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Abstract
We present two results which relate dinaturality with a syntactic property (typability) and a
semantic one (interpretability by βη-stable sets). First, we prove that closed dinatural λ-terms
are simply typable, that is, the converse of the well-known fact that simply typable closed terms
are dinatural. The argument exposes a syntactical aspect of dinaturality, as λ-terms are type-
checked by computing their associated dinaturality equation. Second, we prove that a closed
λ-term belonging to all βη-stable interpretations of a simple type must be dinatural, that is, we
prove dinaturality by semantical means. To do this, we show that such terms satisfy a suitable
version of binary parametricity and we derive dinaturality from it.

By combining the two results we obtain a new proof of the completeness of the βη-stable
semantics with respect to simple types. While the completeness of this semantics is well-known in
the literature, the technique here developed suggests that dinaturality might be exploited to prove
completeness also for other, less manageable, semantics (like saturated families or reducibility
candidates) for which a direct argument is not yet known.
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1 Introduction

Dinaturality is a property often considered in investigations on polymorphism and can be
described in at least three ways. Firstly, as a categorial property, that is, as the fact that a
program of type σ → τ (or proofs of an implication) corresponds to a dinatural transformation
between the multivariant1 functors Fσ, Fτ associated to the types σ and τ . Secondly, it can
be described as a purely syntactic relation between a λ-term and its type: since the functorial
action Fσ[f,B], Fσ[A, f ] of a type σ can be expressed by simply typable λ-terms Hσ,Kσ, the
dinaturality of a term M with respect to σ can be expressed by an equation relating M,Hσ

and Kσ. Thirdly, it can be presented as a special case of Reynolds’ relational parametricity
([10]), namely the case in which only functional relations are considered (see [9]).

It is a well-known fact that simply-typed λ-terms are dinatural in all three senses just
mentioned (see [1, 5, 9]). In this paper we establish two facts about dinaturality which put
this notion at the center of a chain of arrows from a semantic notion (interpretability by
βη-stable sets) and a syntactic notion (simple typability):
Dinaturality ⇒ Typability. We prove that the converse of the aforementioned fact that

simply-typable closed λ-terms are dinatural holds: if a closed βη-normal λ-term is
dinatural (in the syntactical sense), then it can be simply typed (Theorem 14). It is

1 that is, functors whose arguments can be divided into a covariant and a contravariant part, corresponding
to variables occurring positively and negatively in the type.
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shown that the dinaturality condition can be exploited to recursively type-check λ-terms:
a typing derivation for a λ-term is constructed from the computation of the equation
expressing its dinaturality.

Interpretability ⇒ Dinaturality. The semantics of βη-stable sets of λ-terms was introduced
by Krivine as a semantics of second order functional arithmetic ([7]). We prove that
an adapted version of binary parametricity (Definition 21) can be expressed in this
semantics and we establish that, for all simple type σ, a closed λ-term belonging to all
interpretations of σ must be parametric in σ (Theorem 24). Syntactic dinaturality is
then shown to follow from parametricity with respect to a particular relation assignment
(Theorem 27).

The parametricity and dinaturality of a λ-term are usually established by induction over
a typing derivation of the term; on the contrary, parametricity (and a fortiori dinaturality,
Theorem 27) is here established for a class of untyped λ-terms (those which are interpretable
in the βη-stable semantics) by induction over simple types (Theorem 24). Moreover, this
last result can be thought of as a first step towards the investigation of parametricity and
dinaturality in the context of the reducibility semantics of typed λ-calculi (like the different
saturated families considered in [7] or Girard’s reducibility candidates [4]). These semantics
are commonly used to prove normalization results but their relationship with parametricity
and dinaturality, as well as the completeness issue, are still unclear.

By composing the two arrows above we obtain a new argument for the completeness
of the βη-stable semantics: for every simple type σ, if a closed λ-term belongs to |σ|M for
all interpretation M, then it is βη-equivalent to a term having type σ. This result had
already been established by a direct argument (see [6, 8]) and extended to so-called positive
second order types in Krivine’s system AF (see [3]). However, the arguments developed in
these papers cannot be generalized in a straightforward way to the reducibility semantics
mentioned above. It might be interesting to see if a semantic proof of parametricity (and, as
a consequence, of completeness) can be reproduced in such frames.

The paper is organized as follows: in Section 2 we introduce a tree characterization of
simple typability, which will be exploited in the proof of Theorem 14; in Section 3 we recall
syntactic dinaturality and in Section 4 we prove Theorem 14. In Section 5 we recall the
βη-stable semantics and we define a variant of parametricity based on βη-stable relations;
in Section 6 we prove the parametricity Theorem 24 and in Section 7 we apply it to obtain
dinaturality (Theorem 27); finally, in Section 8 we briefly discuss some issues related to
completeness and other reducibility semantics.

2 Tree representation of simple typability

In this section we present a characterization of typability for closed βη-normal λ-terms based
on a confrontation between the tree of the term T (M) and the tree of its assigned type T (σ).

In the following, by the letters M,N,P, . . . we will indicate elements of the set Λ of
untyped λ-terms, subject to usual α-equivalence. By the letters x, y, z, . . . we will indicate
λ-variables, i.e. the variables that might occur free or bound in untyped λ-terms. By the
expression M1M2M3 . . .Mn we will indicate the term (. . . ((M1M2)M3) . . .Mn).

As usual, the relation M →∗β N indicates the existence of a sequence of β-reduction steps
from M to N and the relation M 'β N (resp. M 'βη N) indicates that M and N are
β-equivalent (resp. βη-equivalent).

I Definition 1 (The simply typed λ-calculus λ→ “à la Curry”). Given a countable set V =
{Z1, Z2, Z3, . . . , } of symbols, called type variables (or, simply, variables when no ambiguity
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occurs), the set T of simple types is defined inductively as follows:

Zu ∈ V ⇒ Zu ∈ T (1)
σ, τ ∈ T ⇒ σ → τ ∈ T (2)

A type declaration is an expression of the form x : σ, where x is a term variable and σ is
a type. A context Γ is a finite set of type declarations (where no two distinct declarations
x : σ, x : τ , with σ 6= τ appear). A judgement is an expression of the form Γ `M : σ, where
Γ is a context, M a term and σ a type.

The typing derivations of λ→ are generated by the following rules:

Γ ∪ {x : σ} ` x : σ
(id)

Γ `M : σ → τ Γ ` N : σ
Γ `MN : τ (→ E)

Γ ∪ {x : σ} `M : τ
Γ ` λx.M : σ → τ

(→ I)
(3)

The arity ar(M) of a λ-term is the positive integer n such that M can be written as
λx1. . . . .λxn.M

′ with M ′ either a variable or an application. The arity ar(σ) of a simple
type σ ∈ T0 is the positive integer n such that σ = σ1 → · · · → σn → Zu. We indicate by
FV (M) (resp. BV (M)) the set of free (resp. bound) variables of M .

I Definition 2. A path π = p1 . . . pk is a finite sequence of non zero positive integers. We
denote ε the empty path and N∗ the set of all paths. If π is the path p1 . . . pk, then for every
p ∈ N, π ∗ p denotes the path p1 . . . pkp and p ∗ π the path pp1 . . . pn. The length of a path
`(π) is the length of the sequence π. A partial order ≤ over paths is defined by letting π ≤ π′
if π = p1 . . . pk and π′ = p1 . . . pkpk+1 . . . pk′ for some k, k′ ≥ 0.

A tree is a set T ⊆ N∗ containing ε and such that, if π ∈ T and π′ ≤ π, then π′ ∈ T . If
T1, . . . , Tn are trees, for some n ≥ 1, then (T1, . . . , Tn) is the tree consisting of the empty
sequence and all sequences of the form i ∗ π, for π ∈ Ti and i ≤ n.

For σ and M , respectively, a simple type and a closed βη-normal λ-term, we define the
trees T (σ) and T (M):

I Definition 3 (Tree of a type). Let σ be a simple type. We associate with σ a tree T (σ)
defined by induction as follows:

if σ = Zu, then T (σ) = {ε};
if σ = σ1 → · · · → σn → Zu, then T (σ) =

(
T (σ1), . . . , T (σn), T (Zu)

)
Conversely, with every π ∈ T (σ) we can associate a unique subtype σπ of σ:

σε := σ;
σπ∗i := τi, for 1 ≤ i ≤ ar(σπ) + 1, where σπ = τ1 → · · · → τar(σπ) → Zu where we put
τar(σπ)+1 = Zu.

I Definition 4 (Tree of a closed βη-normal λ-term). Let M be a closed βη-normal λ-term.
We associate with M a tree T (M) defined by induction on the number of applications of M
as follows:

if M = λx1. . . . .λxh.xi, then T (M) = ε;
if M = λx1. . . . .λxh.xiM1 . . .Mp, for some h ≥ 0, 1 ≤ i ≤ h and p ≥ 1, then T (M) =(
T (M1), . . . , T (Mp)

)
, where Mj = λx1. . . . .λxh.Mj , for 1 ≤ j ≤ p.

Conversely, with every π ∈ T (M) we can associate a unique subterm Mπ

Mε := M ;
Mπ∗j := Nj , for 1 ≤ j ≤ q, where Mπ = λx1. . . . .λxh.yN1 . . . Nq.

FSCD 2017
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For π ∈ T (M), we let pM (π) be the minimum positive integer p ≥ 0 such that π ∗ (p+ 1) /∈
T (M).

Let V ar(M) ⊂ T (M)× N indicate the set of all pairs (π, i) such that 1 ≤ i ≤ ar(Mπ).
Any pair (π, i) ∈ V ar(M) uniquely determines a variable appearing in M : it is the i-th
variable abstracted in Mπ.

Given M a closed βη-normal λ-term and σ a simple type, we define two partial maps:
1. a partial map var : V ar(M)→ T (σ) associating variables of M with subtypes of σ;
2. a partial map subt : T (M)→ T (σ) associating subterms Mπ with subtypes of σ.

The maps var and subt approximate the maps (which are always defined for typed
λ-terms) associating each variable and each subterm of M with its associated subtype of σ.

Let h(π) indicate the pair (π′, i) associated with the head variable of Mπ. Remark that
`(h(π)1) ≤ `(π), where h(π)1 indicates the first component of the pair h(π). The maps var
and subt are defined as follows:

var(ε, i) = i subt(ε) = ε

var(π ∗ j, i) = var(h(π)) ∗ j ∗ i subt(π ∗ j) = var(h(π)) ∗ j (4)

where it is intended that var(ε, i) is defined only if i ≤ ar(σ) and var(π ∗ j, i) is defined only
if var(h(π)) is defined and if j ≤ ar(σvar(h(π))) and i ≤ ar(σvar(h(π))∗j). The definition of
var(π ∗ j, i) is a correct recursion since `(h(π)1) < `(π ∗ j). Moreover, subt(π ∗ j) is defined
only if var(h(π)) is defined and j ≤ ar(σvar(h(π))).

The following theorem shows that typability for a closed βη-normal λ-term M and a
simple type σ can be expressed as a relation between T (M) and T (σ):

I Theorem 5. Let M be a βη-normal term, σ1, . . . , σn, τ simple types and Γ the context
{x1 : σ1, . . . , xn : σn}. Then Γ `M : τ is derivable if and only if the following hold (where
N = λx1. . . . .λxn.M , σ = σ1 → · · · → σn → τ):
1. var, subt are defined for all π ∈ T (N) and i ≥ 1 such that (π, i) ∈ V ar(N);
2. ar(σvar(h(π))) = pN (π) + ar(σsubt(π))− ar(Nπ) for all π ∈ T (N);
3. σvar(h(π))∗(pN (π)+l) = σsubt(π)∗(ar(Nπ)+l), for all 1 ≤ l ≤ ar(σsubt(π))− ar(Nπ) + 1.

Proof. Proof in Appendix A. J

From the characterization above we introduce the following notion of p-fitness:

I Definition 6. Let M be a closed βη-normal λ-term and σ a simple type. For p = 1, 2, 3
and π ∈ T (M), we say that M is p-fit to σ at π if M satisfies condition p. of Theorem 5
restricted to π. M is p-fit if, for all π ∈ T (M), M is p-fit at π.

3 Syntactic dinaturality

We provide a description of the dinaturality condition for simple types and pure λ-terms.
A similar description can be found in [2]. Let V0,V1 be a partition of V into two disjoint
countable sets of type variables V0 = {X0, X1, X2, . . . } and V1 = {Y0, Y1, Y2, . . . }. For any
type σ, whose free variables are Zu1 , . . . , Zuk ∈ V, let σXY (resp. σYX) denote the result of
replacing, in σ, all positive occurrences of Zul , for 1 ≤ l ≤ k, by the variable Xul (resp. Yul),
and all negative occurrences of Zul by the variable Yul (resp. Xul). Let then σX , σY denote,
respectively, σXX and σYY .

Let, for each u ≥ 0, fu be a fresh variable (to which we will assign type Xu → Yu). For
each type σ, we define well-typed terms Hσ,Kσ coding the functorial action of σ: if, for any
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type σ, we indicate by Fσ its associated functor, then Hσ codes both morphisms Fσ[X, f ]
and Fσ[Y, f ], as it can be assigned both types σX → σYX and σXY → σY ; similarly, Kσ codes
both morphisms Fσ[f,X] and Fσ[f, Y ], as it can be assigned both types σXY → σX and
σY → σYX .

The dinaturality condition will be given by the equation below, in which g is a fresh
variable (to be declared of type σXY )

Hτ (M(Kσg)) 'βη Kτ (M(Hσg)) (5)

Equation 5 can be illustrated by the usual hexagonal diagram:

σX
MX // τX

Hτ

  
σXY

Kσ

==

Hσ
!!

τYX

σY
MY

// τY

Kτ

>>

(6)

We define simultaneously the terms Hσ,Kσ by induction over σ:
if σ = Zu, then Hσ := fu and Kσ := λx.x;
if σ = σ1 → · · · → σk → Zu, then

Hσ := λg.λh1. . . . .λhk.fu
(
g(Kσ1h1)(Kσ2h2) . . . (Kσkhk)

)
(7)

and

Kσ := λg.λh1. . . . .λhk.g(Hσ1h1)(Hσ2h2) . . . (Hσkhk) (8)

By a simple computation, equation 5 can be rewritten as follows:

fu
(
M(Kσ1g1) . . . (Kσngn)

)
'βη M(Hσ1g1) . . . (Hσngn) (9)

where σ = σ1 → · · · → σn → Zu and g1, . . . , gn are fresh variables.

I Proposition 7. For all simple type σ, let Γ be the set of all declarations fu : Xu → Yu
such that the variable Zu occurs in σ. Then Γ ` Hσ : σX → σYX , Γ ` Hσ : σXY → σY ,
Γ ` Kσ : σXY → σX and Γ ` Kσ : σY → σYX are derivable.

We define the set DINσ of σ-dinatural terms:

I Definition 8 (dinatural term). Let σ = σ1 → · · · → σn → Zu be a simple type and M be a
closed λ-term. Then M ∈ DINσ if

fu
(
M(Kσ1g1) . . . (Kσngn)

)
'βη M(Hσ1g1) . . . (Hσngn) (10)

holds.

I Example 9. Let σ be the type (Zu → Zu) → (Zu → Zu). The dinaturality condition
associated with a closed λ-term M and σ is the equation

fu
(
M λh.g1(fuh) g2

)
'βη M λh.fu(g1h) fug2 (11)

FSCD 2017
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which corresponds to the diagram below (where τ is Zu → Zu):

Xu → Xu
MX // Xu → Xu

Hτ

&&
Yu → Xu

Kτ

88

Hτ &&

Xu → Yu

Yu → Yu
MY

// Yu → Yu

Kτ

88

(12)

If M is a closed term of type σ, the βη-normal form of M is of the form λy.λx.ynx, for
some n ≥ 0. Then equation 11 reduces to the true equation

fu
(
g1(fu . . . g1(fu︸ ︷︷ ︸

n times

g2) . . . )
)
'βη fu(g1 . . . fu(g1︸ ︷︷ ︸

n times

(fug2)) . . . ) (13)

showing that M ∈ DINσ.

The theorem below generalizes this example to an arbitrary closed simply-typed λ-term.

I Theorem 10. Let σ be a simple type and M be a closed λ-term. If ` M : σ, then
M ∈ DINσ.

Proof. Several proofs exist in the literature. [5] prove the fact for the categorial notion
of dinaturality, and derive the result for syntactic dinaturality by considering a syntactic
category. [2] proves this directly for the syntactic notion of dinaturality. [9] proves dinaturality
as a consequence of parametricity. J

In the next section we will prove the converse of Theorem 10, showing that dinaturality
characterizes closed simply-typable λ-terms.

4 Relating dinaturality and typabililty

The result of this section is that, if M ∈ DINσ is closed and βη-normal, then ` M : σ is
derivable in λ→. We will rely on the characterization of typability given by Theorem 5 and on
two lemmas relating the dinaturality condition with the fitness conditions (Definition 6). In
particular, it will be shown, first, that the dinaturality equation implies all fitness conditions
relative to the empty path and then that, given fitness at path π, by reducing the dinaturality
equation for Mπ, a dinaturality equation for the subterms Mπ∗p is obtained (whence fitness
at paths π ∗p). Hence, simple typability for a closed λ-term is checked recursively by reducing
the associated dinaturality equation.

The first lemma relates dinaturality with 1, 2-fitness:

I Lemma 11. Let σ = σ1 → · · · → σn → Zu be a simple type and M a closed βη-normal
λ-term satisfying:

fu
(
M(Kσ1g1) . . . (Kσngn)

)
'βη M(Hσ1g1) . . . (Hσngn) (14)

for some n ≥ 1 and λ-variables g1, . . . , gn. Then

M = λx1. . . . .λxh.(xi)Q1 . . . Qp (15)

for certain terms Q1, . . . , Qp, where h ≤ n, 1 ≤ i ≤ h, and ar(σi) = p+ (n− h).
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Proof. Let ki = ar(σi) and, for 1 ≤ j ≤ n, Pj = Kσjgj and P ′j = Hσjgj . For a λ-term U ,
we let U∗ (resp. U∗∗) indicate U [P1/x1, . . . , Pn/xn] (resp. U [P ′1/x1, . . . , P

′
n/xn]). We will

show that h ≤ n. We consider two cases:
if h > n and i > n, then we can write M = λx1. . . . .λxn.λy1. . . . .λym.yjM1 . . .Mp where
m ≥ 1, and 1 ≤ j ≤ m; then

fu
(
MP1 . . . Pn

)
→∗β fu

(
λy1. . . . λym.yjM

∗
1 . . .M

∗
p

)
(16)

cannot be βη-equivalent to

MP ′1 . . . P
′
n →∗β λy1. . . . λym.yjM

∗∗
1 . . .M∗∗p (17)

if n ≤ h and i ≤ n, then we can write M = λx1. . . . .λxn.λy1. . . . .λym.xiM1 . . .Mp where
m ≥ 0, and 1 ≤ i ≤ n; then we claim that

fu
(
MP1 . . . Pn

)
→∗β fu

(
λy1. . . . λym.KσigiM

∗
1 . . .M

∗
p

)
(18)

can be βη-equivalent to

MP ′1 . . . P
′
n →∗β λy1. . . . λym.HσigiM

∗∗
1 . . .M∗∗p (19)

only if p = ki and m = 0 (that is, h = n). We divide the argument in three parts:
1. suppose p < ki; then

MP ′1 . . . P
′
n →∗β λy1. . . . λym.λzki−p. . . . .λzki .fu

(
giQ1 . . . Qp . . . Qki

)
(20)

for some terms Q1, . . . , Qki , so it cannot be βη-equivalent to fu(MP1 . . . Pn).
2. suppose now p > ki; then

MP ′1 . . . P
′
n →∗β λy1. . . . λym.fu

(
giQ1 . . . Qki

)
M∗∗ki+1 . . .M

∗∗
p (21)

so it is βη-equivalent to fu(MP1 . . . Pn) only if m = p − ki and, for 1 ≤ j ≤ m,
M∗∗ki+j 'βη yj and yj is not free in Q1, . . . , Qp. We claim that M∗∗ki+j 'βη yj
only if Mki+j 'βη yj . It will follow that, if m = p − ki > 0, then M is not
in βη-normal form, against the hypothesis. To show this we will use an induc-
tion on the number of applications in Mki+j . If M∗∗ki+j 'βη yj , then Mki+j is
either of the form λu1. . . . .λuq.xvN1 . . . Nr, for some q, r ≥ 0 and 1 ≤ v ≤ n,
either of the form λu1. . . . .λuq.yvN1 . . . Nr, for some q, r ≥ 0 and 1 ≤ v ≤ m or
of the form λu1. . . . .λuq.ulN1 . . . Nr, for some q, r ≥ 0 and 1 ≤ l ≤ q; in the first
case M∗∗ki+j reduces to a term of the form λu1. . . . .λuq.λh1. . . . .λhq′ .fuN

′
1 . . . N

′
r′ , for

some q′, r′ ≥ 0, so it cannot be βη-equivalent to yj ; in the second case M∗∗ki+j 'βη
λu1. . . . .λuq.yvN

∗∗
1 . . . N∗∗r , so it reduces to yv only if either q = r = 0 and v = j,

or q = r, v = j and N∗∗k 'βη uk, for 1 ≤ k ≤ q; in this latter case we can ap-
ply the induction hypothesis on the terms Nk: N∗∗k 'βη uk only if Nk 'βη uk. In
both cases we conclude that M∗∗ki+j 'βη yj only if Mki+j 'βη yj ; in the third case
M∗∗ki+j 'βη λu1. . . . .λuq.ulN

∗∗
1 . . . N∗∗r cannot be βη-equivalent to yl.

3. Finally, suppose m ≥ 1; then MP ′1 . . . P
′
n reduces to λy1. . . . λym.fu

(
giQ1 . . . Qp

)
, so it

cannot be βη-equivalent to fu(MP1 . . . Pn).

We have so far shown that h ≤ n and moreover that, if h = n, then p = ki. Let now
M = λx1. . . . .λxh.xiM1 . . .Mp, with h < n and i ≤ h. We prove that ki = p + (n − h):
if p + (n − h) < ki, then MP ′1 . . . P

′
n reduces to λzki−d. . . . .λzki .fu

(
giQ1 . . . Qp . . . Qki

)
,

where d = p + (n − h), for some terms Q1, . . . , Qki , so it cannot be βη-equivalent to
fu(MP1 . . . Pn). If p+(n−h) > ki, thenMP ′1 . . . P

′
n reduces to fu(giQ1 . . . Qki)M∗∗p−e . . .M∗∗p ,

where e = ki − (n− h), so it cannot be βη-equivalent to fu(MP1 . . . Pn). J
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Lemma 11 says that a closed βη-normal dinatural λ-term is 1, 2-fit at ε. Indeed, from
h ≤ ar(σ) it follows that var(ε, i) is defined for all (ε, i) ∈ V ar(M) (and subt(ε) is always
defined); moreover, we have ar(σvar(h(ε)) = ar(σi) = p+(n−h) = pM (ε)+ar(σsubt(ε))−ar(Nε).
The next lemma relates dinaturality and 3-fitness:

I Lemma 12. For all simple types σ, τ the equation below

Hσ(Kτg) 'βη Kσ(Hτg) (22)

holds if and only if σ = τ .

Proof. We argue by induction on σ: if σ = Zu and τ = τ1 → · · · → τk → Zv, for some k ≥ 0,
then Hσ(Kτg) 'βη Kσ(Hτg) becomes

HZu(Kτg) 'β fu(Kτg) 'β fu
(
λh1. . . . .λhk.g(Hτ1h1) . . . (Hτkhk)

)
'βη

λh1. . . . .λhk.fv
(
g(Kτ1k1) . . . (Kτkhk)

)
'β Hτg 'β KZv (Hτg) (23)

and the central equation holds if and only if k = 0 and u = v, i.e. if and only if σ = τ = Zu.
For the induction step, let σ = σ1 → · · · → σk → Zu and τ = τ1 → · · · → τk′ → Zv. We

can suppose w.l.o.g. k′ = k + d; now Hσ(Kτg) reduces to

λh1. . . . .λhk.fu

(
λhk+1. . . . .λhk′ .g(Kσ1(Hτ1h1)) . . . (Kσk(Hτkhk))(Hτk+1hk+1) . . . (Hτk′hk′)

)
(24)

and Kσ(Hτg) reduces to

λh1. . . . .λhk.λhk+1. . . . .λhk′ .fv

(
g(Hσ1(Kτ1h1)) . . . (Hσk(Kτkhk))(Kτk+1hk+1) . . . (Kτk′hk′)

)
(25)

and the two terms are βη-equivalent if and only if d = 0, u = v and, for all 1 ≤ i ≤ k, σi = τi
(by induction hypothesis), i.e if and only if σ = τ . J

Lemma 12 says that a closed βη-normal dinatural λ-term is 3-fit at ε: if M ∈ DINσ
and M = λx1. . . . .λxh.xiM1 . . .Mp, then, by Lemma 11, h ≤ n and ki = p + (n − h); so,
equation 9 reduces to

fu

(
gi(Hσi1M

∗
1 ) . . . (HσipM

∗
p )(Hσi(p+1)(Kσh+1gh+1)) . . . (Hσi(ar(σi))(Kσngn))

)
'βη fu

(
gi(Kσi1M

∗∗
1 ) . . . (KσipM

∗∗
p )(Kσi(p+1)(Hσh+1gh+1)) . . . (Kσi(ar(σi))(Hσngn))

)
(26)

where M∗j ,M∗∗j are as in the proof of Lemma 11. Now, by Lemma 12, we get that, for
1 ≤ j ≤ n− h, σh+j = σi(p+j), i.e. σsubt(ε)∗(ar(M)+j) = σvar(h(ε))∗(pM (ε)+j).

We will now show that, for M ∈ DINσ closed and βη-normal, p-fitness can be extended
to all paths π ∈ T (M): by computing the dinaturality equation, and exploiting lemmas 11
and 12, we obtain a dinaturality equation for all subterms Mπ.

I Proposition 13. Let σ be a simple type and M be a closed βη-normal λ-term in DINσ.
Then, for every π ∈ T (M), Mπ is p-fit for σsubt(π), for p = 1, 2, 3.

Proof. We argue by induction on the number of applications in M . If M = λx1. . . . .λxh.xi,
then T (M) = {ε} so the claim holds sinceMε = M is p-fit for p = 1, 2, 3 by lemmas 11 and 12.
Let then M = λx1. . . . .λxh.xiM1 . . .Mp for some p ≥ 1 and let Nj = λx1. . . . .λxn.Mj and
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τj = σ1 → · · · → σn → σij . Again, by Lemma 11 and 12, Mε is p-fit to σε, for p = 1, 2, 3.
Let then π = j ∗ π′ ∈ T (M), with π′ ∈ T (Nj) and 1 ≤ j ≤ p. Since, by Lemma 11, h ≤ n

and ki = p+ (n− h) (where ki is ar(σi)), equation 9 reduces to

fu
(
KσigiM

∗
1 . . .M

∗
p (Kσp+1gh+1) . . . (Kσngn)

)
'βη HσigiM

∗∗
1 . . .M∗∗p (Hσp+1gh+1) . . . (Hσngn)

(27)

where M∗j ,M∗∗j are as in the proof of Lemma 11; this in turn reduces to

fu

(
gi
(
Hσi1M

∗
1
)
. . .
(
HσipM

∗
p

)(
Hσi(p+1)(Kσp+1gp+1)

)
. . .
(
Hσi(ar(σi))(Kσngn)

))
'βη fu

(
gi
(
Kσi1M

∗∗
1
)
. . .
(
KσipM

∗∗
p

)(
Kσi(p+1)(Hσp+1gp+1)

)
. . .
(
Kσi(ar(σi))(Hσngn)

))
(28)

By Lemma 12, σi(p+j) = σp+j , for all 1 ≤ j ≤ n − h. From equation 28 we obtain then
HσijM

∗
j 'βη KσijM

∗∗
j . Now we have that

fv

(
Nj(Kσ1g1) . . . (Kσhgh)(Kσij1h1) . . . (Kσijdhd)

)
'β HσijM

∗
j

'βη KσijM
∗∗
j 'β Nj(Hσ1g1) . . . (Hσhgh)(Hσij1h1) . . . (Hσijdhd) (29)

where d = ar(σij), which implies that Nj ∈ DINτj . We can then apply the induction
hypothesis to Nj : by letting hj : T (Nj) → V ar(Nj), varj : V ar(Nj) → T (τj), subtj :
T (Nj) → T (τj) indicate the h, var, subt functions, respectively, defined for Nj , we have
that, for any π′ ∈ T (Nj), (Nj)π′ is p-fit to (τj)subtj(π′), for p = 1, 2, 3.

In order to prove that Mπ = (Nj)π′ is p-fit to σsubt(π), it is enough to verify that, for all
λ ∈ T (Nj), the following equalities hold:

(τj)varj(hj(λ)) = σvar(h(j∗λ)) (τj)subtj(λ) = σsubt(j∗λ) (30)

We postpone this technical verification to Appendix A. J

I Theorem 14. Let σ be a simple type and M ∈ DINσ be closed and βη-normal. Then
`M : σ is derivable.

Proof. By applying Proposition 13 and Theorem 5. J

5 Parametricity in the βη-stable semantics

In this section we recall the interpretation of λ→ by means of βη-stable sets of λ-terms (see
[7]) and we define a variant of Reynolds’ binary parametricity in this frame.

Let Sβη be the set of all sets s ⊆ Λ stable by βη-equivalence. By an interpretation we
mean any functionM : V → Sβη. For any T,U ∈ Sβη, we let T → U := {M ∈ Λ|N ∈ T ⇒
MN ∈ U} ∈ Sβη.

I Definition 15. For any simple type σ and assignment M : V → Sβη, we define an
interpretation |σ|M ∈ Sβη:

|Zu|M :=M(Zu)
|σ → τ |M := |σ|M → |τ |M (31)

For any simple type σ, we define its uniform interpretation |σ| :=
⋂
M |σ|M. A closed

λ-term M will be said interpretable (for σ) when M ∈ |σ|.

FSCD 2017
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Interpretable terms are normalizable:

I Proposition 16. If a closed λ-term M ∈ |σ|, then there exists M ′ 'βη M such that M ′ is
in βη-normal form.

Proof. Let us call a λ-term idle if it is βη-equivalent to a βη-normal term which does not
begin with a λ. LetM be the interpretation such that, for all Zu,M(Zu) is the set of all
idle terms. Clearly, for all σ and variable x, x ∈ |σ|M. From M ∈ |σ|M, it follows then that
Mx1 . . . xn is idle (where σ = σ1 → · · · → σn → Zu), hence there exists M ′ 'βη Mx1 . . . xn
βη-normal. We have then M 'βη λx1. . . . .λxn.Mx1 . . . xn 'βη λx1. . . . .λxn.M

′. Now
λx1. . . . .λxn.M

′ is either βη-normal, and in this case we are done, or it is of the form
λx1. . . . .λxh.λxh+1. . . . .λxn.M

′′xh+1 . . . xn, for some 1 ≤ h < n, with xh+1, . . . , xn not free
in M ′′. In this case M 'βη λx1. . . . .λxh.M

′′ which is βη-normal. J

We recall the completeness theorem for the βη-stable semantics:

I Theorem 17 ([6, 3]). Let M be a closed λ-term; if M ∈ |σ|, then there exists M ′ 'βη M
such that `M ′ : σ is derivable.

The result in [3] is actually more general, as it holds for positive types in Krivine’s system
AF2, i.e. second order types built from atomic types of the form X(t1, . . . , tn), where the ti
are first-order terms, implication, first order quantifiers and second order universal quantifiers
(the latter occurring only positively).

In the following we will not use Farkh and Nour’s theorem, as we want to prove paramet-
ricity and dinaturality by semantic means, that is, without relying on typability.

We introduce the notion of βη-stable relations:

I Definition 18. Let s, t ⊆ Sβη. A βη-stable relation is a binary relation r ⊆ s× t such that
for all M,M ′ ∈ s,N,N ′ ∈ t, if (M,N) ∈ r (what we will note by M r N), M 'βη M ′ and
N 'βη N ′, then M ′ r N ′.

I Definition 19. If r ⊆ s× t and r′ ⊆ s′ × t′ are βη-stable relations, the βη-stable relation
r → r′ ⊆ (s → s′) × (t → t′) is defined by P (r → r′) Q if for all M ∈ s,N ∈ t, if M r N

then (PM) r′ (QN).

In the following lines we reformulate Reynolds’ parametricity with respect to βη-stable
relations.

I Definition 20 (relation assignment). Let M1,M2 : V → Sβη be two interpretations. A
relation assignment R overM1 andM2 is a map associating, with any simple type σ, a βη-
stable relation R[σ] ⊆ |σ|M1 × |σ|M2 such that, if σ = σ1 → σ2, then R[σ] = R[σ1]→ R[σ2].

I Definition 21 (parametricity). Let σ be a simple type and M be a closed λ-term. M is
parametric in σ if, for all interpretationsM1,M2 and relation assignment R overM1,M2,
M R[σ] M .

I Example 22. Let σ be (Zu → Zu) → (Zu → Zu) as in Example 9. Parametricity in
σ for a closed λ-term M corresponds to the fact that, for any two M1,M2 : V → Sβη
and relation assignment R overM1 andM2, and for any F0 ∈ |Zu|M1 , G0 ∈ |Zu|M2 and
F1 ∈ |Zu → Zu|M1 , G1 ∈ |Zu → Zu|M2 , if F0 R[Zu] G0 and F1 R[Zu → Zu] G1, then
MF1F0 R[Zu] MG1G0.

If M is a closed term of type σ, the βη-normal form of M is of the form λy.λx.ynx,
for some n ≥ 0. Then we can verify that M is parametric in σ. Let F0, G0, F1, G1 be as
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before; we have that MF1F0 'βη Fn1 F0 and MG1G0 'βη Gn1G0. Now we can argue by
induction on n: if n = 0, then Fn1 F0 = F0 R[Zu] G0 = Gn1G0 by hypothesis; if n = k + 1,
then, by induction hypothesis, F k1 F0 R[Zu] Gk1G0 and, by hypothesis, F1 R[Zu → Zu] G1,
that is, for all U, V such that U R[Zu] V , F1U R[Zu] G1V , so we can conclude Fn1 F0 =
F1(F k1 F0) R[Zu] G1(Gk1G0) = Gn1G0.

The theorem below, known as Reynolds’ abstraction theorem ([10]), generalizes this
example to an arbitrary closed simply-typed λ-term.

I Theorem 23. Let σ be a simple type and M be a closed λ-term. If ` M : σ, then M is
parametric in σ.

Proof. The proof is exactly as in [10]. J

In the next section we will prove that closed interpretable λ-terms are parametric, that
is, we will prove parametricity for a term M without relying on a typing of M but rather on
the basis of a semantic property of M .

6 The parametricity theorem

In this section we prove that interpretable closed λ-terms are parametric (in the sense
of Definition 21) by a semantic argument. The proof exploits the idea, appearing in the
completeness proofs for the βη-stable semantics in [6, 3], of defining an infinite context Γ∞
made of declarations (xi : τi), given an enumeration (xi)i∈N of λ-variables and an enumeration
(τi)i∈N of simple types, such that each type receives infinitely many indices. However, the
infinite context Γ∞ will not be used, as in those proofs, to define a contextual typability
relation, but rather to define contextual notions of interpretation and relation assignment.
In particular, a special interpretationMP will be defined such that, for any simple type σ
and λ-term P , if P ∈ |σ|MP

, then for any two interpretations and relation assignment over
them, P is contextually related to P relative to σ.

I Theorem 24 (parametricity). For any simple type σ and closed term M , if M ∈ |σ|, then
M is parametric in σ.

Proof. Let (xi)i∈N be an enumeration of the λ-variables and (τi)i∈N an enumeration of simple
types such that every type has infinitely many indices. Let Γ∞ = {xi : τi | i ∈ N} and, for
every term M , ΓM be the context made by restricting Γ∞ to the free variables occurring in
M .

We first define contextual interpretations and relations:
givenM : V → Sβη, a λ-term P and a simple type τ , the statement P ∈ |Γ∞ ` τ |M holds
when, by letting xi1 , . . . , xin be the free variables of P , for every Q1 ∈ |τi1 |M, . . . , Qn ∈
|τin |M, P [Q1/xi1 , . . . , Qn/xin ] ∈ |τ |M;
given M1,M2 : V → Sβη and R a relation assignment over M1,M2, λ-terms P,Q
and a simple type τ , the statement P R[Γ∞ ` τ ] Q holds when P ∈ |Γ∞ ` τ |M1 ,
Q ∈ |Γ∞ ` τ |M2 and, by letting xi1 , . . . , xin be the free variables of P and Q, for every
Fj ∈ |τij |M1 , Gj ∈ |τij |M2 such that Fj R[τij ] Gj for 1 ≤ j ≤ n, we have

P [F1/xi1 , . . . , Fn/xin ] R[τ ] Q[G1/xi1 , . . . , Gn/xin ] (32)

Let now MP : V → Sβη be the assignment such that, for all Zu ∈ V, MP (Zu) is the
βη-closure of the set of λ-terms P such that P ∈ |Γ∞ ` Zu| and for allM1,M2 : V → Sβη
and relation assignment R overM1,M2, P R[Γ∞ ` Zu] P .

We claim that, for any simple type σ, the following hold:

FSCD 2017
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1. if P ∈ |σ|MP
, then, for any M1,M2 : V → Sβη and relation assignment R over them,

P R[Γ∞ ` σ] P ;
2. for every variable xi such that τi = σ, xi ∈ |σ|MP

.
We argue for both 1. and 2. by induction on σ. If σ = Zu, then, by definition, any P ∈ |σ|MP

is such that, for anyM1,M2 : V → Sβη and relation assignment R over them, P R[Γ∞ ` σ] P
holds, so claim 1. holds; moreover, if τi = Zu, then, for anyM1,M2 : V → Sβη and relation
assignment R overM1,M2, xi R[Γ∞ ` Zu] xi: if F ∈M1(Zu), G ∈M2(Zu) and F R[Zu] G,
then xi[F/xi] = Fi R[Zu] Gi = xi[G/xi]. Hence claim 2. holds too.

Let now σ = σ1 → σ2. By induction hypothesis, for all i ≥ 0, if τi = σ1 then xi ∈ |σ1|MP
;

let then P ∈ |σ|MP
and choose an index i, with τi = σ1, such that xi does not occur free in

P ; we have that Pxi ∈ |σ2|MP
hence, by induction hypothesis, for anyM1,M2 : V → Sβη

and relation assignment R over them, (Pxi) R[Γ∞ ` σ2] (Pxi); let thenM1,M2 : V → Sβη
and R be a relation assignment over them; by letting ΓP = {xi1 : τi1 , . . . , xin : τin}, suppose
Fj ∈ |τij |M1 , Gj ∈ |τij |M2 are such that Fj R[τij ] Gj , for 1 ≤ j ≤ n, and moreover suppose
F ∈ |σ1|M1 , G ∈ |σ1|M2 are such that F R[σ1] G; then, since ΓPxi = {xi1 : τi1 , . . . , xin :
τin , xi : σ1} (remark that xi 6= xi1 , . . . , xin as xi has been chosen not to occur free in P ), we
have (

(λxi.Pxi)[F1/xi1 , . . . , Fn/xin ]
)
F 'βη (Py)[F1/xi1 , . . . , Fn/xin ][F/y]

'βη (Pxi)[F1/xi1 , . . . , Fn/xin , F/xi] R[σ2] (Pxi)[G1/xi1 , . . . , Gn/xin , G/xi]
'βη (Py)[G1/xi1 , . . . , Gn/xin ][G/y] 'βη

(
(λxi.Pxi)[G1/xi1 , . . . , Gn/xin ]

)
G (33)

where we can suppose y not occurring free in any of the Fj and Gj . We conclude then that
P 'βη λxi.Pxi R[Γ∞ ` σ] λxi.Pxi 'βη P , so we proved claim 1.

To prove claim 2., suppose xi is a variable such that τi = σ. Let σ = σ1 → · · · → σn → Zv
for some n ≥ 1 and Q1, . . . , Qn be terms such that Qj ∈ |σj |MP

, for 1 ≤ j ≤ n; by
induction hypothesis, for allM1,M2 : V → Sβη and relation assignment R overM1,M2,
Qj R[Γ∞ ` σj ] Qj , for 1 ≤ j ≤ n. LetM1,M2 : V → Sβη, and R be a relation assignment
overM1,M2; moreover let {xi : τi} ∪

⋃
i ΓQi be the set {xi1 : τi1 , . . . , xir : τir} where i = ip

for some fixed 1 ≤ p ≤ r; given terms F1, G1, . . . , Fr, Gr such that Fl ∈ |τil |M1 , Gl ∈ |τil |M2

and Fl R[τil ] Gl all hold for 1 ≤ l ≤ r, we have that

(xiQ1 . . . Qn)θ1 'βη Fip(Q1θ1) . . . (Qnθ1) (34)

and

(xiQ1 . . . Qn)θ2 'βη Gip(Q1θ2) . . . (Qnθ2) (35)

where θ1 (resp. θ2) is the substitution [F1/xi1 , . . . , Fr/xir ] (resp. [G1/xi1 , . . . , Gr/xir ]).
Now, from the induction hypothesis (which implies that Qjθ1 R[σj ] Qjθ2) and the fact

that Fip R[σ] Gip , it follows that xiQ1 . . . Qn R[Γ∞ ` Zu] xiQ1 . . . Qn. We deduce that
xiQ1 . . . Qn ∈ |Zv|MP

, that is, xi ∈ |σ|MP
and claim 2. is proved.

Finally, let M be closed and interpretable. Then M ∈ |σ|MP
, so, for every M1,M2 :

V → Sβη and relation assignment R overM1,M2, M R[Γ∞ ` σ] M , that is M R[σ] M , as
M is closed. J

7 From parametricity to dinaturality

In this section we adapt the well-known fact that parametricity implies dinaturality ([9]) to
the frame described in the last sections, obtaining a semantic argument that interpretable
closed λ-terms are dinatural.
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Let M1,M2 : V → Sβη be given, for any Zu, by M1(Zu) = Λ and M2(Zu) = fuΛ,
where fuΛ is the βη-closure of the set of all λ-terms of the form fuQ, for some Q ∈ Λ. Let
moreover the relation assignment Rf overM1,M2 be defined, for any Zu, by P R[Zu] Q, if
fuP 'βη Q. Let V1,V2 be as in Section 3 and N : V1 ∪ V2 → Sβη be the interpretation such
that, for all u ≥ 0, N (Xu) =M1(Zu) and N (Yu) =M2(Zu).

I Proposition 25. For any type σ,

Hτ ∈ |τXY → τY |N Kτ ∈ |τY → τYX |N
Kτ ∈ |τXY → τX |N Hτ ∈ |τX → τYX |N

(36)

Proof. We argue by induction on τ : if τ = Zu, then Hτ = fu ∈ |Xu → Yu|N and
Kτ = λx.x ∈ |Xu → Xu|N , |Yu → Yu|N . If τ = τ1 → · · · → τm → Zu for some m ≥ 1, then
let E ∈ |τXY |N , F ∈ |τX |N , G ∈ |τY |N and Ei ∈ |(τi)XY |N , Fi ∈ |(τi)X |N , Gi ∈ |(τi)Y |N , for
1 ≤ i ≤ m. Then, by induction hypothesis we have

HτiEi ∈ |(τi)Y |N KτiGi ∈ |(τi)YX |N
KτiEi ∈ |(τi)X |N HτiFi ∈ |(τi)YX |N

(37)

from which we obtain

HτEG1 . . . Gn 'β fu
(
E(Kτ1G1) . . . (KτnGn)

)
∈ |Y |N (38)

HτFE1 . . . En 'β fu
(
F (Kτ1E1) . . . (KτnEn)

)
∈ |Y |N (39)

KτEF1 . . . Fn 'β E(Hτ1F1) . . . (HτnFn) ∈ |X|N (40)
KτGE1 . . . En 'β G(Hτ1E1) . . . (HτnEn) ∈ |Y |N (41)

exploiting the fact that τXY = (τ1)YX → · · · → (τn)YX → Xu. J

For any λ-variable g 6= z, Hτg ∈ |τY |N = |τ |M2 and Kτg ∈ |τX |N = |τ |M1 . Hence we
can ask whether Hτg and Kτg are related under the relation assignment Rf . This is shown
by the proposition below:

I Proposition 26. For all simple type σ and variable g,
(i) (Kσg) Rf [σ] (Hσg);
(ii) if P ∈ |σ|M1 , Q ∈ |σ|M2 and P Rf [σ] Q, then HσP 'βη KσQ.

Proof. We prove both fact simultaneously by induction on σ. If σ = Zu then Kσg 'β
g Rf fug 'β Hσg; moreover, if P Rf [Zu] Q, then HσP 'β fuP 'βη Q 'β KσQ.

If σ = σ1 → · · · → σn → Zu for some n ≥ 1, then suppose Pi ∈ |σi|M1 , Qi ∈ |σi|M2 and
Pi R[σi] Qi, for all 1 ≤ i ≤ n; then

P := KσgP1 . . . Pn 'β g(Hσ1P1) . . . (HσnPn) (42)

is related to

Q := HσgQ1 . . . Qn 'β fu
(
g(Kσ1Q1) . . . (KσnQn)

)
(43)

Indeed, by induction hypothesis, HσiPi 'βη KσiQi, hence g(Kσ1P1) . . . (KσnPn) 'βη
g(Hσ1Q1) . . . (HσnQn) so fuP 'βη Q.

Suppose now P ∈ |σ|M1 , Q ∈ |σ|M2 and P Rf [σ] Q, then let

P ′ := HσPg1 . . . gn 'β fu
(
P (Kσ1g1) . . . (Kσngn)

)
(44)
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and

Q′ := KσQg1 . . . gn 'β Q(Hσ1g1) . . . (Hσngn) (45)

By induction hypothesis (Kσigi) Rf [σi] (Hσigi) hence, by hypothesis P (Kσ1g1) . . . (Kσngn)
is related to Q′, that is P ′ 'βη Q′. We conclude that KσP 'βη HσQ. J

We can now apply the parametricity Theorem 24 and obtain the following:

I Theorem 27. Let M be a closed λ-term and σ a simple type. If M ∈ |σ| then M ∈ DINσ.

Proof. Let M ∈ |σ| be a closed term and let σ = σ1 → · · · → σn → Zu, for some n ≥ 0.
By propositions 25 and 26, Hσigi ∈ |σi|M2 , Kσigi ∈ |σi|M1 and (Hσigi) Rf [σi] (Kσigi). By
Theorem 24, M Rf [σ] M , hence

M(Kσ1g1) . . . (Kσngn) R[Zu] M(Hσ1g1) . . . (Hσngn) (46)

that is fu
(
M(Kσ1g1) . . . (Kσngn)

)
'βη M(Hσ1g1) . . . (Hσngn), whence M ∈ DINσ. J

8 Conclusions

Two results were proved in this paper: first, that dinaturality implies (simple) typability
(Theorem 14); second, that interpretability in the βη-stable semantics implies dinaturality
(Theorem 27). By putting them together (along with Proposition 16) we obtain the following:

I Theorem 28 (completeness of the βη-stable semantics). Let M be a closed λ-term and σ a
simple type. If M ∈ |σ|, there exists M ′ 'βη M such that `M ′ : σ.

As we said, this completeness result can be proved by a direct argument ([6]) and extended
to a restricted class of second order types ([3]). The core idea of the argument is the definition
of a particular interpretationM such thatM(Zu) contains λ-terms which are βη-equivalent
to terms which can be given type σ in an infinite context defined as Γ∞ in the proof of
Theorem 24.

This argument cannot be straightforwardly extended to the reducibility semantics com-
monly used to prove normalization theorems (for instance, Krivine’s saturated families or
Girard’s reducibility candidates, see [4]). Indeed, the sets of λ-terms there considered have
more complex closure properties, making in particular every term of the form xP1 . . . Pn
belong to any considered set. Hence from the fact that a term belongs to the closure of the
set of typable λ-terms one cannot deduce that the term is βη-equivalent to a typable term.
In a word, the interpretation constructed over typable terms no longer captures typable
terms only. Similarly, the proof of Theorem 24 cannot be straightforwardly extended to the
reducibility semantics, as the interpretationMP is defined starting from sets of terms which
might well have the form xP1 . . . Pn.

However, the results here presented suggest that completeness results might be looked
for through a different path, namely that of showing that interpretable λ-terms satisfy
parametricity and/or dinaturality, two semantic properties which allow, as it has been shown,
to completely reconstruct the syntactic structure of βη-normal λ-terms.

References
1 E. S. Bainbridge, Peter J. Freyd, Andre Scedrov, and Philip J. Scott. Functorial polymorph-

ism. Theoretical Computer Science, 70:35–64, 1990.



P. Pistone 29:15

2 Joachim de Lataillade. Dinatural terms in System F. In Proceedings of the Twenty-Fourth
Annual IEEE Symposium on Logic in Computer Science (LICS 2009), pages 267–276, Los
Angeles, California, USA, 2009. IEEE Computer Society Press.

3 Samir Farkh and Karim Nour. Résultats de complétude pour des classes de types du
système AF2. Informatique Théorique et Applications, 31(6):513–537, 1998.

4 Jean Gallier. On Girard’s "candidats de réductibilité". Logic and Computer Science, 1990.
5 Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. Normal forms and cut-free proofs

as natural transformations. In Y. Moschovakis, editor, Logic from Computer Science,
volume 21, pages 217–241. Springer-Verlag, 1992.

6 Roger J. Hindley. The completeness theorem for typing λ-terms. Theoretical Computer
Science, 22(1-2):1–17, 1983.

7 Jean-Louis Krivine. Lambda calculus, types and models. Ellis Horwood, 1993.
8 R. Labib-Sami. Types avec (ou sans) types auxiliaires. Manuscript, 1986.
9 Gordon Plotkin and Martin Abadi. A logic for parametric polymorphism. In TLCA’93,

International Conference on Typed Lambda Calculi and Applications, volume 664 of Lecture
Notes in Computer Science, pages 361–375. Springer Berlin Heidelberg, 1993.

10 John C. Reynolds. Types, abstraction and parametric polymorphism. In R.E.A. Mason,
editor, Information Processing 1983, pages 513–523. North-Holland, 1983.

A Postponed proofs

Proof of Theorem 5. For one direction first observe that the function var and subt are
always defined: var(x) is the path π such that x : σπ occurs somewhere in the typing
derivation of M ; subt(π) is the path π′ such that Mπ has type σπ′ . So point 1 is satisfied.
For the points 2 and 3 we argue by induction on the number of applications in M .

if M = λxn+1. . . . .λxn+h.xj , for 1 ≤ j ≤ n + h, then T (N) = {ε}. Then ar(σvarε) =
ar(σj) = ar(σ)− (n+ h) = ar(σsubt(ε))− ar(Nε), so point 2. holds and, moreover, σjl =
σn+h+l (as σj = τ = σn+h+1 → · · · → σn+h+ar(σ) → Zu) for all 1 ≤ l ≤ ar(σ)−(n+h)+1,
so point 3. holds too.
if M = λxn+1. . . . .λxn+h.xjM1 . . .Mp where 1 ≤ j ≤ n+ h and p ≥ 1, then the typing
derivation of M is as follows

Γ,∆ ` xj : σj

...
Γ,∆ `M1 : σj1

Γ,∆ ` xjM1 : σj2 → · · · → σjar(σj) → X

. . .
Γ,∆ ` xjM1 . . .Mp−1 : σj(p) → · · · → σjar(σj) → X

...
Γ,∆ `Mp : σjp

Γ,∆ ` xjM1 . . .Mp : σj(p+1) → · · · → σjar(σj) → X

Γ `M : τ

(47)

where ∆ = {xn+1 : σn+1, . . . , xn+h : σn+h}. Hence τ = σn+1 → · · · → σn+h → σj(p+1) →
· · · → σjar(σj) → Zu.
In order to apply the induction hypothesis to the terms Nj = λx1. . . . .λxh.Ml and
the types τj = σ1 → · · · → σn → σij , for 1 ≤ l ≤ p, we must consider the maps
varj : V ar(Nj)→ T (τj), subtj : T (Nj)→ T (τj) and use equations 30, which are proved
in detail below (end of the proof of Proposition 13). We verify now that any π ∈ T (N)
verifies points 2 and 3 (by using equations 30):
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1. if π = ε, then ar(σvar(h(ε))) = ar(σj) = p+ar(σ)−(n+h) = pN (ε)+ar(σsubt(ε))−ar(Nε).
Otherwise π = l ∗ π′, for some 1 ≤ l ≤ p and π′ ∈ T (Nj); then ar(σvar(h(π))) =
ar(σvarj(h(π′))) = pNj (π′)+ar(σsubtj(π′))−ar(

(
Nj)π′

)
= pN (π)+ar(σsubt(π))−ar(Nπ);

2. if π = ε, then, for 1 ≤ d ≤ ar(σ) − ar(N) + 1, σj(p+d) = σn+h+d = σar(N)+d) (since
τ = σn+1 → · · · → σn+h → σj(p+1) → · · · → σjar(σj) → Zu). Otherwise, π = l∗π′ and,

for 1 ≤ d ≤ ar(σsubt(π))−ar(Nπ)+1, σvar(h(π))∗(pN (π)+d) = σvarj(h(π′))∗(pNj (π′)+d)
[i.h.]=

σsubtl(π′)∗(ar((Nj)π′ )+d) = σsubt(π)∗(ar(Nπ)+d).

For the converse direction, we argue again by induction on the number of applications in
M :

if M = λxn+1. . . . .λxn+h.xj , for 1 ≤ j ≤ n+ h, then from (1),(2) and (3), with π = ε, it
follows that n+h ≤ ar(σ), ar(σj) = ar(σ)− (n+h) and, for 1 ≤ l ≤ ar(σ)− (n+h)+1 =
ar(τ)−h+1 = ar(τ ′)+1, where τ = σn+1 → · · · → σn+h → τ ′, σjl = σn+h+l. We deduce
that σj = τ ′ and Γ,∆ ` xj : τ ′ is derivable (where ∆ = {xn+1 : σn+1, . . . , xn+h : σn+h}),
hence Γ `M : τ is derivable;
if M = λxn+1. . . . .λxn+h.xjM1 . . .Mp, with p ≥ 1, then we can apply the induction
hypothesis to the terms N1, . . . , Np (defined as above), yielding Γ,∆ ` Ml : σjl, with
∆ = {xn+1 : σn+1, . . . , xn+h : σn+h}, for all 1 ≤ l ≤ p. From (1), (2) and (3), with π = ε, it
follows that τ = σn+1 → · · · → σn+h → τ ′, with n+h ≤ ar(σ), ar(σj) = p+ar(σ)−(n+h)
and, for 1 ≤ l ≤ ar(σ) − (n + h) + 1 = ar(τ) − h + 1 = ar(τ ′) + 1, σj(p+l) = τ ′l , hence
σj = σj1 → · · · → σjp → τ ′. So we can conclude, from Γ,∆ ` Ml : σjl, for 1 ≤ l ≤ p,
that Γ,∆ ` xjM1 . . .Mp : τ ′ and finally that Γ `M : τ . J

End of the proof of Proposition 13. We will prove that, for all λ ∈ T (Nj), the equations 30
hold. For λ ∈ T (Nj), three cases arise for the variable x corresponding to hj(λ):

x is one of the x1, . . . , xh, i.e. hj(λ) = (ε, l), for some 1 ≤ l ≤ h;
x is bound in Mj “at depth 0”, i.e. hj(λ) = (ε, h+ l), for some 1 ≤ l ≤ ar(Mj);
x it is bound in Mj “at depth > 0”, i.e. hj(λ) = (λ′ ∗ k, l), for some λ′ and l ≥ 1.

We claim that:
1. in the first case, var(h(j ∗ λ)) = varj(hj(λ));
2. in the second case, var(h(j ∗ λ)) = i ∗ j ∗ (varj(hj(λ))− h);
3. in the third case, two subcases must be considered:

a. either varj(hj(λ)) = d ∗ λ′′ with d ≤ h, and var(h(j ∗ λ)) = varj(hj(λ));
b. or varj(hj(λ)) = (h+ d) ∗ λ′′ with d ≤ ar(Mj), and var(h(j ∗ λ)) = i ∗ j ∗ d ∗ λ′′.

We prove now our claims:
1. var(h(j ∗ λ)) = var(ε, l) = l = varj(ε, l) = varj(hj(ε));
2. var(h(j ∗λ)) = var(j, l) = var(h(ε))∗ j ∗ l = i∗ j ∗ l = i∗ j ∗ (l+h−h) = i∗ j ∗ (varj(ε, l+

h)− h) = i ∗ j ∗ (varj(hj(λ))− h);
3. we consider the two subcases separately:

a. if varj(hj(λ)) = d ∗ λ′′ with d ≤ h, then we argue by induction on `(λ): we have
var(h(j ∗ λ′ ∗ k)) = var(j ∗ λ′ ∗ k, l) = var(h(j ∗ λ′)) ∗ k ∗ l ∗= varj(hj(λ′)) ∗ k ∗ l =
varj(λ′ ∗ k, l) = varj(hj(λ)) where in the starred passage, if λ′ = ε, we apply point
1. as varj(hj(λ′)) = varj(ε, d) = d (since ε /∈ Im(varj) and `(hj(ε)1) ≤ 0), while if
λ′ 6= ε, we apply the induction hypothesis to λ′ as `(λ′) < `(λ) (since `(hj(λ)1) ≤ `(λ))
and hj(λ′) = d ∗ o for some path o;

b. if varj(hj(λ)) = (h+ d) ∗λ′′ with d ≤ h, then again we argue by induction on `(λ): we
have var(h(j ∗ λ)) = var(j ∗ λ′ ∗ k, l) = var(h(j ∗ λ′)) ∗ k ∗ l. If λ′ = ε then, by point
2. we have var(h(j ∗ λ′)) = i ∗ j ∗ (varj(hj(λ′)) − h), hence var(h(j ∗ λ′)) ∗ k ∗ l =
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i ∗ j ∗ (varj(hj(λ′))− h) ∗ k ∗ l = i ∗ j ∗ d ∗ k ∗ l = i ∗ j ∗ d ∗ λ′′, where k ∗ l = λ′′ follows
from varj(hj(λ)) = varj(λ′ ∗ k, l) = varj(hj(λ′) ∗ k ∗ l) = (h+ d) ∗ k ∗ l = (h+ d) ∗ λ′′.
If λ′ 6= ε then we can apply the induction hypothesis to λ′ as `(λ′) < `(λ) and
varj(hj(λ′)) = (h+ d) ∗ o, for some path o; so we get that var(h(j ∗ λ′)) = i ∗ j ∗ d ∗ o
and then we can compute var(h(j ∗ λ)) = var(j ∗ λ′ ∗ k, l) = var(h(j ∗ λ′)) ∗ k ∗ l =
i ∗ j ∗ d ∗ o ∗ k ∗ l = i ∗ j ∗ d ∗ λ′′, where o ∗ k ∗ l = λ′′ follows from varj(hj(λ)) =
varj(λ′ ∗ k, l) = varj(hj(λ′) ∗ k ∗ l) = (h+ d) ∗ o ∗ k ∗ l = (h+ d) ∗ λ′′.

We can now verify that (τj)varj(hj(π′)) = σvar(h(π)), for π = j ∗ π′. We must consider the
tree cases above:
1. if hj(π′) = (ε, l) with l ≤ h, then (τj)varj(hj(π)) = (τj)varj(ε,l) = (τj)l = σl and

σvar(h(j∗π′′)) = σvarj(hj(π′)) = σvarj(ε,l) = σl;
2. if hj(π′) = (ε, h + l), then (τj)varj(hj(π′)) = (τj)(h+l) = σi∗j∗l = σi∗j∗(varj(hj(π′))−h) =

σvar(h(j∗π′)) = σvar(h(π));
3. if hj(π′) = (λ′ ∗ r, l), then we consider the two subcases:

a. if varj(hj(π′)) = d∗λ with d ≤ h, then (τj)varj(hj(π′)) = (τj)d∗λ = σd∗λ = σvarj(hj(π′)) =
σvar(h(j∗π′)) = σvar(h(π));

b. if varj(hj(π′)) = (h + d) ∗ λ with d ≤ ar(Mj), then (τj)varj(hj(π′)) = (τj)(h+d)∗λ′ =
σi∗j∗d∗λ′ = σvar(h(j∗π′)) = σvar(h(π)).

Finally, for π′ = π′′ ∗ k, we have that (τj)subtj(π′) = (τj)varj(hj(π′′))∗k = σvar(h(j∗π′′))∗k =
σsubt(π). J

FSCD 2017


	Introduction
	Tree representation of simple typability
	Syntactic dinaturality
	Relating dinaturality and typabililty
	Parametricity in the beta-eta-stable semantics
	The parametricity theorem
	From parametricity to dinaturality
	Conclusions
	Postponed proofs

