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Abstract
Two-player games on graphs are widely studied in formal methods as they model the interaction
between a system and its environment. The game is played by moving a token throughout a graph
to produce an infinite path. There are several common modes to determine how the players move
the token through the graph; e.g., in turn-based games the players alternate turns in moving the
token. We study the bidding mode of moving the token, which, to the best of our knowledge, has
never been studied in infinite-duration games. Both players have separate budgets, which sum
up to 1. In each turn, a bidding takes place. Both players submit bids simultaneously, and a
bid is legal if it does not exceed the available budget. The winner of the bidding pays his bid to
the other player and moves the token. For reachability objectives, repeated bidding games have
been studied and are called Richman games [36, 35]. There, a central question is the existence
and computation of threshold budgets; namely, a value t ∈ [0, 1] such that if Player 1’s budget
exceeds t, he can win the game, and if Player 2’s budget exceeds 1− t, he can win the game. We
focus on parity games and mean-payoff games. We show the existence of threshold budgets in
these games, and reduce the problem of finding them to Richman games. We also determine the
strategy-complexity of an optimal strategy. Our most interesting result shows that memoryless
strategies suffice for mean-payoff bidding games.
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1 Introduction

Two-player infinite-duration games on graphs are an important class of games as they model
the interaction of a system and its environment. Questions about automatic synthesis of a
reactive system from its specification [40] are reduced to finding a winning strategy for the
“system” player in a two-player game. The game is played by placing a token on a vertex
in the graph and allowing the players to move it throughout the graph, thus producing an
infinite trace. The winner or value of the game is determined according to the trace. There
are several common modes to determine how the players move the token that are used to
model different types of systems (c.f., [4]). The most well-studied mode is turn-based, where
the vertices are partitioned between the players and the player who controls the vertex on
which the token is placed, moves it. Other modes include probabilistic and concurrent moves.

∗ This research was supported in part by the Austrian Science Fund (FWF) under grants S11402-N23
(RiSE/SHiNE) and Z211-N23 (Wittgenstein Award).

© Guy Avni, Thomas A. Henzinger, and Ventsislav Chonev;
licensed under Creative Commons License CC-BY

28th International Conference on Concurrency Theory (CONCUR 2017).
Editors: Roland Meyer and Uwe Nestmann; Article No. 21; pp. 21:1–21:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2017.21
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


21:2 Infinite-Duration Bidding Games

We study a different mode of moving, which we refer to as bidding, and to the best of our
knowledge, has never been studied for infinite-duration games. Both players have budgets,
where for convenience, we have B1 +B2 = 1. In each turn a bidding takes place for the right
to move the token. The players submit bids simultaneously, where a bid is legal if it does
not exceed the available budget. Thus, a bid is a real number in [0, Bi], for i ∈ {1, 2}. The
player who bids higher pays the other player, and decides where the token moves. Draws
can occur and one needs to devise a mechanism for resolving them (e.g., giving advantage
to Player 1), and our results do not depend on a specific mechanism.

Bidding arises in many settings and we list several examples below. The players in a two-
player game often model concurrent processes. Bidding for moving can model an interaction
with a scheduler. The process that wins the bidding gets scheduled and proceeds with its
computation. Thus, moving has a cost and processes are interested in moving only when
it is critical. When and how much to bid can be seen as quantifying the resources that
are needed for a system to achieve its objective, which is an interesting question. Other
takes on this problem include reasoning about which input signals need to be read by the
system at its different states [20, 2] as well as allowing the system to read chunks of input
signals before producing an output signal [28, 27, 33]. Also, our bidding game can model
scrip systems that use internal currencies for bidding in order to prevent “free riding” [31].
Such systems are successfully used in various settings such as databases [43], group decision
making [42], resource allocation, and peer-to-peer networks (see [29] and references therein).
Finally, repeated bidding is a form of a sequential auction [37], which is used in many settings
including online advertising.

Recall that the winner or value of the game is determined according to the outcome,
which is an infinite trace. There are several well-studied objectives in games. The simplest
objective is reachability, where Player 1 has a target vertex and a trace is winning for him
iff it visits the target. Bidding reachability games are equivalent to Richman games [36, 35],
named after David Richman. Richman games are the first to study the bidding mode of
moving. The central question that is studied on Richman games regards a threshold budget,
which is a function Thresh : V → [0, 1] such that if Player 1’s budget exceeds Thresh(v)
at a vertex v, then he has a strategy to win the game. On the other hand, if Player 2’s
budget exceeds 1−Thresh(v), he can win the game (recall that the budgets add up to 1).
In [36, 35], the authors show that threshold budgets exist, are unique, and that finding them
is in NP. We slightly improve their result by showing that the problem is in NP and coNP.
We illustrate the bidding model and the threshold problem in the following example.
I Example 1. Consider for example, the bidding reachability game that is depicted in
Figure 1. Player 1’s goal is to reach t, and Player 2’s goal is to prevent this from happening.
How much budget suffices for Player 1 to guarantee winning? Clearly, even if Player 1 has
all the budget, he cannot win in v1, thus Thresh(v1) = 1. Similarly, even if Player 2 has all
the budget in t, Player 1 has already won, thus Thresh(t) = 0. We show a naive solution in
which Player 1 wins when his budget exceeds 0.75. Indeed, if Player 1’s budget is 0.75 + ε,
for ε > 0, then since the budgets add up to 1, Player 2’s budget is 0.25− ε. In the first turn,
Player 1 bids 0.25 + ε

2 and wins the bidding since Player 2 cannot bid above 0.25. He pays
his bid to Player 2 and moves the token to v2. Thus, at the end of the round, the budgets
are 0.5 + ε

2 and 0.5− ε
2 and the token is on v2. In the second bidding, Player 1 bids all his

budget, wins the bidding since Player 2 cannot bid above 0.5, moves the token to t, and
wins the game. It turns out that the threshold budgets are lower: it follows from Theorem 3
that they are Thresh(v0) = 2/3 and Thresh(v2) = 1/3. J
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v0 v2 tv1 1 −1

Figure 1 On the left, a bidding reachability game. On the right, a bidding mean-payoff game
where the weights are depicted on the edges.

We introduce and study infinite duration bidding games with richer qualitative objectives
as well as quantitative objectives. Parity games are an important class of qualitative games
as the problem of reactive synthesis from LTL specifications is reduced to a parity game.
The vertices in a parity game are labeled by an index in {0, . . . , d}, for some d ∈ N, and
an infinite trace is winning for Player 1 iff the parity of the maximal index that is visited
infinitely often is odd. The quantitative games we focus on are mean-payoff games. An
infinite outcome has a value, which can be thought of as the amount of money that Player 1
pays Player 2. Accordingly, we refer to the players in a mean-payoff game as Maximizer
(Max, for short) and Minimizer (Min, for short). The vertices of a mean-payoff game are
labeled by values in Z. Consider an infinite trace π. The energy of a prefix πn of length
n of π, denoted E(πn), is the sum of the values it traverses. The mean-payoff value of π
is lim infn→∞E(πn)/n. We are interested in cases where Min can guarantee a non-positive
mean-payoff value. It suffices to show that he can guarantee that an infinite outcome π
either has infinitely many prefixes with E(πn) = 0, or that the energy is bounded, thus
there is N ∈ N such that for every n ∈ N, we have E(πn) ≤ N . We stress the point that
there are two “currencies” in the game: a “monopoly money” that is used to determine
who moves the token and which the players do not care about once the game ends, and the
values on the vertices, which is the value that Min and Max seek to minimize and maximize,
respectively. We illustrate mean-payoff games with the following example.

I Example 2. Consider the mean-payoff bidding game that is depicted in Figure 1, where for
convenience the values are placed on the edges and not on the vertices. We claim that Min
has a strategy that guarantees a non-positive mean-payoff value. Without loss of generality,
Max always chooses the 1-valued edge. Min’s strategy is a tit-for-tat-like strategy, and he
always takes the (−1)-valued edge. The difficulty is in finidng the right bids. Initially, Min
bids 0. Assume Max wins a bidding with b > 0. Min will try and match this win: he bids b
until he wins with it. Let b1, . . . , bn be Max’s winning bids before Min wins with b. We call
these un-matched bids. The next bid Min attempts to match is b′ = min1≤i≤n bi; he bids b′
until he wins with it, and continues similarly until all bids are matched.

We claim that the tit-for-tat strategy guarantees a non-positive mean-payoff value. Ob-
serve first that if a prefix of the outcome has k unmatched bids, then the energy is k. In
particular, if all bids are matched, the energy is 0. Suppose Min bids b. We claim that
the number of un-matched bids is at most d1/be. Otherwise, since b is less than all other
un-matched bids, Max would need to invest more than a budget of 1. It follows that an
infinite outcome that never reaches energy level 0 has bounded energy, thus the mean-payoff
value is non-positive. J

We study the existence and computation of threshold budgets in parity and mean-payoff
bidding games. Also, we determine the strategy complexity that is necessary for winning.
Recall that a winning strategy in a game typically corresponds to an implementation of a
system. A strategy that uses an unbounded memory, like the tit-for-tat strategy above, is
not useful for implementing. Thus, our goal is to find strategies that use little or no memory,
which are known as memoryless strategies.
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21:4 Infinite-Duration Bidding Games

We show that parity bidding games are linearly-reducible to Richman games allowing us
to obtain all the positive results from these games; threshold budgets exist, are unique, and
computing them is no harder than for Richman games, i.e., the problem is in NP and coNP.
We find this result quite surprising since for most other modes of moving, parity games
are considerably harder than reachability games. The crux of the proof considers bottom
strongly-connected components (BSCCs, for short) in the arena, i.e., SCCs with no exiting
edges. We show that in a strongly connected bidding parity game, exactly one of the players
wins with every initial budget, thus the threshold budgets of the vertices of a BSCC are
in {0, 1}. If the vertex with highest parity in a BSCC is odd, then Player 1 wins, i.e., the
threshold budgets are all 0, and otherwise Player 2 wins, i.e., the threshold budgets are all
1. We can thus construct a Richman game by setting the target of Player 1 to the BSCCs
that are winning for him and the target of Player 2 to the ones that are winning for him.
Moreover, we show that memoryless strategies are sufficient for winning in these games.

We proceed to study mean-payoff bidding games. We adapt the definition of threshold
values; we say that t ∈ [0, 1] is a threshold value for Min if with a budget that exceeds t,
Min can guarantee a non-positive mean-payoff value. On the other hand, if Max’s budget
exceeds 1 − t, he can guarantee a positive mean-payoff value. We show that threshold
values exist and are unique in mean-payoff bidding games. The crux of the existence proof
again considers the BSCCs of the game. We show that in a strongly-connected mean-payoff
bidding game, the threshold budgets are in {0, 1}, thus again either Min “wins” or Max
“wins” the game. Moreover, this classification can be determined in NP and coNP, thus the
complexity of solving bidding mean-payoff games coincides with Richman games. Our results
for strongly-connected games are obtained by developing the connection that was observed
in [36, 35] between the threshold budget and the reachability probability in a probabilistic
model on the same structure as the game. We show a connection between bidding mean-
payoff games and one-counter 2.5-player games [14, 13] to prove the classification of BSCCs.
In turn, these games are equivalent to discrete quasi-birth-death processes [24] and generalize
solvency games [11], which can be thought of as a rewarded Markov decision process with a
single vertex.

The classification above is existential in nature and does not provide any insight on how
a player guarantees a mean-payoff value. Our most technically challenging results concern
the constructions strategies for Min and Max. The challenging part of the construction
is reasoning about strongly-connected bidding mean-payoff games. Consider a strongly-
connected game in which Min can guarantee a non-positive mean-payoff value. The idea
of our construction is to tie between changes in Min’s budget with changes in the energy;
investing one unit of budget (with the appropriate normalization) implies a decrease of a
unit of energy, and on the other hand, an increase of a unit of energy implies a gain of one
unit of budget. Since the budgets are bounded by 1, the value cannot increase arbitrarily.
Finding the right bids in a general SCC is not trivial, and we find our solution to be
surprisingly elegant. The case where Max can guarantee a positive mean-payoff value, is more
challenging. Unlike a memoryless strategy for Min, the normalization factor must decrease
as the value increases so that Max does not exhaust his budget. We show constant memory
strategies in general and identify a fragment in which we show memoryless strategies.

Further bidding games

Variants of bidding games where studied in the past. Already in [35] several variants are
studied including a poorman version in which the winner of the bidding pays the bank, thus
the amount of money in the game decreases as the game proceeds. Motivated by recreational
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games, e.g., bidding chess, discrete bidding games are studied in [23], where the money is
divided into chips, so a bid cannot be arbitrarily small as in the bidding games we study.
In all-pay bidding games [38], the players all pay their bids to the bank. Non-zero-sum
two-player games were recently studied in [30]. They consider a bidding game on a directed
acyclic graph. Moving the token throughout the graph is done by means of bidding. The
game ends once the token reaches a sink, and each sink is labeled with a pair of payoffs for
the two players that do not necessarily sum up to 0. They show existence of subgame perfect
equilibrium for every initial budget and a polynomial algorithm to compute it.

Due to lack of space, most of the proofs appear in the full version [7].

2 Preliminaries

An arena is a pair 〈G,α〉, where G is a directed graph and α is an objective. A game is
played on an arena as follows. A token is placed on a vertex in the arena and the players
move it throughout the graph. The outcome is an infinite path π. The winner or value is
determined according to π and α as we elaborate below. There are several common modes in
which the players move the token. In turn-based games the vertices are partitioned between
the players and the player who controls the vertex on which the token is placed, moves it.
Another mode is probabilistic choices, where the game can be thought of as a Markov chain,
thus the edges are labeled with probabilities, and the edge on which the token proceeds is
chosen randomly. A combination of these two modes is called 2.5-player games, where the
vertices are partitioned into three sets: Player 1 vertices, Player 2 vertices, and probabilistic
vertices. Finally, in concurrent games, each player has a possible (typically finite) set of
actions he can choose from in a vertex. The players select an action simultaneously, and the
choice of actions dictates to which vertex the token moves.

We study a different mode of moving, which we call bidding. Both players have budgets,
where for convenience, we have B1+B2 = 1. In each turn, a bidding takes place to determine
who moves the token. Both players submit bids simultaneously, where a bid is a real number
in [0, Bi], for i ∈ {1, 2}. The player who bids higher pays the other player and decides where
the token moves. Note that the sum of budgets always remains 1. While draws can occur,
in the questions we study we try avoid the issue of draws.

A strategy prescribes to a player which action to take in a game, given a finite history
of the game, where we define these two notions below. In 2.5-player games, histories are
paths and actions are vertices. Thus, a strategy for Player i, for i ∈ {1, 2}, takes a finite
path that ends in a Player i vertex, and prescribes to which vertex the token moves to
next. In bidding games, histories and strategies are more complicated as they maintain the
information about the bids and winners of the bids. A history is a sequence of the form
v0, 〈v1, b1, i1〉, 〈v2, b2, i2〉, . . . , 〈vk, bk, ik〉 ∈ V ·(V ×[0, 1]×{1, 2})∗, where, for j ≥ 1, in the j-th
round, the token is placed on vertex vj−1, the winning bid is bj , and the winner is Player ij ,
and Player ij moves the token to vertex vj . An action for a player is 〈b, v〉 ∈ ([0, 1] × V ),
where b is the bid and v is the vertex to move to upon winning. An initial vertex v0 and
strategies f1 and f2 for Players 1 and 2, respectively, determine a unique outcome π for the
game, denoted out(v0, f1, f2), which is an infinite sequence in V · (V × [0, 1]× {1, 2})ω. We
sometimes abuse notation and refer to out(v0, f1, f2) as a finite prefix of the infinite outcome.
We drop v0 when it is clear from the context. We define the outcome inductively. The first
element of the outcome is v0. Suppose π1, . . . , πj is defined. The players bids are given by
〈b1, v1〉 = f1(π1, . . . , πj) and 〈b2, v2〉 = f2(π1, . . . , πj). If b1 > b2, then πj+1 = 〈v1, b1, 1〉,
and dually when b1 < b2, we have πj+1 = 〈v2, b2, 2〉. We assume there is some tie-breaking

CONCUR 2017



21:6 Infinite-Duration Bidding Games

mechanism that determines who the winner is when b1 = b2, and our results are not affected
by what the tie-breaking mechanism is. Consider a finite outcome π. The payment of
Player 1 in π, denoted B1(π), is

∑
1≤j≤|π|(−1)3−ij bj , and Player 2’s payment, denoted B2(π)

is defined similarly. For i ∈ {1, 2}, consider an initial budget Biniti ∈ [0, 1] for Player i. A
strategy f is legal for Player i with respect to Biniti if for every v0 ∈ V and strategy g for
the other player, Player i’s bid in a finite outcome π = out(v0, f, g) does not surpass his
budget. Thus, for 〈b, v〉 = f(π), we have b ≤ Biniti − Bi(π).

Richman games and threshold budgets

The simplest qualitative objective is reachability: Player 1 has a target vertex vR and an
infinite outcome is winning for him if it visits vR. Reachability bidding games are known as
Richman games [36, 35]. In Richman games both players have a target, which we denote by
vR and vS . The game ends once one of the targets is reached. Note that this definition is
slightly different from standard reachability games since there, Player 2 has no target and
his goal is to keep the game from vR. Though, we show that for our purposes, since Richman
games have no ties, reachability games are equivalent to Richman games (see Lemma 4).

The central question that is studied on bidding games regards a threshold budget. A
threshold budget is a function Thresh : V → [0, 1] such that if Player 1’s budget exceeds
Thresh(v) at a vertex v, then he has a strategy to win the game. On the other hand,
if Player 2’s budget exceeds 1 − Thresh(v), he can win the game. We sometimes use
Thresh1(v) to refer to Thresh(v) and Thresh2(v) to refer to 1−Thresh(v). We formalize
the problem of finding threshold budgets as a decision problem. We define the THRESH-
BUDG problem, which takes as input a bidding game G, a vertex v, and a value t ∈ [0, 1],
and the goal is to decide whether Thresh(v) = t.

Threshold values are shown to exist in [36] as well as how to compute them. We review
briefly their results. Consider a Richman game G = 〈V,E, vR, vS〉. We define the Richman
function as follows. We first define R(v, i), for i ∈ N ∪ {0}, where the intuition is that if
Player 1’s budget exceeds R(v, i), he can win in at most i steps. We define R(vR, 0) = 0
and R(v, 0) = 1 for every other vertex v ∈ V . Indeed, Player 1 can win in 0 steps from
vR no matter what his initial budget is, and even if he has all the budget, he cannot win
in 0 steps from anywhere else. Consider i ∈ N and v ∈ V . We denote by adj(v) ⊆ V , the
adjacent vertices to v, so u ∈ adj(v) iff E(v, u). Let v+ be the vertex that maximizes the
expression maxu∈adj(v) R(u, i − 1), and let v− be the vertex that minimizes the expression
minu∈adj(v) R(u, i − 1). We define R(v, i) = 1

2
(
R(v+, i − 1) + R(v−, i − 1)

)
. We define

R(v) = limi→∞R(v, i). The following theorem shows that R(v) equals Thresh(v), and
throughout the paper we use them interchangeably. We give the proof of the theorem for
completeness.

I Theorem 3. [36] For every v ∈ V , we have Thresh(v) = R(v), thus if Player 1’s budget
at v exceeds R(v), he can win from v, and if Player 2’s budget exceeds 1−R(v), he can win
from v.

Proof. We prove for Player 1 and the proof for Player 2 is dual. Let t ∈ N be an index such
that Binit1 > R(v, t). We prove by induction on t that Player 1 wins in at most t steps. The
base case is easy. For the inductive step, assume Player 1 has a budget of R(v, i) + ε. He
bids b1 = 1

2
(
R(v+, i− 1)− R(v−, i− 1)

)
. If he wins the bidding, he proceeds to v− with a

budget of R(v−, i− 1) + ε. If he loses, then Player 2’s bid exceeds b1 and the worst he can
do is move to v+. But then Player 1’s budget is at least R(v+, i− 1) + ε. By the induction
hypothesis, Player 1 wins in at most i− 1 steps from both positions. J
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We make precise the equivalence between reachability and Richman games.

I Lemma 4. Consider a bidding reachability game G = 〈V,E, T 〉, where T ⊆ V is a target set
of vertices for Player 1. Let S ⊆ V be the vertices with no path to T . Consider the Richman
game G′ = 〈V ∪ {vR, vS}, E′, vR, vS〉, where E′ = E ∪ {〈v, vR〉 : v ∈ T} ∪ {〈v, vS〉 : v ∈ S}.
For every v ∈ V , the threshold budget of v in G equals the threshold budget of v in G′.

Finding threshold budgets

The authors in [35] study the complexity of threshold-budget problem and show that is in
NP. They guess, for each vertex v its neighbors v− and v+, and devise a linear program
with the constraints R(v) = 1

2
(
R(v−) + R(v+)

)
and, for every neighbor v′ of v, we have

R(v−) ≤ R(v′) ≤ R(v+). The program has a solution iff the guess is correct. They leave
open the problem of determining the exact complexity of finding the threshold budgets, and
they explicitly state that it is not known whether the problem is in P or NP-hard.

We improve on their result by showing that THRESH-BUDG is in NP and coNP. Our
reduction uses an important observation that is made in [36], which will be useful later on.
They connect between threshold budgets and reachability probabilities in Markov chains.
I Observation 5. Consider a Richman game G = 〈V,E, vR, vS〉. LetM(G) be a Markov chain
in which for each vertex v ∈ V , the probability of the edges 〈v, v+〉 and 〈v, v−〉 is 1

2 and the
other outgoing edges from v have probability 0. Then, since R(v) = 1

2
(
R(v+) +R(v−)

)
, in

M(G), the probability of reaching vR from v is Thresh(v).
We reduce THRESH-BUDG to the problem of “solving” a simple stochastic game (SSG,

for short) [22]. An SSG has two players; one tries to minimize the probability that the target
is reached, and the second player tries to minimize it. It is well-known that the game has
a value, which is the probability of reaching the target when both players play optimally.
The problem of finding the value of an SSG is known to be in NP ∩ coNP. The SSG we
construct can be seen as a turn-based game in which the player whose turn it is to move is
chosen uniformly at random. The details of the proof can be found in the full version.

I Theorem 6. THRESH-BUDG for Richman games is in NP ∩ coNP.

We stress the fact that the strategies in SSGs are very different from bidding games. As
mentioned above, there, the strategies only prescribe which vertex to move the token to,
whereas in bidding games, a strategy also prescribes what the next bid should be. So, a
solution of a Richman game by reducing it to an SSG is existential in nature and does not
give insight on the bids a player uses in his winning strategy. We will return to this point
later on.

Objectives

We study zero-sum games. The qualitative games we focus on are parity games. A parity
game is a triple 〈V,E, p〉, where p : V → {0, . . . , d} is a parity function that assigns to each
vertex a parity index. An infinite outcome is winning for Player 1 iff the maximal index that
is visited infinitely often is odd. The quantitative games we focus on are mean-payoff games.
A mean-payoff game is 〈V,E,w〉, where w : V → Z is a weight function on the vertices.
We often refer to the sum of weights in a path as its energy. Consider an infinite outcome
π = v0, 〈v1, b1, i1〉, . . .. For n ≥ 0, we use πn to refer to the prefix of length n of π. The
energy of πn, denoted E(πn), is

∑
0≤i≤n−1 w(vi). We define the mean-payoff value of π to be

lim infn→∞ E(πn)
n . The value of π can be thought of as the amount of money Player 1 pays
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21:8 Infinite-Duration Bidding Games

Player 2. Note that the mean-payoff values do not affect the budgets of the players. That
is, the game has two currencies: a “monopoly money” that is used to determine who moves
the token and which the players do not care about once the game ends, and the mean-payoff
value that is determined according to the weights of the vertices, which is the value that Min
and Max seek to minimize and maximize, respectively. Consider a finite outcome π. We use
Bm(π) and BM (π) to denote the sum of payments of Min and Max in the bids. Throughout
the paper we use m and M to refer to Min and Max, respectively.

Strategy complexity

Recall that a winning strategy in a two-player game often corresponds to a system imple-
mentation. Thus, we often search for strategies that use limited or no memory. That is, we
ask whether a player can win even with a memoryless strategy, which is a strategy in which
the action depends only on the position of the game and not on the history. For example,
in turn-based games, for i ∈ {1, 2}, a memoryless strategy for Player i prescribes, for each
vertex v ∈ Vi, a successor vertex u. It is well known that memoryless strategies are sufficient
for winning in a wide variety of games, including turn-based parity games and turn-based
mean-payoff games. In Richman games, the threshold budgets tell us who the winner of the
game is. But, they do not give insight on how the game is won game, namely what are the
bids the winning player bids in order to win. Particularly, when the threshold budgets are
0 as we shall see in Lemmas 7 and 12.

We extend the definition of memoryless strategies to bidding games, though the right
definition is not immediate. One can define a memoryless strategy as a function from vertex
and budget to action (i.e., bid and vertex) similar to the definition in other games. How-
ever, this definition does not preserve the philosophy of implementation with no additional
memory. Indeed, recall the proof of Theorem 3. One can define a strategy that, given a
vertex v ∈ V and a budget B, bids according to Rt(v), where t is the minimal index such
that Rt(v) < B. Clearly, the memory that is needed to implement such a strategy is infinite.

To overcome this issue, we use a different definition. We define a memoryless strategy
in a vertex v ∈ V with initial budget B ∈ [0, 1] as a pair 〈u, fBv 〉, where u ∈ adj(v) is the
vertex to proceed to upon winning and fBv : [0, 1]→ [0, 1] is a function that takes the current
budget and, in mean-payoff games, also the energy, and returns a bid. We require that fBv
is simple, namely a polynomial or a selection between a constant number of polynomials.
For simplicity, we assume a memoryless strategy is generated for an initial vertex with an
initial budget, thus there can be different strategies depending where the game starts and
with what budget. Also, we call a concatenation of memoryless strategies, a memoryless
strategy.

3 Parity Bidding Games

We study threshold budgets in bidding parity games. We first study strongly-connected
parity games and show a classification for them; either Player 1 wins with every initial
budget or Player 2 wins with every initial budget.

I Lemma 7. Consider a strongly-connected parity game G = 〈V,E, p〉. There exists τ ∈
{0, 1} such that for every v ∈ V , we have R(v) = τ . Moreover, we have τ = 0 iff maxv∈V p(v)
is odd.

Proof. The proof relies on the following claim: Player 1 wins a Richman game in which only
his target is reachable, with every initial budget. The claim clearly implies the lemma as we



G. Avni, T. A. Henzinger, and V. Chonev 21:9

view a strongly-connected bidding parity game as a Richman game in which Player 1 tries
to force the game to the vertex with the highest parity index, and Player 2 has no target,
thus Player 1 wins with every initial budget. The claim is similar for Player 2. The proof of
the claim follows from the fact that the threshold budget of a vertex v ∈ V is some average
between Thresh(vR) and Thresh(vS), and the average depends on the distances of v to
the two targets. When only Player 1’s target is reachable, we have Thresh(v) = 0. The
details of the proof can be found in the full version. J

Consider a bidding parity game G = 〈V,E, p〉. Let R and S be the set of vertices in the
BSCCs that are winning for Player 1 and Player 2, respectively. Let G′ be the Richman
game that is obtained from G by setting the target of Player 1 to be the vertices in R and
the target of Player 2 to be the vertices in S. The following lemma follows from Lemma 7.

I Lemma 8. For every v ∈ V , we have that Thresh(v) in G equals Thresh(v) in G′.

Lemma 8 allows us to obtain the positive results of Richman games in parity bidding
games. In the full version, we construct memoryless strategies in Richman games. The idea
is to show that a bid at a vertex v of the form R(v+)−R(v−)

2 + ε guarantees that either vR is
reached within |V | steps, or Player 1’s budget increases by a constant. Thus, we have the
following.

I Theorem 9. The threshold budgets in parity bidding games exist, are unique, THRESH-
BUDG is in NP ∩ coNP, and memoryless strategies suffice for winning.

4 Mean-Payoff Bidding Games

We proceed to study mean-payoff games. We adjust the definition of threshold budgets to
the quantitative setting.

I Definition 10. Consider a mean-payoff bidding game G = 〈V,E,w〉. The threshold budget
in a vertex v ∈ V , denoted Thresh(v), is a value t ∈ [0, 1] such that
1. If Min’s budget exceeds t at v, then he can guarantee a non-positive mean-payoff value,

and
2. if Max’s budget exceeds 1− t, then he can guarantee a strictly positive value.

4.1 Solving Bidding Mean-Payoff Games
In this section we solve the problem of finding threshold values in bidding mean-payoff games.
Our solution relies on work on probabilistic models, namely one-counter simple stochastic
games [14, 13], and it is existential in nature. Namely, knowing what the threshold budget
is in v does not give much insight on how Min guarantees a non-negative value even if he
has sufficient budget, and similarly for Max. Constructing concrete memoryless strategies
for the two players is much more challenging and we show constructions in the following
sections.

Recall that in bidding parity games, we showed a classification for strongly-connected
games; namely, the threshold budgets in all vertices are in {0, 1}, thus either Player 1
wins with every initial budget or Player 2 wins with every initial budget. We show a similar
classification for strongly-connected bidding mean-payoff games: the threshold budgets in all
vertices of a strongly-connected bidding mean-payoff game are in {0, 1}, thus in a strongly-
connected bidding mean-payoff game, for every initial energy and every initial budget, either
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Min can guarantee a non-positive mean-payoff value or Max can guarantee a positive mean-
payoff value. The classification uses a generalization of the Richman function to weighted
graphs. Consider a strongly-connected bidding mean-payoff game G = 〈V,E,w〉 and a vertex
u ∈ V . We construct a graph Gu = 〈V u, Eu, wu〉 by making two copies us and ut of u, where
us has no incoming edges and ut has no outgoing edges. Thus, a path from us to ut in Gu
corresponds to a loop in G. Recall that we denote by w(v) the weight of the vertex v.

I Definition 11. Consider a strongly-connected bidding mean-payoff game G = 〈V,E,w〉, a
vertex u ∈ V . We define the weighted Richman function W : V → Q first on Gu. We define
W (ut) = 0 and for every v ∈ (S \ {ut}), we define W (v) = 1

2
(
W (v+) +W (v−)

)
+ w(v). In

order to define W on G, we define W (u) to be W (us) in Gu.

We use the connection with probabilistic models as in Observation 5 in order to show that
W is well defined. We view Gu as a rewarded Markov chain, in which, for v ∈ V , the
outgoing edges from v with positive probability probabilities are 〈v, v+〉 and 〈v, v−〉, and
their probability is 1/2. The function W coincides with the expected reward of a run that
starts and returns to u, which in turn is well-defined since the probability of returning to u
is 1.

Similarly to the connection we show in Theorem 6 between Richman values and reach-
ability probabilities in a simple-stochastic game, we prove Lemma 12 by connecting the
threshold value in bidding mean-payoff games to the probability that a counter in a one-
counter simple-stochastic games reaches value 0. We then use results from [14, 13] on this
model to prove the lemma. The proof can be found in the full version.

I Lemma 12. Consider a strongly-connected bidding mean-payoff game G = 〈V,E,w〉.
There is τ ∈ {0, 1} such that for every v ∈ V , we have Thresh(v) = τ . Moreover, we have
τ = 0 iff there exists u ∈ V with W (u) ≤ 0.

Lemma 13, which is also helpful in the following sections, shows how to connect the mean-
payoff value with the objective of reaching energy 0 or maintaining non-negative energy. Its
proof can be found in the full version.

I Lemma 13. Consider a strongly-connected bidding mean-payoff game G and a vertex u
in G.

Suppose that for every initial budget and initial energy, Min has a strategy fm and
there is a constant N ∈ N such that for every Max strategy fM , a finite outcome
π = out(u, fm, fM ) either reaches energy 0 or the energy is bounded by N throughout
π. Then, Min can guarantee a non-positive mean-payoff value in G.
If for every initial budget BinitM ∈ [0, 1] for Max there exists an initial energy level n ∈ N
such that Max can guarantee a non-negative energy level in G, then Max can guarantee
a positive mean-payoff value in G.

The proof of the following theorem can be found in the full version. Deciding the clas-
sification in Lemma 12 can be done in NP and coNP by guessing the neighbors the vertices
and using linear programming, similarly to Richman games. Then, we reduce bidding mean-
payoff games to Richman games in a similar way to the proof of Lemma 8 for parity games.

I Theorem 14. Threshold budgets exist in bidding mean-payoff games, they are unique, and
THRESH-BUDG for bidding mean-payoff games is in NP ∩ coNP.
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4.2 A Memoryless Optimal Strategy for Min
We turn to the more challenging task of finding memoryless strategies for the players, and in
this section we focus on constructing a strategy for Min. Theorem 9 and Lemma 12 allow us
to focus on strongly-connected bidding mean-payoff games. Consider a strongly-connected
bidding mean-payoff game G = 〈V,E,w〉 that has a vertex u ∈ V with W (u) ≤ 0. We
construct a Min memoryless strategy that guarantees that for every initial energy and every
initial budget, either the energy level reaches 0 or it is bounded. By Lemma 13, this suffices
for Min to guarantee a non-positive mean-payoff value in G.

The idea behind our construction is to tie between changes in the energy level and changes
of the budget. That is, in order to decrease the energy by one unit, Min needs to invest
at most one unit of budget (with an appropriate normalization), and when Max increases
the energy by one unit, Min’s gain is at least one unit of budget. Our solution builds on an
alternative solution to the two-loop game in Figure 1. This solution is inspired by a similar
solution in [35].

I Example 15. Consider the bidding mean-payoff game that is depicted in Figure 1. We
show a Min strategy that guarantees a non-positive mean-payoff value. Consider an initial
Min budget of Binitm ∈ [0, 1] and an initial energy level of kI ∈ N. Let N ∈ N be such
that Binitm > k

N . Min bids 1
N and takes the (−1)-weighted edge upon winning. Intuitively,

Min invests 1
N for every decrease of unit of energy and, since by losing a bidding he gains

at least 1
N , this is also the amount he gains when the energy increases. Formally, it is not

hard to show that the following invariant is maintained: if the energy level reaches k ∈ N,
Min’s budget is at least k

N . Note that the invariant implies that either an energy level of
0 is reached infinitely often, or the energy is bounded by N . Indeed, in order to cross an
energy of N , Max would need to invest a budget of more than 1. Lemma 13 implies that
the mean-payoff value is non-positive, and we are done. J

Extending this result to general strongly connected games is not immediate. Consider
a strongly-connected game G = 〈V,E,w〉 and a vertex u ∈ V . We would like to maintain
the invariant that upon reaching u with energy k, the budget of Min exceeds k/N , for a
carefully chosen N . The game in the simple example above has two favorable properties
that general SCCs do not necessarily have. First, unlike the game in the example, there can
be infinite paths that avoid u, thus Min might need to invest budget in drawing the game
back to u. Moreover, different paths from u to itself may have different energy levels, so
bidding a uniform value (like the 1

N above) is not possible. The solution to these problems
is surprisingly elegant and uses the weighted Richman function in Definition 11.

Consider an initial budget of Binitm ∈ [0, 1] for Min and an initial energy kI ∈ N. We
describe Min’s strategy fm. At a vertex v ∈ V , Min’s bid is W (v+)−W (v−)

2 · 1
N and he

proceeds to v− upon winning, where we choose N ∈ N in the following. Let wM be the
maximal absolute weighted Richman value in G, thus wM = maxv∈V |W (v)|. Let bM be the
maximal absolute “bid”, thus bM = maxv∈V |W (v+)−W (v−)

2 |. We choose N ∈ N such that
Binitm > kI +bM +wM

N .
In the following lemmas we prove that fm guarantees that an outcome either reaches

energy level 0 or that the energy is bounded, as well as showing that fm is legal, i.e., that
Min always bids less than his budget. The following lemma is the crux of the construction as
it connects the weighted Richman function with the change in energy and in budget. Recall
that for a finite outcome π the accumulated energy in π is E(π) and the payments of Min
throughout π is Bm(π).
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I Lemma 16. Consider a Max strategy fM , and let π = out(fm, fM ) be a finite outcome
that starts in a vertex v and ends in v′. Then, we have W (v)−W (v′) ≥ E(π) +N · Bm(π).

Proof. We prove by induction on the length of π. In the base case v = v′, thus E(π) =
Bm(π) = 0 and the claim is trivial. For the induction step, let b be the winning bid in the
first round and let π′ be the suffix of π after the first bidding. We distinguish between two
cases. In the first case, Min wins the bidding, pays b = W (v+)−W (v−)

2 · 1
N , and proceeds to

v−. Thus, we have E(π) + N · Bm(π) = w(v) + E(π′) + N
(
b + Bm(π′)

)
. By the induction

hypothesis, we have E(π′) + N · Bm(π′) ≤ W (v−) − W (v′), thus E(π) + N · Bm(π) ≤
w(v)+W (v+)−W (v−)

2 +W (v−)−W (v′) = W (v)−W (v′), and we are done. For the second case,
suppose Max wins the bidding. Min’s gain is −b < −W (v+)−W (v−)

2 · 1
N , and Max proceeds

to v′′ having W (v′′) ≤ W (v+). Similar to the previous case, we have E(π) + N · Bm(π) =
w(v)+E(π′)+N

(
− b+Bm(π′)

)
≤ w(v)− W (v−)−W (v+)

2 +W (v+)−W (v′) = W (v)−W (v′),
and we are done. J

The following corollary of Lemma 16 explains why we refer to our technique as “tying
energy and budget”. Its proof follows from the fact that W (us) ≤ 0 and W (ut) = 0.

I Corollary 17. Consider a Max strategy fM , and let π = out(fm, fM ) be a finite outcome
from u to u. Then, we have −N · Bm(π) ≤ E(π).

We formalize the intuition above by means of an invariant that is maintained throughout
the outcome. Recall that the game starts from a vertex u ∈ V with W (u) ≤ 0, the initial
energy is kI ∈ N, Min’s initial budget is Binitm ∈ [0, 1], andN is such that Binitm > kI +bM +wM

N .

I Lemma 18. Consider a Max strategy fM , and let π = out(fm, fM ) be a finite outcome.
Then, when the energy level reaches k, Min’s budget is at least k+bM

N .

Proof. The invariant clearly holds initially. Consider a partition π = π1 · π2, where π1 is a
maximal prefix of π that ends in u and π2 starts in u and ends in a vertex v ∈ V . The energy
level at the end of π is k = kI + E(π). Recall that Bm(π) is the sum of Min’s payments in
π, thus his budget at the end of π is Binitm −

(
Bm(π1) + Bm(π2)

)
. By Corollary 17, we have

−Bm(π1) ≥ 1
NE(π1) and by Lemma 16, we have −Bm(π2) ≥ 1

N

(
E(π2)−W (u) +W (v)

)
≥

1
N

(
E(π2)− 0− wM

)
. Combining with Binitm ≥ kI +bM +wM

N , we have that the new budget is
at least kI +bM +wM

N + E(π1)
N + E(π2)−wM

N = k+bM

N , and we are done. J

Lemma 18 implies that Min always has sufficient budget to bid according to fm, thus the
strategy is legal. Moreover, since Min’s budget cannot exceed 1, Lemma 18 implies that
if the energy does not reach 0, then it is bounded by N − bM . Thus, Lemma 13 implies
that Min has a memoryless strategy that guarantees a non-positive mean-payoff value in a
strongly-connected bidding mean-payoff game having a vertex u withW (u) ≤ 0. Combining
with the memoryless strategy in parity games, we have the following.

I Theorem 19. Consider a bidding mean-payoff game G = 〈V,E,w〉 and a vertex v ∈ V .
If Min’s initial budget exceeds Thresh(v), he has a memoryless strategy that guarantees a
non-positive mean-payoff value.

4.3 A Memoryless Optimal Strategy for Max
The complementary result of the previous section is more involved. Consider a strongly-
connected bidding mean-payoff game G with a vertex u that has W (u) > 0. We devise a
Max strategy that guarantees a positive mean-payoff value in G. We start with a fragment
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of the general case called recurrent SCCs, and we generalize our solution later. We say that
an SCC G = 〈V,E〉 is a recurrent, if there is a vertex u ∈ V such that every cycle in G

includes u. We refer to u as the root of G.
Intuitively, the construction has two ingredients. First, we develop the idea of tying

energy and budget. We construct a Max strategy fM that guarantees the following: when
Max invests a unit of budget (with an appropriate normalization), then the energy increases
by at least one unit, and when the energy decreases by one unit, Max’s gain is at least z > 1
units of budget, where z arises from the game graph. The second ingredient concerns the
normalization factor. Recall that in the previous section it was a constant 1

N . Here on the
other hand, it cannot be constant. Indeed, if the normalization does not decrease as the
energy increases, Max’s budget will eventually run out, which is problematic since with a
budget of 1, Min can guarantee reaching energy level 0, no matter how high the energy is.
The challenge is to decide when and how to decrease the normalization factor. We split N
into energy blocks of size M , for a carefully chosen M ∈ N. The normalization factor of the
bids depends on the block in which the energy is in, and we refer to it as the currency of
the block. The currency of the n-th block is z−n. Note that the currency of the (n− 1)-th
block is higher by a factor of z from the currency of the n-th block. This is where the first
ingredient comes in: investing in the n-th block is done in the currency of the n-th block,
whereas gaining in the n-th block is in the higher currency of the (n−1)-th block. We switch
between the currencies when the energy moves between energy blocks only at the root u of
G. This is possible since G is a recurrent SCC. The mismatch between gaining and investing
is handy when switching between currencies as we cannot guarantee that when we reach u
the energy is exactly in the boundary of an energy block.

We formalize this intuition. We start by finding an alternative definition for the weighted
Richman function. Recall that in order to define W , we constructed a new graph Gu by
splitting u into us and ut. We define the contribution of a vertex v ∈ V to W (us), denoted
cont(v), as follows. We have cont(us) = 1. For a vertex v ∈ V , we define pre(v) = {v′ ∈ V :
v = v′− or v = v′+}. For v ∈ V , we define cont(v) =

∑
v′∈pre(v)

1
2 ·cont(v

′). The proof of the
following lemma uses the connection with probabilistic models, and follows from standard
arguments there.

I Lemma 20. We have W (u) =
∑
v∈V

(
cont(v) · w(v)

)
.

Let z =
(∑

v:w(v)≥0 cont(v) · w(v)
)
·
(∑

v:w(v)<0 cont(v) · |w(v)|
)−1. Since W (u) > 0,

we have z > 1. Let Gz be the game that is obtained from G by multiplying the negative-
weighted vertices by z, thus Gz = 〈V,E,wz〉, where wz(v) = w(v) if w(v) ≥ 0 and otherwise
wz(v) = z · w(v). We denote by W z the weighted threshold budgets in Gz. The following
lemma follows immediately from Lemma 20.

I Lemma 21. We have W z(u) = 0.

We define the partition into energy blocks. Let cycles(u) be the set of simple cycles
from u to itself and wM = maxπ∈cycles(u) |E(π)|. We choose M such that M ≥ (bM +
3wM )/(1 − z−1), where bM is the maximal bid as in the previous section. We partition
N into blocks of size M . For n ≥ 1, we refer to the n-th block as Mn, and we have
Mn = {M(n − 1),M(n − 1) + 1, . . . ,Mn − 1}. We use β↓n and β↑n to mark the upper and
lower boundaries of Mn, respectively. We use a M≥n to denote the set {Mn,Mn+1, . . .}.
Consider a finite outcome π that ends in u and let visitu(π) be the set of indices in which
π visits u. Let kI ∈ N be an initial energy. We say that π visits Mn if kI +E(π) ∈Mn. We
say that π stays in Mn starting from an index 1 ≤ i ≤ |π| if for all j ∈ visitu(π) such that
j ≥ i, we have kI + E(π1, . . . , πj) ∈Mn.
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We are ready to describe Max’s strategy fM . Suppose the game reaches a vertex v and the
energy in the last visit to u was inMn, for n ≥ 1. Then, Max bids z−n · 12

(
W z(v+)−W z(v−)

)
and proceeds to v+ upon winning. Note that currency changes occur only in u. Recall that
for an outcome π, the sum of payments of Max is BM (π) and let Ez(π) be the change in
energy in Gz. The proof of Lemma 16 can easily be adjusted to this setting.

I Lemma 22. Consider a Min strategy fm, and let π = out(fm, fM ) be a finite outcome that
starts in v, ends in v′, and stays within a block Mn, for n ≥ 1. We have W z(v)−W z(v′) ≤
Ez(π)− zn · BM (π). In particular, for π ∈ cycles(u), we have Ez(π) ≤ zn · BM (π).

We relate between the changes in energy in the two structures. The proof of the following
lemma can be found in the full version.

I Lemma 23. Consider an outcome π ∈ cycles(u). Then, E(π) ≥ Ez(π) and E(π) ≥
zEz(π).

A corollary of Lemmas 22 and 23 is the following. Recall that BM (π) is the amount that
Max pays, thus it is negative when Max gains budget. Intuitively, the corollary states that
if the energy increases in Mn, then Max invests in the currency of Mn, and if the energy
decreases, he gains in the currency of Mn−1.

I Corollary 24. Consider a Min strategy fm, and let π = out(fm, fM ) be a finite outcome
such that π ∈ cycles(u). Then, we have E(π) ≥ zn · BM (π) and zE(π) ≥ zn · BM (π).

Consider an initial Max budget BinitM ∈ [0, 1]. We choose an initial energy kI ∈ N with
which fM guarantees that energy level 0 is never reached. Recall the intuition that increasing
the energy by a unit requires an investment of a unit of budget in the right currency. Thus,
increasing the energy from the lower boundary β↓n of Mn to its upper boundary β↑n, costs
M · z−n. We use cost(Mn) to refer to M · z−n and cost(M≥n) =

∑∞
i=n cost(Mn). A first

guess for kI would be β↓n such that BinitM > cost(M≥n). This is almost correct. We need
some wiggle room to allow for changes in the currency. Let wiggle = 2wM + bM , where
recall that wM = maxπ∈cycles(u) E(π) and that bM is the maximal bid. We define kI to be
β↓n such that BinitM > wiggle ·z−(n−1) +cost(M≥n) and

∑n
i=1 cost(Mi) > 1, thus Min cannot

decrease the energy to 0.
Consider a Min strategy fm, and let π = out(fm, fM ) be a finite outcome. We partition

π into subsequences in which the same currency is used. Let π = π1 ·π2 · . . . ·π` be a partition
of π. For 1 ≤ i ≤ `, we use πi to refer to the prefix π1 · . . . ·πi of π, and we use ei = kI+E(πi)
to refer to the energy at the end of πi. Consider the partition in which, for 1 ≤ i ≤ `, the
prefix πi visits u and πi is a maximal subsequence that stays in some energy block.

Suppose πi stays in Mn. There can be two options; either the energy decreases in πi,
thus the energy before it ei−1 is in Mn+1 and the energy after it ei is in Mn, or it increases,
thus ei−1 ∈ Mn−1 and ei ∈ Mn. We then call πi decreasing and increasing, respectively.
The definition of wM and the fact that G is recurrent imply that upon entering Mn, the
energy is within wM of the boundary. Thus, in the case that πi is decreasing, the energy at
the end of πi is ei ≥ β↑n − wM and in the case it is increasing, we have ei ≤ β↓n + wM . Let
`0 = 0, and for i ≥ 1, let `i = (β↓n+1 − wM ) − ei in the first case and `i = (β↓n + wM ) − ei
in the second case. Note that `i ∈ {0, . . . , 2wM}. In the full version, we prove the following
invariant on Max’s budget when changing between energy blocks.

I Lemma 25. For every i ≥ 0, suppose πi ends in Mn. Then, Max’s budget is at least
(wiggle+ `i) · z−(n̂−1) + cost(M≥n̂), where n̂ = n+ 1 if πi is decreasing and n̂ = n if πi is
increasing.
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It is not hard to show that Lemma 25 implies that fM is legal. That is, consider a finite
outcome π that starts immediately after a change in currency. Using Lemma 22, we can
prove by induction on the length of π that Max has sufficient budget for bidding. The harder
case is when π decreases, and the proof follows from the fact that wiggle is in the higher
currency of the lower block. Combining Lemma 25 with our choice of the initial energy,
we get that the energy never reaches 0 as otherwise Min invests a budget of more than 1.
Lemma 13 implies that Max guarantees a positive mean-payoff value in a strongly-connected
game.

I Theorem 26. Consider a bidding mean-payoff game G = 〈V,E,w〉 in which all BSCCs
are recurrent. For a vertex v ∈ V , if Max has an initial budget that is greater than 1 −
Thresh(v), he has a memoryless strategy that guarantees a positive mean-payoff value.

General strongly-connected games

In the full version, we develop a constant-memory strategy for Max that guarantees a positive
mean-payoff value. The difficulty lies in coping with outcomes in which the energy forms
a sine-like wave on the boundary of an energy block. In recurrent SCCs, we can change
currency every time the wave changes block, which does not work in general SCCs as we
show in an example. We develop further the two ingredients that are used in fM . First,
recall that investing in an energy block Mn is in the currency of the n-th block, whereas
gaining is in the higher currency of the (n − 1)-th block. In general games, we need a
stronger property; investing in Mn is in the lower currency of the (n + 1)-th block while
gaining is still in the higher currency of the (n− 1)-th block. Next, we differentiate between
even blocks, i.e., M2n, and odd blocks, i.e., M2n+1, for some n ∈ N. When the energy level
reaches an even block M2n, the currency used is z−n. In order to determine the currency
in the odd blocks, we take the history of the play into account; the currency matches the
currency in the last energy block that was visited before entering M2n+1. Hence, we call
our strategy a constant-memory strategy. The odd blocks serve as “buffers” so that when
we change currency, there is a sufficiently large change in energy that in turn implies that
Max’s budget sufficiently increases compared with the change in energy. Combining with
the memoryless strategy in parity games of Theorem 9, we have the following.

I Theorem 27. Consider a bidding mean-payoff game G = 〈V,E,w〉. For a vertex v ∈ V , if
Max has an initial budget that is greater than 1−Thresh(v), he has a constant-memoryless
strategy that guarantees a positive mean-payoff value.

5 Discussion and Future Directions

We introduce and study infinite-duration bidding games in which the players bid for the
right to move the token. This work belongs to a line of works that transfer concepts and
ideas between the areas of formal methods and algorithmic game theory (AGT, for short).
Richman games originated in the game theory community in the 90s and recently gained
interest by the AGT community [30]. We combine them with the study of infinite-duration
games, which is well-studied in the formal methods community. Prior to this work, a series
of works focused on applying concepts and ideas from formal methods to resource-allocation
games [10, 8, 9, 5, 6, 34], which constitutes a well-studied class of games in AGT. More to the
formal methods side, there are many works on games that share similar concepts to these that
are studied in AGT. For example, logics for reasoning about multi-agent systems [3, 19, 39],
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studies of equilibria in games related to synthesis and repair problems [18, 25, 1, 15], and
studies of infinite-duration non-zero-sum games [21, 16, 17, 12].

There are several problems we left open as well as plenty of future research directions. We
list a handful of them below. We showed that the complexity of THRESH-BUDG is in NP
and coNP. We leave open the problem of determining its exact complexity. We conjecture
that it is reducible from solving simple stochastic games, which will show that it is as hard
as several other problems whose exact complexity is unknown. In this work we focused
on parity and mean-payoff games. Energy games are games that are played on a weighted
graph, where one of the players tries to reach negative energy and the second player tries
to prevent it. Note that unlike parity and mean-payoff, the energy objective is not prefix
independent. We can show that threshold budgets exist in energy games. The complexity of
THRESH-BUDG in energy games is interesting and is tied with recent work on optimizing
the probability of reaching a destination in a weighted MDP [26, 41]. For acyclic energy
bidding games, the problem is PP-hard using a result in [26], and for a single-vertex games
the problem is in P using the direct formula of [32]. For general games the problem is open.
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