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Abstract
Efficient implementations of concurrent objects such as atomic collections are essential to modern
computing. Unfortunately their correctness criteria — linearizability with respect to given ADT
specifications — are hard to verify. Verifying linearizability is undecidable in general, even on
classes of implementations where the usual control-state reachability is decidable. In this work we
consider concurrent priority queues which are fundamental to many multi-threaded applications
like task scheduling or discrete event simulation, and show that verifying linearizability of such
implementations is reducible to control-state reachability. This reduction entails the first decid-
ability results for verifying concurrent priority queues with an unbounded number of threads, and
it enables the application of existing safety-verification tools for establishing their correctness.
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1 Introduction

Multithreaded software is typically built with specialized “concurrent objects” like atomic
integers, queues, maps, priority queues. These objects’ methods are designed to confom to
better established sequential specifications, a property known as linearizability [14], despite
being optimized to avoid blocking and exploit parallelism, e.g., by using machine instruc-
tions like compare-and-swap. Intuitively, linearizability asks that every individual operation
appears to take place instantaneously at some point between its invocation and its return.
Verifying linearizability is intrinsically hard, and undecidable in general [4]. However, recent
work [5] has shown that for particular objects, e.g., registers, mutexes, queues, and stacks,
the problem of verifying linearizability becomes decidable (for finite-state implementations).

In this paper, we consider another important object, namely the priority queue, which is
essential for applications such as task scheduling and discrete event simulation. Numerous
implementations have been proposed in the research literature, e.g., [2, 8, 16, 20, 19], and
concrete implementations exist in many modern languages like C++ or Java. Priority queues
are collections providing put and rm methods for adding and removing values. Every added
value is associated to a priority and a remove operation returns a minimal priority value.
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16:2 Checking Linearizability of Concurrent Priority Queues

For generality, we consider a partially-ordered set of priorities. Values with incomparable
priorities can be removed in any order, and values having the same priority are removed in the
FIFO order. Implementations like the PriorityBlockingQueue in Java where same priority
values are removed in an arbitrary order can be modeled in our framework by renaming
equal priorities to incomparable priorities (while preserving the order constraints).

Compared to previously studied collections like stacks and queues, the main challenge
in dealing with priority queues is that the order in which values are removed is not fixed by
the happens-before between add/remove operations (e.g., in the case of queues, values are
removed in the order in which they were inserted), but by parameters of the put operations
(the priorities) which come from an unbounded domain. For instance, the sequential beha-
vior put(a, p1) · put(b, p3) · put(c, p2) · rm(a, p1) · rm(c, p2) where the priority p1 is less than
p2 which is less than p3, is not admitted neither by the regular queue nor the stack.

We give a characterization of concurrent priority queue behaviors violating linearizability
in terms of automata. This characterization enables a reduction of checking linearizability
for arbitrary implementations to reachability or invariant checking, and implies decidability
for checking linearizability of finite-state implementations. While linearizability violations
for stacks and queues can be described using finite-state automata [5], the case of priority
queues requires register automata where registers are used to store and compare priorities.

This characterization is obtained in several steps. We define a recursive procedure that
recognizes valid sequential executions, which is then extended to recognize linearizable con-
current executions. Intuitively, for an execution e, this procedure deals with values occurring
in e one by one, starting with values of maximal priority (to be removed the latest). For
each value x, it checks whether e satisfies some property “local” to that value, i.e., which is
agnostic to how the operations adding or removing other values are ordered between them
(w.r.t. the happens-before), other than how they are ordered w.r.t. the operations on x.
When this property holds, the procedure is applied recursively on the rest of the execu-
tion, without the operations on x. This procedure works only for executions where a value
is added at most once, but this is not a limitation for data-independent implementations
whose behavior doesn’t depend on the values that are added or removed. In fact, all the
implementations that we are aware of are data-independent.

Next, we show that checking whether an execution violates this “local” property for a
value x can be done using a class of register automata [15, 9, 18] (transition systems where the
states consist of a fixed set of registers that can receive values and be compared). Actually,
only two registers are needed: one register r1 for storing a priority guessed at the initial
state, and one register r2 for reading priorities as they occur in the execution and comparing
them with the one stored in r1. We show that registers storing values added to or removed
from the priority queue are not needed, since any data-independent implementation admits
a violation to linearizability whenever it admits a violation where the number of values is
constant, and at most 4 (the number of priorities can still be unbounded).

The remainder of this article is organized as follows. Section 2 describes the priority
queue ADT, lists several semantic properties like data-independence, and recalls the no-
tion of linearizability. Section 3 defines a recursive procedure for checking linearizability
of concurrent priority queue behaviors. Section 4 gives an automata characterization of
the violations to linearizability, and Section 5 discusses related work. Detailed proofs and
constructions can be found in the extended version [7].
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2 The Priority Queue ADT

We consider priority queues whose interface contains two methods put and rm for adding
and respectively, removing a value. Each value is assigned with a priority when being added
to the data structure (by calling put) and the remove method rm removes a value with a
minimal priority. For generality, we assume that the set of priorities is partially-ordered.
Incomparable priorities can be removed in any order. When multiple values are assigned
with the same priority, rm returns the least recent value. Also, when the set of values stored
in the priority queue is empty, rm returns the distinguished value empty. In this section,
we formalize (concurrent) executions and implementations, introduce a set of properties
satisfied by all the implementations we are aware of, and recall the standard correctness
criterion for concurrent implementations of ADTs known as linearizability [14].

2.1 Executions

We fix a (possibly infinite) set D of data values, a (possibly infinite) set P of priorities, a
partial order ≺ among elements in P, and an infinite set O of operation identifiers. The latter
are used to match call and return actions of the same invocation. Call actions callo(put, a, p)
and callo(rm, a′) with a ∈ D, a′ ∈ D ∪ {empty}, p ∈ P, and o ∈ O, combine a method
name and a set of arguments with an operation identifier. The return value of a remove
is transformed to an argument value for uniformity 1. The return actions are denoted in a
similar way as reto(put, a, p) and respectively, reto(rm, a′).

An execution e is a sequence of call and return actions which satisfy the following well-
formedness properties: each return is preceded by a matching call (having the same operation
identifier), and each operation identifier is used in at most one call/return. We assume every
set of executions is closed under isomorphic renaming of operation identifiers. An m(a)-
operation in an execution e is an operation identifier o s.t. e contains the actions callo(m, a)
and reto(m, a). An execution is called sequential when no two operations overlap, i.e., each
call action is immediately followed by its matching return action, and concurrent otherwise.
For readability, we write a sequential execution as a sequence of put(a, p) and rm(a) symbols
representing a pair of actions callo(put, a, p) · reto(put, a, p) and callo(rm, a) · reto(rm, a),
respectively (o ∈ O). For example, given two priorities p1 ≺ p2, put(a, p2) · put(b, p1) · rm(b)
is a sequential execution of the priority queue (rm returns b because it has smaller priority).

We define SeqPQ, the set of sequential priority queue executions, semantically via a
labelled transition system (LTS, for short). An LTS is a tuple A = (Q,Σ,→, q0), where Q is
a set of states, Σ is an alphabet of transition labels, →⊆ Q×Σ×Q is a transition relation,
and q0 is the initial state. We model the priority queue as an LTS PQ where states are
mappings associating priorities in P with sequences of values in D, representing a snapshot
of the priority queue (for each priority, the values are ordered as they were inserted), and
the transition labels are put(a, p) and rm(a). Each transition modifies the state as expected.
For example, q1

rm(empty)−−−−−−−→ q2 if q1 = q2, and q1 and q2 map each priority to the empty
sequence ε. Then, SeqPQ is the set of traces (words) accepted by PQ.

An implementation I is a set of executions. Implementations represent libraries whose
methods are called by external programs. In the remainder of this work, we consider only

1 Method return values are guessed nondeterministically, and validated at return points. This can be
handled using assume statements, which only admit executions satisfying a given predicate.
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16:4 Checking Linearizability of Concurrent Priority Queues

completed executions, where each call action has a corresponding return action. This sim-
plification is sound when the method invocations can always make progress in isolation.

2.2 Semantic Properties of Priority Queues
We define two properties which are important for our results: (1) data independence [22, 1]
states that priority queue behaviors do not depend on the actual values which are added
to the queue, and (2) closure under projection [5] states that executions remain valid by
removing all the operations adding or removing certain values.

An execution e is data-differentiated if every value is added at most once, i.e., for each
d ∈ D, e contains at most one action callo(put, d, p) with o ∈ O and p ∈ P. Note that
this property concerns only values, a data-differentiated execution e may contain more than
one value with the same priority. The subset of data-differentiated executions of a set of
executions E is denoted by E 6=.

A renaming function r is a function from D to D. Given an execution e, we denote by
r(e) the execution obtained from e by replacing every data value x by r(x). Note that r
renames only the values and keeps the priorities unchanged. Intuitively, renaming values
has no influence on the behavior of the priority queue, contrary to renaming priorities.

I Definition 1. A set of executions E is data independent iff
for all e ∈ E, there exists e′ ∈ E6= and a renaming function r, such that e = r(e′),
for all e ∈ E and for all renamings r, r(e) ∈ E.

The following lemma is a direct consequence of definitions.

I Lemma 2. SeqPQ is data independent.

Beyond sequential executions, every concurrent priority queue implementation that we
are aware of is data-independent. From now on, we consider only data-independent im-
plementations. This assumption enables a reduction from checking the correctness of an
implementation I to checking the correctness of its data-differentiated executions in I 6=.

Besides data independence, the sequential executions of the priority queue satisfy the
following closure property: an execution remains valid when removing all the operations
with an argument in some set of values D ⊆ D and any rm(empty) operation (since they
are read-only and they don’t affect the queue’s state). To distinguish between different
rm(empty) operations while simplifying the technical exposition, we assume that they receive
as argument a value, i.e., call actions are of the form callo(rm, empty, a) for some a ∈ D.
We will make explicit this argument only when needed in our technical development. The
projection e|D of an execution e to a set of values D ⊆ D is obtained from e by erasing all
the call/return actions with an argument not in D. We write e\x for the projection e|D\{x}.
Let proj(e) be the set of all projections of e to a set of values D ⊆ D.

I Lemma 3. SeqPQ is closed under projection, i.e., proj(e) ⊆ SeqPQ for each e ∈ SeqPQ.

2.3 Linearizability
We recall the notion of linearizability [14] which is the de facto standard correctness condi-
tion for concurrent data structures. Given an execution e, the happen-before relation <hb
between operations 2 is defined as follows: o1 <hb o2, if the return action of o1 occurs before

2 In general, we refer to operations using their identifiers.



A. Bouajjani, C. Enea, and C. Wang 16:5

the call action of o2 in e. The happens-before relation is an interval order [6]: for distinct
o1, o2, o3, o4, if o1 <hb o2 and o3 <hb o4, then either o1 <hb o4, or o3 <hb o2. Intuitively, this
comes from the fact that concurrent threads share a notion of global time.

Given a (concurrent) execution e and a sequential execution s, we say that e is linearizable
w.r.t s, denoted e v s, if there is a bijection f : O1 → O2, where O1 and O2 are the set of
operations of e and s, respectively, such that (1) the call and return actions with identifier
o and f(o), respectively, are the same and (2) if o1 <hb o2, then f(o1) <hb f(o2). A
(concurrent) execution e is linearizable w.r.t. a set S of sequential executions, denoted
e v S, if there exists s ∈ S such that e v s. A set of concurrent executions E is linearizable
w.r.t. S, denoted E v S, if e v S for all e ∈ E.

The following lemma states that by data-independence, it is enough to consider only data-
differentiated executions when checking linearizability. Section 3 will focus on characterizing
linearizability for data-differentiated executions.

I Lemma 4. A data-independent implementation I is linearizable w.r.t. a data-independent
set S of sequential executions, if and only if I6= is linearizable w.r.t. S6=.

3 Checking Linearizability of Priority Queue Executions

We define a recursive procedure for checking linearizability of a data-differentiated execution
w.r.t. SeqPQ. To ease the exposition, Section 3.1 introduces a recursive procedure for
checking whether a data-differentiated sequential execution is admitted by the priority queue
which is then extended to the concurrent case in Section 3.2.

3.1 Characterizing Data-Differentiated Sequential Executions
The recursive procedure Check-PQ-Seq outlined in Algorithm 1 checks whether a data-
differentiated sequential execution belongs to SeqPQ (i.e., if it is accepted by the LTS PQ).
Roughly, it selects one or two operations in the input execution, checks whether their return
values are correct by ignoring the order between the other operations other than how they
are ordered w.r.t. the selected ones, and calls itself recursively on the execution without the
selected operations.

We explain how the procedure works on the following execution:

put(c, p2)· put(a, p1) · rm(a) · rm(c) · rm(empty) · put(d, p2) · put(f , p3) · rm(f ) · put(b, p1) (1)

where p1, p2, p3 are priorities such that p1 ≺ p2 and p1 ≺ p3, and p2 and p3 are incomparable.
Since the rm(empty) operations are read-only (they don’t affect the queue’s state), they are
selected first. An rm(empty)-operation o is correct when every put(x, p) operation before o
is matched to a rm(x) operation which also occurs before o. This is true in this case for
x ∈ {a, c}. Thus, the correctness of (1) reduces to the correctness of

put(c, p2) · put(a, p1) · rm(a) · rm(c) · put(d, p2) · put(f, p3) · rm(f) · put(b, p1) (2)

When the execution contains no rm(empty)-operation, the procedure selects a put operation
adding a value that is not removed and that has a maximal priority. For (2), it selects
put(d, p2) because p2 is a maximal priority. This operation is correct since d is the last value
with priority p2 in the execution, and the correctness of (2) reduces to the correctness of

put(c, p2) · put(a, p1) · rm(a) · rm(c) · put(f, p3) · rm(f) · put(b, p1) (3)

CONCUR 2017
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Algorithm 1: Check-PQ-Seq
Input: A data-differentiated sequential execution e
Output: true iff e ∈ SeqPQ

1 if e = ε then
2 return true;
3 if Has-EmptyRemoves(e) then
4 if ∃ o = rm(empty) ∈ e such that EmptyRemove-Seq(e, o) holds then
5 return Check-PQ-Seq(e \ o);
6 else if Has-UnmatchedMaxPriority(e) then
7 if ∃ x ∈ values(e) such that UnmatchedMaxPriority-Seq(e, x) holds then
8 return Check-PQ-Seq(e \ x);
9 else

10 if ∃ x ∈ values(e) such that MatchedMaxPriority-Seq(e, x) holds then
11 return Check-PQ-Seq(e \ x);
12 else
13 return false;

If no operations like above can be found, Check-PQ-Seq selects a pair of put and rm opera-
tions adding and removing the same maximal priority value. For (2), it can select put(c, p2)
and rm(c). The value returned by rm(c) is correct if all the values of priority smaller than
p2 added before rm(c) are also removed before rm(c). In this case, a is the only value of
priority smaller than p2 and it satisfies this property. Applying a similar reasoning for all
the remaining values, it can be proved that this execution is correct.

Formally, the selected operations depend on the following set of predicates on executions:

Has-EmptyRemoves(e) = true iff e contains a rm(empty)-operation
Has-UnmatchedMaxPriority(e) = true iff p ∈ unmatched-priorities(e) for a maximal p

where priorities(e), resp., unmatched-priorities(e), is the set of priorities occurring in put
operations of e, resp., in put operations of e for which there is no rm operation removing
the same value. We call the latter unmatched put operations. A put operation which is
not unmatched is called matched. For simplicity, we consider the following syntactic sugar
Has-MatchedMaxPriority(e) = ¬Has-EmptyRemoves(e) ∧ ¬Has-UnmatchedMaxPriority(e). By
an abuse of notation, we assume Has-UnmatchedMaxPriority(e) ⇒ ¬Has-EmptyRemoves(e)
(this is sound by the order of the conditionals in Check-PQ-Seq).

The predicates defining the correctness of the selected operations are defined as follows:

EmptyRemove-Seq(e, o) = true iff e = u · o · v and matched(u)
UnmatchedMaxPriority-Seq(e, x) = true iff e = u · put(x, p) · v, p 6≺ priorities(u · v),

p 6∈ priorities(v)
MatchedMaxPriority-Seq(e, x) = true iff e = u · put(x, p) · v · rm(x) · w, matched≺(u · v, p),

p 6� unmatched-priorities(u · v · w), p 6≺ priorities(u · v · w),
and p 6∈ priorities(v · w)

where p ≺ priorities(e) when p ≺ p′ for some p′ ∈ priorities(e) (and similarly for p ≺
unmatched-priorities(e) or p � unmatched-priorities(e)), matched≺(e, p) holds when each
value with priority strictly smaller than p is removed in e, and matched(e) holds when
matched≺(e, p) holds for each p ∈ P. Compared to the example presented at the beginning
of the section, these predicates take into consideration that multiple values with the same
priority are removed in FIFO order: the predicate MatchedMaxPrioritySeq(e, x) holds when
x is the last value with priority p added in e.

When o is an rm(empty)-operation, e \ o is the maximal subsequence of e which doesn’t
contain o. For an execution e, values(e) is the set of values in call/return actions of e.
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The following lemma states the correctness of Check-PQ-Seq.

I Lemma 5. Check-PQ-Seq(e) = true iff e ∈ SeqPQ, for every data-differentiated sequential
execution e.

3.2 Checking Linearizability of Data-Differentiated Concurrent
Executions

The extension of Check-PQ-Seq to concurrent executions, checking whether they are linear-
izable w.r.t. SeqPQ, is obtained by replacing every predicate Γ-Seq with

Γ-Conc(e, α) = true iff there is a sequential execution s such that e v s and Γ-Seq(s, α)

for each Γ ∈ {EmptyRemove,UnmatchedMaxPriority,MatchedMaxPriority}. The obtained
procedure is denoted by Check-PQ-Conc (recursive calls are modified accordingly).

The following lemma states the correctness of Check-PQ-Conc. Completeness follows
easily from the properties of SeqPQ. If Check-PQ-Conc(e) = false, then there exists a set D
of values s.t. either EmptyRemove-Conc(e|D) is false, or UnmatchedMaxPriority-Conc(e|D,x)
is false for all the values x of maximal priority that are not removed (and there exists at
least one such value), or MatchedMaxPriority-Conc(e|D,x) is false for all the values x of
maximal priority (and these values are all removed in e|D). It can be easily seen that we
get e|D 6v SeqPQ in all cases, which by the closure under projection of SeqPQ implies,
e 6v SeqPQ (since every linearization of e includes as a subsequence a linearization of e|D).

I Lemma 6. Check-PQ-Conc(e) = true iff e v SeqPQ, for every data-differentiated e.

Proving soundness is highly non-trivial and one of the main technical contributions of this
paper. The main technical difficulty is showing that for any execution e, any linearization
of e \ x for some maximal priority value x can be extended to a linearization of e provided
that UnmatchedMaxPriority or MatchedMaxPriority holds (depending on whether there are
values with the same priority as x in e which are not removed).

We explain the proof of this property on the execution e in Figure 1(a) where p1 ≺ p, p1 ≺
p2, and the predicate Has-MatchedMaxPriority(e) holds. Assume that there exist two sequen-
tial executions l and l′ such that e v l = u·put(x, p)·v·rm(x)·w, MatchedMaxPriority-Seq(l, x)
holds, and e \ x v l′ ∈ SeqPQ. Let u = ε, w be any sequence formed of put(z2, p2) and
rm(z1) (we distinguish them by adding the suffix “−w” to their name, e.g., rm(z1) − w),
and v be any sequence containing the remaining operations. In general, the linearization l′
can be defined by choosing for each operation, a point in time between its call and return,
called linearization point. The order between the linearization points defines the sequence
l′. Figure 1(a) draws linearization points for the operations in e \ x which define l′ 3. We
show how to construct a sequence l′′ = l′′1 · put(x, p) · l′′2 · rm(x) · l′′3 ∈ SeqPQ s.t. e v l′′.

An operation is called p-comparable (resp., p-incomparable) when it receives as argument
a value of priority comparable to p (resp., incomparable to p). Defining l′′1 , l′′2 , and l′′3 as
the projection of l′ to the set of operations in u, v and w, respectively, leads to a sequence
l′′ 6∈ SeqPQ. This is because MatchedMaxPriority-Seq(l, x) imposes no restriction on p-
incomparable operations in u · v, and the projection of l′ to p-incomparable operations
in u · v is not in SeqPQ. In this example, this projection is put(z1, p2) · rm(z2).

3 In general, there may exist multiple ways of choosing linearization points to define the same lineariza-
tion. Our construction is agnostic to this choice.
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put(x, p)

put(x2, p)

rm(x)

rm(x2)

put(x, p)

put(x2, p)

rm(x)

rm(x2)

put(y1, p1)

rm(y1)

put(z1, p2)

rm(z2)

put(z2, p2)− w rm(z1)− w

(a) (b)

put(y1, p1)

rm(y1)

put(z1, p2)

rm(z2)

put(z2, p2) rm(z1)

Figure 1 A concurrent execution e exemplifying the soundness of Check-PQ-Conc.

We define the sets of operations U ′, V ′ andW ′ such that l′′1 , l′′2 and l′′3 are the projections
of l′ to U ′, V ′, and W ′, respectively. This is done in two steps:
1. The first step is to define W ′. The p-comparable operations in W ′ are the same as in
w. To identify the p-incomparable operations in W ′, we search for a p-incomparable
operation o which either happens before some p-comparable operation in w, or whose
linearization point occurs after ret(rm, x). We add to W ′ the operation o and all the
p-incomparable operations occurring after o in l′. In this example, o is rm(z1) and the
only p-incomparable operation occurring after o in l′ is rm(z2) (they are surrounded
by boxes in the figure). In this process, whether a p-incomparable operation is in W ′
or not only relies on whether it is before or after such an o in l′.

2. The second step is to define U ′ and V ′. U ′ contains two kinds of operations: (1) oper-
ations whose linearization points are before ret(put, x, p), and (2) other put operations
with priority p. V ′ contains the remaining operations. In this example, U ′ contains
put(z1, p2) and put(x2, p).

In conclusion, we have that l′′1 = put(z1, p2)·put(x2, p), l′′2 = put(z2, p2)·rm(x2)·put(y1, p1)·
rm(y1), and l′′3 = rm(z1) · rm(z2). Figure 1(b) draws linearization points for each opera-
tion in e defining the linearization l′′.

Section 4 introduces a characterization of concurrent priority queue violations using a set
of non-recursive automata (whose states consist of a fixed number of registers), whose stand-
ard synchronized product is equivalent to Check-PQ-Conc (modulo a renaming of values
which is possible by data-independence). Since SeqPQ is closed under projection (Lemma 3),
the recursion in Check-PQ-Conc can be eliminated by checking that each projection of a
given execution e passes a non-recursive version of Check-PQ-Conc where every recursive
call return Check-PQ-Conc(. . .) is replaced by return true. Let Check-PQ-Conc-NonRec
be the thus obtained procedure.

I Lemma 7. Given a data-differentiated execution e, e v SeqPQ if and only if for each
e′ ∈ proj(e), Check-PQ-Conc-NonRec(e′) returns true.

4 Reducing Linearizability of Priority Queues to Reachability

We show that the set of executions for which Check-PQ-Conc-NonRec fails on some pro-
jection can be described using register automata, modulo a value renaming. Renaming
values (which is complete under data independence) allows to simplify the reasoning about
projections. W.l.o.g., we assume that all the operations which are not in the projection
failing this test use the same distinguished value >, different from those in the projec-
tion. Then, it is enough to find an automata characterization of the executions e for which
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Check-PQ-Conc-NonRec(e) is false, i.e., for which Γ(e) := Has-Γ(e) ⇒ ∃α. Γ-Conc(e, α) is
false, for some Γ ∈ {EmptyRemove, UnmatchedMaxPriority, MatchedMaxPriority}. Intuit-
ively, Γ(e) states that e is linearizable w.r.t. the set of sequential executions described by
Γ-Seq (provided that Has-Γ(e) holds). Therefore, by an abuse of terminology, an execution
e satisfying Γ(e) is called linearizable w.r.t. Γ, or Γ-linearizable. Extending the automaton
characterizing non Γ-linearizable executions with self-loops that allow any operation with
argument > results in an automaton satisfying the following property called Γ-completeness.

I Definition 8. For Γ ∈ {EmptyRemove, UnmatchedMaxPriority, MatchedMaxPriority}, an
automaton A is called Γ-complete when for each data-independent implementation I:

A ∩ I 6= ∅ iff there exists e ∈ I and e′ ∈ proj(e) such that e′ is not Γ-linearizable.

We can show that for any Γ ∈ {EmptyRemove,UnmatchedMaxPriority,
MatchedMaxPriority} there exists a Γ-complete automaton. For lack of space, we only con-
sider the case Γ = MatchedMaxPriority in Section 4.1. When defining Γ-complete automata,
we assume that every implementation I behaves correctly, i.e., as a FIFO queue, when only
values with the same priority are observed. More precisely, we assume that for every execu-
tion e ∈ I and every priority p ∈ P, the projection of e to values with priority p is linearizable
(w.r.t. SeqPQ). This property can be checked separately using register automata similar
to the automata in [5] describing FIFO queue violations. This assumption excludes some
obvious violations, such as an rm(a) operation happening before a put(a, p) operation, for
some p.

For Γ ∈ {UnmatchedMaxPriority,MatchedMaxPriority}, we consider Γ-complete automata
recognizing executions which contain only one maximal priority. This is w.l.o.g. because
any data-differentiated execution for which Γ(e) is false has such a projection. Formally,
given a data-differentiated execution e and p a maximal priority in e, e|�p is the projection
of e to the set of values with priorities smaller or equal to p. Then,

I Lemma 9. For Γ ∈ {UnmatchedMaxPriority,MatchedMaxPriority}, a data-differentiated
execution e is Γ-linearizable iff e|�p is Γ-linearizable for some maximal priority p in e.

Proof. (Sketch) For the “only-if” direction, let e be a data-differentiated execution linear-
izable w.r.t. l = u · put(x, p) · v · rm(x) · w s.t. MatchedMaxPriority-Seq(l, x) holds. Since
the predicate MatchedMaxPriority-Seq(l, x) imposes no restriction on the operations in u, v,
and w with priorities incomparable to p, erasing all these operations results in a sequential
execution which still satisfies this predicate. Similarly, for Γ = UnmatchedMaxPriority.

The “if” direction follows from the fact that if the projection of an execution to a set
of operations O1 has a linearization l1 and the projection of the same execution to the
remaining set of operations has a linearization l2, then the execution has a linearization
which is defined as an interleaving of l1 and l2.

Thus, let e be an execution such that e|�p is linearizable w.r.t. l = u·put(x, p)·v ·rm(x)·w
where MatchedMaxPriority-Seq(l, x) holds. By the property above, we know that e has
a linearization l′ = u′ · put(x, p) · v′ · rm(x) · w′, such that the projection of l′ to values of
priority comparable to p is l. Since MatchedMaxPriority-Seq(l, x) doesn’t constrain the values
of priority incomparable to p, we obtain that MatchedMaxPriority-Seq(l′, α) also holds. J

The existence of Γ-complete automata enable an effective reduction of checking linear-
izability of concurrent priority queue implementations to state reachability. Section 4.2
discusses decidability results implied by this reduction.

I Theorem 10. Let I be a data-independent implementation. Then, there is a Γ-complete
automaton A(Γ) for each Γ. Moreover, I v SeqPQ iff I ∩A(Γ) = ∅ for all Γ.
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put(b, p4) rm(b)

put(c, p1) rm(c)

put(d, p2) rm(d)

put(f, p3) rm(f)

Figure 2 An execution that is not MatchedMaxPriority>-linearizable. We represent each opera-
tion as a time interval whose left, resp., right, bound corresponds to the call, resp., return action.

4.1 A MatchedMaxPriority-complete automaton
A differentiated execution e is not MatchedMaxPriority-linearizable when all the put oper-
ations in e using the maximal priority p are matched, and e is not linearizable w.r.t. the
set of sequential executions satisfying MatchedMaxPriority-Seq(e, x) for each value x of pri-
ority p. We consider two cases depending on whether e contains exactly one value with
priority p or at least two values. We denote by MatchedMaxPriority> the strengthening
of MatchedMaxPriority with the condition that all the values other than x have a priority
strictly smaller than p (corresponding to the first case), and by MatchedMaxPriority= the
strengthening of the same formula with the negation of this condition (corresponding to
the second case). We use particular instances of register automata [15, 9, 18] whose states
include only two registers, one for storing a priority guessed at the initial state, and one
for storing the priority of the current action in the execution. The transitions can check
equality or the order relation ≺ between the values stored in the two registers. Instead of
formalizing the full class of register automata, we consider a simpler class which suffices our
needs. Thus, we consider a class of labeled transition systems whose states consist of a finite
control part and a register r interpreted to elements of P. The transition labels are:

r = ∗ for storing an arbitrary value to r,
call(rm, a) and ret(rm, a) for reading call/return actions of a remove,
call(put, d, g) where g ∈ {= r,≺ r, true} is a guard, for reading a call action call(put, d, p)
and checking if p is either equal to or smaller than the value stored in r, or arbitrary,
ret(put, d, true) for reading a return action ret(put, d, p) for any p.

The set of sequences (executions) accepted by such a transition system is defined as usual.

4.1.1 A MatchedMaxPriority>-complete automaton
Figure 2 contains a typical example of an execution e which is not MatchedMaxPriority>-
linearizable, where p1 ≺ p4, p2 ≺ p4, and p3 ≺ p4. Intuitively, this is a violation because
during the whole execution of rm(b), the priority queue stores a smaller priority value (which
should be removed before b). To be more precise, we define the interval of a value x as the
time interval from the return of a put ret(put, x, p) to the call of the matching remove
call(rm, x), or to the end of the execution if such a call action doesn’t exist. This repres-
ents the time interval in which a value is guaranteed to be stored into the priority queue.
Concretely, for a standard indexing of actions in an execution, a time interval is a closed
interval between the indexes of two actions in the execution. In Figure 2, the interval of
each value of priority smaller than p4 is pictured as a dashed line. There is no sequence l
s.t. e v l and MatchedMaxPriority-Seq(l, b) hold, since each time point from call(rm, b) to
ret(rm, b) is included in the interval of a smaller priority value, and rm(b) can’t take effect
in the interval of a smaller priority value. To formalize this scenario we use the notion of
left-right constraint defined below.
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put(b, p) rm(b)

put(a, )

rm(b)

put(b, p)put(b, p)

rm(b)

put(b, p)

rm(b)

put(a, )

(a)

put(a, )

put(a, )

put(a, )

(b)

put(a, )

(c)

put(a, )

put(a, )

(d)

put(a, )

Figure 3 Orderings to be considered when defining a MatchedMaxPriority>-complete automaton.

I Definition 11. Let e be a data-differentiated execution which contains only one maximal
priority p, and only one value x of priority p (and no rm(empty) operations). The left-right
constraint of x is the graph G where:

the nodes are the values occurring in e,
there is an edge from d1 to x, if put(d1,_) <hb put(x, p) or put(d1,_) <hb rm(x),
there is an edge from x to d1, if rm(x) <hb rm(d1) or rm(d1) does not exists,
there is an edge from d1 to d2, if put(d1,_) <hb rm(d2,_).

The execution in Figure 2 is not MatchedMaxPriority>-linearizable because the left-right
constraint of the maximal priority value b contains the cycle f → d → c → b → f . The
presence of such a cycle is equivalent to non MatchedMaxPriority>-linearizability:

I Lemma 12. Let e be a data-differentiated execution such that Has-MatchedMaxPriority(e)
holds, p is the maximal priority in e, and put(x, p) and rm(x) are only operations with
arguments of priority p in e. Then, e is MatchedMaxPriority-linearizable iff the left-right
constraint of x contains no cycle going through x.

When the left-right constraint contains a cycle d1 → . . . → dm → x → d1, for some
d1,. . .,dn ∈ D, we say that x is covered by d1, . . . , dm. The shape of an execution witnessing
such a cycle (i.e., the alternation between call/return actions) can be identified using our
class of automata, the only complication being the unbounded number of values d1,. . .,dn.
However, by data independence, whenever an implementation contains such an execution it
also contains an execution where all the values d1,. . .,dn are renamed to the same value a,
and x is renamed to b. Therefore, our automata can be defined over a fixed set of values a,
b, and > (recall that > is used for operations outside of the non-linearizable projection).

To define a MatchedMaxPriority>-complete automaton, we need to consider all the pos-
sible orders between the call/return actions of the put/rm operations that add and respect-
ively, remove the value b. The case where the put happens-before the remove (as in Figure 2)
is pictured in Figure 4. This automaton captures the three possible ways of ordering the first
action ret(put, a,_) w.r.t. the actions with value b, which are pictured in Figure 3(a) (this
action cannot occur after call(rm, b,_) since bmust be covered by the a-s). The paths corres-
ponding to these three possible orders are: q1 → q2 → q3 . . .→ q7, q1 → q2 → q3 . . .→ q10,
and q1 → q9 → q10 . . . → q7. Figure 3 lists the four possible orderings of the call/return
actions of adding and removing b, and also possible orders of the first ret(put, a,_) w.r.t the
actions with value b. Each such ordering corresponds to an automaton similar to the one in
Figure 4, their union defining a MatchedMaxPriority>-complete automaton.

4.1.2 A MatchedMaxPriority=-complete automaton
When an execution contains at least two values of maximal priority, the acyclicity of the
left-right constraints (for all the maximal priority values) is not enough to conclude that
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qinit

A2

r = ∗

q2

A2

q9

A2

call(put, b,= r)

A2

q1

ret(put, b, true) q3

A2

q10

A2

ret(put, b, true)

ret(put, a, true)

A3

q4

A2

q11

call(rm, b) q5

q6

q7

A1

ret(rm, b)

q8

call(rm, a)call(put, b,= r)
ret(put, a, true)

ret(put, a, true)

call(rm, b)
A2

A1A3

call(rm, a)

ret(put, a, true)

Figure 4 A register automaton capturing the scenario in Figure 3(a). We use the following
notations: A1 = A ∪ {ret(rm, a)}, A2 = A ∪ {call(put, a,= r)}, A3 = A2 ∪ {ret(rm, a)}, where
A = {call(put,>, true), ret(put,>, true), call(rm,>), ret(rm,>), call(rm, empty), ret(rm, empty)}.

rm(b)

rm(a)put(a, p4)

put(b, p4)

put(d, p1) put(f, p1)put(c, p1) rm(c) rm(d) rm(f) put(g, p1) rm(g)

Figure 5 An execution that is not MatchedMaxPriority=-linearizable.

the execution is MatchedMaxPriority-linearizable. Intuitively, there may exist a value a

which is added before another value b such that all the possible linearization points of
rm(b) are disabled by the position of rm(a) in the happens-before. We give an example of
such an execution e in Figure 5, where p1 ≺ p4. This execution is not linearizable w.r.t.
MatchedMaxPriority (or MatchedMaxPriority=) even if neither a nor b are covered by values
with smaller priority. Since put(a, p4) <hb put(b, p4) and values of the same priority are
removed in FIFO order, rm(a) should be linearized before rm(b) (i.e., this execution should
be linearizable w.r.t. a sequence where rm(a) occurs before rm(b)). Since rm(b) cannot take
effect during the interval of a smaller priority value, it could be only linearized in one of
the two time intervals pictured with dotted lines in Figure 5. However, each of those time
intervals ends before call(rm, a), and thus rm(a) cannot be linearized before rm(b).

To recognize the scenarios in Figure 5, we introduce an order <pb between values which
intuitively, can be thought of as “a value a is put before another value b”. More precisely,
given a data-differentiated execution e and two values a and b of maximal priority, a <pb b

if one of the following holds: (1) put(a,_) <hb put(b,_), (2) rm(a) <hb rm(b), or (3)
rm(a) <hb put(b,_). Sometimes we use a <A

pb b, a <B
pb b, and a <C

pb b to explicitly distinguish
between these three cases. Let <∗pb be the transitive closure of <pb.

To define the time intervals in which a remove like rm(b) in Figure 5, can be linearized
(outside of intervals of smaller priority values) we use the notion of gap-point. As before,
defining time intervals relies on an indexing of actions in an execution, starting with 0.

I Definition 13. Let e be a data-differentiated execution with only one maximal priority p,
and put(x, p) and rm(x) two operations in e. An index i ∈ [0, |e| − 1] is a gap-point of x if i
is greater than or equal to the index of both call(put, x, p) and call(rm, x), smaller than the
index of ret(rm, x), and not included in the interval of a value with priority smaller than p.

The case of Figure 5 can be formally described as follows: a <∗pb b while the right-most
gap-point of b is before call(rm, a) or call(put, a, p4). The following lemma states that these
conditions are enough to characterize non-linearizability w.r.t. MatchedMaxPriority=.
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put(b, )

rm(b)

put(a, ) rm(a)

rm(b)

rm(a)
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rm(b)
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put(a1, )

put(a, )
o o o

(a) (b) (c)
rm(b)

rm(a)
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put(a, )
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rm(a)
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put(a, )
o o

(d) (e)

Figure 6 Orderings to be considered when defining a MatchedMaxPriority=-complete automaton.
We omit the operations which can be ordered arbitrarily, e.g., put(b) in the cases (d) and (e).

q6

A2

call(rm, a) q7

A3

ret(rm, b) q8

A4

call(rm, c) q9

A4

qinit

A1

r = ∗

A1

call(put, a,= r)q1 q2

A1

ret(put, a, true) q3

A1

call(put, b,= r) q4

A2

call(rm, b) q5

A2

ret(put, c, true)

q10

ret(rm, a)

q11

A3ret(put, c, true) call(rm, c) A4

Figure 7 A register automaton for the case in Figure 6(a), where A1 = A ∪ {call(put, c, < r)},
A2 = A1 ∪ {ret(put, b,= r)}, A3 = A2 ∪ {ret(rm, c)}, A4 = A ∪ {ret(put, b,= r), ret(rm, c)}, where
A = {call(put,>, true),ret(put,>, true),call(rm,>),ret(rm,>),call(rm, empty),ret(rm, empty)}.

I Lemma 14. Let e be a data-differentiated execution with only one maximal priority p such
that Has-MatchedMaxPriority(e) holds. Then, e is not MatchedMaxPriority=-linearizable iff
e contains two values x and y of maximal priority p such that y <∗pb x, and the rightmost
gap-point of x is strictly smaller than the index of call(put, y, p) or call(rm, y).

The following shows that the number of values needed to witness that y <∗pb x, for some
x and y, is bounded.

I Lemma 15. Let e be a data-differentiated execution such that a <pb a1 <pb . . . <pb
am <pb b holds for some set of values a, a1,. . .,am, b. Then, one of the following holds:

a <A
pb b, a <B

pb b, or a <C
pb b,

a <A
pb ai <

B
pb b or a <B

pb ai <
A
pb b, for some i.

To characterize violations to MatchedMaxPriority=-linearizability, one has to consider all
the possible orders between call/return actions of the operations on values a, b, and ai in
Lemma 15, and the right-most gap point of b. Excluding the inconsistent cases, we are left
with the five orders in Figure 6, where o denotes the rightmost gap-point of b. For each case,
we define an automaton recognizing the induced set of violations. The register automaton
for the case in Figure 6(a) is shown in Figure 7. In this case, Lemma 14 is equivalent
to the fact that intuitively, the time interval from call(rm, a) to ret(rm, b) is covered by
lower priority values (thus, there is no gap-point of b which occurs after call(rm, a)). By
data-independence, these lower priority values can be renamed to a fixed value c.
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4.2 Decidability Result
We describe a class C of data-independent implementations for which linearizability w.r.t.
SeqPQ is decidable. The implementations in C allow an unbounded number of values but a
bounded number of priorities. Each method has a finite set of local variables storing Boolean
values or values from D. Methods communicate through a finite number of shared variables
interpreted also as Booleans or values from D. To ensure data independence, values in D may
be assigned, but never used in Boolean expressions (e.g., of if-then-else statements). This
class captures typical implementations, or finite-state abstractions thereof, e.g., obtained via
predicate abstraction. The Γ-complete automata we define use a fixed set D = {a, b, c, a1,>}
of values (a1 is needed to deal with the second item in Lemma 15). Therefore, for any Γ,
C ∩A(Γ) 6= ∅ iff CD ∩A(Γ) 6= ∅, where CD is the subset of C that uses only values in D.

The set of executions CD can be represented by a Vector Addition System with States
(VASS). Since the set of values and priorities is bounded, each method invocation can be
represented by a finite-state automaton (see [4]). For a fixed set of priorities P ⊆ P, the
register automata A(Γ) can be transformed to finite-state automata (the number of valu-
ations of the registers is bounded). Thus, checking linearizability of an implementation in C
is PSPACE when the number of threads is bounded, and EXPSPACE, otherwise. Moreover,
reachability in VASSs can be reduced to checking linearizability of such an implementation.
Essentially, given an instance of the VASS reachability problem, one can define a priority
queue implementation where the putmethods behave correctly and additionally, they include
the code of the VASS simulation defined in [4], and the rm methods behave correctly, except
for the moment where the target state is reached, in which case they trigger a linearizability
violation by returning an arbitrary value.

I Theorem 16. Verifying whether an implementation in C is linearizable w.r.t. SeqPQ is
PSPACE-complete for a fixed number of threads, and EXPSPACE-complete otherwise.

5 Related work

The theoretical limits of checking linearizability have been investigated in previous works.
Checking linearizability of a single execution w.r.t. an arbitrary ADT is NP-complete [11]
while checking linearizability of all the executions of a finite-state implementation w.r.t. an
arbitrary ADT specification (given as a regular language) is EXPSPACE-complete when the
number of program threads is bounded [3, 12], and undecidable otherwise [4].

Existing automated methods for proving linearizability of a concurrent object are also
based on reductions to safety verification, e.g., [1, 13, 21]. The approach in [21] considers
implementations where operations’ linearization points are manually specified. Essentially,
this approach instruments the implementation with ghost variables simulating the ADT spe-
cification at linearization points. This approach is incomplete since not all implementations
have fixed linearization points. Aspect-oriented proofs [13] reduce linearizability to the veri-
fication of four simpler safety properties. This approach has only been applied to queues,
and has not produced a fully automated and complete proof technique. The work in [10]
proves linearizability of stack implementations with an automated proof assistant. Their
approach does not lead to full automation however, e.g., by reduction to safety verification.

Our previous work [5] shows that checking linearizability of finite-state implementations
of concurrent queues and stacks is decidable. Roughly, we follow the same schema: the
recursive procedure in Section 3.1 is similar to the inductive rules in [5], and its extension
to concurrent executions in Section 3.2 corresponds to the notion of step-by-step lineariz-
ability in [5]. Although similar in nature, defining these procedures and establishing their
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correctness require proof techniques which are specific to the priority queue semantics. The
order in which values are removed from a priority queue is encoded in their priorities which
come from an unbounded domain, and not in the happens-before order as in the case of
stacks and queues. Therefore, the results we introduce in this paper cannot be inferred from
those in [5]. At a technical level, characterizing the priority queue violations requires a more
expressive class of automata (with registers) than the finite-state automata in [5].
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