drunkToss reads:
drunkToss is a computation with effect signature {Choose : Bool;Fail : Zero} and return value
Toss, whose constructors are Heads and Tails. The order of operation names in the effect
signature is irrelevant. The first invocation of Choose decides whether the coin is caught,
while the second invocation decides the face. The Fail operation never returns, so its return
type is Zero, which is eliminated by the absurd construct.

A possible interpretation of drunkToss uses lists to model nondeterminism, where the
return operation lifts its argument into a singleton list, the choose handler concatenates lists
of possible outcomes, and the fail operation returns the empty list:

nondet : α ! {Choose : Bool;Fail : Zero} ⇒ List α ! {}
nondet = return x 7→ [x]

Choose r 7→ r True ++ r False
Fail r 7→ []

The type signature conveys that the handler transforms an abstract computation into a
concrete computation where the operations Choose and Fail are instantiated. The handler
comprises three clauses. The return clause specifies how to handle the return value of the
computation. The other two clauses specify how to interpret the operations. The Choose
clause binds a resumption r, a function which captures the delimited continuation of the
operation Choose. The interpretation of Choose explores both alternatives by invoking
the resumption twice and concatenating the results. The Fail clause ignores the provided
resumption and returns simply the empty list, []. Thus handling drunkToss with nondet yields
all possible positive outcomes, i.e. [Heads,Tails].

A key feature of effect handlers is that the use of an operation is decoupled from its
interpretation. Rather than having one handler which handles every operation, we may opt
for a more fine-grained approach using multiple handlers which each instantiate a subset of
the abstract operations. For example, we can define handlers for each of the two operations.

allChoices : α ! {Choose : Bool; ρ} ⇒ List α ! {Choose : θ; ρ}
allChoices = return x 7→ [x]

Choose r 7→ r True ++ r False

This effect signature differs from the signature of nondet; it mentions only one operation
and it mentions an effect variable variable ρ which ranges over all unmentioned operations.
In addition Choose is mentioned in output effect signature. (This is because we adopt a
Remy-style row-type system [28] in which negative information is made explicit. At the cost
of slightly less expressivity, it is possible to eliminate these effects in the output type by
permitting effect shadowing as in Koka [17] and Frank [20].) The notation Choose : θ denotes
that the operation may or may not appear again. This handler implicitly forwards Fail to
another enclosing handler such as the following.

failure : α ! {Fail : Zero; ρ} ⇒ List α ! {Fail : θ; ρ}
failure = return x 7→ [x]

Fail r 7→ []

FSCD 2017



18:4 Continuation Passing Style for Effect Handlers

Value types A,B ::= A→ C | ∀αK .C
| 〈R〉 | [R] | α

Computation types C ,D ::= A!E
Effect types E ::= {R}
Row types R ::= ` : P; R | ρ | ·
Presence types P ::= Pre(A) | Abs | θ
Handler types F ::= C ⇒ D

Types T ::= A | C | E | R | P | F
Kinds K ::= Type | RowL | Presence

| Comp | Effect | Handler
Label sets L ::= ∅ | {`} ] L
Type environments Γ ::= · | Γ, x : A
Kind environments ∆ ::= · | ∆, α : K

Figure 1 Types, effects, kinds, and environments.

Now, we have two possible compositions, and we must tread carefully as they are semantically
different. For example, handle (handle drunkToss with allChoices) with failure yields the
empty list. But handle (handle drunkToss with failure) with allChoices yields all possible
outcomes, i.e. [[Heads], [Tails], []] where the empty list conveys failure. The behaviour of
nondet can be obtained by concatenating the result of the latter composition. Effect handlers
also permit multiple interpretations of the same abstract computation.

3 A calculus of handlers and rows

In this section, we recapitulate our Church-style row-polymorphic call-by-value calculus for
effect handlers λρeff (pronounced “lambda-eff-row”) [11].

The design of λρeff is inspired by the λ-calculi of Kammar et al. [13], Pretnar [27], and
Lindley and Cheney [19]. As in the work of Kammar et al. [13], each handler can have its
own effect signature. As in the work of Pretnar [27], the underlying formalism is fine-grain
call-by-value [18], which names each intermediate computation like in A-normal form [9], but
unlike A-normal form is closed under β-reduction. As in the work of Lindley and Cheney [19],
the effect system is based on row polymorphism.

3.1 Types
The syntax of types, kinds, label sets, and type and kind environments is given in Figure 1.

Value types. The function type A→ C maps values of type A to computations of type C .
The polymorphic type ∀αK .C is parameterised by a type variable α of kind K . The record
type 〈R〉 represents records with fields constrained by row R. Dually, the variant type [R]

represents tagged sums constrained by row R.

Computation types. The computation type A!E is given by a value type A and an effect
type E , which specifies the operations a computation inhabiting this type may perform.

Row types. Effect, record, and variant types are defined in terms of rows. A row type
embodies a collection of distinct labels, each of which is annotated with a presence type. A
presence type indicates whether a label is present with some type A (Pre(A)), absent (Abs)
or polymorphic in its presence (θ). Row types are either closed or open. A closed row type
ends in ·, whilst an open row type ends with a row variable ρ. The row variable in an open
row can be instantiated with additional labels. We identify rows up to reordering of labels.
For instance, we consider the rows `1 : P1; · · · ; `n : Pn; · and `n : Pn; · · · ; `1 : P1; · equivalent.
Absent labels in closed rows are redundant: if R is closed, then ` : Abs;R is equivalent to R.
The unit and empty type are definable in terms of row types. We define the unit type as the
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Values V ,W ::= x | λxA.M | ΛαK .M | 〈〉 | 〈` = V ; W 〉 | (`V )R

Computations M ,N ::= V W | V T
| let 〈` = x; y〉 = V in N | case V{` x 7→ M ; y 7→ N} | absurdC V
| return V | let x ← M in N
| (do ` V )E | handle M with H

Handlers H ::= {return x 7→ M} | {` p r 7→ M} ]H

Figure 2 Term syntax.

empty, closed record, that is, 〈·〉. Similarly, we define the empty type as the empty, closed
variant [·]. Often we omit the · for closed rows.

Handler types. The handler type C ⇒ D represents handlers that transform computations
of type C into computations of type D.

Kinds. We have six kinds: Type, Comp, Effect, RowL, Presence, Handler, which respectively
classify value types, computation types, effect types, row types, presence types, and handler
types. Row kinds are annotated with a set of labels L. The kind of a complete row is Row∅.
More generally, the kind RowL denotes a partial row that cannot mention the labels in L.
We write ` : A as syntactic sugar for ` : Pre(A).

Type variables. We let α, ρ and θ range over type variables. By convention we use α for
value type variables or for type variables of unspecified kind, ρ for type variables of row kind,
and θ for type variables of presence kind.

Type and kind environments. Type environments (Γ) map term variables to their types
and kind environments (∆) map type variables to their kinds.

3.2 Terms
The terms are given in Figure 2. We let x, y, z, r , p range over term variables. By convention,
we use r to denote resumption names. The syntax partitions terms into values, computations
and handlers. Value terms comprise variables (x), lambda abstraction (λxA.M ), type
abstraction (ΛαK .M ), and the introduction forms for records and variants. Records are
introduced using the empty record 〈〉 and record extension 〈` = V ;W 〉, whilst variants are
introduced using injection (`V )R, which injects a field with label ` and value V into a row
whose type is R. The annotation supports bottom-up type reconstruction.

All elimination forms are computation terms. Abstraction and type abstraction are
eliminated using application (V W ) and type application (V T) respectively. The record
eliminator (let 〈` = x; y〉 = V in N ) splits a record V into x, the value associated with `,
and y, the rest of the record. Non-empty variants are eliminated using the case construct
(case V {` x 7→ M ; y 7→ N}), which evaluates the computation M if the tag of V matches `.
Otherwise it falls through to y and evaluates N . The elimination form for empty variants
is (absurdC V ). A trivial computation (return V ) returns value V . The expression
(let x ← M in N ) evaluates M and binds the result value to x in N .

The construct (do ` V )E invokes an operation ` with value argument V . The handle
construct (handle M with H ) runs a computation M with handler definition H . A handler
definition H consists of a return clause {return x 7→ M} and a possibly empty set of
operation clauses {` p r 7→ N`}`∈L. The return clause defines how to handle the final return
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18:6 Continuation Passing Style for Effect Handlers

value of the handled computation, which is bound to x in M . The operation clause for `
binds the operation parameter to p and the resumption r in N`.

We define three projections on handlers: H ret yields the singleton set containing the
return clause of H and H ` yields the set of either zero or one operation clauses in H that
handle the operation ` and H ops yields the set of all operation clauses in H . We write dom(H )

for the set of operations handled by H . As our calculus is Church-style, we annotate various
term forms with type or kind information; (term abstraction, type abstraction, injection,
operations, and empty cases); we sometimes omit these annotations.

Syntactic sugar. We make use of standard syntactic sugar for pattern matching, n-ary
record extension, n-ary case elimination, and n-ary tuples. For instance:

λ〈x, y〉.M ≡ λz.let 〈x, y〉 = z in M
〈V1, . . . ,Vn〉 ≡ 〈1 = V1, . . . ,n = Vn〉

case V {`1 x 7→ N1;

. . . ;

`n x 7→ Nn ; z 7→ N}

≡ case V {`1 x 7→ N1; z 7→ case z {`2 x 7→ N1; z 7→
. . .

case z {`n x 7→ N1; z 7→ N} . . . }

3.3 Kinding and typing
The kinding judgement ∆ ` T : K states that type T has kind K in kind environment ∆.
The value typing judgement ∆; Γ ` V : A states that value term V has type A under kind
environment ∆ and type environment Γ. The computation typing judgement ∆; Γ ` M : C
states that term M has computation type C under kind environment ∆ and type environment
Γ. The handler typing judgement ∆; Γ ` H : C ⇒ D states that handler H has type C ⇒ D
under kind environment ∆ and type environment Γ. In the typing judgements, we implicitly
assume that Γ, A, C , and D, are well-kinded with respect to ∆. We define the function
FTV (Γ) to be the set of free type variables in Γ. The full kinding and typing rules are given
in Appendix A. The interesting rules are T-Do, T-Handle, and T-Handler.

T-Do
∆; Γ ` V : A E = {` : A→ B; R}

∆; Γ ` (do ` V )E : B!E

T-Handle
∆; Γ ` M : C ∆; Γ ` H : C ⇒ D

∆; Γ ` handle M with H : D

T-Handler
C = A!{(`i : Ai → Bi)i ; R} D = B!{(`i : Pi)i ; R} H = {return x 7→ M} ] {`i p r 7→ N`i}i

∆; Γ, x : A ` M : D [∆; Γ, p : Ai , r : Bi → D ` N`i : D]i

∆; Γ ` H : C ⇒ D

The T-Handler rule is where most of the work happens. The effect rows on the computation
type C and the output computation type D must share the same suffix R. This means that
the effect row of D must explicitly mention each of the operations `i to say whether an `i
is present with a given type signature, absent, or polymorphic in its presence. The row R
describes the operations that are forwarded. It may include a row-variable, in which case an
arbitrary number of effects may be forwarded by the handler.

3.4 Operational semantics
We give a small-step operational semantics for λρeff. Figure 3 gives the reduction rules. The
reduction relation  is defined on computation terms. We use evaluation contexts (E) to
focus on the active expression. The interesting rules are the handler rules. We write BL(E)

for the set of operation labels bound by E .

BL([ ]) = ∅ BL(let x ← E in N ) = BL(E) BL(handle E with H ) = BL(E) ∪ dom(H )
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S-App (λxA.M )V  M [V/x]

S-TyApp (ΛαK .M )A  M [A/α]

S-Split let 〈` = x; y〉 = 〈` = V ; W 〉 in N  N [V/x,W/y]

S-Case1 case (`V )R{` x 7→ M ; y 7→ N}  M [V/x]

S-Case2 case (`V )R{`′ x 7→ M ; y 7→ N}  N [(`V )R/y], if ` 6= `′

S-Let let x ← return V in N  N [V/x]

S-Handle-Ret handle (return V ) with H  N [V/x], where H ret = {return x 7→ N}
S-Handle-Op handle E [do ` V ] with H  N [V/p, λy.handle E [return y] with H/r ],

where ` /∈ BL(E) and H ` = {` p r 7→ N}
S-Lift E [M ]  E [N ], if M  N

Evaluation contexts E ::= [ ] | let x ← E in N | handle E with H

Figure 3 Small-step operational semantics.

The rule S-Handle-Ret invokes the return clause of a handler. The rule S-Handle-op
handles an operation by invoking the appropriate operation clause. The constraint ` /∈ BL(E)

ensures that no inner handler inside the evaluation context is able to handle the operation:
thus a handler is able to reach past any other inner handlers that do not handle `.

We write R+ for the transitive closure of relation R.

I Definition 1. We say that computation term N is normal with respect to effect E , if N is
either of the form return V , or E [do `W ], where ` ∈ E and ` /∈ BL(E).

I Theorem 2 (Type Soundness). If ` M : A!E, then there exists ` N : A!E, such that
M  + N 6 , and N is normal with respect to effect E.

4 CPS translations

We now turn to the main business of the paper: continuation passing style translations
from a calculus with effects and handlers to a calculus with neither. In doing so, we achieve
two aims. First, we give an alternative formal explanation of effect handlers’ semantics
independent of the standard free monad interpretation. Second, we offer an implementation
technique that is more efficient than the free monad interpretation because it does not
allocate intermediate computation trees. We present our CPS translation in stages. We
start with a basic translation for fine-grain call-by-value without handlers in §4.1. We then
formulate first-order translations that progressively move from representing the dynamic
stack of handlers as functions to explicit stacks in §4.2. This prepares us for our final
higher-order one-pass translation in §4.3 that uses static computation at translation time to
avoid administrative reductions during runtime. We then consider shallow handlers in §4.4,
and exceptions in §4.5.

The untyped target calculus for our CPS translations is given in Figure 4. As in our
fine-grain call-by-value source language, we make a syntactic distinction between values and
computations. The reductions are standard β-reductions, also given in Figure 4. There are
three differences from fine-grain call-by-value: i) we have no explicit return to lift values
to computations, value terms are silently included in computation terms; ii) there is no let
in the target calculus, because all sequencing will be expressed via continuation passing;
and iii) we permit the function position of an application to be a computation (i.e., the
application form is M W rather than V W ). This latter relaxation is used in our initial
CPS translations, but will be ruled out in our final translation.

FSCD 2017



18:8 Continuation Passing Style for Effect Handlers

Syntax

Values V ,W ::= x | λx.M | 〈〉 | 〈` = V ; W 〉 | ` V
Computations M ,N ::= V | M W | let 〈` = x; y〉 = V in N

| case V {` x 7→ M ; y 7→ N} | absurd V
Evaluation contexts E ::= [ ] | E W

Reductions

U-App (λx.M )V  M [V/x]

U-Split let 〈` = x; y〉 = 〈` = V ; W 〉 in N  N [V/x,W/y]

U-Case1 case (`V ){` x 7→ M ; y 7→ N}  M [V/x]

U-Case2 case (`V ){`′ x 7→ M ; y 7→ N}  N [`V/y], if ` 6= `′

U-Lift E [M ]  E [N ], if M  N

Figure 4 Untyped target calculus.

Values
JxK = x

Jλx.M K = λx.JM K
JΛα.M K = λk.JM K k

J〈〉K = 〈〉
J〈` = V ; W 〉K = 〈` = JV K; JW K〉

J` V K = ` JV K

Computations
JV W K = JV K JW K
JV AK = JV K

Jlet 〈` = x; y〉 = V in N K = let 〈` = x; y〉 = JV K in JN K
Jcase V {` x 7→ M ; y 7→ N}K = case JV K {` x 7→ JM K; y 7→ JN K}

Jabsurd V K = absurd JV K
Jreturn V K = λk.k JV K

Jlet x ← M in N K = λk.JM K(λx.JN Kk)

Figure 5 First-order CPS translation of fine-grain call-by-value.

4.1 CPS translation for fine-grain call-by-value
We start by giving a CPS translation of the handler-free subset of λρeff in Figure 5. Fine-grain
call-by-value admits a particularly simple CPS translation due to the separation of values and
computations. All constructs from the source language are translated homomorphically into
the target language, except for return, let, and type abstraction (the translation performs
type erasure). Lifting a value V to a computation return V is interpreted by passing the
value to the current continuation. Sequencing two computations with let is translated in
the usual continuation passing way. In addition, we explicitly η-expand the translation of a
type abstraction in order to ensure that value terms in the source calculus translate to value
terms in the target.

4.2 First-order CPS translations of handlers
As is usual for CPS, the translation of a computation term by the basic CPS translation
takes a single continuation parameter that represents the context. With effects and handlers
in the source language, we must now keep track of two kinds of context in which each
computation executes: a pure context that tracks the state of pure computation in the scope
of the current handler, and an effect context that describes how to handle operations in the
scope of the current handler. Correspondingly, we have both pure continuations (k) and
effect continuations (h). As handlers can be nested, each computation executes in the context
of a stack of pairs of pure and effect continuations (as in the abstract machine of [11]).

On invocation of a handler, the pure continuation is initialised to a representation of the
return clause and the effect continuation to a representation of the operation clauses. As pure
computation proceeds, the pure continuation may grow. If an operation is encountered then
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the effect continuation is invoked. The current continuation pair (k, h) is packaged up as a
resumption and passed to the current handler along with the operation and its argument. The
effect continuation then either handles the operation, invoking the resumption as appropriate,
or forwards the operation to an outer handler. In the latter case, the resumption is modified
to reinstate the dynamic stack of continuations when invoked.

The translations introduced in this subsection differ in how they represent stacks of
pure and effect continuations, and how they represent resumptions. The first translation
represents the stack of continuations using currying, and resumptions as functions (§4.2.1).
Currying obstructs proper tail-recursion, so we move to an explicit representation of the
stack (§4.2.2). Then, in order to avoid administrative reductions in our final higher-order
one-pass translation we use an explicit representation of resumptions (§4.2.3).

4.2.1 Curried translation
Our first translation builds upon the CPS translation of Figure 5. The extension to oper-
ations and handlers is modest since currying conveniently lets us get away with a shift in
interpretation: rather than accepting a single continuation, translated computation terms
now accept an arbitrary even number of curried arguments representing the stack of pure
and effect continuations. Thus, the translation of core constructs remain exactly the same as
in Figure 5, where we imagine there being some number of extra continuation arguments
that have been η-reduced. The translation of operations, handlers, and top-level programs is
as follows.

Jdo ` V K = λk.λh.h (` 〈JV K, λx.k x h〉)
Jhandle M with H K = JM K JH retK JH opsK, where

J{return x 7→ N}K = λx.λh.JN K
J{` p r 7→ N`}`∈LK = λz.case z {(` 〈p, r〉 7→ JN`K)`∈L; y 7→ Mforward}

Mforward = λk′.λh′.vmap (λ〈p, r〉 k.k 〈p, λx.r x k′ h′〉) y h′

>JM K = JM K (λx.λh.x) (λz.absurd z)

We extend our target calculus in order to implement forwarding. The computation term
vmapU V W maps the function U over the body of the variant V and passes the result to
continuation W . Its reduction rule is:

U-VMap vmap U (`V ) W  U V (λx k.k (` x)) W

In an untyped setting vmap is easily definable. In Appendix B we sketch how to adapt our
row type system to type the CPS translation with vmap.

The translation of do ` V accepts a pure continuation k and an effect continuation h,
which acts as a dispatcher function for encoded operations. Each operation is encoded as a
value tagged with the name `, where the value consists of a pair consisting of the parameter of
the operation, and a resumption, which ensures that any subsequent operations are handled
by the same effect continuation h.

The translation of handle M with H invokes the translation of M with new pure and
effect continuation arguments for the return and operation clauses of H . The translation
of a return clause is a term which garbage collects the current effect continuation h. The
translation of a set of operation clauses is a function which dispatches on encoded operations,
and in the default case forwards to an outer handler. In the forwarding case, the resumption
is extended by the parent continuation pair in order to reinstate the handler stack, thereby
ensuring subsequent invocations of the same operation are handled uniformly.

Conceptually, top-level programs are enclosed by a top-level handler with an empty
collection of operation clauses and an identity return clause. The CPS translation materialises
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this handler as the identity pure continuation (the K combinator), and an effect continuation
that is never intended to be called.

There are two practical problems with this initial translation. First, it is not properly
tail-recursive due to the curried representation of the continuation stack. We will rectify this
using an uncurried representation in the next subsection. Second, it yields administrative
redexes. We will rectify this with a higher-order one-pass translation in §4.3.

To illustrate both issues, consider the following example:
>Jreturn 〈〉K = (λk.k 〈〉) (λx.λh.x) (λz.absurd z)

 ((λx.λh.x) 〈〉) (λz.absurd z) (λh.〈〉) (λz.absurd z) 〈〉

The first reduction is administrative: it has nothing to do with the dynamic semantics of
the original term and there is no reason not to eliminate it statically. The second and third
reductions simulate handling return 〈〉 at the top level. The second reduction partially
applies λx.λh.x to 〈〉, which must return a value so that the third reduction can be applied:
evaluation is not tail-recursive. The lack of tail-recursion is also apparent in our relaxation
of fine-grain call-by-value in Figure 4: the function position of an application can be a
computation, and the calculus makes use of evaluation contexts.

Remark. We originally derived the curried CPS translation for effect handlers by composing
a translation from effect handlers to delimited continuations [10] with a CPS translation for
delimited continuations [22].

4.2.2 Uncurried translation: continuations as explicit stacks
Following Materzok and Biernacki [22] we uncurry our CPS translation in order to obtain
a properly tail-recursive translation. The translation of return, let binding, operations,
handlers, and top level programs is as follows.

Jreturn V K = λ(k :: ks).k JV K ks
Jlet x ← M in N K = λ(k :: ks).JM K((λx ks.JN K(k :: ks)) :: ks)

Jdo ` V K = λ(k :: h :: ks).h (` 〈JV K, λx ks.k x (h :: ks)〉) ks
Jhandle M with H K = λks.JM K(JH retK :: JH opsK :: ks), where

J{return x 7→ N}K = λx ks.let (h :: ks′) = ks in JN K ks
J{` p r 7→ N`}`∈LK = λz ks.case z {(` 〈p, r〉 7→ JN`K ks)`∈L; y 7→ Mforward}

Mforward = let (k′ :: h′ :: ks′) = ks in
vmap (λ〈p, r〉 (k :: ks).k 〈p, λx ks.r x (k′ :: h′ :: ks)〉 ks) y ks′

>JM K = JM K ((λx ks.x) :: (λz ks.absurd z) :: [])

The other cases are as in Figure 5. The stacks of continuations are now explicitly represented
as lists, where pure continuations and effect continuations occupy alternating positions. We
now require lists in our target, which we implement using right-nested pairs and unit:

[] ≡ 〈〉 V :: W ≡ 〈V ,W 〉 U :: V :: W ≡ 〈U , 〈V ,W 〉〉

Similarly, we extend pattern matching in the standard way to accommodate lists.
Since we now use a list representation for the stacks of continuations, we need to modify

the translations of all the constructs that manipulate continuations. For return and let, we
extract the top continuation k and manipulate it analogously to the original translation in
Figure 5. For do, we extract the top pure continuation k and effect continuation h and invoke
h in the same way as the curried translation, except that we explicitly maintain the stack ks
of additional continuations. The translation of handle, however, pushes a continuation pair
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onto the stack instead of supplying them as arguments. Handling of operations is the same
as before, except for explicit passing of the ks. Forwarding now pattern matches on the stack
to extract the next continuation pair, rather than accepting them as arguments. As we now
use lists to represent stacks, we must modify the reduction rule for vmap.

U-VMap vmap U (`V ) W  U V (λx (k :: ks).k (` x) W )

Proper tail recursion coincides with a refinement of the target syntax. Now applications
are either of the form V W or of the form U V W . We could also add a rule for applying a
two argument lambda abstraction to two arguments at once and eliminate the U-Lift rule,
but we defer spelling out the details until §4.3.

4.2.3 Resumptions as explicit reversed stacks
In our two CPS translations so far, resumptions have been represented as functions and
forwarding has been implemented by function composition. In order to avoid administrative
reductions due to function composition, we move to an explicit representation of resumptions
as reversed stacks of pure and effect continuations. We convert these reversed stacks to
actual functions on demand using a special fun binding with the following reduction rule.

U-Fun let r = fun (Vn :: . . . :: V1 :: []) in N  N [(λx ks.V1 x (V2 :: . . . :: Vn :: ks))/r ]

This reduction rule reverses the stack, pulls out the top continuation V1, and appends
the remainder onto the current stack ks. The stack representing a resumption and the
remaining stack ks are reminiscent of the zipper data structure for representing cursors in
lists [12]. Resumptions represent pointers into the stack of handlers. We use exactly the
same representation in our abstract machine for effect handlers [11].

The translations of do, handling, and forwarding need to be modified to handle the
change in representation of resumptions. The translation of do builds a resumption stack,
handling uses the fun construct to convert the resumption stack into a function, and Mforward
extends the resumption stack with the current continuation pair.

Jdo ` V K = λk :: h :: ks.h (` 〈JV K, h :: k :: []〉) ks
J{(` p r 7→ N`)`∈L}K = λz ks.case z {(` 〈p, s〉 7→ let r = fun s in JN`K ks)`∈L; y 7→ Mforward}

Mforward = let (k′ :: h′ :: ks′) = ks in
vmap (λ〈p, r〉 (k :: ks).k 〈p, h′ :: k′ :: r〉 ks) y ks′

4.3 A higher-order explicit stack translation
We now adapt our uncurried CPS translation to a higher-order one-pass CPS translation [6]
that partially evaluates administrative redexes at translation time. Following Danvy and
Nielsen [7], we adopt a two-level lambda calculus notation to distinguish between static
lambda abstraction and application in the meta language and dynamic lambda abstraction
and application in the target language. The idea is that redexes marked as static are reduced
as part of the translation (at compile time), whereas those marked as dynamic are reduced
at runtime. The CPS translation is given in Figure 6.

An overline denotes a static syntax constructor and an underline denotes a dynamic
syntax constructor. In order to facilitate this notation we write application explicitly as an
infix “at” symbol (@). We assume the meta language is pure and hence respects the usual β
and η equivalences. We extend the overline and underline notation to distinguish between
static and dynamic let bindings.

The reify operator ↓ maps static lists to dynamic ones and the reflect constructor ↑ allows
dynamic lists to be treated as static. We use list pattern matching in the meta language.
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18:12 Continuation Passing Style for Effect Handlers

(λ(κ :: P).M) @ (V :: VS) = let κ = V in (λP.M) @ VS
(λ(κ :: P).M) @ ↑V = let (k :: ks) = V in let κ = k in (λP.M) @ ↑ks

Here we letM range over meta language expressions.
Now the target calculus is refined so that all lambda abstractions and applications take

two arguments, the U-Lift rule is removed, and the U-App rule is replaced by the following
reduction rule:

U-AppTwo (λx ks.M ) @ V @ W  M [V/x,W/ks]

We add an extra dummy argument to the translation of type lambda abstractions and
applications in order to ensure that all dynamic functions take exactly two arguments. The
single argument lambdas and applications from the first-order uncurried translation are still
present, but now they are all static.

In order to reason about the behaviour of the S-Handle-op rule, which is defined in
terms of an evaluation context, we extend the CPS translation to evaluation contexts:

J[ ]K = λκs. κs

Jlet x ← E in N K = λκ :: κs. JEK @ ((λx ks.JN K @ (k :: ↑ks)) :: κs)

Jhandle E with H K = λκs. JEK @ (JH retK :: JH opsK :: κs)

The following lemma is the characteristic property of the CPS translation on evaluation
contexts. This allows us to focus on the computation contained within an evaluation context.

I Lemma 3 (Decomposition). JE [M ]K @ (V :: VS) = JM K @ (JEK @ (V :: VS)) .

Though we have eliminated the static administrative redexes, we are still left with one
form of administrative redex that cannot be eliminated statically because it only appears at
run-time. These arise from pattern matching against a reified stack of continuations and are
given by the U-SplitList rule.

U-SplitList let (k :: ks) = V :: W in M  M [V/k,W/ks]

This is isomorphic to the U-Split rule, but we now treat lists and U-SplitList as distinct
from pairs, unit, and U-Split in the higher-order translation so that we can properly account
for administrative reduction. We write  a for the compatible closure of U-SplitList.

By definition, ↓↑V = V , but we also need to reason about the inverse composition. The
proof is by induction on the structure of M .

I Lemma 4 (Reflect after reify). JM K @ (V1 :: . . .Vn :: ↑↓VS) ∗a JM K @ (V1 :: . . .Vn :: VS) .

We next observe that the CPS translation simulates forwarding.

I Lemma 5 (Forwarding). If ` /∈ dom(H1) then:

JH ops
1 K @ ` 〈U ,V 〉@ (V2 :: JH ops

2 K :: W ) + JH ops
2 K @ ` 〈U , JH ops

1 K :: V1 :: V 〉@ W .

Now we show that the translation simulates the S-Handle-op rule.

I Lemma 6 (Handling). If ` /∈ BL(E) and H ` = {` p r 7→ N`} then:

Jdo ` V K @ (JEK @ (JH retK :: JH opsK :: VS)) + ∗a
(JN`K @ VS)[JV K/p, (λy ks.Jreturn yK @ (JEK @ (JH retK :: JH opsK :: ↑ks)))/r ] .

This lemma follows from Lemmas 3, 4, and 5. We now turn to our main result which is a
simulation result in style of Plotkin [24]. The theorem shows that the only extra behaviour
exhibited by a translated term is the bureaucracy of deconstructing the continuation stack.
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Static patterns and static lists

Static patterns P ::= κ :: P | κs
Static lists VS ::= V :: VS | ↑V

Reify

↓(V :: VS) = V :: ↓VS
↓↑V = V

Values
JxK = x

Jλx.M K = λx ks.JM K @ ↑ks
JΛα.M K = λz ks.JM K @ ↑ks

J〈〉K = 〈〉
J〈` = V ; W 〉K = 〈` = JV K; JW K〉

J` V K = ` JV K

Computations
JV W K = λκs.JV K @ JW K @ ↓κs
JV TK = λκs.JV K @ 〈〉@ ↓κs

Jlet 〈` = x; y〉 = V in N K = λκs.let 〈` = x; y〉 = JV K in JN K @ κs

Jcase V {` x 7→ M ; y 7→ N}K = λκs.case JV K {` x 7→ JM K @ κs; y 7→ JN K @ κs}
Jabsurd V K = λκs.absurd JV K
Jreturn V K = λκ :: κs.κ@ JV K @ ↓κs

Jlet x ← M in N K = λκ :: κs.JM K @ ((λx ks.JN K @ (κ :: ↑ks)) :: κs)

Jdo ` V K = λκ :: η :: κs.η @ (` 〈JV K, η :: κ :: []〉) @ ↓κs
Jhandle M with H K = λκs.JM K @ (JH retK :: JH opsK :: κs), where

J{return x 7→ N}K = λx ks.let (h :: ks′) = ks in JN K @ ↑ks′
J{(` p r 7→ N`)`∈L}K = λz ks.case z {(` 〈p, s〉 7→ let r = fun s in JN`K @ ↑ks)`∈L; y 7→ Mforward}

Mforward = let (k′ :: h′ :: ks′) = ks in
vmap (λ〈p, s〉 (k :: ks).k 〈p, h′ :: k′ :: s〉 ks) y ks′

Top level program

>JM K = JM K @ ((λx ks.x) :: (λz ks.absurd z) :: ↑[])

Figure 6 Higher-order uncurried CPS translation of λρeff.

I Theorem 7 (Simulation). If M  N then >JM K + ∗a >JN K.

The proof is by case analysis on the reduction relation using Lemmas 3–6. The S-Handle-op
case follows from Lemma 6.

In common with most CPS translations, full abstraction does not hold. However, as our
semantics is deterministic it is straightforward to show a backward simulation result.

I Corollary 8 (Backwards simulation). If >JM K  + ∗a V then there exists W such that
M  ∗ W and >JW K = V.

4.4 Shallow handlers
Shallow handlers [13] differ from deep handlers in that when handling an operation the
former does not reinvoke the handler inside the resumption. The typing rules and operational
semantics for shallow handlers are as follows.

T-Shallow-Handle
∆; Γ ` M : C

∆; Γ ` H : C ⇒† D
∆; Γ ` handle† M with H : D

T-Shallow-Handler
C = A!{(`i : Ai → Bi)i ;R} D = B!{(`i : Pi)i ;R}

H = {return x 7→ M} ] {`i y r 7→ N`i}i
∆; Γ, x : A ` M : D

[∆; Γ, y : Ai , r : Bi → C ` N`i : D]i

∆; Γ ` H : C ⇒† D
S-Shallow-Ret handle† (return V ) with H  N [V/x],where H ret = {return x 7→ N}
S-Shallow-Op handle† E [do ` V ] with H  N [V/x, (λy. E [return y])/r ],

where ` /∈ BL(E) and H ` = {` x r 7→ N}
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We write a dagger (†) superscript to distinguish shallow handlers from deep handlers. We
adapt our higher-order CPS translation to accommodate both shallow and deep handlers.

Jdo ` V K = λκ :: η :: κs.η @ (` 〈JV K, κ :: []〉) @ ↓κs
Jhandle M with H K

Jhandle† M with H K
=

=

λκs.JM K @ (JH retK :: JH opsK :: κs)

λκs.JM K @ (JH retK :: JH opsK† :: κs)

}
where

J{return x 7→ N}K = λx ks.let (h :: ks′) = ks in JN K @ ↑ks′
J{(` p r 7→ N`)`∈L}K = rec h z ks.case z {(` 〈p, s〉 7→ let r = fun (h :: s) in JN`K @ ↑ks)`∈L

y 7→ Mforward}
J{(` p r 7→ N`)`∈L}K† = rec h z ks.case z {(` 〈p, s〉 7→ let r = fun (Vid :: s) in JN`K @ ↑ks)`∈L

y 7→ Mforward}
Mforward = let (k′ :: h′ :: ks′) = ks in

vmap (λ〈p, s〉 (k :: ks).k 〈p, h′ :: k′ :: h :: s〉 ks) y ks′
Vid = rec h y ks.Mforward

For deep handlers, the current effect continuation is now added inside the translation of
the operation clauses rather than the translation of the operation. This necessitates making
the translation of operation clauses recursive, which we do using a recursion operator.

U-Rec (rec f x ks.M ) V W  M [(rec f x.M )/f ,V/x,W/ks]

In order to translate a shallow handler we insert an identity effect continuation in place of
the current effect continuation.

4.5 Exceptions and their handlers as separate constructs
Our core calculus λρeff (and also Links) does not have special support for exceptions and their
handlers. Indeed, exceptions are a special case of effects where the operations return an
uninhabited type similar to the Fail operation from §2. On the other hand, Multicore OCaml
maintains effects separate from exceptions not only for backwards compatibility but also due
to the fact that exceptions in Multicore OCaml are cheaper than effects. Multicore OCaml
relies on runtime support for stack manipulation in order to implement effect handlers, where
raising an exception need only unwind the stack and need not capture the continuation. Thus,
there is benefit in separating exceptions from effects; computations which raise exceptions
but do not perform other effects may be retained in direct-style in a selective CPS translation.
We can model this by extending handlers with exception clauses.

Handlers H ::= {return x 7→ M} | {` x r 7→ M} ]H | {` x 7→ M} ]H

S-Handle-Ex handle E [raise ` V ] with H  N [V/x],where ` /∈ BL(E) and H ` = {` x 7→ N}

Exception clauses lack a resumption. The CPS translation can now be adapted to maintain
a stack of triples (pure continuation, exception continuation, effect continuation).

5 Implementation

In this section, we briefly outline our experiences of implementing the CPS translations
described in §4.

A first prototype (available at https://github.com/Armael/lam) was implemented by
the fourth author and Armaël Guéneau for Multicore OCaml, which makes a distinction
between exception handlers and general effect handlers. Thus, this implementation is based
on the approach of §4.5. It uses a curried CPS translation which is not properly tail-recursive.

The Links implementation (available at https://github.com/links-lang/links) relies
on the higher-order CPS translation of §4.3. The Links client-side JavaScript backend has

https://github.com/Armael/lam
https://github.com/links-lang/links
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long used a higher-order CPS translation, relying on a trampoline for supporting lightweight
concurrency and responsive user-interfaces. As it is based on a trampoline, the stack is
periodically discarded and it is essential that the CPS translation be properly tail-recursive.
Initially we attempted to implement a higher-order curried translation. We then realised
that it is unclear whether it is even possible to define a higher-order curried translation for
effect handlers, so we began implementing a first-order curried translation. It quickly became
apparent that this approach could not work given the need to be properly tail-recursive. At
this point we changed tack and successfully implemented a properly tail-recursive higher-order
uncurried translation along the lines of the one described in §4.3.

6 Conclusions and future work

We have carried out a comprehensive study of CPS translations for effect handlers. We have
presented the first full CPS translations for effect handlers: our translations go all the way to
lambda calculus without relying on a special low-level handling construct as Leijen [17] does.
We began with a standard first-order call-by-value CPS translation, which we extended to
support effect handlers. We then refined the first-order translation by uncurrying it in order
to yield a properly tail-recursive translation, and by adapting it to a higher-order one-pass
translation that statically eliminates administrative redexes. We proved that the higher-order
uncurried CPS translation simulates reduction in the source language. In addition, we have
also shown how to adapt the translations to support shallow handlers.

The server backend for Links [11] is based on an extension of a CEK machine to support
handlers. There are clear connections between their abstract machine and our higher-order
CPS translation. In future work we intend to make these connections precise.

While our translations apply to unary handlers, we would like to investigate how to adapt
them to multi handlers which handle multiple computations at simultaneously [20].

Many useful effect handlers do not use resumptions more than once. The Multicore
OCaml compiler takes advantage of supporting only affine use of resumptions, by default, to
obtain remarkably strong performance. However, Multicore OCaml makes use of its own
custom stack implementation, whereas for certain backends (notably JavaScript) that luxury
is not available. We would like to explore linear and affine variants of our CPS translations,
mediated by a suitable substructural type system, to see if we can obtain similar benefits.
Another direction we intend to explore in this setting is the use of JavaScript’s existing
generator abstraction for implementing linear and affine handlers. We also intend to perform
a quantitative study of implementation strategies for effect handlers.

Acknowledgements. We thank the anonymous reviewers for their insightful comments.
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A Kinding and typing rules for λρeff

The kinding rules for λρeff are given in Figure 7 and the typing rules are given in Figure 8.

TyVar
∆, α : K ` α : K

Comp
∆ ` A : Type
∆ ` E : Effect

∆ ` A!E : Comp

Fun
∆ ` A : Type
∆ ` C : Comp

∆ ` A→ C : Type

Forall
∆, α : K ` C : Comp
∆ ` ∀αK .C : Type

Record
∆ ` R : Row∅
∆ ` 〈R〉 : Type

Variant
∆ ` R : Row∅
∆ ` [R] : Type

Effect
∆ ` R : Row∅

∆ ` {R} : Effect

Present
∆ ` A : Type

∆ ` Pre(A) : Presence

Absent
∆ ` Abs : Presence

EmptyRow
∆ ` · : RowL

ExtendRow
∆ ` P : Presence

∆ ` R : RowL]{`}
∆ ` ` : P; R : RowL

Handler
∆ ` C : Comp ∆ ` D : Comp

∆ ` C ⇒ D : Handler

Figure 7 Kinding rules for λρeff.
Values

T-Var
x : A ∈ Γ

∆; Γ ` x : A

T-Lam
∆; Γ, x : A ` M : C

∆; Γ ` λxA.M : A→ C

T-PolyLam
∆, α : K ; Γ ` M : C α /∈ FTV (Γ)

∆; Γ ` ΛαK .M : ∀αK .C

T-Unit
∆; Γ ` 〈〉 : 〈〉

T-Extend
∆; Γ ` V : A ∆; Γ `W : 〈` : Abs; R〉

∆; Γ ` 〈` = V ; W 〉 : 〈` : Pre(A); R〉

T-Inject
∆; Γ ` V : A

∆; Γ ` (`V )R : [` : Pre(A); R]

Computations

T-App
∆; Γ ` V : A→ C

∆; Γ `W : A
∆; Γ ` V W : C

T-PolyApp
∆; Γ ` V : ∀αK .C

∆ ` T : K
∆; Γ ` V T : C [T/α]

T-Split
∆; Γ ` V : 〈` : Pre(A); R〉

∆; Γ, x : A, y : 〈` : Abs; R〉 ` N : C
∆; Γ ` let 〈` = x; y〉 = V in N : C

T-Case
∆; Γ ` V : [` : Pre(A); R]

∆; Γ, x : A ` M : C ∆; Γ, y : [` : Abs; R] ` N : C
∆; Γ ` case V {` x 7→ M ; y 7→ N} : C

T-Absurd
∆; Γ ` V : []

∆; Γ ` absurdC V : C

T-Return
∆; Γ ` V : A

∆; Γ ` return V : A!E

T-Let
∆; Γ ` M : A!E

∆; Γ, x : A ` N : B!E
∆; Γ ` let x ← M in N : B!E

T-Do
∆; Γ ` V : A E = {` : A→ B; R}

∆; Γ ` (do ` V )E : B!E

T-Handle
∆; Γ ` M : C ∆; Γ ` H : C ⇒ D

∆; Γ ` handle M with H : D

Handlers
T-Handler
C = A!{(`i : Ai → Bi)i ; R} D = B!{(`i : Pi)i ; R} H = {return x 7→ M} ] {`i y r 7→ N`i}i

[∆; Γ, y : Ai , r : Bi → D ` N`i : D]i ∆; Γ, x : A ` M : D
∆; Γ ` H : C ⇒ D

Figure 8 Typing rules for λρeff.
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B Typed CPS translations

Given a suitably polymorphic target calculus, we can define a typed CPS translation for
λρeff. Of course, we can use the polymorphism of the target calculus to model polymorphism
(including row polymorphism) in source terms. More importantly, polymorphism may be
used to abstract over the return type of effectful computations.

Operations may be encoded with polymorphic variants and handlers with case expressions.
Alas, our existing row type system is not quite expressive enough to encode generic forwarding
in this setting, so let us begin by considering the restriction of λρeff without forwarding, where
we assume all effect rows are closed and all handlers are complete (i.e. include operation
clauses for all operations in their types).

B.1 Handlers without forwarding
Figure 9 gives the CPS translation of λρeff without forwarding. The image of the translation
lies within the pure fragment of λρeff. The translations on value types and values are omitted
as they are entirely homomorphic. If we erase all types then we obtain the translation of
§4.2.1 with two differences. First, the former translation η-expands the body of a type
lambda in order to ensure that it is a value (this is a superficial difference). There is no
need to do that here as type lambdas are values. Second, the former translation performs
forwarding, which we address in §B.2.

As the translation on terms is in essence one we have already seen, the main interest
is in the translation on types. The body of the translation of a computation type CA,E is
exactly that of the continuation monad instantiated with return type (JEKγ → γ)→ γ. The
argument to this function is the type of a handler continuation whose eventual return type is
γ. By abstracting over the type of γ we can allow the handler stack to grow dynamically as
necessary. This polymorphism accomplishes a similar purpose to Materzok and Biernacki’s
subtyping system for delimited continuations [21], which allows arbitrarily nested delimited
continuations to be typed. We can witness the instantiation of the return type in the
translation of a handler where the translation of the computation being handled JM K is
applied to CB,E′ . Polymorphism allows us to dynamically construct an arbitrarily deep stack
of continuation monads, each carrying its own handler continuation.

Effect types type operations, which are encoded as variants pairing up a value with a
continuation. The translation on effect types is parameterised by return type C .

I Theorem 9 (Type preservation). If ∆; Γ ` M : A!E then J∆K; JΓK ` JM K : JA!BK.

B.2 Forwarding and shapes
In order to encode forwarding we need to be able to parametrically specify what a default
case does. Given a default variable y, we know that y is of the form ` 〈V ,W 〉 where V : A
and W : B → C for some unknown types A and B and a fixed return type C . From y we
need to produce a new value ` 〈V ,W ′〉 where W ′ : B → C ′ and C ′ is a new return type. We
can do so if we can define a typed version of the vmap operation.

The extension we propose to our row type system is to allow a row type to be given
a shape, also known as a type scheme, which constrains the form of the ordinary types it
contains. For instance, the shape of a row for a variant representing an operation at return
type C is αType βType.〈α, β → C 〉 and the shape of an unconstrained row, that is the shape
of all rows in plain λρeff, is αType.α.
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Computation types

CA,E = (JAK→ (JEKγ → γ)→ γ)→ (JEKγ → γ)→ γ

JA!EK = ∀γType.CA,E

Effect types

J{` : JA`K→ JB`K}`∈LKC = [` : 〈JA`K, JB`K→ C 〉]`∈L

Computations (the other cases are homomorphic)

J(return V )A!EK = ΛγType.λkJAK→(JEKγ→γ)→γ .k JV K
Jlet x ← M A!E in N B!EK = ΛγType.λkJBK→(JEKγ→γ)→γ .JM K(λxJBK.JN Kk)

J(do ` V )EK = ΛγType.λkJBK→(JEKγ→γ)→γ .λhJEKγ→γ .h (` 〈JV K, λxJBK.k x h〉)JEKγ

where ` : A→ B ∈ E
Jhandle M with H A!E⇒B!E′

K = ΛγType.JM K CB,E′ JH retKA!E⇒B!E′
JH opsKA!E⇒B!E′

, where
J{return x 7→ Nret}KA!E⇒B!E′

= λxJAK.λhJEKCB,E′→CB,E′ .JNretK
J{` p r 7→ N`}`∈LKA!E⇒B!E′

= λzJEKCB,E′ .case z {(` 〈p, r〉 7→ JN`Kγ)`∈L}

Figure 9 Typed first-order curried CPS translation of λρeff without forwarding.

With shapes we can give vmap the following typing rule

SH-T-VMap
∆ ` R : Row((αKi

i )i .A, ∅) ∆; Γ ` U : ∀(αKi
i )i .A→ (B → C )→ C

∆; Γ ` V : [R] ∆; Γ `W : [((αKi
i )i .A⇒ B)R]→ C

∆; Γ ` vmap U V W : C

where row kinds now take an additional shape parameter and the shape of a row type R of
kind Row((αKi

i )i .A,L) may be transformed using the special type operator ((αKi
i )i .A⇒ B) to

a row of kind Row((αKi
i )i .B,L). The CPS translation on the operation clauses now becomes

J{` p r 7→ N`}`∈LKA!E⇒B!E′
= λzJEKCB,E′ .case z {(` 〈p, r〉 7→ JN`Kγ)`∈L; y 7→ Mforward}

where

Mforward = λk′JBK→C′→γ .λh′C
′
.

vmap (ΛαType βType.λ〈p, r〉〈α,β→C′〉 k〈α,β→C′〉→C′
.k 〈p, λxβ .r x k′ h′〉) y h′

C ′ = JE ′Kγ → γ

Performing the typed CPS translation (with forwarding) followed by type erasure yields
the same result as performing the untyped translation of §4.2.1.

Our shapes are similar to the type schemes in Berthomieu and Sagazan’s tagged types [3].
They can also be encoded using something similar to Remy’s generalised record algebras [28].
We defer a full investigation of our extended row type system and typed variants of the
uncurried CPS translations to future work.
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