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Abstract
Modern distributed systems often rely on so called weakly consistent databases, which achieve
scalability by weakening consistency guarantees of distributed transaction processing. The se-
mantics of such databases have been formalised in two different styles, one based on abstract
executions and the other based on dependency graphs. The choice between these styles has been
made according to intended applications. The former has been used for specifying and verifying
the implementation of the databases, while the latter for proving properties of client programs of
the databases. In this paper, we present a set of novel algebraic laws (inequalities) that connect
these two styles of specifications. The laws relate binary relations used in a specification based on
abstract executions to those used in a specification based on dependency graphs. We then show
that this algebraic connection gives rise to so called robustness criteria: conditions which ensure
that a client program of a weakly consistent database does not exhibit anomalous behaviours due
to weak consistency. These criteria make it easy to reason about these client programs, and may
become a basis for dynamic or static program analyses. For a certain class of consistency models
specifications, we prove a full abstraction result that connects the two styles of specifications.
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1 Introduction

Modern distributed systems often rely on databases that achieve scalability by weakening
consistency guarantees of distributed transaction processing. These databases are said
to implement weak consistency models. Such weakly consistent databases allow for faster
transaction processing, but exhibit anomalous behaviours, which do not arise under a database
with a strong consistency guarantee, such as serialisability. Two important problems for the
weakly consistent databases are: (i) to find elegant formal specifications of their consistency
models and to prove that these specifications are correctly implemented by protocols used
in the databases; (ii) to develop effective reasoning techniques for applications running on
top of such databases. These problems have been tackled by using two different formalisms,
which model the run-time behaviours of weakly consistent databases differently.

When the goal is to verify the correctness of a protocol implementing a weak consistency
model, the run-time behaviour of a distributed database is often described in terms of
abstract executions [13], which abstract away low-level implementation details of the database
(Section 2). An example of abstract execution is depicted in Figure 1; ignore the bold edges
for the moment. It comprises four transactions, T0, T1, T2, and S; transaction T0 initializes
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Figure 1 An example of abstract execution and of dependency graph.

the value of an object acct to 0; transactions T1 and T2 increment the value of acct by 50
and 25, respectively, after reading its initial value; transaction S reads the value of acct.
In this abstract execution, both the updates of T1 and T2 are VISible to transaction S, as
witnessed by the two VIS-labelled edges: T1

VIS
ÝÝÑ S and T2

VIS
ÝÝÑ S.

On the other hand, the update of T1 is not visible to T2, and vice versa, as indicated by
the absence of an edge labelled with VIS between these transactions. Intuitively, the absence
of such an edge means that T1 and T2 are executed concurrently. Because S sees T1 and T2,
as indicated by VIS-labelled edges from T1 and T2 to S, the result of reading the value of acct
in S must be one of the values written by T1 and T2. However, because these transactions
are concurrent, there is a race, or conflict, between them. The AR-labelled edge connecting
T1 to T2, is used to ARbitrate the conflict: it states that the update of T1 is older than the
one of T2, hence the query of acct in S returns the value written by the latter.

The style of specifications of consistency models in terms of abstract executions can be
given by imposing constraints over the relations VIS,AR (Section 2.1). A set of transactions
T “ tT1, T2, ¨ ¨ ¨ u, called a history, is allowed by a consistency model specification if it is
possible to exhibit two witness relations VIS,AR over T such that the resulting abstract
execution satisfies the constraints imposed by the specification. For example, serialisability
can be specified by requiring that the relation VIS should be a strict total order. The set of
transactions tT0, T1, T2, Su from Figure 1 is not serialisable: it is not possible to choose a
relation VIS such that the resulting abstract execution relates the transactions T1, T2 and
the results of read operations are consistent with visible updates.

Specifications of consistency models using abstract executions have been used in the work
on proving the correctness of protocols implementing weak consistency models, as well as on
justifying operational, implementation-dependent descriptions of these models [11, 12, 13, 15].

The second formalism used to define weak consistency models is based on the notion of
dependency graphs [1], and it has been used for proving properties of client programs running
on top of a weakly consistent database. Dependency graphs capture the data dependencies of
transactions at run-time (Section 3); the transactions tT0, T1, T2, Su depicted above, together
with the bold edges but without normal edges, constitute an example of dependency graph.
The edge T2

WRpacctq
ÝÝÝÝÝÑ S1 denotes a write-read dependency. It means that the read of acct

in transaction S returns the value written by transaction T2, and the edges T0
WRpacctq
ÝÝÝÝÝÑ T1

and T0
WRpacctq
ÝÝÝÝÝÑ T2 mean something similar. The edge T1

WWpacctq
ÝÝÝÝÝÝÑ T2 denotes a write-write

dependency, and says that the write to acct in T2 supersedes the write to the same object in

1 For simplicity, references to the object acct have been removed from the dependencies of Figure 1.
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T1. The remaining edges T1
RWpacctq
ÝÝÝÝÝÑ T2 and T2

RWpacctq
ÝÝÝÝÝÑ T1 express anti-dependencies. The

former means that T1 reads a value for object acct which is older than the value written by
T2.

When using dependency graphs, consistency models are specified as sets of transactions
for which there exist WR,WW,RW relations that satisfy certain properties, usually stated
as particular relations being acyclic [7, 16]; for example, serialisability can be specified by
requiring that dependency graphs are acyclic. Because dependencies of transactions can be
over-approximated at the compilation time, specifications of consistency models in terms of
dependency graphs have been widely used for manually or automatically reasoning about
properties of client programs of weakly consistent databases [19, 27]. They have also been
used in the complexity and undecidability results for verifying implementations of consistency
models [9].

Our ultimate aim is to reveal a deep connection between these two styles of specifying
weak consistency models, which was hinted at for specific consistent models in the literature.
Such a connection would, for instance, give us a systematic way to derive a specification of a
weak consistency model based on dependency graphs from the specification based on abstract
executions, while ensuring that the original and the derived specifications are equivalent in a
sense. In doing so, it would enable us to prove properties about client programs of a weakly
consistent database using techniques based on dependency graphs [9, 16, 18] even when the
consistency model of the database is specified in terms of abstract executions.

In this paper, we present our first step towards this ultimate aim. First, we observe that
each abstract execution determines an underlying dependency graph. Then we study the
connection between these two structures at an algebraic level. We propose a set of algebraic
laws, parametric in the specification of a consistency model to which the original abstract
execution belongs (Section 4). These laws can be used to derive properties of the form
RG Ď RA: here RG is an expression from the Kleene Algebra with Tests [22] whose ground
terms are run-time dependencies of transactions, and tests are properties over transactions.
The relation RA is one of the fundamental relations of abstract executions: VIS, AR, or a novel
relation VIS´1 that we call anti-visibility, defined as VIS´1

“ tpT, Sq |  pS
VIS
ÝÝÑ T qu. Some of

the algebraic laws that we propose show that there is a direct connection between each kind
of dependencies and the relations of abstract executions: WR Ď VIS,WW Ď AR, and RW Ď

VIS´1. The other laws capture the connection between the relations of abstract executions
VIS,AR, and VIS´1. The exact nature of this connection depends on the specification of the
consistency model of the considered abstract execution.

We are particularly interested in deriving properties of the form RG Ď AR. Properties of
this form give rise to so called robustness criteria for client programs, conditions ensuring that
a program only exhibits serialisable behaviours even when it runs under a weak consistency
model [7, 10, 19]. Because AR is a total order, this implies that RG must be acyclic, hence
all cycles must be in the complement of RG. We can then check for the absence of such
critical cycles at compile time: because dependency graphs of serialisable databases are
always acyclic, this ensures that said application only exhibits serialisable behaviours.

As another contribution we show that, for a relevant class of consistency models, our
algebraic laws can be used to derive properties which are not only necessary, but also sufficient,
for dependency graphs in such models (Section 5).
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2 Abstract Executions

We consider a database storing objects in Obj “ tx, y, ¨ ¨ ¨ u, which for simplicity we assume
to be integer-valued. Client programs can interact with the database by executing operations
from a set Op, grouped inside transactions. We leave the set Op unspecified, apart from
requiring that it contains read and write operations over objects: twritepx, nq, readpx, nq |
x P Obj, n P Nu Ď Op.

Histories. To specify a consistency model, we first define the set of all client-database
interactions allowed by the model. We start by introducing (run-time) transactions and
histories, which record such interactions in a single computation. Transactions are elements
from a set T “ tT, S, ¨ ¨ ¨ u; the operations executed by transactions are given by a function
behav : T Ñ 2Op, which maps a transaction T to a set of operations that are performed
by the transaction and can be observed by other transactions. We often abuse notations
and just write o P T (or T Q o) instead of o P behavpT q. We adopt similar conventions for
O Ď behavpT q and O “ behavpT q where O is a subset of operations.

We assume that transactions enjoy atomic visibility : for each object x, (i) a transaction
S never observes two different writes to x from a single transaction T and (ii) it never reads
two different values of x. Formally, the requirements are that if T Q pwrite x : nq and
T Q pwrite x : mq, or T Q pread x : nq and T Q pread x : mq, then n “ m. Our treatment of
atomic visibility is taken from our previous work on transactional consistency models [15].
Atomic visibility is guaranteed by many consistency models [5, 19, 28]. We point out that
although we focus on transactions in distributed systems in the paper, our results apply to
weak shared-memory models [4]; there a transaction T is the singleton set of a read operation
(T “ tread x : nu), that of a write operation (T “ twrite x : nu), or the set of read and
write representing a compare and set operation (T “ tread x : n, write x : mu).

For each object x, we let Writesx :“ tT | Dn. pwrite x : nq P T u and Readsx :“ tT |
Dn, pread x : nq P T u be the sets of transactions that write to and read from x, respectively.

I Definition 1. A history T is a finite set of transactions tT1, T2, ¨ ¨ ¨ , Tnu.

Consistency Models. A consistency model Γ is a set of histories that may arise when client
programs interact with the database. To define Γ formally, we augment histories with two
relations, called visibility and arbitration.

I Definition 2. An abstract execution X is a tuple pT ,VIS,ARq where T is a history and
VIS,AR Ď pT ˆ T q are relations on transactions such that VIS Ď AR and AR is a strict total
order2.

We often write T VIS
ÝÝÑ S for pT, Sq P VIS, and similarly for other relations. For each abstract

execution X “ pT ,VIS,ARq, we let TX :“ T , VISX :“ VIS, and ARX :“ AR.
In an abstract execution X , T VISX

ÝÝÝÑ S means that the read operations in S may depend
on the updates of T , while T ARX

ÝÝÝÑ S means that the update operations of S supersede those
performed by T . Naturally, one would expect that the value fetched by read operations in a
transaction T is the most up-to-date one among all the values written by transactions visible
to T . For simplicity, we assume that such a transaction always exists.

2 A relation R Ď T ˆ T is a strict (partial) order if it is transitive and irreflexive; it is total if for any
T, S P T , either T “ S, pT, Sq P R or pS, T q P R.



A. Cerone, A. Gotsman, and H. Yang 26:5

IDefinition 3. An abstract execution X “ pT ,VIS,ARq respects the Last Write Win (LWW)
policy, if for all T P T such that T Q pread x : nq, the set T 1 :“

`

VIS´1
pT q XWritesx

˘

is not
empty, and maxARpT 1q Q pwrite x : nq, where maxARpT 1q is the AR-supremum of T 1.

I Definition 4. An abstract execution X “ pT ,VIS,ARq respects causality if VIS is transitive.
Any abstract execution that respects both causality and the LWW policy is said to be valid.

We always assume an abstract execution to be valid, unless otherwise stated. Causality is
respected by all abstract executions allowed by several interesting consistency models. They
also simplify the mathematical development of our results. In [17, Appendix B], we explain
how our results can be generalised for consistency models that do not respect causality. We
also discuss how the model can be generalised to account for sessions and session guarantees
[29].

We can specify a consistency model using abstract executions in two steps. First, we
identify properties on abstract executions, or axioms, that formally express an informal
consistency guarantee, and form a set with the abstract executions satisfying the properties.
Next, we project abstract executions in this set to underlying histories, and define a consistency
model Γ to be the set of resulting histories.

Abstract executions hide low-level operational details of the interaction between client
programs and weakly consistent databases. This benefit has been exploited for proving that
such databases implement intended consistency models [11, 12, 13, 15, 20].

2.1 Specification of Weak Consistency Models
In this section we introduce a simple framework for specifying consistency models using the
style of specification discussed above. In our framework, axioms of consistency models relate
the visibility and arbitration relations via inequalities of the form R1 ; ARX ; R2 Ď VISX ,
where R1 and R2 are particular relations over transactions, and X is an abstract execution. As
we will explain later, axioms of this form establish a necessary condition for two transactions
in an abstract execution X to be related by VISX , i.e. they cannot be executed concurrently.
Despite its simplicity, the framework is expressive enough to capture several consistency
models for distributed databases [15, 23]; as we will show in Section 4, one of the benefits of
this simplicity is that we can infer robustness criteria of consistency models in a systematic
way.

As we will see, the relations R1, R2 in axioms of the form above, may depend on the
visibility relation of the abstract execution X . To define such relations, we introduce the
notion of specification function.

I Definition 5. A function ρ : 2pTˆTq Ñ 2pTˆTq is a specification function if for every history
T and relation R Ď T ˆ T , then ρpRq “ ρpT ˆ T q XR?. Here R? is the reflexive closure of
R. A consistency guarantee, or simply guarantee, is a pair of specification functions pρ, πq.

Definition 5 ensures that specification functions are defined locally: for any R1, R2 Ď

T ˆ T , ρpR1 Y R2q “ ρpR1q Y ρpR2q, and in particular for any R Ď T ˆ T , ρpRq “
´

Ť

T,SPT ρptpT, Squq
¯

XR?. The reflexive closure in Definition 5 is needed because we will
always apply specification functions to irreflexive relations (namely, the visibility relation
of abstract executions), although the result of this application need not be irreflexive. For
example, ρIdpRq :“ Id, where Id is the identity function, is a valid specification function.

Each consistency guarantee pρ, πq defines, for each abstract execution X , an axiom of
the form ρpVISX q ; ARX ; πpVISX q Ď VISX : if this axiom is satisfied by X , we say that X

CONCUR 2017



26:6 Algebraic Laws for Weak Consistency

Function Definition Guarantee Associated Axiom
ρIdpRq = Id pρId, ρIdq AR Ď VIS
ρSIpRq “ RzId pρId, ρSIq AR ; VIS Ď VIS
ρxpRq “ rWritesxs pρx, ρxq rWritesxs ; AR ; rWritesxs Ď VIS
ρSpRq “ rSerTxs pρS , ρSq rSerTxs ; AR ; rSerTxs Ď VIS

Figure 2 Some Specification Functions and Consistency Guarantees.

satisfies the consistency guarantee pρ, πq. Consistency guarantees impose a condition on when
two transactions T, S in an abstract execution X are not allowed to execute concurrently,
i.e. they must be related by a VISX edge. By definition, in abstract executions visibility
edges cannot contradict arbitration edges, hence it is only natural that the order in which
the transactions T, S above are executed is determined by the arbitration order: in fact, the
definition of specification function ensures that ρpVISX q Ď VISX ? and πpVISX q Ď VISX ?, so
that pρpVISX q ; ARX ; πpVISX qq Ď ARX for all abstract executions X .

I Definition 6. A consistency model specification Σ or x-specification is a set of consistency
guarantees tpρi, πiquiPI for some index set I.

We define ExecutionspΣq to be the set of valid abstract executions that satisfy all the
consistency guarantees of Σ. We let modelOfpΣq :“ tTX | X P ExecutionspΣqu.

Examples of Consistency Model Specifications

Figure 2 shows several examples of specification functions and consistency guarantees. In
the figure we use the relations rT s :“ tpT, T q | T P T u and ros :“ tpT, T q | T Q ou for T Ď T
and o P Op. The guarantees in the figure can be composed together to specify, among others,
several of the consistency models considered in [15]: we give some examples of them below.
Each of these consistency models allows different kinds of anomalies: due to lack of space,
these are illustrated in [17, Appendix A].

Causal Consistency [24]. This is the weakest consistency model we consider. It is specified
by ΣCC “ H. In this case, all abstract executions in ExecutionspΣCCq respect causality. The
execution in Figure 1 is an example in ExecutionspΣCCq.

Red-Blue Consistency [23]. This model extends causal consistency by marking a subset
of transactions as serialisable, and ensuring that no two such transactions appear to execute
concurrently. We model red-blue consistency via the x-specification ΣRB “ tpρS , ρSqu. In
the definition of ρS , an element SerTx P Op is used to mark transactions as serialisable, and
the specification requires that in every execution X P ExecutionspΣRBq, any two transactions
T, S Q SerTx in X be compared by VISX . The abstract execution from Figure 1 is included
in ExecutionspΣRBq, but if it were modified so that transactions T1, T2 were marked as
serialisable, then the result would not belong to ExecutionspΣRBq.

Parallel Snapshot Isolation (PSI) [26, 28]. This model strengthens causal consistency by
enforcing the Write Conflict Detection property: transactions writing to one same object do
not execute concurrently. We let ΣPSI “ tpρx, ρxquxPObj: every execution X P ExecutionspΣPSIq

satisfies the inequality prWritesxs ; ARX ; rWritesxsq Ď VISX , for all x P Obj.
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Snapshot Isolation (SI) [6]. This consistency model strengthens PSI by requiring that, in
executions, the set of transactions visible to any transaction T is a prefix of the arbitration
relation. Formally, we let ΣSI “ ΣPSIYtpρId, ρSIqu. The consistency guarantee pρId, ρSIq ensures
that any abstract execution X P ExecutionspSIq satisfies the property pARX ; VISX q Ď VISX

3.
Similarly to what we did to specify Red-Blue consistency, we can strengthen SI by

allowing the possibility to mark transactions as serialisable. The resulting x-specification is
ΣSI`SER “ ΣSIYtpρS , ρSqu. This x-specification captures a fragment of Microsoft SQL server,
which allows the user to select the consistency model at which a transaction should run [25].

Serialisability. Executions in this consistency model require the visibility relation to be total.
This can be formalised via the x-specification ΣSER :“ tpρId, ρIdqu. Any X P ExecutionspΣSERq

is such that ARX Ď VISX , thus enforcing VISX to be a strict total order.

3 Dependency Graphs

We present another style of specification for consistency models based on dependency
graphs, introduced in [1]. These are structures that capture the data-dependencies between
transactions accessing one same object. Such dependencies can be over approximated at
compilation time. For this reason, they have found use in static analysis [7, 16, 18, 19] for
programs running under a weak consistency model.

I Definition 7. A dependency graph is a tuple G “ pT ,WR,WW,RWq, where T is a
history and
1. WR : Obj Ñ 2T ˆT is such that:

(a) @T, S P T .@x. T WRpxq
ÝÝÝÝÑ S ùñ T ‰ S ^ Dn. pT Q write x : nq ^ pS Q read x : nq,

(b) @S P T .@x. pS Q read x : nq ùñ DT. T
WRpxq
ÝÝÝÝÑ S,

(c) @T, T 1, S P T .@x. pT WRpxq
ÝÝÝÝÑ S ^ T 1

WRpxq
ÝÝÝÝÑ Sq ùñ T “ T 1;

2. WW : Obj Ñ 2TˆT is such that for every x P Obj, WWpxq is a strict, total order over
Writesx;

3. RW : Obj Ñ 2TˆT is such that S RWpxq
ÝÝÝÝÑ T iff S ‰ T and DT 1. T 1 WRpxq

ÝÝÝÝÑ S^T 1
WWpxq
ÝÝÝÝÑ T .

Given a dependency graph G “ pT ,WR,WW,RWq, we let TG :“ T , WRG :“ WR,
WWG :“ WW, RWG :“ RW. The set of all dependency graphs is denoted as Graphs.
Sometimes, we commit an abuse of notation and use the symbol WR to denote the relation
Ť

xPObj WRpxq, and similarly for WW and RW. The actual meaning of WR will always be
clear from the context.

Let G P Graphs. The write-read dependency T WRGpxq
ÝÝÝÝÝÑ S means that S reads the value of

object x that has been written by T . By Definition 7, for any transaction S P Readsx there
exists exactly one transaction T such that T WRGpxq

ÝÝÝÝÝÑ S. The relation WWGpxq establishes a
total order in which updates over object x are executed by transactions; its elements are called
write-write dependencies. Edges in the relation RWGpxq take the name of anti-dependencies.
T

RWGpxq
ÝÝÝÝÝÑ S means that transaction T fetches some value for object x, but this is later

updated by S. Given an abstract execution X , we can extract a dependency graph graphpX q
such that TgraphpX q “ TX .

3 To be precise, the property induced by the guarantee pρId, ρSIq is pARX ; pVISX zIdqq Ď ARX . However,
since VISX is an irreflexive relation, VISX zId “ VISX . Also, note that ρpRq “ R is not a specification
function, so we cannot replace the guarantee pρId, ρSIq with pρId, ρq.
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I Definition 8. Let X “ pT ,VIS,ARq be an execution. For x P Obj, we define graphpX q “
pT ,WRX ,WWX ,RWX q, where:

1. T
WRX pxq
ÝÝÝÝÝÑ S ðñ pS Q read x : _q ^ T “ maxARpVIS´1

pSq XWritesxq;

2. T
WWX pxq
ÝÝÝÝÝÑ S ðñ T

AR
ÝÝÑ S ^ T, S P Writesx;

3. T
RWX pxq
ÝÝÝÝÝÑ S ðñ S ‰ T ^ pDT 1. T 1

WRX pxq
ÝÝÝÝÝÑ T ^ T 1

WWX pxq
ÝÝÝÝÝÑ Sqq.

I Proposition 9. For any valid abstract execution X , graphpX q is a dependency graph.

Specification of Consistency Models using Dependency Graphs. We interpret a depend-
ency graph G as a labelled graph whose vertices are transactions in Tx, and whose edges are
pairs of the form T

R
ÝÑ S, where R P tWRGpxq,WWGpxqG ,RWGpxq | x P Obju. To specify a

consistency model, we employ a two-steps approach. We first identify one or more conditions
to be satisfied by dependency graphs. Such conditions require cycles of a certain form not to
appear in a dependency graph. Then we define a consistency model by projecting the set of
dependency graphs satisfying the imposed conditions into the underlying histories. This style
of specification is reminiscent of the one used in the CAT [4] language for formalising weak
memory models. In the following we treat the relations WRGpxq,WWGpxq,RWGpxq both as
set-theoretic relations, and as edges of a labelled graph.

I Definition 10. A dependency graph based specification, or simply g-specification, is a set
∆ “ tδ1, ¨ ¨ ¨ , δnu, where for each i P t1, ¨ ¨ ¨ , nu, δi is a function of type Graphs Ñ 2pTˆTq and
satisfies δipGq Ď pWRG YWWG Y RWGq

˚ for every G P Graphs.
Given a g-specification ∆, we define Graphsp∆q “ tG P Graphs | @δ P ∆. δpGq X Id “ Hu,

and we let modelOfp∆q “ tT | DWR,WW,RW. pT ,WR,WW,RWq P Graphsp∆qu.

The requirement imposed over the functions δ1, ¨ ¨ ¨ , δn ensures that, whenever pT, Sq P δipGq,
for some dependency graph G, then there exists a path in G, that connects T to S. For ∆ “

tδiu
n
i“1 and G P Graphs, the requirement that δipGq X Id “ H means that G does not contain

any cycle T0
R0
ÝÝÑ T1

R1
ÝÝÑ ¨ ¨ ¨

Rn´1
ÝÝÝÑ Tn, such that T0 “ Tn, and pR0 ; ¨ ¨ ¨ ; Rn´1q Ď δipGq.

Examples of g-specifications of consistency models. Below we give some examples of
g-specifications for the consistency models presented in Section 2.

I Theorem 11.
1. An execution X is serialisable iff graphpX q does not contain any cycle. That is,

modelOfpΣSERq “ modelOfptδSERuq, where δSERpGq “ pWRG YWWG Y RWGq
`.

2. An execution X is allowed by snapshot isolation iff graphpX q only admits cycles with
at least two consecutive anti-dependency edge. That is, modelOfpΣSIq “ modelOfptδSIuq,
where δSIpGq “ ppWRG YWWGq ; RWG?q`.

3. An execution X is allowed by parallel snapshot isolation iff graphpX q has no cycle where
all anti-dependency edges are over the same object. Let δPSI0pGq “ pWRG Y WWGq

`,
δPSIpxqpGq “ p

Ť

xPObjpWRG YWWGq
˚ ; RWGpxqq

`, and define ∆PSI “ tδPSI0u Y tδPSIpxq |

x P Obju. Then, modelOfpΣPSIq “ modelOfp∆PSIq.

Theorem 11(1) was proved in [1]. The only if condition of Theorem 11(2) was proved in
[19]; we proved the if condition of Theorem 11(2) in [16]. Theorem 11(3) improves on the
specification we gave for PSI in [16]; the latter does not have any constraints on the objects
to which anti-dependencies refer to. We outline the proof of Theorem 11(3) in Section 5.
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(a) Algebraic laws for sets of transactions (c) Algebraic laws for abstract Executions

(a.1) rT 1s Ď Id (a.2) rT1 X T2s “ rT1s ; rT2s (c.1) WRpxq Ď VIS (c.2) WWpxq Ď AR
(a.3) pR1 ; rT 1sq XR2 “ pR1 XR2q ; rT 1s (c.3) RWpxq Ď VIS´1 (c.4) VIS` Ď VIS
(a.4) prT 1s ; R1q XR2 “ rT 1s ; pRXR2q (c.5) AR` Ď AR (c.6) VIS Ď AR

(b) Algebraic laws for (anti-)dependencies (c.7) rWritesxs ; VIS ; RWpxq Ď AR

(b.1) WRpxq Ď rWritesxs ; WRpxq ; rReadsxs (c.8) VIS ; VIS´1
Ď VIS´1

(b.2) WWpxq Ď rWritesxs ; WWpxq ; rWritesxs (c.9) VIS´1 ; VIS Ď VIS´1

(b.3) RWpxq Ď rReadsxs ; RWpxq ; rWritesxs (c.10) pVIS´1 ; VISq X Id Ď H
(b.4) WRpxq Ď WRpxqzId (c.11) pVIS ; VIS´1

q X Id Ď H
(b.5) WWpxq Ď WWpxqzId (c.12) ARX Id Ď H
(b.6) RWpxq Ď RWpxqzId

(d) Algebraic laws induced by the consistency guarantee pρ, πq

(d.1) ρpVISq ; AR ; πpVISq Ď VIS (d.2) pπpVISq ; VIS´1 ; ρpVISqqzId Ď AR
(d.3) pAR ; πpVISq ; VIS´1

q X ρpT ˆ T q´1
Ď VIS´1

(d.4) pVIS´1 ; ρpVISq ; ARq X πpT ˆ T q´1
Ď VIS´1

Figure 3 Algebraic laws satisfied by an abstract execution X “ pT ,VIS,ARq. Here graphpX q “
pT ,WR,WW,RWq. The inequalities in part (d) are valid under the assumption that X P

Executionsptpρ, πquq.

4 Algebraic Laws for Weak Consistency

Having two different styles for specifying consistency models gives rise to the following
problems:

Weak Correspondence Problem. Given a x-specification Σ, determine a non-trivial g-
specification ∆ which over-approximates Σ, that is such that modelOfpΣq Ď modelOfp∆q.

Strong Correspondence Problem. Given a x-specification Σ, determine an equivalent
g-specification ∆, that is such that modelOfpΣq “ modelOfp∆q.

We first focus on the weak correspondence problem, and we discuss the strong cor-
respondence problem in Section 5. This problem is not only of theoretical interest. De-
termining a g-specification ∆ that over-approximates a x-specification Σ corresponds to
establishing one or more conditions satisfied by all cycles of dependency graphs from the set
tgraphpX q | X P ExecutionspΣqu. Cycles in a dependency graph that respect such a condition
are called Σ-critical (or simply critical), and graphs that admit a non-Σ-critical cycle cannot
be obtained from abstract executions in ExecutionspΣq. One can ensure that an application
running under the model Σ is robust, i.e. it only produces serialisable behaviours, by checking
for the absence of Σ-critical cycles at static time [7, 19]. Robustness of an application can also
be checked at run-time, by incrementally constructing the dependency graph of executions,
and detecting the presence of Σ-critical cycles [31].

General Methodology. Let Σ be a given x-specification. We tackle the weak correspondence
problem in two steps.

First, we identify a set of inequalities that hold for all the executions X satisfying
consistency guarantees pρ, πq in Σ. There are two kinds of such inequalities. The first are
the inequalities in Figure 3, and the second the inequalities corresponding to the axioms of
the Kleene Algebra p2TˆT,H, Id,Y, ;, ¨˚q and the Boolean algebra p2TˆT,H,Tˆ T,Y,X, ¨q.
The exact meaning of the inequalities in Figure 3 is discussed later in this section.
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Second, we exploit our inequalities to derive other inequalities of the form RX Ď ARX
for every X P ExecutionspΣq. Here RX is a relation built from dependencies in graphpX q,
i.e. RX Ď pWRX YWWX Y RWX q

˚. Because ARX is acyclic (that is AR`X X Id Ď H), we
may conclude that RX is acyclic for any X P ExecutionspΣq. In particular, we have that
modelOfpΣq Ď modelOfptδuq, where δ is a function that maps, for every abstract execution
X , the dependency graph graphpX q into the relation RX .

Some of the inequalities we develop, namely those in Figure 3(d), are parametric in
the consistency guarantee pρ, πq. As a consequence, our approach can be specialised to any
consistency model that is captured by our framework. To show its applicability, we derive
critical cycles for several of the consistency models that we have presented.

Presentation of the Laws. Let X “ pT ,VIS,ARq, and graphpX q “ pT ,WR,WW,RWq. We
now explain the inequalities in Figure 3. Among these, the inequalities in Figures 3(a) and
(b) should be self-explanatory.

Let us discuss the inequalities of Figure 3(c). The inequalities (c.1), (c.2) and (c.3)
relate dependencies to either basic or derived relations of abstract executions. Dependencies
of the form WR,WW are included in the relations VIS,AR, respectively, as established by
inequalities (c.1) and (c.2). The inequality (c.3), which we prove presently, is non-standard.

It relates anti-dependencies to a novel anti-visibility relation VIS´1, defined as T VIS´1
ÝÝÝÑ S iff

 pS
VIS
ÝÝÑ T q. In words, S is anti-visible to T if T does not observe the effects of S. As we

will explain later, anti-visibility plays a fundamental role in the development of our laws.

Proof of Inequality (c.3). Suppose T RWpxq
ÝÝÝÝÑ S for some object x P Obj. By definition,

T ‰ S, and there exists a transaction T 1 such that T 1 WRpxq
ÝÝÝÝÑ T and T 1

WWpxq
ÝÝÝÝÑ S. In

particular, T 1 VIS
ÝÝÑ T and T 1 AR

ÝÝÑ S by the inequalities (c.1) and (c.2), respectively. Now,
if it were S VIS

ÝÝÑ T , then we would have that T 1 is not the AR-supremum of the set of
transactions visible to T , and writing to object x. But this contradicts the definition of
graphpX q, and the edge T 1 WRpxq

ÝÝÝÝÑ T . Therefore, T VIS´1
ÝÝÝÑ S. J

Another non-trivial inequality is (c.7) in Figure 3(c). It says that if a transaction T
reads a value for an object x that is later updated by another transaction S (T RW

ÝÝÑ Sq,
then the update of S is more recent (i.e. it follows in arbitration) than all the updates to x
seen by T . We prove it in [17, Appendix C]. The other inequalities in Figure 3(c) are self
explanatory.

The inequalities in Figure 3(d) are specific to a consistency guarantee pρ, πq, and hold for
an execution X when the execution satisfies pρ, πq. The inequality (d.1) is just the definition
of consistency guarantee. The next inequality (d.2) is where the novel anti-visibility relation,
introduced previously, comes into play. While the consistency guarantee pρ, πq expresses when
arbitration induces transactions related by visibility, the inequality (d.2) expresses when
anti-visibility induces transactions related by arbitration. To emphasise this correspondence,
we call the inequality (d.2) co-axiom induced by pρ, πq. Later in this section, we show how
by exploiting the co-axiom induced by several consistency guarantees, we can derive critical
cycles of several consistency models.

Proof of Inequality (d.2). Assume X P Executionsptpρ, πquq. Let T, T 1, S1, S P T be such

that T ‰ S, T πpVISq
ÝÝÝÝÑ T 1

VIS´1
ÝÝÝÑ S1

ρpVISq
ÝÝÝÝÑ S. Because AR is total, either S AR

ÝÝÑ T or T AR
ÝÝÑ S.

However, the former case is not possible. If so, we would have S1 ρpVISq
ÝÝÝÝÑ S

AR
ÝÝÑ T

πpVISq
ÝÝÝÝÑ T 1.
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because X P Executionsptpρ, πquq, by the inequality (d.1), it would follow that S1 VIS
ÝÝÑ T 1,

contradicting the assumption that T 1 VIS´1
ÝÝÝÑ S1. Therefore, it has to be T AR

ÝÝÑ S. J

The last inequalities (d.3) and (d.4) in Figure 3(d) show that anti-visibility edges
of X are also induced by the consistency guarantee pρ, π). We prove them formally in [17,
Appendix C], where we also illustrate some of their applications.

Applications. We employ the algebraic laws of Figure 3 to derive Σ-critical cycles for
arbitrary x-specifications, using the methodology explained previously: given a x-specification
Σ and an abstract execution X , we characterise a subset of ARX as a relation RG built
from the dependencies in graphpX q and relations of the form ros, where o P Op. Because
RG Ď ARX , we conclude that RG is acyclic.

The inequalities (c.1), (c.6) and (c.2) ensure that we can always include write-read
and write-write dependencies in the relation RG above. Because of inequalities (c.3) and
(d.2) (among others), we can include in RG also relations that involve anti-dependencies.
The following result shows how this methodology can be applied to serialisability. We use

the notation R1
peqq
Ď R2 to denote that the inequality R1 Ď R2 follows from peqq.

I Theorem 12. For all X P ExecutionspΣSERq, the relation pWRX YWWX YRWX q is acyclic.

Proof. Recall that ΣSER “ tpρId, ρIdqu, where ρIdp_q “ Id. We have

RWX
(b.6)
Ď RWX zId

(c.3)
Ď VIS´1

X zId “ pρIdpVISX q ; VIS´1
X ; ρIdpVISX qqzId

(d.2)
Ď ARX (1)

pWRX YWWX Y RWX q
(c.1,c.6)
Ď pARX YWWX Y RWX q

(c.2)
Ď pARX Y RWX q

(1)
Ď ARX

(2)

pWRX YWWX Y RWX q
` X Id

(2)
Ď AR`X X Id

(c.5)
Ď ARX X Id

(c.12)
Ď H. J

Along the lines of the proof of Theorem 12, we can characterise Σ-critical cycles for
an arbitrary x-specification Σ. Below, we show how to apply our methodology to derive
ΣRB-critical cycles.

I Theorem 13. Let X P ExecutionspΣRBq. Say that a RWX edge in a cycle of graphpX q is
protected if its endpoints are connected to serialisable transactions via a sequence of WRX
edges. Then all cycles in graphpX q have at least one unprotected RWX edge. Formally,
let ,RWX- be prSerTxs ; pWRX q

˚ ; RWX ; pWRX q
˚ ; rSerTxsq. Then pWRX Y WWX Y

,RWX-q is acyclic.
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WR Ď XV (V1) XV ; XV Ď XV (V2)
ď

tx|pρx,ρxqPΣu

WWpxq Ď XV (V3)

ρpXV q ; XA ; πpXV q Ď XV (V4)

WW Ď XA (A1) XV Ď XA (A2)
ď

xPObj

prWritesxs ; XV ; RWpxqq Ď XA (A3)

XA ; XA Ď XA (A4) pπpXV q ; XN ; ρpXV qq zId Ď XA (A5)

RW Ď XN (N1) XV ; XN Ď XN (N2) XN ; XV Ď XN (N3)

Figure 4 The system of inequalities SystemΣpGq for the simple consistency model Σ and the
dependency graph G “ pT ,WR,WW,RWq.

Proof. It suffices to prove that ,RWX- Ď ARX . The rest of the proof is similar to the one
of Theorem 12. We recall that ΣRB “ tpρS , ρSqu, where ρSp_q “ rSerTxs.

WR˚X ; RWX ; WR˚X
(c.1,c.4)
Ď VISX ? ; RWX ; VISX ?

(b.6)
Ď VISX ? ; pRWX zIdq ; VISX ?

(c.3)
Ď

VISX ? ; pVIS´1
X zIdq ; VISX ? Ď ppVIS´1

X zIdq Y pVISX ; VIS´1
X qq ; VISX ?

(c.11)
Ď

ppVIS´1
X zIdq Y pVISX ; VIS´1

X qzIdq ; VISX ?
(c.8)
Ď pVIS´1

X zIdq ; VISX ?
(c.10,c.9)
Ď VIS´1

X zId (3)

rSerTxs ; pVIS´1
X zIdq ; rSerTxs

(a.3,a.4)
“ prSerTxs ; VIS´1

X ; rSerTxsqzId “

pρSpVISX q ; VIS´1
X ; ρSpVISX qqzId

(d.2)
Ď ARX (4)

,RWX- “ rSerTxs ; WR˚X ; RWX ; WR˚X ; rSerTxs
p3,4q
Ď ARX . J

We remark that our characterisation of ΣRB-critical cycle cannot be compared to the
one given in [7]. In [17, Appendix C] we show how our methodology can be applied to
give a characterisation of ΣRB-critical cycles that is stronger than both the one presented
in Theorem 13 and the one given in [7]. We also employ our proof technique to prove both
known and new derivations of critical cycles for other x-specifications.

5 Characterisation of Simple Consistency Models

We now turn our attention to the Strong Correspondence Problem presented in Section 4.
Given a x-specification Σ “ tpρ1, π1q, ¨ ¨ ¨ , pρn, πnqu and a dependency graph G, we want to
find a sufficient and necessary condition for determining whether G “ graphpX q for some
X P ExecutionspΣq.

In this section we propose a proof technique for solving the strong correspondence
problem. This technique applies to a particular class of x-specifications, which we call simple
x-specifications. This class includes several of the consistency models we have presented.

Characterisation of Simple x-specifications. Recall that for each x P Obj, the function ρx
of an abstract execution X is defined as ρxp_q “ rWritesxs, and the associated axiom is
rWritesxs ; ARX ; rWritesxs Ď VISX .
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I Definition 14. A x-specification Σ is simple if there exists a consistency guarantee pρ, πq
such that Σ Ď tpρ, πqu Y tpρx, ρxquxPObj.

That is, a simple x-specification Σ contains at most one consistency guarantee, beside
those of the form pρx, ρxq which express the write-conflict detection for some object x P Obj.
Among the x-specifications that we have presented in this paper, the only non-simple one is
ΣSI`SER.

For simple x-specifications, it is possible to solve the strong correspondence problem.
Fix a simple x-specification Σ Ď tpρ, πqu Y tpρx, ρxq | x P Obju and a dependency graph G.
We define a system of inequalities SystemΣpGq in three unknowns XV , XA and XN , and
depicted in Figure 4 (the inequalities (V4) and (A5) are included in the system if and only
if pρ, πq P Σ). These unknowns correspond to subsets of the visibility, arbitration and anti-
visibility relations of the abstract execution X P ExecutionspΣq, with underlying dependency
graph G, that we wish to find. Note that each one of the inequalities of SystemΣpGq, with
the exception of (V3), follows the structure of one of the algebraic laws from Figure 3. We
prove that, in order to ensure that the abstract execution X exists, it is sufficient to find
a solution of SystemΣpGq whose XA-component is acyclic. In particular, this is true if and
only if the XA-component of the smallest solution4 of SystemΣpGq is acyclic.

I Theorem 15.
Soundness: for any X P ExecutionspΣq such that graphpX q “ G, the triple pXV “ VISX ,

XA “ ARX , XN “ VIS´1
X q is a solution of SystemΣpGq,

Completeness: Let pXV “ VIS0, XA “ AR0, XN “ AntiVIS0q be the smallest solution of
SystemΣpGq. If AR0 is acyclic, then there exists an abstract execution X such that
X P ExecutionspΣq and graphpX q “ G. J

Note that the relation AR0 need not to be total in the completeness direction of Theorem 15.
Before discussing the proof of Theorem 15, we show how it can be used to prove the

equivalence of a x-specification and a g-specification. We give a proof of Theorem 11(3).
Theorems 11(1) and 11(2) can be proved similarly, and their proof is given in [17, Appendix D].

Proof Sketch of Theorem 11(3). Recall that ∆PSI “ tδPSI0u Y tδPSIpxqpGq | x P Obju, where
δPSI0pGq “ pWRGYWWGq

`, δPSIpxqpGq “ ppWRGYWWGq
˚ ; RWGpxqq

`. In [17, Appendix D]
we prove that Graphsp∆PSIq “ GraphsptδPSIuq, where

δPSIpGq “ pWRG YWWGq
` Y

ď

xPObj
prWritesxs ; pWRG YWWGq

˚ ; RWGpxqq
`
.

Therefore, it suffices to prove that modelOfpΣPSIq “ modelOfptδPSIuq:
modelOfpΣPSIq Ď modelOfptδPSIuq: given X P ExecutionspΣPSIq, and let G :“ graphpX q,

we need to show that δPSIpGq X Id “ H. The proof follows the style of Theorems 12 and
13; details can be found in [17, Appendix C],

modelOfptδPSIuq Ď modelOfpΣPSIq: given G P GraphsptδPSIuq, let VISG “ pWR YWWq`;
It is immediate to prove that the triple pXV “ VISG , XA “ δPSIpGq, XN “ VISG? ; RW ;
VISG?q is a solution of SystemΣPSI

pGq. Because δPSIpGq is acyclic, if we take the smallest
solution pXV “ _, XA “ ARG , XN “ _q of SystemΣpGq, then ARG Ď δPSIpGq, hence ARG
is acyclic. By Theorem 15, there exists an abstract execution X P ExecutionspPSIq such
that graphpX q “ G, and in particular TX “ TG . J

4 A solution pXV “ VIS, XA “ AR, XN “ AntiVISq is smaller than another one pXV “ VIS1, XA “

AR1, XN “ AntiVIS1q iff VIS Ď VIS1,AR Ď AR1 and AntiVIS Ď AntiVIS1.
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We now turn our attention to the proof of Theorem 15. The proof of the soundness
direction is straightforward.

Proof of Theorem 15 (Soundness). Let X P ExecutionspΣq, and define G :“ graphpX q. To
show that the triple pXV “ VISX , XA “ ARX , XN “ VIS´1

X q is a solution of SystemΣpGq, we
need to show that all the inequalities from said system are satisfied, when the unknowns
XA, XV , XN are replaced with VISX ,ARX ,VIS´1

X , respectively. In practice, all the inequalities,
with the exception of (V3), follow from the algebraic laws of Figure 3. Let us prove that
(V3) is also valid: for any pρx, ρxq P Σ we have that

WWX pxq
(b.2)
“ rWritesxs ; WWX pxq ; rWritesxs

(c.2)
Ď rWritesxs ; ARX ; rWritesxs

(d.1)
Ď VISX .

J

The proof of the completeness direction of Theorem 15 is much less straightforward. Let
pXV “ VIS0, XA “ AR0, XN “ AntiVIS0q be the smallest solution of SystemΣpGq. Assume
that AR0 is acyclic. The challenge is that of constructing a valid abstract execution X , i.e.
whose arbitration order is total, from the dependencies in G, that is included in ExecutionspΣq.
We do this incrementally: at intermediate stages of the construction we get structures similar
to abstract executions, but where the arbitration order can be partial.

I Definition 16. A pre-execution P “ pTG ,VIS,ARq is a tuple that satisfies all the constraints
of abstract executions, except that AR is not necessarily total, although AR is still required
to be total over the set Writesx for every object x.

The notation adopted for abstract executions naturally extends to pre-executions; also, for
any pre-execution P , graphpPq is a well-defined dependency graph. Given a x-specification Σ,
we let PreExecutionspΣq be the set of all valid pre-executions that satisfy all the consistency
guarantees in Σ.

SystemΣpGq is defined so that all of its solutions whose XA-component is acyclic induce a
valid pre-execution in PreExecutionspΣq with underlying dependency graph G.

I Proposition 17. Let pXV “ VIS1, XA “ AR1, XN “ AntiVIS1q be a solution to SystemΣpGq.
If AR1 X Id “ H, then P “ pTG ,VIS1,AR1q P PreExecutionspΣq; moreover, graphpPq “ G.

Proof Sketch. The inequalities (A1), (A2) and (A4) together with the assumption that
AR0 is acyclic, ensure that P is a pre-execution. In particular, (A1) ensures that AR0 is a
total relation over the set Writesx, for any x P Obj. As we explain in [17, Appendix D], the
inequalities (V1), (A1) and (A3) enforce the Last Write Wins policy (Definition 3). The
inequality (V2) mandates that P respects causality. Finally, the inequalities (V3) and (V4)
ensure that all the consistency guarantees in Σ are satisfied by P. J

In particular, the smallest solution pXV “ VIS0, XA “ AR0, XN “ AntiVIS0q of
SystemΣpGq induces the pre-execution pTG ,VIS0,AR0q P PreExecutionspΣq.

To construct an abstract execution X P ExecutionspΣq, with graphpX q “ G, we define
a finite chain of pre-executions tPi, uni“0, n ě 0, as follows: (i) let P0 :“ pTG ,VIS0,AR0q;
(ii) given Pi, i ě 0, choose two different transactions Ti, Si P TG (if any) that are not
related by ARi, compute the smallest solution pXV “ VISi`1, XA “ ARi`1, XN “ _q such
that ARi`1 Ě ARi Y tpTi, Siqu, and let Pi`1 :“ pTG ,VISi`1,ARi`1q; (iii) if the transactions
Ti, Si P TG from the previous step do not exist, then let n :“ i and terminate the construction.
Because we are assuming that TG is finite, the construction of tP0, ¨ ¨ ¨ ,Pnu always terminates.
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To prove the completeness direction of Theorem 15, we show that all of the pre-executions
tP0, ¨ ¨ ¨ ,Pnu in the construction outlined above are included in PreExecutionspΣq; then,
because in Pn “ pTG ,VISn,ARnq all transactions are related by ARn, we may conclude that
ARn is total, and Pn P ExecutionspΣq. According to Proposition 17, it suffices to show that
each of the relations ARi, i “ 0, ¨ ¨ ¨ , n is acyclic. However, this is not completely trivial,
because of how ARi`1 is defined: adding one edge pTi, Siq in ARi`1 may cause more edges
to be included in VISi`1, due to the inequality (V4). This in turn leads to including more
edges in ARi`1, thus augmenting the risk of having a cycle in ARi`1.

In practice, the definition of SystemΣpGq ensures that this scenario does not occur.

I Proposition 18. For i “ 0, ¨ ¨ ¨ , n ´ 1, let ∆ARi :“ ARi? ; tpTi, Siqu ; ARi?. Then
ARi`1 “ ARi Y∆ARi.

I Corollary 19. For i “ 0, ¨ ¨ ¨ , n´ 1, if ARi X Id “ H, then ARi`1 X Id “ H.

Proof. Because ARi X Id “ H by hypothesis, by Proposition 18 we only need to show that
∆ARiX Id “ H. If pT, T q P ∆ARi for some T P TG , then it must be T ARi?

ÝÝÝÑ Ti and Si
ARi?
ÝÝÝÑ T .

It follows that Si
ARi?
ÝÝÝÑ Ti. But this contradicts the hypothesis that ARi does not relate

transactions Ti and Si. Therefore, pT, T q R ∆ARi for any T P TG , i.e. ∆ARi X Id “ H. J

We have now everything in place to prove Theorem 15.

Proof of Theorem 15 (Completeness). Let G be a dependency graph, and define the chain
of pre-executions P0 “ pTG ,VIS0,AR0q, ¨ ¨ ¨ ,Pn “ pTG ,VISn,ARnq as described above. We
show that for any i “ 0, ¨ ¨ ¨ , n, Pi P PreExecutionspΣq, and graphpPiq “ G. Because ARn is a
total order, this implies that Pn P ExecutionspΣq, and graphpPnq “ G, as we wanted to prove.
The proof is by induction on n.
Case i “ 0: observe that the triple pXV “ VIS0, XA “ AR0, XN “ _q corresponds to the

smallest solution of SystemΣpGq, hence AR0 is acyclic by hypothesis. It follows from
Proposition 17 that P0 P PreExecutionspΣq, and graphpP0q “ G,

Case i ą 0: assume that i ď n; then i ´ 1 ă n, and by induction hypothesis Pi´1 P

PreExecutionspΣq. In particular, the relation ARi´1 is acyclic; by Corollary 19 we obtain
that ARi is acyclic. Finally, recall that the triple pXV “ VISi, XA “ ARi, XN “ _q
is a solution of SystemΣpGq by construction. It follows from Proposition 17 that Pi P
PreExecutionspΣq, and graphpPiq “ G. J

6 Conclusion

We have explored the connection between two different styles of specifications for weak
consistency models at an algebraic level. We have proposed several laws which we applied to
devise several robustness criteria for consistency models. To the best of our knowledge, this
is the first generic proof technique for proving robustness criteria of weak consistency models.
We have shown that, for a particular class of consistency models, our algebraic approach
leads to a precise characterisation of consistency models in terms of dependency graphs.

Related Work. Abstract executions have been introduced by Burckhardt in [12] to model
the behaviour of eventually consistent data-stores; They have been used to capture the
behaviour of replicated data types (Gotsman et al. [13]), geo-replicated databases (Cerone et
al. [15]) and non-transactional distributed storage systems (Viotti et al. [30]).
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Dependency graphs have been introduced by Adya [1]; they have been used since to reason
about programs running under weak consistency models. Bernardi et al., used dependency
graphs to derive robustness criteria of several consistency models [7], including PSI and
red-blue; in contrast with our work, the proofs there contained do not rely on a general
technique. Brutschy et al. generalised the notion of dependency graphs to replicated data
types, and proposed a robustness criterion for eventual consistency [10].

Weak consistency also arises in the context of shared memory systems [4]. Alglave et al.,
proposed the CAT language for specifying weak memory models in [4], which also specifies
weak memory models as a set of irreflexive relations over data-dependencies of executions.
Castellan [14], and Jeffrey et al. [21], proposed different formalisations of weak memory
models via event structures. The problem of checking the robustness of applications has also
been addressed for weak memory models [2, 3, 8].

The strong correspondence problem (Section 5) is also highlighted by Bouajjani et al. in
[9]: there the authors emphasize the need for general techniques to identify all the bad patterns
that can arise in dependency-graphs like structures. We solved the strong correspondence
problem for SI in [16].
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