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Abstract
In the late nineties, Desharnais, Gupta, Jagadeesan and Panangaden presented probabilistic
bisimilarity distances on the states of a labelled Markov chain. This provided a quantitative
generalisation of probabilistic bisimilarity introduced by Larsen and Skou a decade earlier. In
the last decade, several algorithms to approximate and compute these probabilistic bisimilarity
distances have been put forward. In this paper, we correct, improve and generalise some of these
algorithms. Furthermore, we compare their performance experimentally.
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1 Introduction

For the last three and a half decades behavioural equivalences such as bisimilarity, due to
Milner [22] and Park [25], have been a cornerstone of concurrency theory. As this theory
matured, more detailed models of concurrent systems have been developed, such as models
with probabilities. For these enriched models, behavioural equivalences were proposed, such
as probabilistic bisimilarity due to Larsen and Skou [21].

Although these behavioural equivalences allow us to reason about the behaviour of these
models, they have one drawback: they are not robust. That is, small changes in the prob-
abilities may cause equivalent states to becomes inequivalent or vice versa. Since the prob-
abilities are usually obtained experimentally and, therefore are often just an approximation,
this lack of robustness is a serious limitation of behavioural equivalences for these models
with probabilities. This lack of robustness was first pointed out by Giacalone, Jou and
Smolka [13]. They suggested generalising behavioural equivalences, which assign to each
pair of states a Boolean, to behavioural pseudometrics, which assign to each pair of states
a nonnegative real number.

The distance of a pair of states provides a quantitative measure of their behavioural
similarity. The smaller this distance, the more alike the states behave. Distance zero
captures that the states behave exactly the same, that is, they are behaviourally equivalent.
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27:2 Probabilistic Bisimilarity Distances

For a more detailed discussion of the merits of behavioural pseudometrics, we refer the
reader to, for example, [24, Chapter 8].

Labelled Markov chains are often used to model systems with probabilistic behaviour.
An example of such a Markov chain is depicted below. In a labelled Markov chain, each
state has a label. In the example below, the label is represented by the colour of the state.
These labels are used to capture that particular properties of interest hold in some states
and do not hold in other states.
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Several behavioural pseudometrics for labelled Markov chains have been proposed, the
probabilistic bisimilarity pseudometric due to Desharnais, Gupta, Jagadeesan and
Panangaden [12] being the most notable one. In this paper, we focus on this probabilistic
bisimilarity pseudometric. Some of the probabilistic bisimilarity distances for the above
labelled Markov chain can be found in the table below. For some historical background on
this behavioural pseudometric we refer the reader to [6, Section 1].
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In order to exploit behavioural pseudometrics such as the probabilistic bisimilarity
pseudometric, it is essential to be able to approximate or compute these behavioural dis-
tances. The first algorithm to approximate these distances was presented by Van Breugel,
Sharma and Worrell in [5]. In their algorithm, the distance between states s and t, denoted
δ(s, t), is computed as follows. Since δ(s, t) < q, for some rational q, can be expressed in
the existential fragment of the first order theory over the reals as shown by Van Breugel
et al., and this theory is decidable as shown by Tarski [29], one can use binary search to
approximate δ(s, t). The satisfiability problem for the existential fragment of the first order
theory over the reals can be solved in polynomial space [7].

Subsequently, Chen, Van Breugel and Worrell [8] presented a polynomial time algorithm
to compute the distances. They showed that the distances are rational and that those
distances can be computed by means of Khachiyan’s ellipsoid method [17]. In particular,
they showed that the distance function can be expressed as the solution of a linear program.
In this case, the separation algorithm, which is an integral part of the ellipsoid method, boils
down to solving a minimum cost flow problem. The network simplex algorithm solves the
latter problem in polynomial time [23].
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It is well known that the ellipsoid method is simpler when the feasible region is bounded
and full-dimensional (see, for example, [26, Chapter 13]). In Section 4 we show that the
feasible region of the linear program used by Chen et al. to compute the probabilistic bisim-
ilarity distances is bounded and full-dimensional. As a consequence, we can use the simpler
version of the ellipsoid method to compute the probabilistic bisimilarity distances.

Bacci, Bacci, Larsen and Mardare [1] put forward yet another algorithm to compute the
probabilistic bisimilarity distances. Their algorithm can be viewed as a basic algorithm,
enhanced with an optimization. The key idea behind this optimization is to compute the
distances on-the-fly. We will come back to this optimization later, but we will first focus on
the basic algorithm.

In [28], we show that a slight modification of the basic algorithm of Bacci et al. can be
seen as an incarnation of simple policy iteration, also known as sequential policy iteration.
In particular, we construct a transformation mapping each labelled Markov chain to a simple
stochastic game, a simplification of Shapley’s stochastic games [27] due to Condon [9]. The
vertices of the simple stochastic game represent pairs of states of the labelled Markov chain.
Furthermore, the probabilistic bisimilarity distance of two states of the labelled Markov
chain is shown to be equal to the value of the corresponding vertex of the simple stochastic
game.

A variety of algorithms has been developed to compute the value function of a simple
stochastic game. Several of these algorithms use policy iteration. As long as there exists a
choice in the strategy, also known as a policy, of a player that is not locally optimal, switch
that choice for one that is locally optimal. Hoffman and Karp [15] introduced a policy
iteration algorithm for stochastic games in which all non-optimal choices are switched in
each iteration. Condon [10] presented a similar algorithm, known as simple policy iteration,
that switches only one non-optimal choice per iteration.

In Section 5 we present our simple policy iteration algorithm. Furthermore, we modify
this algorithm to mimic general policy iteration a la Karp and Hoffman. We prove both
algorithms correct. In Section 6 we consider the on-the-fly optimization due to Bacci et al.
[1]. This optimization boils down to considering partial policies. That is, a player only makes
choices for an appropriate subset of the vertices. We call it partial policy iteration. As we
will show, Bacci et al. do not always consider partial policies that are defined for sufficiently
many vertices. We propose a modification of their algorithm and prove it correct. A partial
variant that mimics general policy iteration can be developed and proved correct similarly.

In [28], we show that the number of iterations of the simple policy iteration algorithm is
at least exponential in the number of states of the labelled Markov chain. In Section 7 we
prove that this is also the case for the simple partial policy iteration algorithm, even if we
are only interested in the distance of a single pair of states.

The algorithms considered in this paper are the one which applies the first order theory
over the reals, the ellipsoid method, simple policy iteration, general policy iteration, simple
partial policy iteration and general partial policy iteration. To compare the performance
of these six algorithms to approximate and compute probabilistic bisimilarity distances for
labelled Markov chain, we ran several experiments. All six algorithms were implemented in
Java. These implementations were run on a number of labelled Markov chains, which model
well-known randomized algorithms and were obtained from examples of probabilistic model
checkers such as PRISM [20] and jpf-probabilistic [31]. These experiments and the results
are discussed in Section 8.

The contributions of this paper are the following. In Section 4 we show that the feasible
region of the linear programming of Chen et al. describing the probabilistic bisimilarity dis-
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tances is bounded and full-dimensional. As a consequence, we can resort to a simpler version
of the ellipsoid method to compute the distances. We study the on-the-fly optimization of
the algorithm of Bacci et al. in Section 6 and show that it does not always consider suffi-
ciently many states. We modify their optimization and prove our modification correct. We
consider this our main contribution. In Section 7 we prove an exponential lower bound for
the simple partial policy iteration algorithm. Finally, by means of experiments we compare
the performance of the different algorithms to approximate and compute the probabilistic
bisimilarity distances in Section 8.

2 Labelled Markov Chains and Probabilistic Bisimilarity

We start by reviewing the model of interest, labelled Markov chains, and its most well known
behavioural equivalence, probabilistic bisimilarity due to Larsen and Skou [21]. We denote
the set of probability distributions on a finite set S by Distr(S).

I Definition 1. A labelled Markov chain is a tuple 〈S,L, τ, `〉 consisting of
a finite set S of states,
a finite set L of labels,
a transition function τ : S → Distr(S), and
a labelling function ` : S → L.

We restrict our attention to labelled Markov chains with rational transition probabilities.
For the remainder of this paper, we fix such a labelled Markov chain. In order to charac-
terize probabilistic bisimilarity, we first introduce the notion of a coupling of probability
distributions.

I Definition 2. Let µ, ν ∈ Distr(S). The set Ω(µ, ν) of couplings1 of µ and ν is defined by

Ω(µ, ν) =
{
ω ∈ Distr(S × S)

∣∣∣∣∣ ∑
t∈S

ω(s, t) = µ(s) ∧
∑
s∈S

ω(s, t) = ν(t)
}
.

The set Ω(µ, ν) is a convex polytope. We denote its vertices by V (Ω(µ, ν)). Generally,
the set Ω(µ, ν) is infinite, but the set V (Ω(µ, ν)) is finite (see, for example, [18, page 259]).
The following characterization of probabilistic bisimilarity, in terms of couplings, is due to
Jonsson and Larsen [16, Theorem 4.6]. For a discussion of the notion of a coupling we refer
the reader to, for example, [4].

I Definition 3. An equivalence relation R ⊆ S × S is a probabilistic bisimulation if for all
(s, t) ∈ R, `(s) = `(t) and there exists ω ∈ Ω(τ(s), τ(t)) such that support(ω) ⊆ R, where
support(ω) = { (u, v) ∈ S × S | ω(u, v) > 0 }. Probabilistic bisimilarity, denoted ∼, is the
largest probabilistic bisimulation.

3 Probabilistic Bisimilarity Distances

The probabilistic bisimilarity pseudometric of Desharnais et al. [12] maps each pair of states
of a labelled Markov chain to a distance, which an element of the unit interval [0, 1]. Hence,
the pseudometric is a function from S × S to [0, 1], that is, an element of [0, 1]S×S . Such a
function is a pseudometric if it satisfies the following three properties: for all s, t, u ∈ S,

1 In the literature, different terminology is used. For example, in [1] these are called matchings.
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d(s, s) = 0, d(s, t) = d(t, s) and d(s, u) ≤ d(s, t)+d(t, u). As we will discuss below, the prob-
abilistic bisimilarity pseudometric can be defined as a fixed point of the following function.

I Definition 4. The function ∆ : [0, 1]S×S → [0, 1]S×S is defined by

∆(d)(s, t) =


1 if `(s) 6= `(t)

min
ω∈Ω(τ(s),τ(t))

∑
u,v∈S

ω(u, v) d(u, v) otherwise

To define the probabilistic bisimilarity pseudometric as a fixed point of ∆ we allude to
the Knaster-Tarski fixed point theorem [30].

I Theorem 5. Let X be a complete lattice and f : X → X a monotone function.
(a) The least fixed point of f is

d
{x ∈ X | f(x) v x }.

(b) The greatest fixed point of f is
⊔
{x ∈ X | x v f(x) }.

For background material on order theory we refer the reader to, for example, [11]. To
apply the above theorem, we need to define an order on [0, 1]S×S . For d, e ∈ [0, 1]S×S we
write d v e if d(s, t) ≤ e(s, t) for all s, t ∈ S. The set [0, 1]S×S endowed with the order v
forms a complete lattice. Since ∆ is a monotone function, we can conclude from the above
Knaster-Tarski fixed point theorem that ∆ has a least fixed point. We denote this fixed
point by δ, which is a pseudometric. This is the probabilistic bisimilarity pseudometric
introduced by Desharnais et al.

The probabilistic bisimilarity pseudometric δ provides a quantitative generalisation of
probabilistic bisimilarity as captured by the following result which can be found in [12,
Theorem 1].

I Theorem 6. For all s, t ∈ S, s ∼ t if and only if δ(s, t) = 0.

We conclude this section with an alternative characterization of the probabilistic bisim-
ilarity pseudometric δ which is a small variation on the characterization that can be found
in [8, Theorem 8]. It provides the basis for most of the algorithms we will discuss later in
this paper.

Theorem 6 tells us that δ assigns to each state pair in S2
0 = { (s, t) ∈ S × S | s ∼ t }

the distance zero. From the definition of ∆ we can conclude that δ assigns to each state
pair in S2

1 = { (s, t) ∈ S × S | `(s) 6= `(t) } the distance one. Hence, it remains to compute
the probabilistic bisimilarity distance for S2

? = { (s, t) ∈ S × S | `(s) = `(t)∧s 6∼ t }. Note
that S2

0 , S2
1 and S2

? form a partition of S × S. As we mentioned in the introduction, our
algorithms use policy iteration to compute these remaining distances.

I Definition 7. For a labelled Markov chain 〈S,L, τ, `〉, the set T of total policies2 is defined
by

T = {T ∈ S2
? → Distr(S × S) | ∀(s, t) ∈ S2

? : T (s, t) ∈ V (Ω(τ(s), τ(t))) }.

Restricting to vertices in the above definition amounts to no loss of generality, since
Theorem 9 holds also for total policies that map to arbitrary elements of the convex poly-
tope Ω(τ(s), τ(t)), rather than just its vertices (see [1, Remark 13]). For each T ∈ T , the
pair 〈S × S, T 〉 can be viewed as a Markov chain, by extending T such that

T (s, t)(u, v) =
{

1 if (u, v) = (s, t)
0 otherwise

for all (s, t) ∈ (S × S) \ S2
? .

2 In the literature, different terminology is used. For example, in [1] these are called couplings.
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I Definition 8. Let T ∈ T . The function ΓT : [0, 1]S×S → [0, 1]S×S is defined by

ΓT (d)(s, t) =


0 if s ∼ t
1 if `(s) 6= `(t)∑
u,v∈S

T (s, t)(u, v) d(u, v) otherwise

Since [0, 1]S×S is a complete lattice and ΓT is a monotone function [1], we can conclude
from the Knaster-Tarski fixed point theorem that ΓT has a least fixed point. We denote this
fixed point by γT . Note that γT (s, t) captures the probability of reaching any (u, v) with
`(u) 6= `(v) from (s, t) in the Markov chain 〈S × S, T 〉 (see, for example, [3, Section 10.1.1]
for a discussion of reachability probabilities). The probabilistic bisimilarity pseudometric δ
can be characterized as follows.

I Theorem 9. δ = min
T∈T

γT .

4 The Ellipsoid Method

As shown by Chen, Van Breugel and Worrell [8], the probabilistic bisimilarity distances
can be computed in polynomial time. In particular, they show that the distances can be
obtained by solving a linear programming problem by means of Khachiyan’s ellipsoid method
[17]. It is well known that the method is simpler when the feasible region is bounded and
full-dimensional (see, for example, [26, Chapter 13]). Below, we will show that the feasible
region is bounded and full-dimensional in the setting of Chen et al. This feasible region is
defined by

d(s, t) ≥ 0 (1)
d(s, t) ≤ 1 (2)
d(s, t) ≤

∑
(u,v)∈S2

?

d(u, v)π(u, v) +
∑

(u,v)∈S2
1

π(u, v) (3)

for all (s, t) ∈ S2
? and π ∈ V (Ω(τ(s), τ(t))). Note that we need to decide probabilistic

bisimilarity in order to define S2
? and, hence, the feasible region.

We restrict our attention to the case that the set S2
? is nonempty. Otherwise, there are

no distances to compute. Obviously, the feasible region is bounded by [0, 1]S2
? . A feasible

region is full-dimensional if and only if there are no implicit inequalities (see, for example,
[26, page 101]). An inequality defining the feasible region is implicit if the inequality is
actually an equality for each point of the feasible region (see, for example, [26, page 99] for
a formal definition).

I Proposition 10. 1. For all (s, t) ∈ S2
? , there exists d ∈ S2

? → R satisfying (1)–(3) such
that d(s, t)> 0.

2. For all (s, t) ∈ S2
? , there exists d ∈ S2

? → R satisfying (1)–(3) such that d(s, t)< 1.
3. For all (s, t) ∈ S2

? and π ∈ V (Ω(τ(s), τ(t))), there exists d ∈ S2
? → R satisfying (1)–(3)

such that

d(s, t)<
∑

(u,v)∈S2
?

π(u, v) d(u, v) +
∑

(u,v)∈S2
1

π(u, v)

I Theorem 11. The feasible region defined by (1)–(3) is full-dimensional.
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Recall that we need to precompute probabilistic bisimilarity to define the feasible region.
If, instead, we were not to do so, then we would have to replace (3) with

d(s, t) ≤
∑

(u,v)∈S2\S2
1

d(u, v)π(u, v) +
∑

(u,v)∈S2
1

π(u, v) (4)

Now consider the labelled Markov chain consisting of a single state s. In that case the above
inequality amounts to d(s, s) ≤ d(s, s) which is implicit and, hence, the feasible region is not
full-dimensional.

5 Policy Iteration

In this section we present our modification of the basic algorithm of Bacci et al. [1]. Our
optimization will be discussed in Section 6. Before we can present our algorithm, we need
one more ingredient.

I Definition 12. The function Λ : [0, 1]S×S → [0, 1]S×S is defined by

Λ(d)(s, t) =
{

0 if s ∼ t
∆(d)(s, t) otherwise

The following result is proved in [8, Proposition 17]. This result will be instrumental in
several proofs later in this paper.

I Lemma 13. δ is the unique fixed point of Λ.

Now that we have all the ingredients, we can present our modification of the basic
algorithm by Bacci et al. to compute δ. This modification was first presented in [28].

1 for each (s, t) ∈ S2
?

2 T (s, t)← an element of V (Ω(τ(s), τ(t)))
3 while ∃(s, t) ∈ S2

? : Λ(γT )(s, t)< γT (s, t)
4 T (s, t)← arg min

ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v) γT (u, v)

The only difference with the algorithm of Bacci et al. is that we use Λ instead of ∆
in line 3. In line 2, for each (s, t) ∈ S2

? , a vertex of Ω(τ(s), τ(t)) can be easily obtained in
polynomial time by using, for example, Hitchcock’s north west corner rule [14]. As we already
mentioned, the fixed point γT , used in line 3 and 4, captures reachability probabilities and
it is well known that these can be computed in polynomial time by solving a system of linear
equations (see, for example, [3, Section 10.1.1]). Let (s, t) ∈ S2

? . To compute Λ(γT )(s, t)
in line 3 we first have to decide probabilistic bisimilarity. This can be done in polynomial
time as has been shown by Baier in [2]. Computing Λ(γT )(s, t) boils down to solving a
minimum cost network flow problem, where ω represents the flow and γT captures the cost.
This problem can be solved in polynomial time using, for example, Orlin’s network simplex
algorithm [23]. This algorithm not only computes the minimum cost but also a vertex ω of
Ω(τ(s), τ(t)) at which that minimum cost is attained, which we use in line 4.

First, we prove the partial correctness of the above algorithm, that is, if the algorithm
terminates then it computes the probabilistic bisimilarity distances. Hence, we have to show
that at termination γT captures δ. Our proofs here are different from the ones presented
in [1, 28] as we will use them as a stepping stone towards proving the partial policy version
correct.
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27:8 Probabilistic Bisimilarity Distances

I Theorem 14. For all T ∈ T , if γT (s, t) ≤ Λ(γT )(s, t) for all (s, t) ∈ S2
? , then γT = δ.

As we already mentioned earlier, for each (s, t) ∈ S2
? , the set V (Ω(τ(s), τ(t))) is finite.

Since we restrict our attention to labelled Markov chains with finitely many states, the set
S2

? is finite as well. Therefore, the set T is finite. To prove that the loop terminates we show
that T becomes smaller in every iteration.

I Definition 15. The order ≺ on T is defined by T ≺ U if γT @ γU .

To relate the value of T at the beginning of the loop with its value at the end of the
loop, we introduce the following notation.

I Definition 16. Let T ∈ T , (s, t) ∈ S2
? and ω ∈ V (Ω(τ(s), τ(t))). The function T [(s, t)/ω] :

S2
? → Distr(S × S) is defined by

T [(s, t)/ω](u, v) =
{
ω if (u, v) = (s, t)
T (u, v) otherwise

Clearly, T [(s, t)/ω] ∈ T . Next, we show that T indeed becomes smaller in every iteration
of the loop, and as a consequence the loop terminates.

I Theorem 17. For all T ∈ T and (s, t) ∈ S2
? , if Λ(γT )(s, t)<γT (s, t), then T [(s, t)/π] ≺ T ,

where π = arg min
ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v) γT (u, v).

In the above simple policy iteration algorithm, in each iteration of the loop the policy
is adjusted for a single state pair (s, t) which is locally non-optimal, that is, Λ(γT )(s, t) <
γT (s, t). In our general policy iteration algorithm, the policy is updated for all state pairs
which are locally non-optimal.

1 for each (s, t) ∈ S2
?

2 T (s, t)← an element of V (Ω(τ(s), τ(t))
3 while ∃(s, t) ∈ S2

? : Λ(γT )(s, t)< γT (s, t)
4 U ← T

5 for each (s, t) ∈ S2
? such that Λ(γU )(s, t)< γU (s, t)

6 T (s, t)← arg min
ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v) γU (u, v)

The proof of partial correctness is the same as for the simple policy iteration algorithm.
To prove termination, we slightly generalise Theorem 17.

6 Partial Policy Iteration

As proposed by Bacci et al. in [1], if we are only interested in the probabilistic bisimilarity
distances of some of the state pairs, then we may be able to cut down on the number of
state pairs for which we need to compute the probabilistic bisimilarity distance. Instead
of total policies, we use partial ones. Hence, we generalise the set of total policies T of
Definition 7 as follows. We denote the set of partial functions from S2

? to Distr(S × S) by
S2

? 7→ Distr(S × S) and the domain of such a function P by dom(P ).

I Definition 18. For a labelled Markov chain 〈S,L, τ, `〉, the set P of partial policies is
defined by

P = {P ∈ S2
? 7→ Distr(S × S) | ∀(s, t) ∈ dom(P ) : P (s, t) ∈ V (Ω(τ(s), τ(t))) }.
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Recall that S2
0 , S2

1 and S2
? form a partition of S × S. For a given P ∈ P, S2

0 , S2
1 ,

S2
? \ dom(P ) and S2

? ∩ dom(P ) form a partition of S × S as well. This partition is used to
generalise the function ΓT of Definition 8 to the partial setting.

I Definition 19. Let P ∈ P. The function ΘP : [0, 1]S×S → [0, 1]S×S is defined by

ΘP (d)(s, t) =


1 if `(s) 6= `(t)
0 if s ∼ t ∨ (`(s) = `(t) ∧ s 6∼ t ∧ (s, t) 6∈ dom(P ))∑
u,v∈S

P (s, t)(u, v) d(u, v) otherwise

Since [0, 1]S×S is a complete lattice and ΘP is a monotone function, we can conclude
from the Knaster-Tarski fixed point theorem that ΘP has a least fixed point. We denote
this fixed point by θP .

The set Q ⊆ S2
? contains those pairs of states for which we want to compute their

distances. Recall that for pairs of states in (S × S) \ S2
? = S2

0 ∪ S2
1 we can obtain their

distances by deciding probabilistic bisimilarity and comparing their labels.

1 P ← the partial function with empty domain
2 for each (s, t) ∈ Q
3 P (s, t)← an element of V (Ω(τ(s), τ(t)))
4 expand(P, s, t)
5 while ∃(s, t) ∈ dom(P ) : Λ(θP )(s, t)< θP (s, t)
6 P (s, t)← arg min

ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v) θP (u, v)

7 expand(P, s, t)

Let P ∈ P and (s, t) ∈ S2
? . The recursive function expand(P, s, t) is defined as follows.

8 while ∃(u, v) ∈ support(P (s, t)) ∩ S2
? : (u, v) 6∈ dom(P )

9 P (u, v)← an element of V (Ω(τ(u), τ(v)))
10 expand(P, u, v)

To prove properties of this recursive function, we introduce the following predicate.

I Definition 20. Let P ∈ P and X ⊆ S2
? . The predicate F (P,X) is defined by

F (P,X) = ∀(s, t) ∈ dom(P ) \X : support(P (s, t)) ∩ S2
? ⊆ dom(P ).

Roughly, this predicate F (P,X) captures that P is fully defined when we exclude X
from its domain. Let P ∈ P and (s, t) ∈ S2

? . Next, we prove that for expand(P, s, t) the
precondition F (P,X) implies the postcondition F (P,X \ {(s, t)}). First, we observe that
F (P,X) is a loop invariant. At the start of line 10, we have that F (P,X ∪{(u, v)}). Hence,
at the end of line 10 we have F (P,X). To conclude that the loop terminates, we observe
that the finite set dom(P ) \ support(P (s, t)) becomes smaller in every iteration. Note that
expand does not give rise to infinite recursion since for each recursive call the finite set
S2

? \dom(P ) becomes smaller. At the end of the loop we have F (P,X) and (u, v) ∈ dom(P )
for all (u, v) ∈ support(P (s, t)) ∩ S2

? , that is, support(P (s, t)) ∩ S2
? ⊆ dom(P ). Therefore,

F (P,X \ {(s, t)}).
The proof of partial correctness of this simple partial policy iteration algorithm is similar

to the partial correctness proof provided in Section 5. If the above algorithm terminates,
then we have that

F (P, ∅) ∧Q ⊆ dom(P ) ∧ ∀(s, t) ∈ dom(P ) : θP (s, t) ≤ Λ(θP )(s, t)
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at termination. As we will show next, from the above we can conclude that θP and δ coincide
on Q and, hence, θP contains the probabilistic bisimilarity distances of Q.

I Theorem 21. For all P ∈ P, if F (P, ∅) and θP (s, t) ≤ Λ(θP )(s, t) for all (s, t) ∈ dom(P ),
then θP (s, t) = δ(s, t) for all (s, t) ∈ dom(P ).

It remains to prove that the simple partial policy iteration algorithm terminates. As we
already discussed above, the recursive function expand terminates. Hence, we are left to show
that the loop of line 5–7 terminates as well. We prove this by showing that in each iteration
of the loop 〈S2

? \dom(P ), P 〉 becomes smaller. These pairs are ordered lexicographically, with
the first component ordered by ⊂ and the second component ordered by ≺, as introduced
in Definition 15. Assume that P is updated for (s, t) in line 6 of the current iteration of the
loop. We distinguish two cases. If (u, v) 6∈ dom(P ) for some (u, v) ∈ support(P (s, t)) ∩ S2

? ,
then expand(P, s, t) in line 7 will assign a value to P (u, v) in line 9 of the expand function.
As a consequence, dom(P ) becomes bigger and, hence, S2

? \ dom(P ) becomes smaller, that
is, the first component becomes smaller. Note that in this case P may not become smaller
as θP (u, v) was zero and may have become positive. Otherwise, support(P (s, t)) ∩ S2

? ⊆
dom(P ). In that case, the expand function does not perform any assignments to P and,
therefore, dom(P ) stays the same. Thus, the first component stays the same. Furthermore,
the iteration changes the partial policy from P to P [(s, t)/π] (cf. Definition 16). As we show
next, in this case the second component, that is, the partial policy, becomes smaller.

I Theorem 22. For all P ∈ P and (s, t) ∈ dom(P ), if Λ(θP )(s, t) < θP (s, t), then
P [(s, t)/π] ≺ P , where π = arg min

ω∈V (Ω(τ(s),τ(t)))

∑
u,v∈S

ω(u, v) θP (u, v).

The algorithm of Bacci et al. differs in three major ways from our simple partial policy
iteration algorithm. First of all, as we already mentioned in Section 5, they use ∆ instead
of Λ in line 5. In [28, Theorem 8] we give an example different from the one presented below
which shows that Λ is essential for computing the distances correctly. Secondly, in line 5
they consider only those state pairs (s, t) that are reachable from state pairs in Q in the
Markov chain 〈S × S, P 〉, instead of those in dom(P ). But, as we show below, as a result
they do not always correctly compute the distances. Thirdly, they assign one to θP (s, t)
when (s, t) 6∈ dom(P ) whereas we assign zero. An example similar to the one presented
below can be used to show that this also gives to computing the distances incorrectly.

We conclude this section with an example that shows that Bacci et al. do not always
consider partial policies that are defined for sufficiently many state pairs. Consider the
labelled Markov chain presented in the introduction. Assume that we are only interested
in the probabilistic bisimilarity distance between the states s and t. That is, Q = {(s, t)}.
After executing line 1–4 of the simple partial policy iteration algorithm, we may end up with
the partial policy P defined by

P (s, t) = 1
2Dir(a,d) + 1

2Dir(b,c) P (a, d) = 1
2Dir(a1,d2) + 1

2Dir(a2,d1)
P (b, c) = 1

2Dir(b1,c2) + 1
2Dir(b2,c1)

where the Dirac distribution Dir(u,v) is defined by

Dir(u,v)(x, y) =
{

1 if (x, y) = (u, v)
0 otherwise

At this point, we have θP (s, t) = 1, θP (a, d) = 1 and θP (b, c) = 1. Note that (s, t) is not
locally optimal, that is, Λ(θP )(s, t)<θP (s, t). We update P by setting P (s, t) = 1

2Dir(a,c) +
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1
2Dir(b,d). The expand function on line 7 of the simple partial policy iteration algorithm may
give rise to

P (a, c) = 1
2Dir(a1,c1) + 1

2Dir(a2,c2) P (b, d) = 1
2Dir(b1,d1) + 1

2Dir(b2,d2)

At this point, we have θP (s, t) = 3
4 , θ

P (a, c) = 1 and θP (b, d) = 1
2 . Since in their algorithm,

Bacci et al. only check local optimality for all state pairs reachable from (s, t) in the Markov
chain 〈S × S, P 〉, that is, for (s, t), (a, c) and (b, d), and all three are locally optimal, their
algorithm terminates at this point. Our algorithm checks for local optimality for all state
pairs in dom(P ). Since neither (a, d) nor (b, c) are locally optimal, our algorithm continues.
We update P by setting

P (a, d) = 1
2Dir(a1,d1) + 1

2Dir(a2,d2) P (b, c) = 1
2Dir(b1,c1) + 1

2Dir(b2,c2)

At this point, we have θP (s, t) = 3
4 , θ

P (a, d) = 1
2 and θP (b, c) = 1

2 . Since (s, t) is not locally
optimal any more, we update P by setting P (s, t) = 1

2Dir(a,d) + 1
2Dir(b,c). This results in

θP (s, t) = 1
2 which is the probabilistic bisimilarity distance of (s, t).

Also the general policy iteration algorithm, which we presented at the end of Section 5,
can be generalised to use partial policies instead of total ones.

7 An Exponential Lower Bound

Below, we analyze the worst case running time of the simple partial policy iteration al-
gorithm. We show that it is at least exponential in the number of states of the labelled
Markov chain.

I Definition 23. For n ∈ N, the labelled Markov chainMn is defined as follows by induction
on n. The labelled Markov chainM0 is defined as

s−1 v−1

s0

s1

v0
1
2

1
2

1
2

1
2

1 1

1
t−1 u−1

t0

t1

u0
1
2

1
2

1
2

1
2

1 1

1

If n > 0 then the labelled Markov chainMn is defined as

sn

sn−1 vn−1

sn−2 vn−2

1
2

1
2

1
2

1
2

1 tn−2

tn−1

un−2

tn

un−11
2

1
2

1
2

1
2

1
4

3
4

where the two dashed triangles together represent the labelled Markov chainMn−1.
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The above labelled Markov chainMn has 4n+ 10 states and 7n+ 14 transitions. Next,
we show that it may take at least 2n+1 − 1 iterations of the simple partial policy iteration
algorithm to compute the distance of snand tn inMn.

The partial policy iteration algorithm contains some nondeterminism. In particular, in
line 3 and 9, an element of V (Ω(τ(s), τ(t))) and V (Ω(τ(u), τ(v))) is chosen. Furthermore,
in line 5 a state pair (s, t) ∈ dom(P ) with Λ(θP )(s, t) < θP (s, t) is selected. Note that, for
all 1 ≤ i ≤ n,

V (Ω(τ(si), τ(ti))) = { 1
2Dir(si−1,ti−1) + 1

2Dir(vi−1,ui−1),
1
2Dir(si−1,ui−1) + 1

2Dir(vi−1,ti−1)}.

Also,

V (Ω(τ(s0), τ(t0))) = { 1
2Dir(s−1,u−1) + 1

2Dir(v−1,t−1),
1
2Dir(s−1,t−1) + 1

2Dir(v−1,u−1)}.

Furthermore, for all 1 ≤ i < n,

V (Ω(τ(si), τ(ui))) = { 1
2Dir(vi−1,ui−1) + 1

4Dir(si−1,ti−1) + 1
4Dir(si−1,ui−1),

1
2Dir(si−1,ui−1) + 1

4Dir(vi−1,ui−1) + 1
4Dir(vi−1,ti−1)}.

To realize the exponential lower bound, in line 3 and 9 we choose the first element of the
above sets and in line 5 we select the (si, ti) with maximal index i.

I Theorem 24. For each n ∈ N, there exists a labelled Markov chain of size O(n) and a
singleton set Q such that simple partial policy iteration takes Ω(2n) iterations to compute
the distances for the state pair in Q.

8 Experimental Results

Next we present results from experiments comparing the performance of six different al-
gorithms: the algorithm described in the introduction by Van Breugel et al. [5] based on
the first order theory over the reals, the algorithm by Chen et al. [8] based on the ellips-
oid method, our simple policy iteration algorithm, our general policy iteration algorithm,
our simple partial policy iteration algorithm and our general partial policy iteration al-
gorithm. We implemented all the algorithms in Java. In our implementations we do not
use arbitrary precision arithmetic. These implementations were run on a number of labelled
Markov chains. These labelled Markov chains model well-known randomized algorithms
and were obtained from examples of probabilistic model checkers such as PRISM [20] and
jpf-probabilistic [31].

For each labelled Markov chain, we executed the code ten times. The first few executions
were discarded to account for the “warm-up” time that the Java virtual machine needs to
perform just-in-time compilation and optimization. For the remaining runs the average
running time and the standard deviation were computed for each labelled Markov chain.

Since the distance function is symmetric and the distance from a state to itself is zero,
we only need to compute the distance of n

2−n
2 state pairs for a labelled Markov chain with

n states. Recall that the policy iteration algorithms precompute distances for state pairs
that are probabilistic bisimilar or have different labels. Hence, only state pairs with the
same label that are not probabilistic bisimilar are considered. In general, the partial policy
iteration algorithms compute the distances for even fewer state pairs. For our experiments,
we report for each policy iteration algorithm how many state pairs it considers and how
many iterations it takes.
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The first example we consider is a version of quicksort in which the pivot is chosen
randomly. An implementation of this algorithm is part of jpf-probabilistic and this tool
can be used to obtain the corresponding labelled Markov chain. The size of the labelled
Markov chain grows exponentially in the size of the input, which is the list to be sorted.
For example, lists of size 4, 5 and 6 give rise to labelled Markov chains with 10, 28 and 82
states, respectively.

The first order theory over the reals algorithm can only handle labelled Markov chains
with a handful of states. We ran the algorithm on the labelled Markov chain with 10 states.
It did not terminate within three days. The ellipsoid method takes on average 73 seconds.
For the partial algorithms we compute the distance for a single pair of states. Of the 45 state
pairs, the policy iteration algorithms consider 8 state pairs and the partial policy iteration
algorithms only 3 state pairs. All policy iteration algorithms take less than 45 milliseconds.
That makes the ellipsoid method three orders of magnitude slower than our policy iteration
algorithms for this small example.

We did not run the first order theory over the reals algorithm on the randomized quicksort
example with 28 states. The ellipsoid method takes more than 43 hours, making it five
orders of magnitude slower than the policy iteration algorithms, which take less than a
dozen seconds. For the example with 82 states, of the 3,321 state pairs the policy iteration
algorithms consider 870 states and the partial policy iteration algorithms only 13 states.

Algorithm List size Running time Standard deviation State pairs Iterations

Simple 4 42.75 ms 5.96 ms 8 2

General 4 27.93 ms 4.48 ms 8 2

Simple partial 4 12.23 ms 2.84 ms 3 2

General partial 4 8.84 ms 2.25 ms 3 1

Simple 5 12.00 s 19.38 ms 99 13

General 5 4.58 s 20.39 ms 99 13

Simple partial 5 51.58 ms 2.51 ms 3 0

General partial 5 81.62 ms 5.67 ms 3 1

Simple 6 15.61 h 4.00 m 870 159

General 6 47.30 m 6.03 s 870 154

Simple partial 6 24.48 s 162.91 ms 13 3

General partial 6 53.63 s 203.58 ms 13 4

In [19], Knuth and Yao show how to model a die by means of a fair coin. An imple-
mentation of their algorithm is part of PRISM. The resulting labelled Markov chain has 13
states.
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Algorithm Running time Standard deviation State pairs Iterations

Simple 266.45 ms 22.40 ms 29 2

General 155.05 ms 6.59 ms 29 2

Simple partial 52.73 ms 3.69 ms 7 2

General partial 39.57 ms 0.83 ms 7 3

In the next experiment, we model two dice, one using only a fair coin and the other one
using a biased coin with probability 0.6 for heads and 0.4 for tails. The goal is to compute
the probabilistic bisimilarity distance between the two dice. The resulting labelled Markov
chain has 20 states.

Algorithm Running time Standard deviation State pairs Iterations

Simple 10.99 s 69.67 ms 91 51

General 1.51 s 20.45 ms 91 51

Simple partial 1.28 s 12.00 ms 21 17

General partial 0.55 s 19.83 ms 21 18

It can be seen from the above experiments that the simple policy iteration algorithm is
often slower than the general policy iteration algorithm. Moreover, if we are only interested
in the probabilistic bisimilarity distances between a few states, the partial policy iteration
algorithms are much more efficient as only part of the labelled Markov chain is considered
and only the distances of related pairs of states are computed.

9 Conclusion

Although behavioural equivalences like probabilistic bisimilarity are not robust, they still
play a pivotal role when computing their quantitative generalisations. For example, as we
have seen in Section 4, the feasible region is defined in terms of probabilistic bisimilarity.
The policies used in the policy iteration algorithms are only defined for states that are not
probabilistic bisimilar. Hence, in both cases one first has to decide probabilistic bisimil-
arity. Deciding probabilistic bisimilarity takes only a fraction of the time to compute the
probabilistic bisimilarity distances. For all the examples discussed in Section 8, deciding
probabilistic bisimilarity takes less than 50 milliseconds.

The probabilistic bisimilarity pseudometric of Desharnais et al. also has discounted
variants (see [12] for details). Bacci et al. consider the undiscounted version, as we do in
this paper, as well as the discounted variants in [1]. All the results presented in this paper
carry over to the discounted setting.

In [28] we prove an exponential lower bound for the simple policy iteration algorithm.
In this paper, we present an exponential lower bound for our simple partial policy iteration
algorithm. It is still open whether there exists an exponential lower bound for our general
policy iteration algorithm.

Acknowledgements. The authors are thankful to all the referees of this paper for their
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