
A New Notion of Compositionality for
Concurrent Program Proofs
Azadeh Farzan1 and Zachary Kincaid2

1 University of Toronto, Ontario, Canada
azadeh@cs.toronto.edu

2 Princeton University, NJ, USA
zkincaid@cs.princeton.edu

Abstract
This paper presents a high level overview of Proof Spaces [11] as an instance of a new approach to
compositional verification of concurrent programs and discusses potential future work extending
the approach beyond its current scope of applicability.

1998 ACM Subject Classification D.2.4 Software/Program Verification

Keywords and phrases Concurrency, Proofs, Dynamic Memory, Recursion

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2017.4

Category Invited Talk

1 Verification of Parameterized Concurrent Programs

Compositional proofs have always been the holy grail of reasoning about concurrent programs.
Two seminal contributions, namely Owicki-Gries style [22] and rely-guarantee [16], have set
the tone for compositional proofs of concurrent programs and inspired decades of research in
this area. In both techniques (and the wealth of follow-up work), compositionality strictly
means composing correctness arguments over individual threads into a correctness argument
for the entire program, with some extra supporting arguments that are preferably kept at
a minimum required. In a recent line of work [11, 10, 9, 12], we proposed a new approach
to static analysis and verification of concurrent programs which include an unbounded
number of concurrent threads with local and global memory, with a different notion of
compositionality. This talk will provide an overview of this approach, which takes a different
view of compositionality. In this paper, we hope to look forward and through examples
discuss early evidence of why we believe our approach to be a promising framework for future
research into extensions of the program models (of the already published work [11, 10, 9, 12])
into more expressive models including features like dynamic memory and recursion.

We will do an informal exposition of our approach from [11] using a simple example.
The interested reader can refer to [11, 10, 9, 12] for the technical details. The principle
behind our methodology is simple. It is difficult to reason about the correctness of a complex
concurrent program, however, it is much simpler to reason about the correctness of a single
behaviour (i.e. a single run) of the same program. Consider, for example, the complexity of
reasoning about unbounded concurrency. Any (terminating) run of such a program always
includes a bounded (by the length of the run) number of participating threads. Therefore, the
complexity of dealing with unboundedly many threads can be circumvented whilst reasoning
about the run. The idea is then to mine these simple proofs of program runs for ingredients
to construct a correctness proof for the program.

© A. Farzan and Z. Kincaid;
licensed under Creative Commons License CC-BY

28th International Conference on Concurrency Theory (CONCUR 2017).
Editors: Roland Meyer and Uwe Nestmann; Article No. 4; pp. 4:1–4:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2017.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 A New Notion of Compositionality for Concurrent Program Proofs

Construct a proof for ⌧

Update the candidate program proof by
information learned from proof of ⌧

Is ⌧ correct?Pick a program run ⌧ .

Does the candidate proof
represent all program runs?

yes

no

no

yes

Program is correct.

Program
is incorrect.

(a)

(b)

(c)

(d)

Figure 1 Proof Construction Methodology.

This effectively introduces a different way of decomposing the correctness argument for
a concurrent program. The new proof is a non-trivial composition of proofs of correctness
constructed for finitely many runs of the program. The correctness proof for each run
represents a class of behaviours for the program with a common correctness argument.
Instead of being forced to decompose the proof argument using the program syntax as a strict
guide, one can observe how the program behaves in different scenarios and reason that in each
case it exhibits the correct behaviour. Our constructed proofs may end up with structures
very similar to or wildly different from the original program. This is extra flexibility is useful
specially when a compositional proof in the classic sense is either nonexistent or hard to
automatically construct.

The diagram in Figure 1 illustrates our methodology. The main goal of this methodology
is to introduce a clean separation between

logical reasoning about data, that is over domains of the program variables, and
purely combinatorial reasoning about sufficiency of a candidate proof for a given program.

In many settings, distinctly so for concurrent programs, an argument for correctness often
involves both types of reasonings. The thesis of this methodology is that this separation could
make each argument type simpler, and moreover, each side of the argument becomes amenable
to existing technology. In particular, on the logical reasoning side we can make use of the
wealth of techniques that have been developed for loop invariant generation, such as abstract
interpretation [6, 7], Craig interpolation [15, 18, 2], and constraint-based techniques [5, 14].
On the combinatorial side, we can make use of technology behind finite-state model checking,
such as partial order reduction [32, 23, 13] and symbolic state-space exploration [4, 17].

The key steps in this methodology are:
Proof generation for a run. Depending on the richness of the program model, this
task can be straightforward with an array of existing solutions, or more tricky where new
algorithms need to be proposed for it. In particular:

In [9], program runs are simple (straight line sequential) programs with integer typed
variables, where constructing a proof for a run is a well-understood task. Since
concurrent programs are assumed to have a fixed number of threads, the challenge
is the well-known state explosion problem, and therefore the goal is compactness of
proofs. The innovation of proof construction step in this case is focused on constructing
parallel in proofs in form of inductive data flow graphs, that would generalize the proof
of correctness of a run to many other similar runs.
In [10], where the program model was extended to include unboundedly many threads,
a special type of proof, namely a counting proof, is constructed for a run. A special

A. Farzan and Z.Kincaid 4:3

global t: int
global s: int
local m: int
initially s <= t

do forever {
m = t++;
// busy wait until your turn
while (m > s);
// enter critical section
s++;

}

wait

critical

idle

section

m := t++

assume(m > s)

assume(m <= s)

s++

Figure 2 Ticket protocol code and control flow automaton.

technique for proof generation is proposed that automatically constructs a counting
argument (i.e. a proof making use of counters) for a run.
In [11], program runs are syntactically identical to those in [9], however, these program
runs are (terminating) runs for a program with unboundedly many threads. A proof
generated for a run in this context needs to be generalizable to the proof for a set of
runs for such a program, and therefore, a different notion of proof, namely a proof
space was introduced for these programs, a special proof generalization symmetry rule
to tackle unbounded concurrency (more on this later).
In [12], the program model is identical to the previous item, but the runs can potentially
be non-terminating, since proving termination (and liveness in general) is the goals.
Proofs for such runs, therefore, need to include termination arguments, which were
ranking functions in this case.

Proof checking. This is an algorithmic step that needs to (i) check if the candidate
proof is indeed a proof of the given property for the given program, and (ii) provide a
counter example if it is not, to ensure progress in the overall proof construction scheme
(i.e. the choice of the run τ in (a) in Figure 1). This requires effective representations
of both the program and the candidate proof so that sufficiency of the proof can be
algorithmically checked. We used alternating finite automata in [9], Petri nets in [10],
and a new notion of data automata in [11, 12] to represent various different classes of
concurrent programs (and their proofs) for this purpose.

Here, we will focus on one instance of this methodology [11] from our past work, and discuss
the ideas behind algorithmic solutions to the steps above over a running example.

Consider the program in Figure 2 where the illustrated code is executed by unboundedly
many threads.This program implements the ticket mutual exclusion protocol. The safety
property of interest is that no two threads are ever simultaneously in their critical sections.
This program has two global integer typed variables s and t, while it has unboundedly
many integer typed local variables m, one per each thread. The challenge of proving this
property for this program, beyond the standard challenges of dealing with shared memory and
infinite-state programs, is that the local variables of unboundedly many threads effectively
require an unbounded sized memory to keep track of their values in the proof.

Figure 2 also illustrates the control flow automaton for each thread in this program. Let
us start by looking at a run of this program that would lead to two threads being in a

CONCUR 2017

4:4 A New Notion of Compositionality for Concurrent Program Proofs

{s ≤ t}
m1 = t++ :1

{s ≤ m1 ∧ m1 < t}
m2 = t++ :2

{s ≤ m1 ∧ m1 < m2}
assume(m1 ≤ s) :1

{s ≤ m1 ∧ m1 < m2}
assume(m2 ≤ s) :2

{false}

{s t}
m1 = t++ :1

{s m1}

{true}
m1 = t++ :1

{m1 < t}

{m1 < t}
m2 = t++ :1

{m1 < m2}

{s m1 ^ m1 < m2}
assume(m2 s) :1

{false}

Figure 3 Correctness proof of a run (left) and the Hoare triples extracted from it (right).

critical section at the same time. The run is a string accepted by the parallel composition of
unboundedly many of versions of the control flow automaton illustrated in Figure 2. Below,
is a run of the program with only two participating threads (blue and red), where each
instruction includes the id of the thread executing it in form of : i (i ∈ {1, 2}), and the two
local variables for the two threads are distinguished by giving them two different subscripts
for clarity:

m1 = t++ : 1; m2 = t++ : 2; assume(m1 ≤ s) : 1; assume(m2 ≤ s) : 2;

Note that the run does not correspond to a real execution of the program; in other words,
it is infeasible. It is easy to argue that such a run is infeasible and therefore a spurious
counter example to violation of mutual exclusion. One possible proof for this is illustrated
in Figure 3. What can we learn from this proof that would help with the construction of a
proof of correctness for the entire program?

A natural and minimal unit of reasoning that can be extracted from a proof of the
correctness of a run is a set of Hoare triples. For example, the Hoare triples demonstrate in
Figure 3 can be learned from the proof of the run in the same figure. Consider a deductive
system in which these triples can be considered as axioms. What should be the inference
rules of this deductive system that would produce new judgements based on a finite set of
base axioms? The answer lies in the definition of a proof space [11].

A proof space H is a set of valid Hoare triples which is:
Closed under symmetry: Let π : N→ N be any index permutation.

{φ} 〈σ1 : i1〉· · · 〈σn : in〉 {ψ} ∈ H =⇒ {φ[π]} 〈σ1 : π(i1)〉· · · 〈σn : π(in)〉 {ψ[π]} ∈ H

For example
{s m1 ^ m1 < m2}
assume(m2 s);

{false}

{s m3 ^ m3 < m4}
assume(m3 s);

{false}

Closed under conjunction:

If {φ} τ {ψ} ∈ H ∧ {φ′} τ {ψ′} ∈ H =⇒ {φ ∧ φ′} τ {ψ ∧ ψ′} ∈ H

A. Farzan and Z.Kincaid 4:5

For example
{m1 < t}
m3 = t++;

{m1 < m3}

{m2 < t}
m3 = t++;

{m2 < m3}

{m1 < t ^ m2 < t}
m3 = t++;

{m1 < m3 ^ m2 < m3}

Closed under sequencing:

If {φ0} τ0 {φ1} ∈ H ∧ {φ′
1} τ1 {φ2} ∈ H ∧ φ1 φ′

1 =⇒ {φ0} τ0τ1 {φ2} ∈ H

For example
{s t}
m1 = t++;

{m1 < t}

{m1 < t}
m2 = t++;

{m1 < m2}

{s t}
m1 = t++;

m2 = t++;

{m1 < m2}

Note how proofs of runs of arbitrary length can be constructed using the sequencing rule.

One can effectively consider symmetry, conjunction, and sequencing as the inference rules of
the aforementioned deductive system, and a proof space as a theory of this system. Note that
the symmetry rule is the one that facilitates reasoning about unboundedly many threads.
Without it, sequencing and conjunction can be used to produce proofs of concurrent programs
with a fixed number of threads [9].

The next natural question to ask is whether the closure (under symmetry, conjunction,
and sequencing) of the set of Hoare triples in Figure 3 includes the proof of every run of
the program in Figure 2. The answer is no. The complete proof corresponds to the basis
illustrated in Figure 4 which includes one additional Hoare triple. This basis is a finite set of
valid Hoare triples that generates the complete proof space for the ticket program through
its closure under sequencing, symmetry, and conjunction rules. This additional Hoare triple
can be mined out of a second sample run. Therefore, the proof of the program in Figure 2 is
decomposed into two correctness arguments of two sample runs (one illustrated in Figure 3
and discussed above, and the other skipped for brevity).

It is important to note that the proof space does not make use of any of the exotic features
that are common to logics for reasoning about concurrency, most notably auxiliary variables
and universal quantification over threads.

How is the proof in Figure 4 checked? To reduce the problem of checking whether a
candidate proof space serves as a correctness proof for a program, we developed the notion
of predicate automata (PA), an infinite-state, infinite-alphabet generalization of alternating
finite automata. Predicate automata are equipped with a finite vocabulary of predicates
parameterized over natural numbers, and their states are propositions over this vocabulary.
The transition function of a PA maps each predicate symbol and letter to a positive Boolean
formula over its vocabulary. For example, the transition

δ(p(i, j), a : k) = (p(i, j) ∧ i 6= k) ∨ (q(i) ∧ q(j) ∧ i = k)

CONCUR 2017

4:6 A New Notion of Compositionality for Concurrent Program Proofs

{s m1 ^ m1 < m2}
s++ :1

{s m2}

{s t}
m1 = t++ :1

{s m1}

{true}
m1 = t++ :1

{m1 < t}

{m1 < t}
m2 = t++ :1

{m1 < m2}

{s m1 ^ m1 < m2}
assume(m2 s) :1

{false}

Figure 4 Complete basis for the proof of ticket protocol in Figure 2.

indicates that, if the PA is at state p(1, 2) and reads a : 2, then it transitions to p(1, 2); if
it then reads a : 1, then it transitions to both the state q(1) and q(2). A finite basis B of
Hoare triples gives rise to a predicate automaton which recognizes the same set of runs as
the proof space generated by B.

The proof checking problem for proof spaces reduces to the inclusion problem for predicate
automata, which in turn reduces to the emptiness problem of predicate automata. Although
this problem is undecidable in general, we proposed an algorithm which is a decision procedure
for the special case of PAs where each predicate symbol in its vocabulary has arity at most
one.

2 Dynamic memory

Separation logic is an extension of Hoare logic for reasoning about memory [21, 26]. It is
based on the addition of a new logical connective, the separating conjunction P ∗Q, which
asserts that the heap can be split into two disjoint parts such that P holds in one and Q in
the other. Separating conjunction allows for local reasoning in the sense that a specification
of a program fragment need only involve the portion of the heap that is relevant to that
fragment – the rest (the frame) is automatically proved to remain untouched via the Frame
rule, stated below:

Frame
{P} S {Q}

{P ∗ F} S {Q ∗ F}

The capacity of separation logic for reasoning about disjointness of memory makes it
appealing for reasoning about concurrency. This power can be illustrated by the appealing
inference rule for parallel composition [19]:

Parallel Composition
{P1} S1 {Q1} {P2} S2 {Q2}
{P1 ∗ P2} S1 ‖ S2 {Q1 ∗Q2}

This rule gives concurrent separation logic (CSL) an intuitive way to prove properties of
concurrent programs where threads act on disjoint memory. Generally, it is too much to
expect that threads do not share memory, but a kind of disjointness can be achieved through
the notion of ownership. The essential idea can be summarized as follows [20]:

Ownership Hypothesis. A code fragment can access only those portions of state
that it owns.
Separation Property. At any time, the state can be partitioned into that owned by
each process and each grouping of mutual exclusion.

A. Farzan and Z.Kincaid 4:7

type node = { data: int; next: node }
global top :: node
push(item):

mtop := new node
mtop.data := item
do:

mtop.next := *top
while(!cas(top, mtop.next, mtop))

pop():
do:

mtop := *top
if(mtop = null): break
mnext := mtop.next

while(!cas(top, mtop, mnext))

Figure 5 A nonblocking stack.

The earliest variation of CSL managed ownership using resource invariants, following Owicki
and Gries [22]. Subsequently, there has been a great deal of work on increasing the power
of CSL, a recent survey of which appears in [3]. Each advance increases the scope of what
is possible to prove. However, increasing the expressivity of these logics takes us farther
away from the class of proofs that we know how to completely automate. We thus raise a
challenge problem: can we automate proofs for concurrent heap-manipulating programs using
the ideas of proof spaces and separation logic?

A natural starting point in adapting proof spaces to separation logic is to replace the
Conjunction rule with the Frame rule. Call a set of valid separation logic triples closed
under Sequencing, Symmetry, and Frame a separation proof space.

The power of separation proof spaces can be illustrated with the push routine of Treiber’s
non-blocking stack [29], illustrated in Figure 5. The difficulty in verifying memory safety of
push is that no process owns the global top variable. There are various methods that can
be used to verify memory safety and even full functional correctness of the lock-free stack
[31, 30, 27, 8]. However, such proofs are difficult to automate. Figure 6 pictures a basis for a
proof space that proves the memory safety of push. We observe the following features:
1. Separating conjunction and the Frame rule allow the proof to scale to an arbitrary

number of threads by maintaining disjointness between each thread’s local mtop.
2. Separation logic triples are ordinary – they do not make use of exotic features that require

ingenuity (except perhaps the separating implication −∗, the adjoint of ∗).
3. The stack is not owned by any process – the fact that top points to the top of the stack

is preserved by every statement of the program, either explicitly or by application of the
Frame rule.

There are three challenges in making the combination of proof spaces and separation
logic practical.
1. Inference rules. While it may be possible to get some mileage out of the Frame rule

combined with Sequencing and Symmetry, we believe that additional inference rules
will be required in order to verify systems of practical interest. For example, existentially
quantified variables commonly used in separation logic, and some means for reasoning
about them is likely required (in the Treiber stack, for instance, we resorted to using
separating implication to avoid proliferation of existential variables).

2. Proof generation. While there has been a great deal of work on generating correctness
proofs for single runs in Hoare logic, there is relatively little in separation logic [1]. The
additional challenge imposed by proof spaces is that we need methods to synthesize proofs
that decompose into small, re-usable components.

3. Proof checking. The problem of checking that a proof space can prove every run of
a program correct is reduced to the emptiness problem of predicate automata. This

CONCUR 2017

4:8 A New Notion of Compositionality for Concurrent Program Proofs

{emp}
〈mtop := new node : 1〉
{mtop1 7→ [_,_]}

{mtop1 7→ [_,_]}
〈mtop.data := item : 1〉
{mtop1 7→ [_,_]}

{mtop1 7→ [_,_] ∗ (∃n.top 7→ [n] ∗ list(n))}
〈mtop.next := top : 1〉

{
(
(∃n.top 7→ [n] ∗ list(n))−∗ list(mtop1)

)
∗ (∃n.top 7→ [n] ∗ list(n))}

{mtop1 7→ [_,_] ∗ (∃n.top 7→ [n] ∗ list(n))}
〈mtop.next := top : 1〉

{mtop1 7→ [_,_] ∗ (∃n.top 7→ [n] ∗ list(n))}

{
(
(∃n.top 7→ [n] ∗ list(n))−∗ list(mtop1)

)
∗ (∃n.top 7→ [n] ∗ list(n))}

〈assume(cas(&top, mtop.next, mtop)) : 1〉
{∃n.top 7→ [n] ∗ list(n)}

{mtop1 7→ [_,_] ∗ (∃n.top 7→ [n] ∗ list(n))}
〈assume(!cas(&top, mtop.next, mtop)) : 1〉
{mtop1 7→ [_,_] ∗ (∃n.top 7→ [n] ∗ list(n))}

Figure 6 A basis for a separation proof space for Figure 5.

reduction exploits the duality between disjunction and conjunction to complement the
language of a predicate automaton recognizing all runs that are proved correct by a proof
space. This duality does not exist between disjunction and separating conjunction. Some
new mechanism (e.g., a new class of automaton) is likely needed to encode the proof
checking problem for separation proof spaces.

3 Recursion

The difficulty of analyzing concurrent programs with recursive procedures is well-known:
reachability is undecidable even for simple program models [25]. From the perspective
of constructing a proof by considering program runs, the set of runs of a (sequential)
program without procedures is regular, and with procedures, it is context-free. However
for concurrent programs, adding procedures jumps over the context-freedom, requiring a
multi-stack automaton to recognize the language of runs.

There are (at least) two possibilities for solving this problem: (1) use an automaton model
that is capable of recognizing the languages of multi-threaded recursive program runs; and
(2) use summaries to treat complete procedure calls as atomic actions, restoring regularity to
the program model. We will discuss both possibilities in turn.

The advantage of using an automaton model that can recognize the interleaved runs of
recursive procedures is that the proof system used for proving the correctness of those runs
may remain unchanged. In our framework the structure of the proof is divorced from the
structure of the program. For example, a proof space may very well cover all the runs of a
multi-threaded program with recursive procedures – the added difficulty is only in the proof
checking problem, where we must prove that it does. This problem requires us to devise
a class of automata capable of recognizing the language of runs in the program and the
language of runs proved correct in a proof.

A. Farzan and Z.Kincaid 4:9

int g = 0;
void foo(int r) {

if (r == 0) {
foo(r);

else {
g++;
}
return;

}

void main() {
int c = *;
foo(c);
assert(g >= 1);
return;

}

Figure 7 An example recursive concurrent program with unbounded recursion from [24].

In fact, predicate automata are already a suitable model for this task. Procedure calls
can be simulated by fork/join parallelism: whenever a thread would make a recursive call,
it instead forks a new thread to make the call on its behalf and then immediately joins to
retrieve the result. Fork/join parallelism can be modelled with predicate automata using a
binary predicate child(i, j) that retains the information that thread j was forked by thread i.
However, admitting a binary predicate into the vocabulary of a predicate automaton makes
the emptiness problem undecidable. Thus, the research problem is: can we develop adequate
semi-algorithms for emptiness checking for general predicate automata?

The classical tool for context-sensitive analysis of recursive procedures in sequential
programs is to compute summaries that abstract the behaviour of each procedure call [28].
Shared memory concurrency breaks the abstraction barrier: the assumption that procedure
calls execute atomically will cause us to miss potential bugs. In [24], for the case where
concurrent programs have a fixed number of threads, a summarization-based technique is
proposed where atomicity is argued through Lipton’s theory of reduction.

Although naive summarization (that is summarization that is unaware of the environment
of concurrently executing threads) is unsound in general, in many cases a software developer’s
mental model likely assumes some atomic specification for each procedure. Consider the
example in Figure 7. This example was taken from [24] where the program consisted of
parallel composition of two threads each executing the main procedure, however the same
assertion holds true for unboundedly many threads running main in parallel. The main
procedure has a local variable c which is initialized nondeterministically. Procedure main
then calls foo with c as the actual parameter. Procedure foo falls into infinite recursion if
the parameter r is 0. Otherwise, it increments global variable g and returns. After returning
from foo, the main procedure asserts that (g >= 1). The specification that foo increases g
by 1 or does not return at all is too strong: two threads may concurrently execute foo and
increment g by 2. However, the specification {g ≥ 0} foo(c) {g ≥ 1} is unproblematic (i.e.
holds under environment interference) and strong enough to prove that the assertion in main
holds. Note that this is independent of an argument about the atomicity of the procedure,
that is in the style of [24]. This is about atomicity of the specification in a concurrent
environment independent of atomicity of the code. The relevant research question is then:
how can our framework discover these atomic specifications for procedures and prove that
they hold?.

CONCUR 2017

4:10 A New Notion of Compositionality for Concurrent Program Proofs

References

1 Aws Albarghouthi, Josh Berdine, Byron Cook, and Zachary Kincaid. Spatial interpolants.
In Programming Languages and Systems - 24th European Symposium on Programming,
ESOP 2015, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2015, London, UK, April 11-18, 2015. Proceedings, pages 634–660, 2015.

2 Aws Albarghouthi and Kenneth L. McMillan. Beautiful interpolants. In CAV, pages 313–
329, 2013.

3 Stephen Brookes and Peter W. O’Hearn. Concurrent separation logic. SIGLOG News,
3(3):47–65, 2016.

4 Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and L. J. Hwang.
Symbolic model checking: 10ˆ20 states and beyond. In Proceedings of the Fifth Annual
Symposium on Logic in Computer Science (LICS ’90), Philadelphia, Pennsylvania, USA,
June 4-7, 1990, pages 428–439, 1990.

5 Michael Colón, Sriram Sankaranarayanan, and Henny Sipma. Linear invariant generation
using non-linear constraint solving. In CAV, pages 420–432, 2003.

6 Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In POPL, pages
238–252, 1977.

7 Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL, pages 84–96, 1978.

8 Thomas Dinsdale-Young, Pedro da Rocha Pinto, Kristoffer Just Andersen, and Lars Birke-
dal. Caper - automatic verification for fine-grained concurrency. In Programming Languages
and Systems - 26th European Symposium on Programming, ESOP 2017, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2017, Uppsala,
Sweden, April 22-29, 2017, Proceedings, pages 420–447, 2017.

9 Azadeh Farzan, Zachary Kincaid, and Andreas Podelski. Inductive data flow graphs. In
The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL ’13, Rome, Italy - January 23 - 25, 2013, pages 129–142, 2013.

10 Azadeh Farzan, Zachary Kincaid, and Andreas Podelski. Proofs that count. In The 41st
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
POPL ’14, San Diego, CA, USA, January 20-21, 2014, pages 151–164, 2014.

11 Azadeh Farzan, Zachary Kincaid, and Andreas Podelski. Proof spaces for unbounded
parallelism. In Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015,
pages 407–420, 2015.

12 Azadeh Farzan, Zachary Kincaid, and Andreas Podelski. Proving liveness of parameterized
programs. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’16, New York, NY, USA, July 5-8, 2016, pages 185–196, 2016.

13 Patrice Godefroid. Partial-Order Methods for the Verification of Concurrent Systems – An
Approach to the State-Explosion Problem. PhD thesis, University of Liege, 1994.

14 Ashutosh Gupta, Rupak Majumdar, and Andrey Rybalchenko. From tests to proofs. In
TACAS, pages 262–276, 2009.

15 Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Kenneth L. McMillan. Ab-
stractions from proofs. In POPL, pages 232–244, 2004.

16 Cliff B. Jones. Specification and design of (parallel) programs. In IFIP Congress, pages
321–332, 1983.

17 Kenneth L. McMillan. Symbolic model checking. Kluwer, 1993.
18 Kenneth. L. McMillan. Lazy abstraction with interpolants. In CAV, pages 123–136, 2006.

A. Farzan and Z.Kincaid 4:11

19 Peter W. O’Hearn. Resources, concurrency and local reasoning. In CONCUR 2004 -
Concurrency Theory, 15th International Conference, London, UK, August 31 - September
3, 2004, Proceedings, pages 49–67, 2004.

20 Peter W. O’Hearn. Resources, concurrency, and local reasoning. Theor. Comput. Sci.,
375(1-3):271–307, 2007.

21 Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about pro-
grams that alter data structures. In Computer Science Logic, 15th International Workshop,
CSL 2001. 10th Annual Conference of the EACSL, Paris, France, September 10-13, 2001,
Proceedings, pages 1–19, 2001.

22 Susan Owicki and David Gries. Verifying properties of parallel programs: an axiomatic
approach. CACM, 19:279–285, May 1976.

23 Doron Peled. All from one, one for all: On model checking using representatives. In CAV,
pages 409–423, 1993.

24 Shaz Qadeer, Sriram K. Rajamani, and Jakob Rehof. Summarizing procedures in concurrent
programs. In Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2004, Venice, Italy, January 14-16, 2004, pages 245–255,
2004.

25 G. Ramalingam. Context-sensitive synchronization-sensitive analysis is undecidable. ACM
Trans. Program. Lang. Syst., 22(2):416–430, March 2000.

26 John C. Reynolds. Separation logic: A logic for shared mutable data structures. In 17th
IEEE Symposium on Logic in Computer Science (LICS 2002), 22-25 July 2002, Copenha-
gen, Denmark, Proceedings, pages 55–74, 2002.

27 Ilya Sergey, Aleksandar Nanevski, and Anindya Banerjee. Mechanized verification of fine-
grained concurrent programs. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation, Portland, OR, USA, June 15-17, 2015,
pages 77–87, 2015.

28 Micha Sharir and Amir Pnueli. Two Approaches to Interprocedural Data Flow Analysis,
chapter 7. Prentice-Hall, Inc., 1981.

29 R. Treiber. Systems programming: coping with parallelism. Technical report, Almaden
Research Center, 1986.

30 Aaron Turon, Derek Dreyer, and Lars Birkedal. Unifying refinement and Hoare-style reas-
oning in a logic for higher-order concurrency. In ACM SIGPLAN International Conference
on Functional Programming, ICFP’13, Boston, MA, USA - September 25 - 27, 2013, pages
377–390, 2013.

31 Viktor Vafeiadis. Rgsep action inference. In Proceedings of the 11th International Confer-
ence on Verification, Model Checking, and Abstract Interpretation, pages 345–361, 2010.

32 Antti Valmari. Stubborn sets for reduced state space generation. In Advances in Petri
Nets, pages 491–515, 1991.

CONCUR 2017

	Verification of Parameterized Concurrent Programs
	Dynamic memory
	Recursion

