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Abstract
We give three formalisations of a proof of the equivalence of the usual, two-sorted presentation
of System F and its single-sorted pure type system (PTS) variant λ2. This is established by
reducing the typability problem of F to λ2 and vice versa. A key challenge is the treatment of
variable binding and contextual information. The formalisations all share the same high level
proof structure using relations to connect the type systems. They do, however, differ significantly
in their representation and manipulation of variables and contextual information. In Coq, we
use pure de Bruijn indices and parallel substitutions. In Abella, we use higher-order abstract
syntax (HOAS) and nominal constants of the ambient reasoning logic. In Beluga, we also use
HOAS but within contextual modal type theory. Our contribution is twofold. First, we present
and compare a collection of machine-checked solutions to a non-trivial theoretical result. Second,
we propose our proof as a benchmark, complementing the POPLmark and ORBI challenges by
testing how well a given proof assistant or framework handles complex contextual information
involving multiple type systems.
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1 Introduction

There are different presentations of “System F” in the literature and they are effectively
considered equivalent, which is used to justify the transport of theoretical results between said
presentations. The assumed notion of equivalence is primarily a reduction of the typability
problem from one system to the other. While the existence of a suitable correspondence
between the systems may appear likely or obvious, it turns out that actually proving it
formally is surprisingly intricate. As long as the systems in question use the same expression
syntax, the proofs are usually tedious but straightforward. If, on the other hand, not only
the type systems, but also the syntactic languages differ, then establishing the correct
correspondence becomes much more involved. The goal of this paper is to showcase various
formalisation techniques to deal with the intricacies that arise in such an equivalence proof.

System F in its original form is due to Girard [14, 15], who introduced it in the context
of proof theory. It was also independently discovered by Reynolds [26] as the polymorphic
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TyF A,B ::= X | A→ B | ∀X.A TmF s, t ::= x | s t | λx :A. s | sA | ΛX. s

Cty
F ∆ ::= ∅ | ∆, X Ctm

F Γ ::= • | Γ, x :A

X ∈ ∆
∆ `tyF X

∆ `tyF A ∆ `tyF B
∆ `tyF A→ B

∆, X `tyF A
∆ `tyF ∀X.A

X /∈ ∆
Γ(x) = A ∆ `tyF A

∆; Γ `tmF x : A

∆; Γ `tmF s : A→ B ∆; Γ `tmF t : A
∆; Γ `tmF s t : B

∆; Γ, x :A `tmF s : B ∆ `tyF A
∆; Γ `tmF λx :A. s : A→ B

x /∈ domΓ

∆; Γ `tmF s : ∀X.B ∆ `tyF A
∆; Γ `tmF sA : B[A/X]

∆, X; Γ `tmF s : A
∆; Γ `tmF ΛX. s : ∀X.A

X /∈ ∆

Figure 1 Two-sorted System F: types, terms, contexts, type formation and typing.

Tmλ a, b, c, d, u ::= ∗ | � | x | a b | λx :a. b | Πx :a. b Cλ Ψ ::= • | Ψ, x :a

Ψ λ̀ ∗ : �
x :a ∈ Ψ Ψ λ̀ a : u

Ψ λ̀ x : a
Ψ λ̀ a : u Ψ, x :a λ̀ b : ∗

Ψ λ̀ Πx :a. b : ∗
x /∈ domΨ

Ψ λ̀ a : Πx :c. d Ψ λ̀ b : c
Ψ λ̀ a b : d[b/x]

Ψ λ̀ a : u Ψ, x :a λ̀ b : c Ψ, x :a λ̀ c : ∗
Ψ λ̀ λx :a. b : Πx :a. c

x /∈ domΨ

Figure 2 PTS: terms, contexts, and the type system λ2; u ranges over the universes ∗ and �.

λ-calculus. For the purpose of this paper we consider two presentations that differ sufficiently
to demonstrate the various complications. The first, called F and shown in Figure 1, is the
common two-sorted presentation, as for example given by Harper [17]. The second, given
in Figure 2, is the single-sorted pure type system (PTS) λ2, which appears as a corner in
Barendregt’s λ-cube [5].

In [13], Geuvers gives a proof sketch that valid typing judgements can be translated
between these two presentations. In [19] we then gave the first proof, machine-checked in Coq,
of the full reduction result. It relies on syntactic translation functions and the construction
of an intermediate, F-like type system for the PTS syntax. The proof presented here is a
lot simpler for a number of reasons. We use relations on the two syntactic languages rather
than translation functions, so we do not have to concern ourselves with cancellation laws
to establish the reductions. We can further establish the correspondence directly, which
completely bypasses the need for the intermediate type system.

The relations that precisely establish the correspondence of our two systems are realised
as inductive predicates (Figure 3). The main advantage over the functional approach is that it
allows us to focus on the meaningful, well-typed fragments of the two systems. Despite these
simplifications we still have to face the metaphorical elephant in the room, namely variable
binding and context manipulation. More precisely, we have to represent and handle contexts
that track various kinds of information, like the set of defined variables, their associated
types, their correspondence to other variables, and so on. To make the situation fully explicit:
our contexts are dependent sequences of dependent records.

In the following we present three formalisations. They all follow the same basic proof
structure, outlined in Section 2, but they each deal with the complexities of contextual
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Cty
R Θ ::= • | Θ, (X, y) Ctm

R Σ ::= • | Σ, (x, y)

(X, y) ∈ Θ
Θ ` X ∼ y

Θ ` A ∼ a Θ ` B ∼ b
Θ ` A→ B ∼ Πy :a. b

y /∈ Θ
Θ, (X, y) ` A ∼ a

Θ ` ∀X.A ∼ Πy :∗. a
X, y /∈ Θ

(x, y) ∈ Σ
Θ; Σ ` x ≈ y

Θ; Σ ` s ≈ a Θ; Σ ` t ≈ b
Θ; Σ ` s t ≈ a b

Θ; Σ ` s ≈ a Θ ` A ∼ b
Θ; Σ ` sA ≈ a b

Θ ` A ∼ a Θ; Σ, (x, y) ` s ≈ b
Θ; Σ ` λx :A. s ≈ λy :a. b

x, y /∈ Θ,Σ
Θ, (X, y); Σ ` s ≈ a

Θ; Σ ` ΛX. s ≈ λy :∗. a
X, y /∈ Θ,Σ

Figure 3 Inductive characterisation of ∼ and ≈; Θ and Σ track related type and term variables.

information and variable binding in different ways. In Sections 3, 4 and 5 we discuss in detail
how this is managed, in order of seniority, in Coq [6], Abella [4] and respectively Beluga [25].

The Coq proof assistant, oldest among the three, is a general purpose theorem prover
based on constructive type theory with no particular built-in support for meta-theoretical
reasoning. Since all required structures have to be handled manually, library support is
essential. In our case we use the Autosubst framework [28] that allows us to elegantly work
with pure de Bruijn syntax and parallel substitutions.

In contrast, both Abella and Beluga allow us to work with higher-order abstract syntax
(HOAS) [21], albeit in two rather different background logics. Both systems are designed
explicitly with meta-theoretical reasoning in mind, with suitable support built into the
foundation of each system. The core design of Abella is based around proof search and
relational specifications. It predates the POPLmark challenge [2], which shaped the following
decade of formalised meta theory. Meanwhile Beluga, youngest among the three, revisited
and and extended the Twelf logical framework [22] to directly support first-class syntactic
contexts and substitutions in its type-theoretic foundation. This lead to the notion of
contextual objects. Our three developments demonstrate how the various system designs
affect a given formalisation effort.

While the comparison of proofs from different systems in terms of code lines is only
marginally meaningful, we were surprised to find that all three developments each take
approximately 500 loc, with Beluga slightly on the shorter side and Coq somewhat on the
longer. This, however, only covers establishing the correspondence itself. The systems require
vastly different amounts of code to establish the separate meta theories for the two discussed
type systems, due to different levels of background support.

Contributions of the paper

1. We present and compare three different machine checked formalisations of the technically
intricate reduction of typability from System F to the PTS λ2 and vice versa.1

2. We propose that our equivalence proof serves as a benchmark for reasoning about and
relating multiple type systems and languages involving variable binding. The key aspect
of this benchmark is the representation and manipulation of contexts that track multiple
kinds of information and exhibit complex dependency structures. As such it can be seen
as a complement to the benchmarks proposed in [10, 9] and the POPLmark challenge [2].

1 The accompanying developments can be found at https://www.ps.uni-saarland.de/extras/fscd17/.
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2 Equivalence

The core challenge of the proof is the fact that F clearly distinguishes types and terms
with separate syntactic sorts, TyF and TmF respectively, while λ2 merges these into a single
syntactic sort Tmλ. The distinction still exists in λ2 but it is semantically imposed through
the type system, rather than at the level of syntax. Further consequences are the existence
of two variable scopes in F, with separate abstraction and application mechanisms, while
the same concepts are uniformly represented in λ2 for a single variable scope. This extends
to the formation of function spaces as well. For an in-depth discussion of the mismatches
between the two systems see [19]. In essence, the two systems differ in how explicit and
readily available certain structural properties are. One half of the proof will thus have to
reestablish implicit structures, which, as one would expect, is harder than removing it. This
will lead to a certain asymmetry in proof effort for seemingly symmetrical lemma statements.

The basic idea of the proof presented here is to construct two relations ∼ and ≈ that put
the types and respectively the terms of the two languages in correspondence (see Figure 3).
To obtain the desired equivalence results, we have to demonstrate that these relations exhibit
the following properties:
1. ∼ is functional and injective.
2. ∼ is left-total and type-formation preserving on the well-formed types of F.
3. ∼ is right-total and type-formation preserving on the propositions of λ2. A proposition

of λ2 is any term a such that λ̀ a : ∗ holds.
4. ≈ is functional and injective.
5. ≈ is left-total and typing preserving on the well-typed terms of F.
6. ≈ is right-total and typing preserving on the proofs of λ2. A proof of λ2 is any term b

such that λ̀ b : a holds for a a proposition of λ2.
We can now formulate, and easily prove, the following equivalences:

I Theorem 1 (Reductions from F to λ2).

`tyF A ⇐⇒ ∃!a. ` A ∼ a ∧ λ̀ a : ∗
`tmF s : A ⇐⇒ ∃!ba. ` s ≈ b ∧ ` A ∼ a ∧ λ̀ b : a ∧ λ̀ a : ∗

Proof. The forward directions are simply the corresponding left-to-right preservation and
left-totality results of ≈ and ∼. Uniqueness follows from functionality. For the inverse
direction we use preservation (here from right to left) and uniqueness. J

I Theorem 2 (Reductions from λ2 to F).

λ̀ a : ∗ ⇐⇒ ∃!A. ` A ∼ a ∧ `tyF A

λ̀ b : a ∧ λ̀ a : ∗ ⇐⇒ ∃!sA. ` s ≈ b ∧ ` A ∼ a ∧ `tmF s : A

Proof. Dual to the previous result. J

For the remainder of the paper, we focus on how F, λ2 and the two relations ∼ and ≈
are represented in our three proof systems, and how the six main properties of the relations
are obtained. Establishing Theorems 1 and 2 is in each case routine and hence not presented
in detail.
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A,B ::= xty | A→ B | ∀. A s, t ::= xtm | s t | λA. s | sA | Λ. s x,N : N

x < N

N `tyF xty

N `tyF A N `tyF B
N `tyF A→ B

N + 1 `tyF A
N `tyF ∀. A

Γx = A N `tyF A
N ; Γ `tmF xtm : A

N ; Γ `tmF s : ∀. A N `tyF B
N ; Γ `tmF sB : A[B · id]

N + 1; Γ[↑] `tmF s : A
N ; Γ `tmF Λ. s : ∀. A

N ; Γ, A `tmF s : B N `tyF A
N ; Γ `tmF λA. s : A→ B

N ; Γ `tmF s : A→ B N ; Γ `tmF t : A
N ; Γ `tmF s t : B

Figure 4 System F – de Bruijn encoding in Coq; term variable contexts Γ are lists of types.

a, b, c, d ::= ∗ | � | x | a b | λa. b | Πa. b x : N

0:a[↑] ∈λ Ψ, a
x :a ∈λ Ψ

(x+ 1):a[↑] ∈λ Ψ, b Ψ λ̀ ∗ : �
x :a ∈λ Ψ Ψ λ̀ a : u

Ψ λ̀ x : a

Ψ λ̀ a : u Ψ, a λ̀ b : ∗
Ψ λ̀ Πa. b : ∗

Ψ λ̀ a : Πc. d Ψ λ̀ b : c
Ψ λ̀ a b : d[b · id]

Ψ λ̀ a : u
Ψ, a λ̀ b : c Ψ, a λ̀ c : ∗

Ψ λ̀ λa. b : Πa. c

Figure 5 λ2 – de Bruijn encoding in Coq; dependent contexts Ψ are lists of terms.

3 Coq

For the Coq proof we reuse the pure de Bruijn encoding of the two systems and the
corresponding meta theories developed in [19], with major support from the Autosubst
framework [28]. The language definitions are given in Figures 4 and 5. The main feature of de
Bruijn syntax is the absence of variable names. Variables are instead represented as numerical
indices, where n references the nth enclosing binder of the correct scope. Dangling indices
represent free variables that instead reference positions in an enclosing context, indexed from
right to left. Note that we preserve the dot as a notational device to uniformly indicate the
presence of a binding constructor, even if nothing remains to the left of it (e.g. Λ. s). It
marks the precise spot where substitutions and indices have to be adjusted. The application
of a parallel substitution σ to a term s is written s[σ] where σ is a function from N that
acts on all free variables of s at once. The Autosubst framework provides a normalisation
procedure for such terms with applied substitutions. The existence of computable normal
forms was demonstrated in [27]. Context morphism lemmas (CML) are a useful proof device
to reason about judgements over pure de Bruijn syntax. In the following we will only focus
on those aspects that have an immediate impact on our present proof. For an in-depth
discussion of the interaction of pure de Bruijn syntax, parallel substitutions and CMLs we
refer to [7, 27, 28, 1, 16, 19]. A brief overview is also given in Appendix A.

In the definition of F in Figure 4, observe how the type variable context ∆ degenerates
to a plain natural number N . It is taken as an exclusive upper bound to the admissible type
variable indices, hence N = 0 represents the empty context. The term variable context Γ is
simply a list of types, since free variables are coded as context positions. The substitution B ·id
used in the type specialisation rule maps the free index 0 to B and lowers all other indices
by 1.

We further observe that for λ2, defined in Figure 5, context lookup is characterised
inductively: x :a ∈λ Ψ. The need for this arises from the fact that the PTS contexts are

FSCD 2017
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dependent as well as the more general issue that in a de Bruijn setting, terms are not stable
under context modifications. Hence, upon extraction of a term a from context Γ, all free
variables of a have to be adjusted by an amount that depends on the position of a in Γ. The
given inductive characterisation elegantly handles this complication.

The first equivalence proof. Similar to the way typing contexts are explicitly represented
as lists of terms or types, we are going to track explicitly which variables are related in our
definition of our relations ∼R and ≈RS . The relational parameters R and S correspond to the
contexts Θ and Σ from Figure 3:

xR y

xty ∼R y

A ∼R a B ∼R
⇑
b

A→ B ∼R Πa. b
A ∼R

ext
a

∀. A ∼R Π∗. a
x S y

xtm ≈RS y

s ≈RS a t ≈RS b

s t ≈RS a b

s ≈RS a A ∼R b

sA ≈RS a b

A ∼R a s ≈R
⇑

Sext b

λA. s ≈RS λa. b

s ≈R
ext

S⇑ a

Λ. s ≈RS λ∗. a

The parameters R and S track pairs of indices of type, and respectively, term variables. We
technically represent them as lists of type list (var × var) and use xR y to denote that the
pair (x, y) is in R. The interesting part of this definition is how these auxiliary parameters
have to be modified when binders are traversed, which we denoted above by R⇑ and Rext.
In order to precisely define these operations, let us recall the required action on a parallel
substitution σ that is pushed underneath a binder:

(∀. A)[σ] 7−→ ∀. A[0 · σ◦ ↑]

The [0 ·_] part ensures that any index referencing the presently traversed binder is preserved
as such. Meanwhile the [_ · σ◦ ↑] part ensures that every index n+ 1 is mapped to σ(n)[↑],
where the shift ↑ ensures that no free variables in the range of σ are accidentally captured
by the traversed binder.

In our correspondence proof we traverse binders almost in lockstep. For the simple cases
where we have a binder on both sides of the relation, and moreover, the bound variables
actually correspond according to the information tracked in R, we define, analogously to the
binder traversal for substitutions:

Rext := (0, 0) :: bimap ↑ ↑ R

where bimap f g R simply applies f to all left projections of R and g to all right projections.
The other possible scenario has a binder on the λ2 side that has no counterpart in F with

respect to the contextual information in R, like the not-really dependent PTS product that
corresponds to an arrow type in F. As a consequence of this spurious binding, the λ2 indices
in R have to be shifted relative to their F counterparts. This one-sided index adjustment is
obtained with

R⇑ := bimap id ↑ R

I Fact 3. Both Rext and R⇑ preserve injectivity and functionality of R. J

I Lemma 4. The type relation ∼R is injective/functional, whenever R is injective/functional.

Proof. Straightforward inductions using Fact 3. J
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To obtain the same result for ≈RS we additionally rely on R and S having disjoint ranges,
that is, no PTS variable is considered related to both a type and a term variable. We denote
this by R‖S.

I Fact 5. The property R‖S is preserved under extending one relation and shifting the other,
that is w.l.o.g.: R‖S =⇒ R⇑‖Sext. J

I Lemma 6. Disjointedness of ranges lifts from variable relations R and S to ∼R and ≈RS :

R‖S =⇒ A ∼R a =⇒ s ≈RS a =⇒ ⊥

Proof. By induction on A ∼R a and discriminating on s ≈RS a, using Fact 5. J

I Lemma 7. The term relation ≈RS is functional, whenever R and S are functional. It is
injective, whenever R and S are injective and R‖S holds.

Proof. Straightforward inductions. Injectivity relies on the premise R‖S and Lemma 6 to
discharge non-matching applications. Subderivations for ∼R are handled with Lemma 4. J

Proving the left and right totality and preservation results is slightly more interesting, as
we have to generalise to open judgements and non-empty contexts. We achieve this with
suitable proof invariants that are adapted from the notion of generalised context morphisms
laid out in [19]. The key difference is that instead of a renaming ξ that maps from one
context to another, we here consider a relation on variables that places two contexts in
correspondence. All invariants are set up such that they vacuously hold when the initial
context happens to be empty. We start with type formation and the direction from F to λ2:

N
R−→ Ψ := ∀x < N. ∃y. xR y ∧ y :∗ ∈λ Ψ

I Fact 8. The invariant N R−→ Ψ is preserved under corresponding extensions:

N
R−→ Ψ =⇒ N

R⇑

−→ Ψ, a N
R−→ Ψ =⇒ N + 1 Rext

−→ Ψ, ∗ J

I Lemma 9. The type-relation ∼R is left-total and preserves type formation:

N `tyF A =⇒ ∀RΨ. N R−→ Ψ =⇒ ∃a. A ∼R a ∧ Ψ λ̀ a : ∗

Proof. By induction on N `tyF A. The two binder cases use Fact 8. J

For the inverse direction we establish preservation of type formation and right totality
along the following invariant:

N
R←− Ψ := ∀y. y :∗ ∈λ Ψ =⇒ ∃x. xR y ∧ x < N

I Fact 10. The invariant N R←− Ψ is preserved under corresponding extensions:

N
R←− Ψ =⇒ Ψ λ̀ a : ∗ =⇒ N

R⇑

←− Ψ, a N
R←− Ψ =⇒ N + 1 Rext

←− Ψ, ∗ J

I Lemma 11. The type-relation ∼R is right-total and preserves type formation:

Γ λ̀ a : ∗ =⇒ ∀RN. N R←− Γ =⇒ ∃A. A ∼R a ∧ N `tyF A

FSCD 2017
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Proof. Induction on Γ λ̀ a : ∗, using Fact 10. One complication is the disambiguation of a
given PTS-product Πa. b, where a is known to live in some universe u. Discriminating on u
allows us to correctly choose either an arrow type A→ B, or a universal quantification ∀. B.
Further requirements are the degeneracy of the universe � (∗ is the only inhabitant of �),
as well as propagation and substitutivity for λ̀. J

The preservation and totality results for ≈RS make the overhead for explicitly tracking
contextual information most apparent. Since some of the typing rules for applications ascribe
types that are constructed from a non-trivial substitution operation, we require substitutivity
results for the judgements under consideration; in particular, β-substitutivity for ∼R:

I Fact 12. The type relation ∼R is closed under β-substitutions:

B ∼R b =⇒ A ∼R
ext
a =⇒ A[B · id] ∼R a[b · id] J

The proof of this fact is a lengthy but straightforward construction that first generalises the
two concrete β-substitutions to arbitrary parallel substitutions σ and τ . The result is still
not provable directly, as closure of ∼R under weakening is needed. This in turn is generalised
to a provable statement for arbitrary renamings ξ and ζ in place of σ and τ . In essence, we
establish a CML for ∼R.

We can now tackle the technically most intricate part of the proof. The invariant for
preservation of typing from F to λ2 is

Γ R−→
S

Ψ := ∀xA. Γx = A =⇒ ∃ya. A ∼R a ∧ xS y ∧ y :a ∈λ Ψ

I Fact 13. The invariant Γ R−→
S

Ψ is preserved under corresponding extensions:

Γ R−→
S

Ψ =⇒ A ∼R a =⇒ Γ, A R⇑

−→
Sext

Ψ, a Γ R−→
S

Ψ =⇒ Γ[↑] R
ext

−→
S⇑

Ψ, ∗ J

I Lemma 14. The term relation ≈RS is left-total and preserves typing.

N ; Γ `tmF s : A =⇒ ∀RSΨ. R func =⇒ N
R−→ Ψ =⇒ Γ R−→

S
Ψ =⇒

∃ba. A ∼R a ∧ s ≈RS b ∧ Ψ λ̀ b : a ∧ Ψ λ̀ a : ∗

Proof. By induction on N ; Γ `tmF s : A. Both the invariant Γ R−→
S

Ψ, as well as Lemma 9,
are used to obtain related types in the variable case. Functionality of R allows us to equate
these. J

The final part is the preservation of typing from λ2 to F. Here we use:

Γ R←−
S

Ψ := ∀ya. y :a ∈λ Ψ =⇒ Ψ λ̀ a : ∗ =⇒ ∃xA. A ∼R a ∧ xS y ∧ x :A ∈ Γ

I Fact 15. The invariant Γ R←−
S

Ψ is preserved under corresponding extensions:

Γ R←−
S

Ψ =⇒ A ∼R a =⇒ Γ, A R⇑

←−
Sext

Ψ, a Γ R←−
S

Ψ =⇒ Γ[↑] R
ext

←−
S⇑

Ψ, ∗ J

I Lemma 16. The term relation ≈RS is right-total and preserves typing:

Ψ λ̀ a : ∗ =⇒ Ψ λ̀ b : a =⇒ ∀RSNΓ. R inj =⇒ N
R←− Ψ =⇒ Γ R←−

S
Ψ =⇒

∃sA. A ∼R a ∧ s ≈RS b ∧ N ; Γ `tmF s : A ∧ N `tyF A
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A ty B ty
(A→ B) ty

Πx. x ty =I A〈x〉 ty
(∀. A) ty

s :F ∀. B A ty
sA :F B〈A〉

s :F A→ B t :F A
s t :F B

Πx. x ty =I s〈x〉 :F A〈x〉
Λ. s :F ∀. A

A ty Πx. x :F A =I s〈x〉 :F B
λA. s :F A→ B

Figure 6 HOAS specification of F in Abella.

U � U ∗ ∗ :λ �
a :λ Πc. d b :λ c

a b :λ d〈b〉
a :λ u U u Πx. x :λ a =I b〈x〉 :λ ∗

Πa. b :λ ∗

a :λ u U u Πx. x :λ a =I c〈x〉 :λ ∗ Πx. x :λ a =I b〈x〉 :λ c〈x〉
λa. b :λ Πa. c

Figure 7 HOAS specification of λ2 in Abella.

Proof. By induction on Ψ λ̀ b : a. The cases are mostly analogue to the previous result.
Injectivity of R is required for the variable case. Note that we need to discriminate on
the universes of product domains again (cf. Lemma 11), here to disambiguate the unified
abstractions and applications correctly. J

At this point we can make an interesting observation. The above proof demonstrates
that the CML proof pattern not only generalises to a multi system setting [19] but also to
relations in place of functional correspondences. This is what allowed us to quickly generate
all the contextual invariants needed for the various results.

4 Abella

Abella supports the use of higher-order abstract syntax (HOAS) [21]. The main idea is to
delegate variable binding at the object level to binding at the meta level. Take for example
the term constructor lam : (tm → tm) → tm that yields an abstraction of the untyped
λ-calculus. The s in lam s is a function of the meta level. Substitution at the object level is
implemented as application at the meta level, which we denote by s〈t〉 to distinguish it from
the various object level applications.

Reasoning about HOAS encodings inductively is somewhat complicated, as terms do
not remain closed and escape into the host theory. To get around this, Abella is designed
around the so-called two-level logic approach. The lower specification level, essentially
verbatim λProlog, is used to encode the object languages and their associated judgements.
One then reasons about these encodings at the meta level, using the logic G, which is the
intuitionistic predicative fragment of Church’s simple type theory, extended with natural
induction, (co)inductive predicates and nominal quantification (∇x. s) [11, 12]. The axioms
of G ensure that a ∇-quantified identifier is fresh for everything bound above it. The faithful
representation of object level variables relies on this freshness guarantee.

The two levels are connected with a special inductive predicate that embeds the derivation
of a λProlog judgement J from hypotheses L = I0, . . . , In into G, written {L ` J}, or simply
{J} in the absence of assumptions. Note that λProlog supports hypothetical (J1 =I J2)
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and locally quantified (Πx. J[x]) premises, which the embedding treats as follows:

{L ` J1 =I J2}  {L, J1 ` J2} {L ` Πx. J[x]}  ∇x.{L ` J[x]}

For the quantification case, observe that the context L is usually bound at the outermost
level, hence x is guaranteed to be fresh for L, satisfying the usual side condition for context
extension rules. This process is often referred to as mobility of binders: object level binders
are represented using λProlog quantification, which in turn is mapped to ∇-quantification
in G and eventually opened with nominal constants ni.

I Fact 17. The embedding {L ` J} satisfies cut and a nominal instantiation principle:

{L ` I} =⇒ {L, I ` J} =⇒ {L ` J} (cut)
∀s : typeof ni. {L[ni] ` J[ni]} =⇒ {L[s] ` J[s]} (inst)

Both are exposed as proof tactics to the user. J

Note that Fact 17 provides substitutivity for the various judgements of our object languages.
It is also worth noting that only the judgements, but not the specification level types like Tmλ

and TyF, are embedded, so we cannot induct directly on our syntax definitions.
At this point it should be straightforward to understand the HOAS representation of our

two systems given in Figures 6 and 7.2 For F, the judgements A ty and s :F A encode type
formation and respectively typing. For λ2, the judgement U u is used to recognise universes,
while a :λ b represents PTS typing.

As soon as we try to prove structural results about these definitions we are faced with a
problem. Consider the following inversion principle for arrow type formation in F:

{L ` A→ B ty} =⇒ {L ` A ty} ∧ {L ` B ty}

The premise may hold not only due to structural reasons, as claimed by the lemma, but
also due to backchaining and A→ B ty ∈ L. The problem is that L is too general and may
contain arbitrary judgements, not even necessarily related to type formation. Hence we
need to somehow constrain L to only contain judgements of the form ni ty, where the ni
are nominals representing variables. Similarly we want to constrain typing contexts to only
contain judgements of the form ni ty or ni :FA. We specify this notion of well-formed contexts
with auxiliary inductive G-predicates. The well-formedness predicate for F typing contexts,
written Ctm

F (−), is defined as:

Ctm
F (•)

Ctm
F (L)

Ctm
F (L, x ty)

x /∈ L
Ctm

F (L) {L ` A ty}
Ctm

F (L, x :F A)
x /∈ L,A

The freshness conditions are implemented by locally ∇-quantifying the respective variable.
Next we have to pair this definition with an inversion principle that reveals the structure
and freshness properties of any J ∈ L with Ctm

F (L). At this point we are able to add Cty
F (L),

defined analogously to Ctm
F (L), as an extra premise to our inversion principle and then

discard the spurious context extraction. This relies on the fact that ∇x.(A→ B) 6= x holds
in G. A key aspect of formalising our equivalence result in Abella is the correct choice of
well-formedness predicates and associated inversion lemmas.

2 The HOAS language definitions are standard. See also Appendix B for reference.
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The second equivalence proof. The relations ∼ and ≈ are defined as:

A ∼ a Πx. B ∼ b〈x〉
A→ B ∼ Πa. b

Πxy. x ∼ y =I A〈x〉 ∼ a〈y〉
∀. A ∼ Π∗. a

s ≈ a t ≈ b
s t ≈ a b

A ∼ a Πxy. x ≈ y =I s〈x〉 ≈ b〈y〉
λA. s ≈ λa. b

Πxy. x ∼ y =I s〈x〉 ≈ a〈y〉
Λ. s ≈ λ∗. a

s ≈ a A ∼ b
sA ≈ a b

We complement this definition with a well-formedness predicate C≈(L), which ascertains that
L only contains judgements of the form ni ∼ nj or ni ≈ nj , together with suitable lookup
lemmas. For technical reasons we do not define C∼(−) and instead prove a strengthening
lemma which holds due to the inferred subordination ordering of the two relations:

C≈(L) =⇒ {L, x ≈ y ` A ∼ a} =⇒ {L ` A ∼ a}

Before we go on, it is interesting to consider the information encapsulated in C≈(L). The
obvious part is that L contains exactly the same information about corresponding variables
that we had to track in Coq with the auxiliary parameters R and S. In addition, since L
only contains pairings of fresh nominals, we immediately obtain that L is functional and
injective. Lifting these properties to ∼ and then to ≈ are routine inductions.

When it comes to the totality and preservation statements, things become more interesting.
The remaining four lemma statements are generalised over three different contexts belonging
to the three involved judgements. Not only do we require these contexts to be locally
well-formed, but we also have to connect them. We achieve this with a single ternary
well-formedness predicate, CR(− | − | −), defined as follows:

CR(• | • | •)
CR(LF | L≈ | Lλ) x, y /∈ Li

CR(LF, x ty | L≈, x ∼ y | Lλ, y :λ ∗)

CR(LF | L≈ | Lλ) x, y /∈ Li, A, a
{LF ` A ty} {L≈ ` A ∼ a} {Lλ ` a :λ ∗}

CR(LF, x :F A | L≈, x ≈ y | Lλ, y :λ a)

When a binder is traversed, this ensures that all three contexts are extended with the same
freshly chosen variables x and y. The definition is accompanied by three extraction lemmas,
one for each of the three involved contexts, which provide the associated judgements from the
two other contexts. Recall that in Coq we had four separate invariants for the four preservation
and totality lemmas. Here, this information is uniformly encoded in CR(LF | L≈ | Lλ) and
we use it for all four proofs.

I Lemma 18. The type relation ∼ is total from F to λ2 and preserves type formation.

{LF ` A ty} =⇒ ∀L≈Lλ. CR(LF | L≈ | Lλ) =⇒ ∃a. {L≈ ` A ∼ a} ∧ {Lλ ` a :λ ∗}

Proof. By induction on {LF ` A ty}. J

As a trivial corollary we obtain: {A ty} =⇒ ∃a. {A ∼ a} ∧ {a :λ ∗}.
The proofs of the remaining three preservation results are surprisingly analogue, so we

will not go into further detail. It is worth pointing out, though, that we again require the
degeneracy of the PTS universe �, as well as propagation for both F and λ2 in various places.
The HOAS setup allows us to obtain these easily.
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5 Beluga

The programming and proof environment Beluga [24, 25] is another system that supports
HOAS. Object languages are encoded in the logical framework LF [18], while proofs about
these are expressed as total programs in contextual modal type theory, Beluga’s reasoning
logic. The programs analyse LF derivation trees using pattern matching and higher-order
unification. In Beluga, it is necessary to give programs (i.e. proof terms) explicitly, which
are proof checked as part of type checking. This stands in contrast to Coq and Abella, both
of which are interactive systems with a tactic language for proof term construction.

The biggest difference, however, lies with Beluga’s treatment of object level variables. In
particular, at the outermost level, there is no such thing as a free object variable. This is in
stark contrast to Coq’s dangling de Bruijn indices and Abella’s global nominal constants.
In Beluga we instead deal with contextual objects, written [ Γ ` K ], that is objects K (like
types, terms, typing derivations) paired with contexts Γ in which they are meaningful [20, 23].
One of the main advantages of contextual objects is that they remain closed under inductive
reasoning. Hence they constitute an alternative to Abella’s two-level logical embedding.

As an example, consider the function type X → X where X is a free type variable. This
function type is ill-formed under the empty type variable context ∆ = ∅. In Coq and Abella
we can express this type, as 0ty → 0ty and respectively n0 → n0. We can then show that
assuming well-formedness under the empty context entails absurdity, 0 `tyF 0ty → 0ty =⇒ ⊥
and {• ` n0 → n0 ty} =⇒ ⊥. Meanwhile in Beluga, we observe that the contextual object
[ • ` x→ x ] is not even syntactically well-formed, since x /∈ •. An immediate consequence
of this is that the type formation judgement for F, which ensures that the context is covering
all free type variables, becomes redundant. Hence Beluga’s definition of F is obtained from
Figure 6 by removing all references to type formation. The definition of λ2 is identical to
the one for Abella (Figure 7).3

Recall that context management was completely manual in Coq. Each judgement required
well-chosen generalisations and custom invariants to accurately track contextual information.
In Abella the situation was noticeably better, as contexts at the object level were kept
implicit and handled by the system. At the reasoning level they did, however, surface as
explicit, unstructured sequences of judgements. The desired contextual structure then had
to be imposed with auxiliary predicates, together with copious amounts of inversion lemmas.

Beluga contexts, on the other hand, are sequences of not necessarily homogeneous
declarations. Each declaration can depend on prior declarations and encapsulate multiple
pieces of related information using a dependent record. Contexts are first class citizens and
context schema ascription, Γ : S, is used to ensure that a given context Γ satisfies certain
structural constraints.

Schemas are Beluga’s main device to enforce invariants on contextual information. We
use propagation for λ2 as an example. The requisite schema is:

SλW := [x : Tmλ, x :λ ∗] + [x : Tmλ, x :λ a, a :λ ∗]

Note how it separates PTS variables into type and term variables via the associated
typing information, which already imposes the necessary semantic contextual information.
The proof of propagation is straightforward. We implement a total recursive function k

3 For a concrete presentation of the resulting definitions, see Appendix B.
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satisfying:

k : ∀Γ:SλW . [ Γ ` a :λ b ] =⇒ [ Γ ` type_correct b ]

The contextual predicate [ Γ ` type_correct b ] encodes that b is either � or it can be
typed with some universe u. We pattern match D : [ Γ ` a :λ b ] and obtain seven cases.
The first four are structural, recursively descending into sub-derivations. The only part that
is non-obvious is the traversal of binders, where various pieces of information are added to
the context. These have to be packaged into declaration blocks in order to satisfy SλW for
the recursive call. More interesting though are the three base cases. When we compare the
matched type against SλW , we observe three ways in which D could have been obtained from
the context. The first and third are trivial as they unify b with ∗ which can be typed with
the universe �. For the remaining case we know that b can be typed with the universe ∗,
contextual information that was packaged together with the matched judgement. Note
that throughout the construction we exploit that Beluga natively supports substitution into
parametric sub-derivations.

The third equivalence proof. The definitions of ∼ and ≈ exactly coincide with Abella. We
are going to primarily concern ourselves with the schemas, which best illustrate Beluga’s
tracking of contextual information.

We begin with the functionality and injectivity properties of ∼ and ≈. Since equality is
not native in Beluga we have to define equality predicates for each syntactic sort to express
our statements. The tightest invariants that hold for the rules defining ∼ and ≈ can be
expressed with the following context schemas:

S∼ := [x : TyF, y : Tmλ, x ∼ y] + [y : Tmλ]
S≈ := [x : TyF, y : Tmλ, x ∼ y] + [x : TmF, y : Tmλ, x ≈ y]

Due to the subordination ordering of ∼ and ≈, Beluga is capable of automatically
strengthening from S≈ to S∼, and weaken vice versa (see also [29]).

I Lemma 19. There exist total recursive functions fty, ftm, ity and itm, satisfying

fty : ∀Γ:S∼. [ Γ ` A ∼ a ] =⇒ [ Γ ` A ∼ a′ ] =⇒ [ Γ ` a =λ a
′ ]

ity : ∀Γ:S∼. [ Γ ` A ∼ a ] =⇒ [ Γ ` A′ ∼ a ] =⇒ [ Γ ` A =ty
F A′ ]

ftm : ∀Γ:S≈. [ Γ ` s ≈ a ] =⇒ [ Γ ` s ≈ a′ ] =⇒ [ Γ ` a =λ a
′ ]

itm : ∀Γ:S≈. [ Γ ` s ≈ a ] =⇒ [ Γ ` s′ ≈ a ] =⇒ [ Γ ` s =tm
F s′ ]

Proof. Each by induction on the first premise and pattern matching on the second. In the
variable cases we have matched against two context records r and r′. Since x and y are local
to r and one of them is shared between the two matched records, unification infers r = r′,
closing the case. Note that ftm and itm contain calls to fty and respectively ity, which relies
on context strenghtening. For itm we also again require disjointedness of the two relations,
which is easily obtainable under contexts satisfying S≈. J

For the remaining four totality and preservation proofs we have to deal with two complic-
ations. First, we have to remove assumptions and conclusions referring to F type formation.
Second, we have to define predicates that capture the existential nature of the four conclusions,
including relevant typing information, with custom predicates. We have, for example,

exists_rel_proof sA ⇐⇒ ∃ba. s ≈ b ∧ A ∼ a ∧ b :λ a ∧ a :λ ∗
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S∼

S≈
S→∼W

S←∼W

S≈W

Figure 8 Hierarchy of Context Schemas.

The required context schemas are quite involved:

S→∼W := [x : TyF, y : Tmλ, x ∼ y, y :λ ∗] + [y : Tmλ, y :λ a]
S←∼W := [x : TyF, y : Tmλ, x ∼ y, y :λ ∗] + [y : Tmλ, y :λ a, A ∼ a, a :λ ∗]
S≈W := [x : TyF, y : Tmλ, x ∼ y, y :λ ∗] + [x : TmF, y : Tmλ, x ≈ y, x :F A, y :λ a, A ∼ a]

I Lemma 20. There exist total recursive functions p→∼ , p←∼ , p→≈ and p←≈ , satisfying

p→∼ : ∀Γ:S→∼W . ∀A : [ Γ ` TyF ]. [ Γ ` exists_rel_propA ]
p←∼ : ∀Γ:S←∼W . [ Γ ` a :λ ∗ ] =⇒ [ Γ ` exists_rel_type a ]
p→≈ : ∀Γ:S≈W . [ Γ ` s :F A ] =⇒ [ Γ ` exists_rel_proof sA ]
p←≈ : ∀Γ:S≈W . [ Γ ` b :λ a ] =⇒ [ Γ ` a :λ ∗ ] =⇒ [ Γ ` exists_rel_term b a ]

Proof. The first is by induction on A : [ Γ ` TyF ] (recall that this was not possible in
Abella), the others are by induction on the first premise. The proofs are quite technical but
mostly straightforward. The construction of p←≈ , needs λ2 propagation. Interestingly, neither
propagation in F nor the degeneracy of � are needed, as unification automatically handles
the respective occurrences. J

The most interesting part of the Beluga development appears to be the particularly
rich structure and interdependencies of the various schemas. We would like to point out
in particular, that while the schemas S∼ and S≈ could likely be inferred automatically by
inspecting the involved type families, this does not appear to work for those schemas with
auxiliary well-typedness assumptions (subscript W ). This contradicts the common belief
that schema inference should in principle always be possible.

The schemas can be further arranged in a hierarchy (Figure 8). A context satisfying S∼
can always be weakened to one sitting lower in the hierarchy. The hierarchy also induces a
strengthening relationship, going upwards, as long as the subordination order of judgements
under said contexts is respected.

6 Adequacy

To put any trust in the formalisations we have just discussed, we have to briefly consider the
issue of adequacy. That is, we have to argue why our formal definitions correspond to our
intuitive understanding of the mathematical objects at hand.

For the de Bruijn setup in Coq, the question does not really arise, as it is a well understood
first-order encoding. The representation of the syntax is comparable to any other inductive
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datatype, like say natural numbers or lists. It is our understanding that a de Bruijn encoding
is the canonical implementation of the Barendregt convention. The fact that all three proof
assistants used here are internally implemented using de Bruijn supports this belief.

The situation is quite different for our HOAS encodings, as they borrow their function
spaces and substitution mechanisms directly from their host environment. When HOAS was
first introduced it was not at all clear that this would yield sensible syntactic structures.
Thus since at least the 1990s a lot of techniques were developed to argue that such definitions
are faithful. We rely on these to trust our language definitions.

When it comes to the HOAS type systems and proofs about them, the situation becomes
less clear, as both Abella and Beluga go beyond basic λ-tree syntax and exploit subordination
to justify the inductiveness of certain proofs. Here we can argue adequacy based on two facts.
First, we have proven that in each case two variants of intuitively the same mathematical
system do in fact behave the same and the encodings also admit all the expected properties.
Second, we were able to replay the same overall proof structure that worked for the de Bruijn
approach on the HOAS encodings. Taken together, this stability within and across proof
systems allows us to assume the adequacy of representations until evidence to the contrary
is provided.

7 Conclusion

We have considered a technically interesting proof and demonstrated how various formalisation
techniques deal with the arising intricacies. The development of three different formalisations
allowed us to gain deep insights into the inherent complexities of the proof. In particular we
were able to separate these from technical artefacts due to the chosen formalisation technique.
Two examples of inherent complications are the not quite perfectly aligned binding structures
and the missing typing information required to disambiguate the uniform PTS applications.

Our set of developments demonstrates that the various formalisation techniques can be
arranged in a hierarchy of abstraction layers. At the lowest level we have pure de Bruijn
with a lot of representation freedom, which, however, has to be manged manually. Higher up
in the hierarchy sit the HOAS techniques, which hide a lot of the technicalities and provide
a more meaningful abstraction. In comparison with Abella, Beluga appears to deliver the
theoretically nicer interface, with the added features of contextual reasoning and the ability
to perform inductions directly over the HOAS syntax. Practically though, both systems
are relatively young with certain usability issues. Among the two, Abella’s tactic language
certainly gives it a head start.

We observe that our proof contains a number of challenges that, taken as a whole,
constitute a nice benchmark for systems designed to reason about type systems. It tests
in particular, how well multiple type systems with binding constructs can be brought into
correspondence. We hence propose it as a complement to the POPLmark challenge [2] on
the one hand, which solely tests how well a framework can reason about a single type system,
and the ORBI benchmarks [10, 9] which cover small-scale contextual reasoning. It is our
belief that such a benchmark could be very useful to those who seek to develop or improve
frameworks for reasoning about type systems and similar syntactic systems with variable
binding and complex contextual information.

We have come to the conclusion that there appears to be no “silver bullet” solution.
There exist various approaches and they all have their merits and drawbacks. The question
is not so much about whether de Bruijn or HOAS is better, but what techniques pair well
with each approach. We have highlighted some of these here but there are of course further
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approaches (see below). A comprehensive survey, while desirable, would certainly exceed
the scope of this format, but we hope that our work constitutes a small step towards such a
catalogue of techniques. To conclude, we found that reworking the same proof in multiple
frameworks was quite enlightening.

Future Work. We would like to continue into three largely orthogonal directions.
First, we would like to widen the scope of the benchmark itself and include a correspond-

ence result for the computational behaviour of the two systems. Equi-reducebility is at least
as interesting a problem as equi-typability, and likely to pose its own set of challenges. One
of these is the fact that, prior to typing, λ2 has a lot more β-redices than its two-sorted
counterpart, hence some form of typing information will have to be tracked along with the
relational assumptions. This will lead to new forms of contexts that are likely comparable in
complexity to those discussed here.

Second, we would like to test further frameworks against our benchmark. One candidate
is the locally nameless approach [3]. It provides an abstraction layer that sits somewhere
between pure de Bruijn and HOAS. Our benchmark could test the stability of this layer.
Another is the HYBRID framework [8] that aims to bring HOAS to Coq. At present however,
it is neither equipped with Abella’s ∇ nor Beluga’s contextual types, so it remains to be seen
if it can handle our challenge. Note that the HYBRID library exists in Isabelle as well. The
rich context structures could also pose an interesting challenge for systems like Twelf [22].

Finally, we consider scaling the challenge both down to the simply typed λ-calculus, as
well as up to Fω, to obtain a better understanding of where exactly certain complications
originate from.
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A De Bruijn Definitions

We summarise the core concepts of de Bruijn with parallel substitutions. The main feature of
de Bruijn syntax is the absence of variable names, yielding concrete canonical representations
for the on-paper implicitly assumed α-equivalence classes of syntactic expressions. Instead
of using names, variables are represented as numerical indices, where n references the n-th
enclosing binder of the corresponding scope, counting from 0. We illustrate the concepts
using the two-sorted variant of System F that is discussed in the main text:

A,B ::= xty | A→ B | ∀. A s, t ::= xtm | s t | λA. s | sA | Λ. s x : N
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Note that the A in λA. s is the type of the bound term variable, not its name. Dangling
indices correspond to free variables. They are taken as indices into an ambient context which
is normally represented as a list of the information attached to each variable. A standard
typing context Γ is represented as a simple list of types.

To understand the instantiation of terms or types with parallel substitutions, let us first
recall a few primitives of the σ-calculus (see [1] for details):

(M · σ) 0 := M ↑ x := (x+ 1)
(M · σ) (x+ 1) := σ x id := 0 · ↑

Parallel substitutions σ : N→ T , where T is some syntactic sort, can be seen as streams
M0,M1, . . ., with Mi : T . This motivates the notion of the cons operation M · σ, which
maps the index 0 to M , and all other indices x+ 1 to σ x. The shift operation ↑ simply raises
all indices by one, and the identity substitution id is a derived notion. The concrete type of
substitutions and a corresponding instance of this framework depends on the syntactic sort
for which a notion of substitution is defined.

Let us first consider the types of our example. The instantiation of a type A with a parallel
substitution σ, written A[σ], is defined mutually recursive with the forward composition of
parallel substitutions.

xty[σ] = σ xty (σ1 ◦ σ2)xty = (σ1 xty)[σ2]
(A→ B)[σ] = A[σ]→ B[σ]

(∀. A)[σ] = ∀. A[⇑σ] with ⇑σ = 0ty · σ ◦ ↑

For the terms we actually require a vector of two parallel substitutions, 〈σ, τ〉, since both
type and term variables can occur in a given term:

xtm[σ, τ ] = τ xtm (σ′ ◦ 〈σ, τ〉)xtm = (σ′ xtm)[σ, τ ]
(s t)[σ, τ ] = s[σ, τ ] t[σ, τ ]

(λA. s)[σ, τ ] = λA[σ]. s[⇑tm〈σ, τ〉] with ⇑tm〈σ, τ〉 = 〈σ, 0tm · τ ◦ 〈id, ↑〉〉
(sA)[σ, τ ] = s[σ, τ ]A[σ]
(Λ. s)[σ, τ ] = Λ. s[⇑ty〈σ, τ〉] with ⇑ty〈σ, τ〉 = 〈0ty · σ ◦ ↑, τ ◦ 〈↑, id〉〉

The key idea in both cases is that parallel substitutions act on all free variables at
once, which leads to an elegant equational theory and subsequently to a good foundation
for proof automation. A nice example is β-reduction, which can concisely be expressed as
(λA. s) t s[id, t · id].

The Autosubst framework is capable of generating all of this automatically from annotated
inductive syntax definitions, together with the respective equational theories. It further
provides a decision tactic that can solve goals involving substitution expressions, based on
the results in [27].

B HOAS Definitions

We give a brief overview of the definitions as they were used in the Abella and Beluga proofs.
The HOAS specifications are identical for both systems. The two-sorted variant is given on
the left, the PTS is on the right. We also include the types of the judgements.
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TyF,TmF : Type Tmλ : Type

∗,� : Tmλ

_→ _ : TyF → TyF → TyF Π_._ : Tmλ → (Tmλ → Tmλ)→ Tmλ

∀._ : (TyF → TyF)→ TyF

__ : TmF → TmF → TmF __ : Tmλ → Tmλ → Tmλ

__ : TmF → TyF → TmF

λ_._ : TyF → (TmF → TmF)→ TmF λ_._ : Tmλ → (Tmλ → Tmλ)→ Tmλ

Λ._ : (TyF → TmF)→ TmF

_ ty : TyF → Prop U _ : Tmλ → Prop
_ :F _ : TmF → TyF → Prop _ :λ _ : Tmλ → Tmλ → Prop

Note that Abella distinguishes the system sorts Prop and Type. Inductive derivations are
only exposed for the former. In Beluga on the other hand, both are considered as basic LF
types.

The four judgements/predicates are defined inductively, both in Abella and Beluga. The
two PTS definitions are identical in both frameworks. The bold operators =I and Π_. _
are used to construct hypothetical and locally quantified premises, respectively. Meta level
application is denoted by _〈_〉.

U � U ∗ ∗ :λ �
a :λ Πc. d b :λ c

a b :λ d〈b〉
a :λ u U u Πx. x :λ a =I b〈x〉 :λ ∗

Πa. b :λ ∗

a :λ u U u Πx. x :λ a =I c〈x〉 :λ ∗ Πx. x :λ a =I b〈x〉 :λ c〈x〉
λa. b :λ Πa. c

With respect to the two-sorted system there is a difference between the Abella and the
Beluga definitions, due to the differences in the respective meta theories. The Abella version
is straightforward:

A ty B ty
(A→ B) ty

Πx. x ty =I A〈x〉 ty
(∀. A) ty

s :F ∀. B A ty
sA :F B〈A〉

s :F A→ B t :F A
s t :F B

Πx. x ty =I s〈x〉 :F A〈x〉
Λ. s :F ∀. A

A ty Πx. x :F A =I s〈x〉 :F B
λA. s :F A→ B

In Beluga, on the other hand, contexts are first class, and thus well-scopedness of
expressions is inherent. Hence the type formation judgement of the two-sorted system
vanishes completely, which reduces the definition of the typing judgement to:

s :F ∀. B
sA :F B〈A〉

s :F A→ B t :F A
s t :F B

Πx. s〈x〉 :F A〈x〉
Λ. s :F ∀. A

Πx. x :F A =I s〈x〉 :F B
λA. s :F A→ B
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