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Abstract
Unfoldings provide an efficient way to avoid the state-space explosion due to interleavings of
concurrent transitions when exploring the runs of a Petri net. The theory of adequate orders
allows one to define finite prefixes of unfoldings which contain all the reachable markings. In this
paper we are interested in reachability of a single given marking, called the goal. We propose
an algorithm for computing a finite prefix of the unfolding of a 1-safe Petri net that preserves
all minimal configurations reaching this goal. Our algorithm combines the unfolding technique
with on-the-fly model reduction by static analysis aiming at avoiding the exploration of branches
which are not needed for reaching the goal. We present some experimental results.
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1 Introduction

Analysing the possible dynamics of a concurrent system expressed as Petri nets can be eased
by means of unfoldings and their prefixes which avoid exploring redundant interleaving of
transitions.

In this paper, we propose a method which combines the unfolding technique with
model reduction in order to explore efficiently and completely the minimal configurations
(partially ordered occurrences of transitions) which lead to a given goal marking/marked
place. In particular, we aim at ignoring configurations that cannot reach the goal, but also
configurations containing transient cycles.

The goal-driven unfolding relies on calling, on the fly, an external model reduction
procedure which identifies transitions not part of any minimal configuration for the goal
reachability from the current marking. Those useless transitions are then skipped by the
unfolding.

We show how model reduction can be applied to the unfolding of a safe Petri net N
in such a way that it preserves minimal configurations. Then we present an algorithm to
construct a corresponding goal-driven finite prefix.

We illustrate this procedure on the Petri net of Figure 1. The goal is {p′3, p5}. Notice
that only one occurrence of t3 is needed to reach the goal. So, after the corresponding event,
t3 can be declared useless. Also, after firing t1, t′2 is fireable but firing it makes the goal
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Figure 1 A safe Petri net (left) and a finite complete prefix (right) of its unfolding. Dashed
events are flagged as cut-offs: the unfolding procedure does not continue beyond them. Events in
gray can be declared as useless by the reduction procedure for {p′3, p5} reachability, and can be
skipped during the goal-driven prefix computation.

unreachable. Therefore, a reduction procedure may declare that t′2 is useless once t1 has
occurred, allowing one to avoid exploring this branch. Symmetrically, t′1 is useless once t2
has occurred. It is easy to imagine a larger model where a large piece of behaviour would
be reachable from {p1, p

′
2, p3} (but would not allow to reach the goal); or from {p3, p4}

(but would involve transient cycles): the usual complete finite prefix would explore such
configurations, while our model reduction can avoid their computation.

The design of the model reduction procedure which identifies useless transitions is out
of the scope of the paper. Instead, we consider it as a blackbox, and design our approach
assuming the reduction preserves all the minimal (acyclic) sequences of transitions leading
to the goal. Moreover, to be of practical interest, the reduction should show a complexity
lower than the reachability problem (PSPACE-complete [7]).

As detailed in Section 4.2, skipping transitions declared useless by a reduction procedure
involves non-trivial modifications to the algorithm for computing the prefix of the unfolding.
Indeed, a particular treatment of cut-offs has to be introduced in order to ensure that the
resulting goal-driven prefix includes all the minimal sequences of transitions.

The goal-driven unfolding has practical applications in systems biology [19]. Indeed,
numerous dynamical properties relevant for biological networks focus on the reachability
of the activity of a particular node in the network, typically a transcription factor known
to control a given cellular phenotype. In this perspective, having computational methods
that can be tailored for such narrow reachability properties is of practical interest. The
completeness of the minimal sequences of transitions for the goal reachability is critical for
several analyses of biological system dynamics. An example is the identification of parts of
the network that play a central role to activate a node of interest. By altering such parts
(e.g., with mutations) one can expect prevent such an activation [18]. If the analysis considers
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only a partial set of minimal sequences, there is no guarantee that the predicted mutations
are sufficient to prevent the goal reachability.

We illustrate the benefit of the goal-driven unfolding on models of biological networks by
instantiating our method with a reduction procedure introduced in [17].

Related Work

Numerous work address the computation of reachable states in concurrent systems using
unfoldings. Several algorithms for checking reachability based on a previously computed
finite complete prefix of a Petri net are compared in [12]. Over-approximations of the
unfolding (i.e., which contains all the reachable markings, but potentially more) for graph
transformation systems are defined in [2].

Despite the negative result [9] which states that depth-first-search strategies are not correct
for classical unfolding algorithms, [3] defines directed unfolding of Petri nets, which is closely
related to our goal-driven unfolding. They rely on a heuristic function (on configurations)
to generate an ordering of the events for making a given transition appear as soon as
possible during the unfolding. In addition, they can consider heuristic functions to detect
configuration from which the goal transition is not reachable. In such a case, no extension
will be made to that configuration, which may significantly prune the computed prefix. The
major difference with the work presented in the paper is that directed unfolding does not
prune transitions leading to spurious transient cycles on the way to the goal. Actually, in
their terms, our reduction procedure would not be considered safely pruning because we
discard (non-minimal) configurations reaching the goal. In a sense, the reduction they achieve
on the prefix size corresponds to the extreme case when our external reduction procedure
returns the full model if the goal is reachable, and the empty model if not. Indeed, except
for the case when the goal is detected as non-reachable, all the other configurations are kept
in the directed unfolding, whereas our approach can potentially output a prefix containing
only, but all, minimal configurations for the goal reachability.

Less related to our work, static analysis techniques were also used in combination with
partial order reductions: [13, 21] rely on an on-the-fly detection of independence relations by
static analysis, to improve partial order reductions.

Outline

Section 2 gives the basics of Petri net unfoldings and of their complete finite prefixes. The
concepts of minimal configuration and model reduction are introduced in Section 3, and
Section 4 details the goal-driven unfolding and prefix with proofs of completeness. Finally,
Section 5 applies the goal-driven prefix to actual biological models, and Section 6 concludes
this paper.

2 Unfoldings of Petri nets

In this section, we explain the basics of Petri net unfoldings. A more extensive treatment
of the theory explained here can be found, e.g., in [8]. Roughly speaking, the unfolding
of a Petri net N is an “acyclic” Petri net U that has the same behaviours as N (modulo
homomorphism). In general, U is an infinite net, but if N is safe, then it is possible [16] to
compute a finite prefix P of U that is “complete” in the sense that every reachable marking
of N has a reachable counterpart in P. Thus, P represents the set of reachable markings of
N . Figure 1 shows a Petri net and a finite complete prefix of its unfolding.

CONCUR 2017



18:4 Goal-Driven Unfolding of Petri Nets

We now give some technical definitions to introduce unfoldings formally.

I Definition 1 ((Safe) Petri Net). A (safe) Petri net is a tuple N = 〈P, T, F,M0〉 where P
and T are sets of nodes (called places and transitions respectively), and F ⊆ (P ×T )∪(T ×P )
is a flow relation (whose elements are called arcs). A subset M ⊆ P of the places is called a
marking, and M0 is a distinguished initial marking.

For any node x ∈ P ∪ T , we call pre-set of x the set •x = {y ∈ P ∪ T | (y, x) ∈ F} and
post-set of x the set x• = {y ∈ P ∪ T | (x, y) ∈ F}. These notations are extended to sets
Y ⊆ P ∪ T , with •Y = ∪x∈Y

•x and Y • = ∪x∈Y x
•.

A transition t ∈ T is enabled at a marking M if and only if •t ⊆ M . Then t can fire,
leading to the new marking M ′ = (M \ •t) ∪ t•. We write M t→ M ′. A firing sequence is
a (finite or infinite) word w = t1t2 . . . over T such that there exist markings M1,M2, . . .

such that M0
t1→M1

t2→M2 . . . For any such firing sequence w, the markings M1,M2, . . . are
called reachable markings.

The Petri nets we consider are said to be safe because we will assume that any reachable
marking M is such that for any t ∈ T that can fire from M leading to M ′, the following
property holds: ∀p ∈M ∩M ′, p ∈ •t ∩ t• ∨ p /∈ •t ∪ t•.

Figure 1 (left) shows an example of a safe Petri net. The places are represented by circles
and the transitions by rectangles (each one with a label identifying it). The arrows represent
the arcs. The initial marking is represented by dots (or tokens) in the marked places.

I Definition 2 (Causality, conflict, concurrency). Let N = 〈P, T, F,M0〉 be a net and t, t′ ∈ T
two transitions of N . We say that t is a causal predecessor of t′, noted t < t′, if there exists
a non-empty path of arcs from t to t′. We note t ≤ t′ if t < t′ or t = t′. If t ≤ t′ or t′ ≤ t,
then t and t′ are said to be causally related. The set of causal predecessors of t is denoted
btc. We write dte for btc ∪ {t}, which we call the causal past of t. Transitions t and t′ are in
conflict, noted t # t′, if there exist u, v ∈ T such that u 6= v, u ≤ t, v ≤ t′ and •u ∩ •v 6= ∅.
We call t and t′ concurrent, noted t co t′, if they are neither causally related nor in conflict.

As we said before, an unfolding is an “acyclic” net. This notion of acyclicity is captured
by Definition 3. As is convention in the unfolding literature, we shall refer to the places
of an occurrence net as conditions and to its transitions as events. Due to the structural
constraints, the firing sequences of occurrence nets have special properties: if some condition
c is marked during a run, then the token on c was either present initially or produced by one
particular event (the single event in •c); moreover, once the token on c is consumed, it can
never be replaced by another token, due to the acyclicity constraint on <.

I Definition 3 (Occurrence net). An occurrence net O = 〈C,E,G,C0〉 is a Petri net
〈P, T, F,M0〉 with P = C, T = E, F = G, M0 = C0 for which:
1. The causality relation < is acyclic;
2. |•p| ≤ 1 for all places p, and p ∈M0 iff |•p| = 0;
3. for every transition t, t # t does not hold, and {x | x ≤ t} is finite.

I Definition 4 (Configuration, cut). Let O = 〈C,E,G,C0〉 be an occurrence net. A set
E ⊆ E is called configuration (or process) of O if (i) E is causally closed, i.e. for all e, e′ ∈ E
with e′ < e, if e ∈ E then e′ ∈ E ; and (ii) E is conflict-free, i.e. if e, e′ ∈ E , then ¬(e # e′).
The cut of E , denoted Cut(E), is the set of conditions (C0 ∪ E•) \ •E .

An occurrence net O with a net homomorphism h mapping its conditions and events
to places and transitions of a net N is called a branching process of N . Intuitively, a
configuration of O is a set of events that can fire during a firing sequence of N , and its cut
is the set of conditions marked after that sequence.
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2.1 Unfolding

Let N = 〈P, T, F,M0〉 be a safe Petri net. The unfolding U = 〈C,E,G,C0〉 of N is the
unique (up to isomorphism) maximal branching process such that the firing sequences and
reachable markings of U represent exactly the firing sequences and reachable markings of N
(modulo h). U is generally infinite and can be inductively constructed as follows:
1. The conditions C are a subset of (E ∪ {⊥})× P . For a condition c = 〈x, p〉, we will have

x = ⊥ iff c ∈ C0; otherwise x is the singleton event in •c. Moreover, h(c) = p. The initial
marking C0 contains one condition 〈⊥, p〉 per initially marked place p of N .

2. The events E are a subset of 2C × T . More precisely, we have an event e = 〈C ′, t〉 for
every set C ′ ⊆ C such that •c co •c′ holds for all c, c′ ∈ C ′ and {h(c) | c ∈ C ′ } = •t. In
this case, we add edges 〈c, e〉 for each c ∈ C ′ (i.e. •e = C ′), we set h(e) = t, and for each
p ∈ t•, we add to C a condition c = 〈e, p〉, connected by an edge 〈e, c〉.

Intuitively, a condition 〈x, p〉 represents the possibility of putting a token onto place p through
a particular firing sequence, while an event 〈C ′, t〉 represents a possibility of firing transition
t in a particular context.

Every firing sequence σ is represented by a configuration of U ; we denote this configuration
K(σ). Conversely, every configuration E of U represents one or several firing sequences (K is
not injective in general); these firing sequences are equivalent up to permutation of concurrent
transitions. Their (common) resulting marking corresponds, due to the construction of U , to
a reachable marking of N . This marking is defined as Mark(E) := {h(c) | c ∈ Cut(E) }.

2.2 Finite Complete Prefix

The unfolding U of a finite safe Petri net N is infinite in general, but it shows some regularity
becauseN has finitely many markings and two events e and e′ having Mark(dee) = Mark(de′e)
have isomorphic extensions.

It is known [16, 11] that one can construct a finite complete prefix P of U , i.e. an
occurrence net having a causally closed set E′ of events of U which is sufficiently large for
satisfying the following: for every reachable marking M of N there exists a configuration E
of P such that Mark(E) = M . One can even require that for each transition t of N enabled
in M , there is an event 〈C, t〉 ∈ E′ enabled in Cut(E).

The idea of the construction is to explore the future of only one among the events e
having equal Mark(dee). The selected event is the one having minimal dee w.r.t. a so-called
adequate order on the finite configurations of U . The others are flagged as cut-offs; they do
not “contribute any new reachable markings”. These events are represented by dashed lines
in Figure 1.

I Definition 5 (Adequate orders). A strict partial order C on the finite configurations of the
unfolding of a safe Petri net N is called adequate if:

it refines (strict) set inclusion (, i.e. C ( C ′ implies C C C ′, and
it is preserved by finite extensions, i.e. for every pair of configurations C, C ′ such that
Mark(C) = Mark(C ′) and C C C ′, and for every finite extension D of C, the finite
extension D′ of C ′ which is isomorphic to D satisfies C ]D C C ′ ]D′.

The initial definition of adequate orders [11] also requires that C is well founded, but [6]
showed that, for unfoldings of safe Petri nets, well-foundedness is a consequence of the other
requirements.

Efficient tools [20, 14] exist for computing finite complete prefixes.

CONCUR 2017



18:6 Goal-Driven Unfolding of Petri Nets

3 Goal-Oriented Model Reduction

The goal-driven unfolding relies on model reduction procedures which preserve minimal firing
sequence to reach a given goal g. These reductions aim at removing as many transitions as
possible among those that do not participate in any minimal firing sequence. This section
details the properties required by our method and introduces several notations used in the
rest of the paper.

I Definition 6 (Minimal firing sequence). A firing sequence t1 . . . tn of a Petri net N =
〈P, T, F,M0〉 visiting markings M0

t1→ M1
t2→ M2 . . .

tn→ Mn is said to be cycling if it visits
the same marking twice, i.e. Mi = Mj for some 0 ≤ i < j ≤ n. A minimal firing sequence
of N to a goal g is a firing sequence t1 . . . tn leading to g for which there exists no different
permutation1 being a cycling firing sequence of N .

For example with Petri net of Figure 1 and considering the goal {p′3, p5}, t3t0t′3t2t3t′2t′′2 t′3
is not minimal because its permutation t3t0t′3t3t2t′2t′′2 t′3 is also feasible and visits the marking
{p3, p

′
0} twice. Intuitively, the cycle t′3t3 can be removed. The minimal firing sequences

of N to the goal are t3t0t′3t1t′1t′′1 , t3t0t2t′3t′2t′′2 and their feasible permutations, for instance
t3t0t2t

′
2t
′′
2 t
′
3.

I Remark. Alternatively, the goal can be seen not as a marking but simply as a set of places
to be marked together, possibly with others. Then, one is looking for sequences reaching
any marking M with g ⊆ M . For minimality, we would then require additionally that no
intermediate marking reached before the end of the sequence marks the places in g (and the
same for its permutations).

I Definition 7 (Minimal configuration). A minimal configuration of a Petri net N to a goal
g is a configuration E = K(σ) for some minimal firing sequence σ of N to g. Notice that,
since all the other σ′ such that E = K(σ′) are permutations of σ, they are all minimal.

I Lemma 8. The goal g is reachable iff it is reachable by a minimal firing sequence (and,
consequently, by a minimal configuration).

Proof. Assume that g is reachable by a non-minimal firing sequence σ. This means that σ
has a permutation t1 . . . tn which visits the same marking twice, i.e. M0

t1→M1
t2→M2 . . .

ti→
Mi . . .

tj→ Mj . . .
tn→ Mn = g with Mi = Mj and i < j. Then g is also reachable by the

strictly shorter sequence t1 . . . titj+1 . . . tn. This operation can be iterated if needed; it always
terminates and gives a minimal firing sequence which reaches the goal g. J

I Definition 9 (Reduction procedure, useless transitions). A reduction procedure useless-trs
is a function which outputs, for a safe Petri net N and a goal g ⊆ P , a set useless-trs(N , g)
⊆ T of transitions of N which do not occur in any minimal firing sequence of N to goal g:
for every minimal firing sequence t1 . . . tn to goal g, useless-trs(N , g) ∩ {t1, . . . , tn} = ∅.

For example, let N = 〈P, T, F,M0〉 be the Petri net of Figure 1. All the transitions
occur in at least one minimal firing sequence to the goal g = {p′3, p5}, so every reduction
procedure outputs useless-trs(N , g) = ∅. After firing t3t0t′3, one reaches marking {p′3, p′0}
from which the only minimal firing sequences to g are t1t′1t′′1 and t2t′2t′′2 . Hence, a reduction

1 Contrary to what is common in concurrency theory, we do not necessarily restrict to permutations of
independent transitions w.r.t. an independence relation.
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procedure called as useless-trs (〈P, T, F, {p′3, p′0}〉, g) may declare t0, t3 and t′3 useless, or
any subset of those.

Given a Petri net N = 〈P, T, F,M0〉, N \ useless-trs(N , g) denotes the reduced model
〈P, T ′, F ′,M0〉 where T ′ = T \ useless-trs(N , g) and F ′ = F ∩ ((P × T ′) ∪ (T ′ × P )).
Property 1 derives from Definition 9 and Lemma 8.
I Property 1. Every reduction procedure preserves reachability of the goal: g is reachable in
N iff it is reachable in N \ useless-trs(N , g).

In the sequel, we aim at iterating the reduction procedures: starting from a model
N = 〈P, T, F,M0〉 and a goal g, we will apply the reduction to N , then explore the reduced
net N \ useless-trs(N , g); later on, we will apply again the reduction from a reached state
M and compute useless-trs(N ′, g) with N ′ = 〈P, T, F,M〉 \ useless-trs(N , g) allowing
to explore a further reduced net N ′ \ useless-trs(N ′, g) from M . These iterated calls to
the reduction procedure are justified by the following lemma.

I Lemma 10. Any minimal sequence in N \ useless-trs(N , g) is minimal in N .

Proof. Any firing sequence of N \ useless-trs(N , g) is a firing sequence of N , and the
minimality criterion does not depend on the set of transitions in N . J

In the remainder of the paper, for a Petri net N = 〈P, T, F,M0〉 and any set I ⊆ T and
marking M , we write useless-trs (N , g,M, I) for useless-trs(〈P, T, F,M〉 \ I, g) ∪ I.

4 Goal-Driven Unfolding

In this section, we first show that model reduction can be performed during the unfolding of
a safe Petri net N while preserving the minimal configurations to the goal. Next we present
an algorithm to construct a finite goal-driven prefix which preserves the reachable markings
of the goal-driven unfolding.

4.1 Guiding the Unfolding by a Model Reduction Procedure
The principle of the goal-driven unfolding is that, for some events e in the unfolding (at
discretion), a model reduction procedure useless-trs is called and the transitions declared
useless will not be considered in the future of e. More precisely, the reduction procedure is
called on the marking Mark(dee) of the causal past of e.

Notice that the reduction procedure may already have been used on some events in the
causal past of e. Then,

even if useless-trs is not called on e, information about useless transitions inherited
from the causal predecessors of e can be used (without calling the model reduction
procedure), and this will already prune some branches in the future of e;
if the reduction procedure is called on Mark(dee), it can take as input the model already
reduced by the transitions declared useless after some event in the causal past of e.

Let U = 〈C,E,G,C0〉 be the full unfolding of a safe Petri net N . Denote E′ the set of
events on which the reduction procedure is called. The set E′ and the reduction procedure
define the set of transitions Useless(e) to be ignored in the future of an event e ∈ E. We
define Useless inductively as:

Useless(e) def=
{⋃

e′∈becUseless(e′) if e /∈ E′

useless-trs
(
N , g,Mark(dee),

⋃
e′∈becUseless(e′)

)
if e ∈ E′.

CONCUR 2017



18:8 Goal-Driven Unfolding of Petri Nets

Thus, every event e = 〈C, t〉 ∈ E such that t ∈ Useless(e′) for some e′ ∈ bec, is discarded
from the goal-driven unfolding. Denote EIgnored the set of such events.

It remains to define the goal-driven unfolding as the maximal prefix of the full unfolding
U having no event in EIgnored. Since every discarded event automatically discards all its
causal successors, the set of events remaining in the goal-driven unfolding Ugd is

Egd
def= {e ∈ E | dee ∩ EIgnored = ∅} .

Notice that the events and conditions of the goal-driven unfolding as defined above can
be constructed inductively following the procedure described in Section 2, enriched so that it
attaches the set Useless(e) to every new event e.

I Theorem 11. (proof in Appendix A2) The goal-driven unfolding Ugd preserves all minimal
configurations from M0 to the goal.

A direct corollary is that the goal is reachable in N iff the goal-driven unfolding contains
a configuration which reaches it.

Notice that the precise definition of minimal sequences/configurations is crucial here, and
especially the fact that the reduction procedure preserves all minimal sequences/configura-
tions. Indeed, imagine a situation where the minimal firing sequences to the goal fire two
concurrent transitions t1 and t2 and then one out of two possible transitions t3 and t4. A
reduction procedure which would guarantee only the preservation of some minimal firing
sequence to the goal could declare t3 useless when called after the event corresponding to t1,
and declare t4 useless when called after t2, thus preventing to reach the goal.

4.2 Goal-Driven Prefix
We now define a finite goal-driven prefix. Our Algorithm 1 relies on the theory of adequate
orders [11] developed for unfoldings. Any adequate order on the configurations of the full
unfolding can be used, but, since our goal-driven unfolding prunes some branches of the
unfolding, we have to adapt the construction.

A prefix P has the same structure as an unfolding, with an additional field coff for the
set of cut-off events. As usual, the procedure Putative-GD-Prefix extends iteratively
the prefix P = 〈C,E,G,C0, coff 〉. An extension is an event e = 〈C ′, t〉 with C ′ ⊆ C s.t.
∀c, c′ ∈ C ′, c co c′, {h(c) | c ∈ C ′} = •t, and ∀〈e′, p〉 ∈ C ′, e′ /∈ coff . Here the procedure
maintains a map ∆ of transitions that can be ignored, and considers an extension e = 〈C ′, t〉
only if the transition t is not declared useless, i.e., t is absent from ∆(c′) for all pre-conditions
c′ ∈ C ′.

The difficult part is that, when an event e is declared cut-off because Mark(dee) =
Mark(de′e) for an event e′ C e, nothing guarantees that the transitions allowed after e are
also allowed after e′. Then, e and e′ have the same future in the full unfolding, but not
necessarily in the goal-driven unfolding.

Figure 2 illustrates this situation. Let the goal be g = {p4, p3}. It can be reached by the
firing sequences a(bb′)∗c(bb′)∗b or a′b′(bb′)∗c(bb′)∗b. Only those who do not take the cycle bb′
are minimal, namely acb and a′b′cb. Notice that all the transitions participate in at least one
minimal firing sequence, so the model N cannot be reduced from the initial marking (every

2 Appendices available at https://hal.archives-ouvertes.fr/hal-01392203/file/godunf.pdf

https://hal.archives-ouvertes.fr/hal-01392203/file/godunf.pdf
https://hal.archives-ouvertes.fr/hal-01392203/file/godunf.pdf


T. Chatain and L. Paulevé 18:9

Algorithm 1 Algorithm for goal-driven prefix computation.
1: procedure Putative-GD-Prefix(N ,∆) with N = 〈P, T, F,M0〉
2: P ← 〈C ← {〈⊥, p〉 | p ∈M0}, E ← ∅, G← ∅, C0 ← {〈⊥, p〉 | p ∈M0}, coff ← ∅〉
3: repeat
4: Let e = 〈C ′, t〉 be a C-minimal extension of P s.t. t /∈

⋃
c′∈C′ ∆(c′).

5: E ← E ∪ {e}
6: C ← C ∪ {〈e, p〉 | p ∈ t•}
7: G← G ∪ {〈c′, e〉 | c′ ∈ C ′} ∪ {〈e, 〈e, p〉〉 | p ∈ t•}
8: if ∃e′ ∈ E s.t. Mark(dee) = Mark(de′e) then
9: coff ← coff ∪ {e} /e is a cut-off event/
10: end if
11: for all c ∈ {〈e, p〉 | p ∈ t•} s.t. c /∈ ∆ do /extend ∆ with new cond./
12: ∆(c)← Useless(c,∆,P)
13: end for
14: until no extension exists
15: end procedure

16: procedure Post-∆(∆,P) with P = 〈C,E,G,C0, coff 〉
17: ∆′ ← ∆ /copy map ∆/
18: for e ∈ E following C order do
19: for all c ∈ e• do
20: ∆′(c)← ∆′(c) ∩Useless(c,∆,P)
21: end for
22: if ∃e′ ∈ E \ coff s.t. Mark(dee) = Mark(de′e) then
23: for all c′ ∈ Cut(de′e) with c ∈ Cut(dee) and h(c) = h(c′) do
24: ∆′(c′)← ∆′(c′) ∩∆′(c)
25: end for
26: end if
27: end for
28: end procedure

29: procedure GD-Prefix(N ) with N = 〈P, T, F,M0〉
30: ∆′ ← {〈⊥, p〉 7→ ∅ | p ∈M0}
31: repeat
32: ∆← ∆′ /copy map ∆′/
33: ∆,P ← Putative-GD-Prefix(N ,∆) /can add new entries in ∆/
34: ∆′ ←Post-∆(∆,P)
35: until ∆′ = ∆
36: end procedure
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Figure 2 A safe Petri net (left) and one of its branching processes (right). Configurations dee
and de′e lead to the same marking {p1, p3} and have isomorphic extensions (in gray). The dashed
arrow represents the fact that de′eC dee. Consequently e is a cut-off.

reduction procedure will output useless-trs(N , g) = ∅). On the other hand, if transition a
is fired, we reach marking {p1, p2} from which b′, a and a′ become useless.

Now, observe the branching process on the right of Figure 2 (it is a prefix of the unfolding
U of N ). Notice that the causal past dee of the event e labeled a′ and the causal past of the
event e′ labeled b reach the same marking Mark(dee) = Mark(de′e) = {p1, p3}. Moreover, an
adequate order on the configurations of U may order them as de′eC dee. Consequently, e
is a cut-off and the minimal configuration K(a′b′cb) is not represented in the finite prefix.
Following the idea of the proof of completeness of finite prefixes based on adequate orders, we
can indeed shift the extension b′cb of dee (in gray on the right of Figure 2) to the isomorphic
extension of de′e (also in gray on the figure). We get the configuration K(abb′cb), which
reaches the goal as well. But this configuration is not minimal any more because it executes
the cycle bb′: the marking reached after a is the same as the marking reached after abb′.
Actually, the model reduction procedure called from the event labeled a may very well have
declared b′ useless. Consequently, K(abb′cb) would not be represented in the prefix. We
correct this by allowing after de′e all the transitions that were allowed after dee.

The difficulty in the definition and in the computation of a finite prefix Pgd of U which
preserves the markings reachable in Ugd is to allow in the future of an event e′ all the
transitions that are useful for at least one of all the configurations which are shifted to
de′e by the mechanics described above. The first answer to this problem is to allow after
de′e all the transitions that were allowed after dee. This solves the problem of an event
consuming only post-conditions of e′, like the occurrence of b′ after e in our example of
Figure 2: its corresponding event after e′ is now allowed. However, this is not sufficient in
general: an event f consuming a post-condition of e may also consume other conditions
which are created by events concurrent to dee. Such event f has a corresponding f ′ in the
future of e′, consuming conditions which are available after firing a configuration of the form
de′e∪E ′ for some E ′ concurrent to de′e. We need the transition t = h(e) = h(e′) to be allowed
after all the conditions consumed by f ′. In the case of a condition c′ ∈ •f ′ \ Cut(de′e), our
procedure ensures this as follows: if it calls the model reduction procedure after the event
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•c′, it also calls it on the marking Mark(de′e ∪ d•c′e) which equals Mark(dee ∪ d•ce). Hence,
if t is needed after dee ∪ d•ce, it will also be allowed after c′.

Therefore, when applying the reduction procedure after a configuration E , we also take
into account a set Alt(E) of alternating configurations defined inductively as:
E ∈ Alt(E)
∀E ′ ∈ Alt(E), ∀e, e′ ∈ E such that deeB de′e and Mark(dee) = Mark(de′e),
if Cut(de′e) ∩ E ′• 6= ∅ and de′e ∪ E ′ is conflict free, then de′e ∪ E ′ ∈ Alt(E).

However, in practice, during the computation of the goal-driven prefix, Alt(E) will be
computed on the events and configurations derived so far, hence ignoring events later added in
the prefix. Also, as explained above, when an event e is stated cut-off because of a C-smaller
event e′, we allow after e′ all the transitions allowed after e; but this implies reconsidering
some new extensions of e′.

For these reasons, the procedure GD-Prefix(N ) presented in Algorithm 1 iterates the
computation of a putative prefix, progressively refining an over-approximation of transitions
to ignore (map ∆), by identifying a posteriori the transitions that should not have been
ignored.

At each iteration, the procedure Putative-GD-Prefix(N ,∆) computes a putative
prefix, relying on the previous value of the map ∆ of transitions that can be ignored.
Essentially, the prefix P obtained at the first iteration is the naive prefix of Ugd (prefix
without the gray parts on the example of Figure 2).

Once a putative prefix has been computed, we verify a posteriori if its related map ∆
is correct. This is done by re-computing ∆ using the procedure Post-∆(∆,P), this time
taking into account all the events in P (line 34). By construction, the resulting ∆′ can only
allow more transitions than ∆. If ∆′ differs from ∆, a new putative prefix is computed
according to the corrected ∆′.

The procedure Post-∆(∆,P) takes the Alt(dee) into account by the way of a modified
version of Useless(), now defined on conditions rather than on events. Given a condition
c ∈ e• in a prefix P,

Useless(c,∆,P) def=
{⋃

c′∈•e ∆(c′) if e /∈ E′⋂
C∗∈Alt(dee) useless-trs

(
N , g,Mark(C∗),

⋃
c′∈•e ∆(c′)

)
if e ∈ E′,

where E′ is the set of events triggering an explicit reduction (Section 4.1).
This iterative construction necessarily terminates (Lemma 12, proof in Appendix B2) and

converges to a unique finite prefix Pgd. Regarding complexity, putting aside the call to model
reduction, whereas all the structures are finite, Alt(E) can have an exponential numbers of
configurations due to multiple combinations of configurations sharing an intersection.

I Lemma 12. The procedure GD-Prefix(N ) terminates.

Notice that Pgd may contain events that are not in Egd. Hence, goal-driven prefix is a
prefix of U , but not necessarily a prefix of Ugd. This is the case of the event labeled b′ after
e′, as we discussed above for the example in Figure 2.

Theorem 13 (proof in Appendix C2) states completeness of Pgd w.r.t. minimal configura-
tions. Thus, the goal-driven prefix preserves the reachability of the goal. One can finally
remark that, by construction, Pgd contains at most one non-cutoff event per reachable
marking, assuming the adequate order C is total.

I Theorem 13. For every configuration E of Ugd and for every single-event extension
{f} of E such that E ∪ {f} is a prefix of a minimal configuration to the goal, there exists
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a configuration E ′ in the goal-driven prefix and a single-event extension {f ′} of E ′ with
Mark(E) = Mark(E ′) and h(f) = h(f ′).

Example

Let us consider the Petri net of Figure 2(left) with the goal {p4, p3}.
The goal-driven unfolding can lead to the branching process of Figure 2(right) where the

striped transition b′ has been removed. Indeed, after transition a, transition b′ is declared
useless as it is not part of any minimal configuration extending K(a). Therefore 3 maximal
configurations are remaining in the goal-driven unfolding: the two minimal configurations
K(acb) and K(a′b′cb), and the configuration K(ab) which does not reach the goal.

The goal-driven prefix can lead to the branching process of Figure 2(right) where the
event e is cut-off (because of e′), and therefore its future events are ignored, and where one
of the two remaining events firing transition c is declared cut-off (because of the other one).
Although the b′ transition can be declared useless after K(a) (and hence K(ab)), the cut-off
of e will remove b′ from the set of ignored transitions of the conditions matching with p1 and
p3 on the cut of K(ab). Therefore, the events and conditions in the left gray area will be
added to the prefix, from which all the minimal configurations can be identified.

5 Experiments

In this section, we instantiate our goal-driven unfolding with the goal-oriented model reduction
introduced in [17] for automata networks. We compare the size of the complete prefix
with the goal-driven prefix on different Petri net models of biological signalling and gene
regulatory networks. In general, such networks gather dozens to thousands nodes having
sparse interactions (each node is directly influenced by a few other nodes), which call for
concurrency-aware approaches to cope with the state space explosion. We took the networks
from systems biology literature, specified as Boolean or automata networks: each node is
modelled by an automaton, where states model its activity level, most often being binary
(active or inactive). The Petri nets are encodings of these automata networks which ensure
bisimilarity [5].

5.1 Implementation
In practice, instead of computing putative prefixes from scratch as it is described in Al-
gorithm 1, our implementation for the goal-driven prefix3 iteratively corrects the putative
prefix by propagating transitions missed in the previous iteration. At this stage, it does not
use any particular optimization [1], our primary objective being to compare the size of the
resulting prefixes. In order to obtain a proper comparison [15], our implementation uses the
same arbitrarily-fixed ordering for the complete and goal-driven prefixes extensions.

The computation of useless-trs (N , g,M, I) relies on the goal-oriented reduction of
asynchronous automata networks introduced in [17]. This method is based on a static analysis
of causal dependencies of transitions and an abstract interpretation of traces which allow to
collect all the transitions involved in the minimal configurations to the goal: non-collected
transitions can then be ignored. The complexity of the reduction is polynomial with the
number of automata and transitions, and exponential with the number of states in individual

3 Code and models available at http://loicpauleve.name/godunf.tbz2

http://loicpauleve.name/godunf.tbz2
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Table 1 Benchmarks of the goal-driven w.r.t. complete prefix of 1-safe Petri nets. For each
model, the number of places |P | and transitions |T | is given. The strategy decides when the model
reduction should be performed; the number of calls to the reduction procedure is indicated in the
column “Nb reductions”. Computation times were obtained on an Intel® Core™ i7 3.4GHz CPU
with 16GB RAM. N/A: Non Applicable; ∗: out-of-memory computation (with mole [20], with the
same ordering for extensions as our implementation), the indicated prefix size is only a lower bound.

Model Prefix Strategy Prefix size Time Nb reductions
RB/E2F complete N/A 15,210 24s N/A
|P | = 80 |T | = 54 goal-driven always 112 0.5s 136
T-LGL complete N/A >1,900,000∗ OT∗ N/A
|P | = 98 |T | = 159 goal-driven always 17 0.3s 17
VPC complete N/A 44,500 176s N/A
|P | = 135 |T | = 216 goal-driven always 1,827 2h 16,009

first 1, 000 2,036 60s 1,000
level ≤ 2 2,400 7s 38

automata (i.e., number of qualitative states of nodes). As shown in [17], the method can
lead to drastic model reductions and can be executed in a few hundredths of a second on
networks with several hundreds of nodes. Appendix D2 gives a brief summary of the main
principles of the goal-oriented model reduction of [17].

Compared to the results obtained in [17], we expect to obtain much stronger reduction of
the dynamics as our goal-driven unfolding applies the reduction “on-the-fly” instead of only
at the initial state. To that aim, we will compare the size of the complete prefix, which relies
only on [17], with the size of the goal-driven prefix, introduced in this paper.

We applied the goal-driven unfolding to 1-safe Petri net encodings of the automata
networks, where there is one place for each local state of each automaton, and a one-to-one
relationship between transitions. The places corresponding to states of a same automaton
are mutually exclusive by construction. Future work may consider goal-driven unfolding of
products of transition systems [10].

The goal-driven prefix we define in this paper supports calling the model reduction
procedure at discretion: even if it has a low computational cost, performing the model
reduction after each event may turn out to be very time consuming. Our prototype implements
simple strategies to decide when the call to the model reduction should be performed: after
each event; only for the first n events; and only for events up to a given level in the unfolding.

5.2 Benchmarks
Given a Petri net with an initial marking M0 and a goal g, we first compute the goal-oriented
model reduction from initial marking (useless-trs (N , g,M0, ∅)). The resulting net is then
given as input to the unfolding, either with the complete finite prefix computation, or with
the goal-driven. Therefore, the difference in the size of the prefixes obtained is due only to
transition exclusions after at least one event.

Table 1 summarizes the benchmarks between complete and goal-driven prefix on different
models of biological networks. The size of a prefix is the number of its non-cutoff events.
“RB/E2F” is a model of the cell cycle [4]; “T-LGL” is a model of survival signaling in
large granular lymphocyte leukemia [23]; and “VPC” is a model for the specification of
vulval precursor cells and cell fusion control in Caenorhabditis elegans [22]. For each model,
the initial marking and goal correspond to biological states of interest (checkpoints or
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differentiated states). All these models have different network topology and dynamical
features, but all include loops, and in general, correspond to automata networks where
automata have few internal states, and each transition is conditioned by a few automata
compared to the network size.

On these models, the goal-driven prefix shows a significant size reduction, while containing
all the minimal configurations. The number of reductions can be larger than the size of
the prefix as it accounts for the intermediate putative prefixes (as explained in Section 4.2).
For the “VPC” model, we applied several strategies for deciding when the model reduction
should be called. In this case, the systematic model reduction led to some re-ordering of
the extensions and cut-offs declaration, which required numerous additional calls to the
model reduction procedure. This motivates the design of heuristics to estimate when a model
reduction should be performed. For the “T-LGL” model, it was impossible to compute
the complete finite prefix using only the reduction of [17] on the initial state, whereas the
goal-driven cuts most of the configurations and produces a very concise prefix. Such a
behaviour can be explained by large transient cycles prior to the goal reachability, which are
avoided by the use of model reduction during the prefix computation.

6 Conclusion

We introduced the goal-driven unfolding of safe Petri nets for identifying efficiently all the
minimal configurations that lead to a given goal. The goal can be a marking of the net,
or any partially specified marking, and notably a single marked place. The goal-driven
unfolding relies on an external reduction method which identifies transitions that are not
part of minimal configuration for the goal reachability. Such useless transitions are then
skipped by the unfolding. The computation of a goal-driven prefix requires a particular
treatment of cut-offs to ensure that all the markings reachable in the goal-driven unfolding
are preserved. The resulting goal-driven prefix contains fewer events prefix than reachable
markings, due to the total adequate order, as well as for classical finite complete prefix.

We instantiated our approach with a goal-oriented reduction method for automata
networks introduced in [17]. Our experiments on different models of biological systems show
a significant reduction of the prefix when driven by the goal. In our framework, the reduction
procedure can be applied at discretion, and many possible heuristics could be embedded to
decide when the reduction is timely, which impacts both the execution time and the size of
the prefix.

Because our method considers the model reduction procedure as a blackbox, it can directly
take advantage of any improvements of model reduction procedures which preserve minimal
configurations.

Future work will explore the combination with the semi-adequate ordering of configurations
of directed unfolding [3] as it may reduce the need for propagating transitions allowed by
a cut-off event. Finally, we are considering implementing the goal-driven unfolding within
Mole [20].
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