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Abstract
We investigate the decidability of termination, reachability, coverability and deadlock-freeness of
Petri nets endowed with a hierarchy of places, and with inhibitor arcs, reset arcs and transfer
arcs that respect this hierarchy. We also investigate what happens when we have a mix of these
special arcs, some of which respect the hierarchy, while others do not. We settle the decidability
status of the above four problems for all combinations of hierarchy, inhibitor, reset and transfer
arcs, except the termination problem for two combinations. For both these combinations, we
show that deciding termination is as hard as deciding the positivity problem for linear recurrence
sequences – a long-standing open problem.
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1 Introduction

Petri nets are an important and versatile mathematical modeling formalism for distributed
and concurrent systems. Thanks to their intuitive visual representation, precise execu-
tion semantics, well-developed mathematical theory and availability of tools for reasoning
about them, Petri nets are used in varied contexts, viz. computational, chemical, biological,
workflow-related etc. Several extensions to Petri nets have been proposed in the litera-
ture to augment their modeling power. From a theoretical perspective, these provide rich
and interesting models of computation that warrant investigation of their expressive pow-
ers, and decidability and/or complexity of various decision problems. From a practitioner’s
perspective, they enable new classes of systems to be modeled and reasoned about.

In this paper, we focus on an important class of extensions proposed earlier for Petri
nets, pertaining to the addition of three types of special arcs, namely inhibitor, reset and
transfer arcs from places to transitions. We investigate how different combinations of these
extensions affect the decidability of four key decision problems: reachability, coverability,
termination, and deadlock-freeness. To start with, an inhibitor arc effectively models a zero
test, and hence one can model two-counter machines with two inhibitor arcs, leading to
undecidability of all of the above decision problems. However, Reinhardt [20] showed that if
we impose a hierarchy among places with inhibitor arcs (a single inhibitor arc being a sub-
case), we recover decidability of reachability. Recently Bonnet [5] simplified this proof using
techniques of Leroux [14] and also showed that termination and coverability are decidable
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40:2 On Petri Nets with Hierarchical Special Arcs

for Petri nets with hierarchical inhibitor arcs. With reset arcs (which remove all tokens from
a pre-place) and transfer arcs (which transfer all tokens from a pre-place to a post-place),
reachability and deadlock-freeness are known to be undecidable [9], athough termination
and coverability are decidable [11].

In this paper, we are interested in what happens when hierarchy is introduced among all
combinations of special arcs. Thus, we specify a hierarchy, or total ordering, of the places,
and say that the special arcs respect the hierarchy if whenever there is a special arc from
a place p to a transition t, there are also special arcs from every place lower than p in
the hierarchy to t. The study of Petri nets extended with hierarchical and non-hierarchical
special arcs provides a generic framework that subsumes several existing questions and raises
new ones. There are only a handful of results in the literature where hierarchical special
arcs have been shown to play an important role. Decidability of reachability for Petri nets
with hierarchical inhibitor arcs was shown in [20] and re-visited in a special context in [4],
while decidability of termination, coverability and boundedness were shown in [5]. Further,
in [2] it was shown that Petri nets with hierarchical zero tests are equivalent to Petri nets
with a stack encoding restricted context-free languages. Finally a specific subclass, namely
Petri nets with a single inhibitor arc, has received a lot of attention, with results showing
decidability of boundededness and termination [10], place-boundedness [6], and LTL model
checking [7]. However, in [7], the authors remark that it would not be easy to extend their
technique for the last two problems to handle hierarchical arcs. To the best of our knowledge,
none of the earlier papers address mixing of reset and transfer arcs within the hierarchy of
inhibitor arcs, leaving several interesting questions unanswered. Our primary goal in this
paper is to comprehensively fill these gaps. Before delving into the theoretical investigations,
we present two examples that illustrate why these models are interesting from a practical
point of view.

Our first example is a prioritized job-shop environment in which work stations with
possibly different resources are available for servicing jobs. Each job comes with a priority
and with a requirement of the count of resources it needs. For simplicity, assume that all
resources are identical, and that there is at most one job with any given priority. A work
station can service multiple jobs simultaneously subject to availability of resources; however,
a job cannot be split across multiple work stations. Additionally, we require that a job with
a lower priority must not be scheduled on any work station as long as a job with higher
priority is waiting to be scheduled. Once a job gets done, it can either terminate or generate
additional jobs with different priorities based on some rules. An example of such a rule
could be that a job with prioriy k and resource requirement m can only generate a new job
with priority ≤ k and resource requirement ≤ m. Given such a system, there are several
interesting questions one might ask. For example, can too many jobs (above a specified
threshold) of the lowest priority be left waiting for a work station? Or, can the system
reach a deadlocked state from where no progress can be made? A possible approach to
answering these questions is to model this prioritized job-shop environment as a Petri net
with hierarchical special arcs, i.e., resets, inhibitors and transfers, and reduce the questions
to decision problems (such as coverability or deadlock-freeness) for the corresponding nets.

Our second example builds on work reported in the literature on modeling integer pro-
grams with loops using Petri nets [3]. Questions pertaining to termination of such programs
can be reduced to decision problems (termination or deadlock-freeness) of the corresponding
Petri net model. In Section 6.1, we describe a new reduction of the termination question
for integer linear loop programs to the termination problem for Petri nets with hierarchical
inhibitor and transfer arcs. This underlines the importance of studying decision problems
for these extensions of Petri nets.
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Our main contribution is a comprehensive investigation into Petri nets extended with
a mix of these special arcs, some of which respect the hierarchy, while others do not. We
settle the decidability status of the four decisions problems for all combinations of hierarchy,
inhibitor, reset and transfer arcs, except the termination problem for two combinations. For
these cases, we show a reduction from the positivity problem [18, 19] – a long-standing open
problem on linear recurrences. We summarize these results in Section 3, after introduc-
ing appropriate notations in Section 2. Interestingly, several of our results use completely
different constructions and proof techniques, as detailed in Sections 4–6.

2 Preliminaries

We begin by recalling some key definitions and fixing notations. A Petri net, denoted PN, is
defined as (P, T, F,M0), where P is a set of places, T is a set of transitions, M0 : P → N is
the initial marking, and F : (P ×T )∪ (T ×P )→ N is the flow relation. For every x ∈ P ∪T ,
we define Pre(x) = {y ∈ P ∪T | F (y, x) > 0} and Post(x) = {y ∈ P ∪T | F (x, y) > 0}. For
every t ∈ T , we use the following terminology: every p ∈ Pre(t) is a pre-place of t, every
q ∈ Post(t) is a post-place of t, every arc (p, t) such that F (p, t) > 0 is a pre-arc of t, and
every arc (t, p) such that F (t, p) > 0 is a post-arc of t.

A marking M : P → N is a function from the set of places to non-negative inte-
gers. We say that a transition t is firable at marking M , denoted by M

t−→, if ∀p ∈
Pre(t),M(p) ≥ F (p, t). If t is firable at M1, we say that firing t gives the marking M2,
where ∀p ∈ P,M2(p) = M1(p) − F (p, t) + F (t, p). This is also denoted as M1

t−→ M2. We
define the sequence of transitions ρ = t1t2t3...tn to be a run from marking M0, if there exist
markings M1,M2, ...,Mn, such that for all i, ti is firable at Mi−1 and Mi−1

ti−→Mi. Finally,
we abuse notation and use ≤ to denote the component-wise ordering over markings. Thus,
M1 ≤M2 iff ∀p ∈ P,M1(p) ≤M2(p). A detailed account on Petri nets can be found in [17].

We now define some classical decision problems in the study of Petri nets.

I Definition 2.1. Given a Petri net N = (P, T, F,M0),
Termination (or Term): Does there exist an infinite run from marking M0?
Reachability (or Reach): Given a marking M , is there a run from M0 which reaches M?
Coverability (or Cover): Given a marking M , is there a marking M ′ ≥ M which is
reachable from M0?
Deadlock-freeness (or DLFree): Does there exist a marking M reachable from M0, such
that no transition is firable at M?

Since Petri nets are well-structured transition systems (WSTS), the decidability of cover-
ability and termination for Petri nets follows from the corresponding results for WSTS [11].
The decidability of reachability was shown in [13]. Subsequently, there have been several
alternative proofs of the same result, viz. [14]. Finally, since deadlock-freeness reduces to
reachability in Petri nets [8], all the four decision problems are decidable for Petri nets. In
the remainder of the paper, we concern ourselves with these decision problems for Petri nets
extended with the following special arcs:

An Inhibitor arc from place p to transition t signifies t is firable only if p has zero tokens.
A Reset arc from place p to transition t signifies that p contains zero tokens after t fires.
A Transfer arc from place p1 through transition t to place p2 signifies that on firing
transition t, all tokens from p1 get transferred to p2.

For Petri nets with special arcs, we redefine the flow relation as F : (P × T ) ∪ (T × P ) →
N ∪ {I,R} ∪ {Sp | p ∈ P}, where F (p, t) = I (resp. F (p, t) = R) signifies the presence of an
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40:4 On Petri Nets with Hierarchical Special Arcs

inhibitor arc (resp. reset arc) from place p to transition t. Similarly, if F (p, t) = Sp′ , then
there is a transfer arc from place p to place p′ through transition t.

3 Problem statements and main results

We use PN to denote standard Petri nets, and I-PN, R-PN and T-PN to denote Petri nets with
inhibitor, reset and transfer arcs, respectively. The following definition subsumes several
additional extensions studied in this paper.

I Definition 3.1. A Petri net with hierarchical special arcs is defined to be a 5-tuple
(P, T, F,v,M0), where P is a set of places, T is a set of transitions, v is a total or-
dering over P encoding the hierarchy, M0 : P → N is the initial marking, and F :
(P × T ) ∪ (T × P ) → N ∪ {I,R} ∪ {Sp | p ∈ P} is a flow relation satisfying
∀(t, p) ∈ T × P, F (t, p) ∈ N, and
∀(p, t) ∈ P × T, F (p, t) 6∈ N =⇒ (∀q v p, F (q, t) 6∈ N)

Thus, all arcs (or edges) from transitions to places are as in standard Petri nets. However, we
may have special arcs from places to transitions. These can be inhibitor arcs (F (p, t) = I),
reset arcs (F (p, t) = R), or transfer arcs (F (p, t) = Sp′ , where p and p′ are places in the Petri
net). Note that all special arcs respect the hierarchy specified by v. In other words, if there
is a special arc from a place p to a transition t, there must also be special arcs from every
place p′ to t, where p′ v p. Depending on the subset of special arcs that are present, we can
define sub-classes of Petri nets with hierarchical special arcs as follows. In the following,
Range(F ) denotes the range of the flow relation F .

I Definition 3.2. The class of Petri nets with hierarchical special arcs, where Range(F ) \N
is a subset of {I}, {T} or {R} is called HIPN, HTPN or HRPN respectively. Similarly, it
is called HITPN, HIRPN or HTRPN if Range(F ) \ N is a subset of {I, T}, {I,R} or {T,R}
respectively. Finally, if Range(F ) \ N ⊆ {I,R, T}, we call the corresponding class HIRTPN.

We also study generalizations, in which extra inhibitor, reset and/or transfer arcs that do
not respect the hierarchy specified by v, are added to PN with hierarchical special arcs.

I Definition 3.3. Let N be a class of Petri nets with hierarchical special arcs as in Def-
inition 3.2, and let M be a subset of {I, T,R}. We use M-N to denote the class of nets
obtained by adding unrestricted special arcs of typeM to an underlying net in the class N .

For example, R-HIPN is the class of Petri nets with hierarchical inhibitor arcs extended with
reset arcs that need not respect the hierarchy. Clearly, if the special arcs in every net N ∈ N
are fromM, the classM-N is simply the class of Petri nets with unrestricted (no hierarchy)
arcs of typeM. Hence we avoid discussing such extensions in the remainder of the paper.

As we show later, all four decision problems of interest to us are either undecidable or
not known to be decidable for HIRTPN. A slightly constrained version of HIRTPN, however,
turns out to be much better behaved, motivating the following definition.

IDefinition 3.4. The sub-class HIRcTPN is defined to be HIRTPN with the added restriction
that ∀(p, t, p′) ∈ P × T × P, F (p, t) = Sp′ =⇒ F (p′, t) ∈ N.

Thus, every place p′ that has an incoming transfer arc through transition t is constrained
to have only a standard PN outgoing arc (if any) to t. This restriction suffices to recover
decidability for all four decision problems of interest to us. Since nets in HIRcTPN often
suffice to model useful classes of systems, we present results for this class separately.
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Table 1 Summary of key results; results for all other extensions are subsumed by these results.

Term Cover Reach DLFree
PN 3 [11] 3 [11] 3 [15, 14] 3 [8, 12]

R/T-PN 3 [11] 3 [11] 7 [9] 7 [Red. from [9]]
I-PN 7 [16] 7 [16] 7 [16] 7 [16]
HIPN 3 [20, 5] 3 [20, 5] 3 [20, 5] 3 [Thm 4.3]
HTPN 3 [11] 3 [11] 7 [Thm 6.1] 7 [Thm 6.1]
HIRPN 3 [Thm 4.2] 3 [Thm 4.2] 3 [Thm 4.2] 3 [Thm 4.3]
HITPN Positivity-Hard [Thm 6.5] 7 [Cor. 6.2] 7 [Thm 6.1] 7 [Thm 6.1]

HIRcTPN 3 [Thm 4.2] 3 [Thm 4.2] 3 [Thm 4.2] 3 [Thm 4.3]
R-HIPN 3[Thm 5.1] 7[Thm 5.6] 7[[9], [1]] 7[Red.frm [9], [1]]
T-HIPN Positivity-Hard [Thm 6.5] 7[Thm 5.6] 7[[9], [1]] 7[Red.frm [9], [1]]

R-HIRPN 3[Thm 5.1, Thm 4.2] 7[Thm 5.6] 7[[9], [1]] 7[Red.frm [9], [1]]

Status of decision problems and our contributions. Table 1 summarizes the decidability
status of the four decision problems for some classes of Petri net extensions. A 3 denotes
decidability of the corresponding problem, while 7 denotes undecidability of the problem.
The shaded cells present results (and corresponding citations) already known prior to the
current work, while the unshaded cells show results (and corresponding theorems) arising
from this paper. Note that the table doesn’t list all extensions of Petri nets that were defined
above. This has been done deliberately and carefully to improve readability. Specifically, for
every Petri net extension that is not represented in the table, e.g., R-HITPN, the status of
all four decision problems are inferable from others shown in the table. These are explicitly
listed out in a longer version of the paper [1], where we also depict the relative expressiveness
of these classes. Thus, our work comprehensively addresses the four decision problems for
all classes of Petri net extensions considered above.

Interestingly, several of the results use distinct constructions and proof techniques. We
point out the salient features of our main results below.

We include reset arcs in the hierarchy of inhibitor arcs in HIPN in Section 4. In The-
orem 4.2, we show that we can model reset arcs by inhibitor arcs, while preserving
hierarchy. This immediately gives decidability of all problems except DLFree. Since
the reduction may introduce deadlocks, we need a different proof for DLFree, which
we present through in Theorem 4.3. This also proves decidability of DLFree for HIPN,
which to the best of our knowledge, was not known before.
We add reset arcs outside the hierarchy of inhibitor arcs in Section 5. Somewhat counter-
intuitively, this class, R-HIPN, does not contain HIRPN and is incomparable to it. This
is because all inhibitor arcs in R-HIPN are required to respect the hierarchy, whereas in
HIRPN some inhibitor arcs can be replaced by resets, thereby violating the requirement
of hierarchy among inhibitor arcs. Using a new and surprisingly simple construction of
an extended finite reachability tree (FRT) which keeps track of the hierarchical inhibitor
information and modifies the subsumption condition, we show in Theorem 5.1 that ter-
mination is decidable for R-HIPN. This result has many consequences. In particular, it
implies an arguably simple proof for the special case of a single inhibitor arc, which was
solved in [10] (using a different method of extending FRTs). In Theorem 5.6, we use a
reduction from two counter machines to show that coverability is undecidable with as
few as 2 reset arcs and an inhibitor arc in the absence of hierarchy.
Finally, we consider transfer arcs inside and outside the hierarchy in Section 6. In
Theorem 6.1, we show that unlike for reset arcs, including transfer arcs in the hierarchy
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pS pI pR

p

t

Reset

Rest of Net

pS p∗

p∗t

tS Rest of Net

pRpI

p

tR

tI

Figure 1 Transformation from N ∈ HIRPNk (left) to N ′ ∈ HIRPNk−1 (right).

of inhibitor arcs does not necessarily preserve decidability. For both HITPN and T-HIPN,
while coverability, reachability and deadlock-freeness are undecidable, we are unable to
show such a result for termination. Instead, in Theorem 6.5, we show that we can reduce
a long-standing open problem on linear recurrences to this problem.

4 Adding Reset Arcs with Hierarchy to HIPN

In this section, we extend hierarchical inhibitor nets [20] with reset arcs respecting hierar-
chy. Subsection 4.1 presents a reduction from HIRPN to HIPN that settles the decidability
of termination, coverability and reachability for HIRPN. As this reduction does not work
for deadlock-freeness (since it introduces new deadlocked markings), we present a separate
reduction from deadlock-freeness to reachability for HIRPN in subsection 4.2.

4.1 Reduction from HIRPN to HIPN
Let HIRPNk be the sub-class of Petri nets in HIRPN with at most k transitions having one
or more reset pre-arcs. We first show that termination, reachability and coverability for
HIRPNk can be reduced to the corresponding problems for HIRPNk−1, for all k > 0. This
effectively reduces these problems for HIRPN to the corresponding problems for HIRPN0 (or
HIPN), which are known to be decidable [20, 5]. In the following, we use Markings(N) to
denote the set of all markings of a net N .

I Lemma 4.1. For every net N in HIRPNk, there is a net N ′ in HIRPNk−1 and a mapping
f : Markings(N)→ Markings(N ′) that satisfy the following:

For every M1,M2 ∈ Markings(N) such that M2 is reachable from M1 in N , the marking
f(M2) is reachable from f(M1) in N ′.
For every M ′1,M

′
2 ∈ Markings(N ′) such that M ′1 = f(M1), M ′2 = f(M2) and M ′2 is

reachable from M ′1 in N ′, the marking M2 is reachable from M1 in N .

Proof Sketch. To see how N ′ is constructed, consider an arbitrary transition, say t, in N
with one or more reset pre-arcs. We replace t by a gadget in N ′ with no reset arcs, as shown
in Figure 1. The gadget has two new places labeled p∗ and p∗t , with every transition in “Rest
of Net” having a simple pre-arc from and a post-arc to p∗, as shown by the dotted arrows
in Figure 1. The gadget also has a new transition tS with simple pre-arcs from p∗ and from
every place pS that has a simple arc to t in N . It also has a new transition labeled tR for
every reset arc from a place pR to t in N . Thus, if there are n reset pre-arcs of t in N , the
gadget has n transitions tR1 , . . . tRn . As shown in Figure 1, each such tRi has simple pre-arcs
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from pRi and p∗t and a post-arc to p∗t . Finally, the gadget has a new transition labeled tI

with a simple pre-arc from p∗t and inhibitor pre-arcs from all places pI (resp. pR) that have
inhibitor (resp. reset) arcs to t in N .

The ordering v′ of places in N ′ is obtained by extending the ordering v of N as follows:
for each place p in N , we have p v′ p∗t v′ p∗. Clearly, N ′ ∈ HIRPNk−1, since it has one less
transition (i.e. t) with reset pre-arcs compared to N . It is easy to check that if the reset
and inhibitor arcs in N respect v, then the reset and inhibitor arcs in N ′ respect v′ as well.

The mapping function f : Markings(N) → Markings(N ′) is defined as follows: for every
place p in N ′, f(M)(p) = M(p) if p is in N ; otherwise, f(M)(p∗) = 1 and f(M)(p∗t ) = 0.
The initial marking of N ′ is given by f(M0), where M0 is the initial marking of N . Given a
run in N , it is now easy to see that every occurrence of t in the run can be replaced by the
sequence tS(tR)∗tI (the tR transitions fire until the corresponding place pR is emptied) and
vice-versa. Further details of the construction are given in [1], where it is also shown that
N can reach M2 from M1 iff N ′ can reach f(M2) from f(M1). J

In fact, the above construction can be easily adapted for HIRcTPN as well. Specifically,
if we have a transfer arc from place px to place py through t, we add a new transtion tTx,y
with simple pre-arcs from p∗t and px, and with simple post-arcs to p∗t and py to the gadget
shown in Figure 1. Furthermore, we add an inhibitor arc from px to tI , like the arc from pR

to tI in Figure 1. Note that the constrained property of transfer arcs is required here, since
if we had an inhibitor arc from py to t in original net (hence, py to tI in construction), then
in the constructed net, tI cannot be fired, since we would have added tokens in py through
tTx,y. This allows us to obtain a net in HIRcTPN with at least one less transition with reset
pre-arcs or transfer arcs, such that the reachability guarantees in Lemma 4.1 hold.

Finally, by repeatedly applying Lemma 4.1, we have,

I Theorem 4.2. Termination, reachability and coverability for HIRPN and HIRcTPN are
decidable.

4.2 Reducing Deadlock-freeness to Reachability in HIRPN
The overall idea behind our reduction is to add transitions that check whether the net
is deadlocked, and to put a token in a special place, say p∗, if this is indeed the case.
Note that for a net to be deadlocked, the firing of each of its transitions must be disabled.
Intuitively, if M denotes a marking of a net and if T denotes the set of transitions, then
Deadlock(M) =

∧
ti∈T NotFirei(M), where Deadlock(M) is a predicate indicating if the net

is deadlocked in M , and NotFirei(M) is a formula representing the enabledness of transition
ti in M . For a transition t to be disabled, atleast one of its pre-places p must fail the
condition on that place for t to fire. There are three cases to consider here.

F (p, t) ∈ N: For t to be disabled, we must have M(p) < F (p, t)
F (p, t) = I: For t to be disabled, we must have M(p) > 0.
F (p, t) = R: Place p cannot disable t

Suppose we define Exactj(p) ≡ (M(p) = j) and AtLeast(p) ≡ (M(p) > 0). Clearly,
NotFirei(M) =

∨
(p,t)∈F Check(p), where Check(p) = AtLeast(p) if F (p, t) = I, and

Check(p) =
∨
j<k Exactj(p) if F (p, t) = k ∈ N. The formula for Deadlock(M) (in CNF

above) is now converted into DNF by distributing conjunctions over disjunctions. Given a
HIRPN, we now transform the net, preserving hierarchy, so as to reduce checking
Deadlock(M) in DNF in the original net to a reachability problem in the transformed HIRPN.

Every conjunctive clause in the DNF of Deadlock(M) is a conjunction of literals of the
form AtLeast(p) and Exactj(p). Let SC be the set of all literals in a conjunctive clause C,
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40:8 On Petri Nets with Hierarchical Special Arcs

and let P be the set of all places in the net. Define BCi = {p ∈ P | Exacti(p) ∈ SC} and
AC = {p ∈ P | AtLeast(p) ∈ SC} \

⋃
i≥1 B

C
i . We only need to consider conjunctive clauses

where the sets BCi are pairwise disjoint (other clauses can never be true). Similarly, we only
need to consider conjunctive clauses where BC0 and AC are disjoint. We add a transition for
each conjunctive clause that satisfies the above two properties. By definition, AC and BCi
are disjoint for all i ≥ 1. Thus, the sets AC and BCi (i ≥ 0) are pairwise disjoint for every
conjunctive clause we consider.

p2

t2

p2∗

tC

t2∗

p∗

p1

r1

p1∗

i

pC

p∗∗

qC

p3

s3

Given the original HIRPN net, for each conjunctive clause considered, we perform the
construction as shown in the above figure. For every place pa ∈ AC , we add a construction
as for p2 in above diagram. For every place pi ∈ BCi , we add a construction as for p1 in
above diagram. For all places p 6∈ AC ∪

⋃
iB

C
i , we add a construction as for p3 in above

diagram. We call the transition tC in the above diagram as the "Check Transition", and
refer to the set of transitions ri, si, ti, ti∗, tC (excluding qC) as transitions for clause C. Note
that for any pi ∈ P , exactly one of ri, si, ti exist since the sets AC and the sets BCi are all
pairwise disjoint.

Our construction also adds two new places, pC and p∗∗, and one new transition qC such
that

there is a pre-arc and a post-arc of weight 1 from p∗∗ to every transition in the original
net. Thus, transitions in original net can fire only if p∗∗ has a token.
there is a pre-arc of weight 1 from pc to each transition for clause C (within dotted box).
there is a post-arc of weight 1 to pc from every transition for clause C (within dotted
box), except from tC to pC .

Note that hierarchy is preserved in the transformed net, since the only new transitions
which have inhibitor/reset arcs are the check transitions, which have inhibitor arcs from
all places in the original net. Let N be the original net in HIRPN with P being its set of
places, and let N ′ be the transformed net, also in HIRPN, obtained above. Define a mapping
f : Markings(N)→ Markings(N ′) as follows: f(M)(p) = M(p) if p ∈ P ; f(M)(p∗∗) = 1 and
f(M)(p) = 0 in all other cases. If M0 is the initial marking in N , define M ′0 = f(M0) to be
the initial marking in N ′.

I Claim 4.1. The marking M ′? of N ′, defined as M ′?(p) = 1 if p = p∗ and M ′?(p) = 0
otherwise, is reachable from M ′0 in N ′ iff there exists a deadlocked marking reachable from
M0 in N .

From, the above reduction (see [1] for proof details) and from the decidability of reach-
ability for HIRPN we then have the following.

I Theorem 4.3. Deadlock-freeness for HIRPN is decidable.
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5 Adding Reset Arcs without Hierarchy

The previous section dealt with extension of Petri nets where reset arcs were added within
the hierarchy of the inhibitor arcs. This section discusses the decidability results when we
add reset arcs outside the hierarchy of inhibitor arcs.

5.1 Termination in R-HIPN
Our main idea here is to use a modified finite reachability tree (FRT) construction to provide
an algorithm for termination in R-HIPN. The usual FRT construction [11] for Petri nets does
not extend to Petri nets with even a single (and hence also hierarchical) inhibitor arc.

I Theorem 5.1. Termination is decidable for R-HIPN.

Consider a R-HIPN net (P, T, F,v,M0). We start by introducing a few definitions. For any
place p ∈ P , we define the index of the place p (Index(p)) as the number of places q ∈ P
such that q v p. The definition of Index over places induces an Index among transitions
too: For any transition t ∈ T , its index is defined as Index(t) = maxF (p,t)=I Index(p)
By convention, if there is no such place, then Index(t) = 0. Given markings M1 and
M2 and i ∈ N, we say that M1 and M2 are i-Compatible (denoted Compati(M1,M2)) if
∀p ∈ P, (Index(p) ≤ i =⇒ M1(p) = M2(p)).

I Definition 5.2. Consider a run M2
ρ−−→ M1. Let t∗ = argmaxt∈ρ Index(t). We define

Subsume(M2,M1, ρ) = M2 ≤M1 ∧
(
CompatIndex(t∗)(M1,M2)

)
To understand this definition note that if ρ can be fired at M2 and reaches M1 and if
Subsume(M2,M1, ρ) is true, then ρ can be fired atM1 again. In classical Petri nets without
inhibitor arcs, Subsume(M2,M1, ρ) = M2 ≤M1, and hence this is the classical monotonicity
condition. However, this condition may differ in the presence of even a single inhibitor arc.

Given a net N = (P, T, F,v,M0) in R-HIPN, we define the Extended Reachability Tree
ERT (N) as a directed unordered tree where the nodes are labelled by markingsM : P → N,
rooted at n0 : M0 (initial marking). If M1

t−−→ M2 for some markings M1 and M2 and
transition t ∈ T , then a node marked by n′ : M2 is a child of the node n : M1. Consider
any node labelled M1. If along the path from root n0 : M0 to n : M1, there is a marking
n′ : M2 (n 6= n′), such that the path from n′ : M2 to n : M1 corresponds to a run ρ and
Subsume(M2,M1, ρ) is true, thenM1 is made a leaf node. We call this a subsumed leaf node.
Note that leaf nodes in this tree are of two types: either leaf nodes caused by subsumption
as above or leaf nodes due to deadlock, where no transition is fireable.

I Lemma 5.3. For any net N = (P, T, F,v,M0) in R-HIPN, ERT (N) is finite.

Proof. Assume the contrary. By Konig’s Lemma, there is an infinite path. Let the infinite
path correspond to a run ρ = M0

t1−−→M1
t2−−→M2 . . .

ti−−→Mi . . . .
Let t ∈ T be the transition which has maximum index among the transitions which are

fired infinitely often in run ρ. Thus all transitions having higher index than Index(t) fire only
finitely many times. Let b be chosen such that ∀i ≥ b, Index(ti) ≤ Index(t) (i.e. b is chosen
after the last position where any transition with index higher than Index(t) fires). This exists
by the definition of t. Since t is fired infinitely often, the sequence {Mi | i > b ∧ ti+1 = t} is
an infinite sequence. As ≤ over markings is a well-quasi ordering, there exist two markings
Mi and Mj , such that both belong to the above sequence (i.e. ti+1 = tj+1 = t), Mi ≤ Mj

and i < j. Since ti+1 = tj+1 = t, and t fires at Mi and Mj , we have ∀p ∈ P, Index(p) ≤
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Index(t) =⇒ Mi(p) = Mj(p) = 0. Thus, CompatIndex(t)(Mi,Mj) is true. Note that t
is the maximum index transition fired in the run from Mi to Mj , since no higher index
transition fires after position b and j > i > b. Hence, Subsume(Mi,Mj , ρ

′) is true, where ρ′
is the run from Mi to Mj . But then, the path would end at Mj , giving a contradiction. J

Thus, we have shown that the ERT is always finite. Next, we will show a crucial property
of Compati, which will allow us to check for a non-terminating run.

I Lemma 5.4. Consider markings M1 and M2 such that M1 ≤M2. Let i ∈ N be such that
we have Compati(M1,M2). Then for any run ρ over the set of transitions Ti = {t | t ∈ T ∧
Index(t) ≤ i}, if M1

ρ−−→M ′1, then M2
ρ−−→M ′2, where M ′1 ≤M ′2 and Compati(M ′1,M ′2).

Proof. We prove this by induction. We first prove that t is firable at M2. If F (p, t) ∈ N,
then M2(p) ≥ M1(p) ≥ F (p, t). If F (p, t) = I, i.e., it is an inhibitor arc, then Index(p) ≤
Index(t) ≤ i. But now, since Compati(M1,M2) holds and t is firable at M1, we obtain
M2(p) = M1(p) = 0. Finally, if F (p, t) = R, i.e., it is a reset arc, then t can fire regardless
of the value of M2(p). Hence, t is firable at M2.

Now let M2
t−−→ M ′2. Then, for all p ∈ P , M ′2(p) = M2(p) − F (p, t) + F (t, p) and

M ′1(p) = M1(p)−F (p, t) +F (t, p). Since F (t, p) is constant and F (p, t) can depend only on
number of tokens in place p (so, if M1(p) and M2(p) were equal before firing, they remain
equal now), we obtain that Compati(M ′1,M ′2) and M ′1 ≤M ′2. J

I Lemma 5.5. A net N in R-HIPN has a non-terminating run iff ERT (N) has a subsumed
leaf node.

Proof. In the forward direction, consider a non-terminating run. This run has a finite prefix
in ERT (N). This prefix ends in a leaf that is not a deadlock (as some transition is firable).
Thus it is a subsumed leaf node. In the reverse direction, we now show that if ERT (N)
has a subsumed leaf node, then N has a non-terminating run. To see this, consider any
subsumed leaf node labeled by marking M2. Let M1 be a marking along the path M0 to
M2, and ρ be the run fromM1 toM2, such that Subsume(M2,M1, ρ) is true. Hence, we have
M1

ρ−−→M2. Take t∗ = argmaxt∈ρIndex(t) and i = Index(t∗). Since Subsume(M1,M2, ρ)
is true, we have M1 ≤ M2 and Compati(M1,M2) is true. We also have that ρ is a run
over Ti = {t | t ∈ T ∧ Index(t) ≤ i} (by definition of i). Thus, by Lemma 5.4, we have
M2

ρ−−→ M3, where M2 ≤ M3 and Compati(M2,M3) is true. Hence, ρ can be fired again
at M3 and so on, resulting in a non-terminating run. J

Finally, we observe that checking Subsume(M2,M1, ρ) is also easily doable. Thus, for any
net in R-HIPN, one can construct its extended reachability tree and decide the termination
problem using the ERT. This completes the proof of the theorem. We observe here that
this construction cannot be immediately lifted to checking boundedness due to the presence
of reset arcs. However, we can lift this to check for termination in HIRPN and R-HIRPN as
well as to check boundedness in HIPN.

5.2 Coverability in R-HIPN
While termination turned out to be decidable, reachability is undecidable for R-HIPN in
general (since it subsumes reset Petri nets). Indeed, it is shown in [9] that reachability is
undecidable for Petri nets with 2 reset arcs. Using a similar strategy, in [1], we tighten the
undecidability result to show that reachability in Petri nets with one inhibitor arc and one
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Figure 2 Modeling a Minsky Machine (unlabelled edges have weight 1).

reset arc is undecidable. Further, we can modify the construction presented to show that
deadlock-freeness in Petri nets with one reset arc and one inhibitor arc is also undecidable.

Next we turn our attention to the coverability problem.

I Theorem 5.6. Coverability is undecidable for Petri nets with two reset/transfer arcs and
an inhibitor arc.

The rest of this section proves the above theorem. To do this, we construct a Petri net
with two reset arcs and one inhibitor arc that simulates a two-counter Minsky Machine. A
Minsky Machine M has a finite set of instructions qi for 0 ≤ i ≤ n, where q0 is the initial
instruction and qn is the final instruction i.e. there are no transition rules from qn. There are
two counters C1 and C2 and we have two types of instructions. For each counter r ∈ {1, 2},
1. INC(r, j): Increase Cr by 1 and go to qj .
2. JZDEC(r, j, l): If Cr is zero, go to ql, else decrease Cr by 1 and go to qj .

We construct a Petri net P such that the runs of P encode the runs of the Minsky
Machine M . We use places qi (0 ≤ i ≤ n) to encode each instruction. The place qi gets a
token when we simulate instruction i in the Minsky Machine. We use two places C1 and C2
to store the number of tokens corresponding to counter values in C1 and C2 in the counter
machine. We use a special place S which stores the sum of C1 and C2. Figure 2(a) shows
the construction for the increment instruction “Increase Cr by 1 and go to qj”. When qi
gets a token, the transition is fired, Cr and S are incremented by 1 and qj gets the token to
proceed.

Next, we show how to simulate the decrement (along with zero check) instruction “if
Cr = 0, then go to q`, else decrease Cr by 1 and go to qj” by introducing non-determinism
in the Petri net. The gadget for this is shown in Figure 2(b). When we reach a decrement
with zero check instruction, we guess whether Cr is zero, and if so, fire t11 and then t3. Else,
we decrement Cr by 1 and fire t2. We have two cases. Case 1: If Cr is actually zero, it
runs correctly as t2 would not fire. The transition t3 fires and Cr remains zero. In addition,
ql gets the token. Case 2 : If Cr has non-zero tokens, both transitions can fire. But runs
in which t3 fires are “wrong” runs. We call such transitions as incorrect. The crucial point
is that in runs with incorrect transitions, S is not decremented whereas Cr is decremented.
Hence M(S) 6= M(C1) +M(C2) in markings reached by runs with incorrect transitions.

Note that in any run of the Petri net P , qi and only qi gets a token when the instruction
numbered i is being simulated. The following lemma proves the correctness of the reduction.

I Lemma 5.7. In every run of P reaching marking M , M(S) ≥M(C1) +M(C2). Further-
more, M(S) = M(C1) +M(C2) iff there are no incorrect transitions.
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40:12 On Petri Nets with Hierarchical Special Arcs

If the Minsky Machine reaches instruction qn, the Petri net P gets a token in the place qn.
But, if the Minsky Machine doesn’t reach qn, it is possible that the place qn in Petri net
P gets a token because of incorrect transitions. By the above lemma, to check if there had
been any incorrect transitions along the run, we just check at the end (at qn) if M(S) =
M(C1)+M(C2). This can done using an inhibitor arc. Thus qn+1 gets tokens iff the Minsky
Machine reaches the instruction qn. Hence reaching instruction qn in Minsky Machine is
equivalent to asking if we can cover the marking in which all places except qn+1 have 0 tokens
and qn+1 has 1 token. Since checking reachability in Minksy machines is undecidable, this
shows that checking coverability in Petri nets with 2 reset and an inhibitor arc is undecidable.

Note that the above proof also shows undecidability of coverability in Petri nets with 2
transfer arcs and an inhibitor arc. Additional details, the inhibitor arc construction and the
extension to transfer arcs can be found in the long version of this paper [1]. Finally, the
problem of coverability in Petri nets with 1 inhibitor arc and 1 reset arc is open.

I Problem 1. Is coverability in Petri nets with 1 reset arc and 1 inhibitor arc decidable ?

6 Adding Transfer Arcs within and without Hierarchy

We show a reduction from Petri nets with 2 (non-hierarchical) transfer arcs to HTPN pre-
serving reachability and deadlock-freeness. Since reachability and deadlock-freeness in Petri
nets with 2 transfer arcs are undecidable [9], they are undecidable in HTPN too.

I Theorem 6.1. Reachability and deadlock-freeness are undecidable in HTPN.

Proof. Let N be a Petri net with 2 transfer arcs as shown in the Figure below. Here, one
transfer arc is from p1 to p3 via t1, while the other is from p2 to p4 via t2. The transitions t3
and t4 are representative of other transitions to and from p1. W.l.o.g. we assume that there
is no arc from p1 to t2. If this is not the case, we can add a place and transition in between
to create an equivalent net without adding any deadlocked reachable marking (see [1] for
details). The construction of the corresponding HTPN is shown in the diagram below.

p1

p3

t1 t3 t4
tf

p2p4

t2

tf

p1

p3

t1 t3 t4
tf

p2p4

p∗

t2

tf

p′1

t′1 t′3 t′4
tf

p′∗

t′2

tf

Six transfer arcs have not been shown in the construction above for clarity. These are:
From p1 to p3 through t′1.
From p1 to p′1 through t2.
From p1 to p′1 through t′2.
From p′1 to p3 through t1.
From p′1 to p1 through t2.
From p′1 to p1 through t′2.
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These arcs ensure that hierarchy is respected by the transfer arcs, where p1 < p′1 < p2
in the hierarchy. The dotted arc from p∗ to the upper dotted box represents a pre-arc from
p∗ to every transition in the box. Similarly, we have an arc from every transition in the upper
dotted box to p∗. Dotted arcs between the lower dotted box and p′∗ are interpreted similarly.
The intuitive idea behind the construction is to represent the place p1 in the original net
by two places p1 and p′1 in the modified net. At every marking, p1 of the original net is
represented by one of the two places p1 or p′1 in the modified net. Places p′∗ and p∗ are used
to keep track of which place represents p1 in the current marking. Everytime the transition
t2 fires, the representative place swaps. Let the original net be (P, T, F ) and the constructed
net be (P ′, T ′, F ′). The initial marking M ′0 is given by M ′0(p∗) = 1, M ′0(p′∗) = M ′0(p′1) = 0,
and M ′0(p) = M0(p) for all other p ∈ P . Now, given marking M of original net, we define
the set Sext = {AM , BM}, where,

AM (p) =


M(p) p 6∈ {p1, p

′
1, p
′
∗, p∗}

1 p = p∗

0 p ∈ {p′∗, p′1}
M(p1) p = p1

BM (p) =


M(p) p 6∈ {p1, p

′
1, p
′
∗, p∗}

1 p = p′∗

0 p ∈ {p∗, p1}
M(p1) p = p′1

I Claim 6.1. Marking AM or BM is reachable from M ′0 in the constructed net iff marking
M is reachable from M0 in the original net.
The proof of the claim is given in [1]. The proof of Theorem 6.1 follows from this claim J

I Corollary 6.2. Coverability is undecidable in HITPN.

Proof. From Theorem 5.6, it follows that coverability is undecidable in Petri nets with two
transfer arcs and one inhibitor arc. Now, we can perform a construction similar to the one
above to reduce the coverability of this net to the coverability problem of a net in HITPN. J

6.1 Hardness of Termination in HITPN
Termination in HIRcTPN was shown to be decidable in Section 4.1. Termination in HTPN is
also decidable, as it is known that termination in transfer Petri nets is decidable. However,
termination in HITPN, which subsumes the above two problems, is as hard as the positivity
problem – a long standing open problem about linear recurrent sequences ([19],[18]). We
prove this by reducing the positivity problem to termination in HITPN.

I Definition 6.3 (Positivity Problem). Given a matrix M ∈ Zn×n and a vector v0 ∈ Zn, is
Mkv0 ≥ 0 for all k ∈ N?

Given matrix M ∈ Zn×n and a vector v0 ∈ Zn, we construct a net N ∈ HITPN such that
N does not terminate the coverability problem of a net in HITPN iffMkv0 ≥ 0 for all k ∈ N.
Consider the following while loop program v = v0; while (v >= 0) v = Mv. Clearly, this
program is non-terminating iff Mkv0 ≥ 0 for all k. We construct a net N which simulates
this linear program. The net N contains two phases, a forward phase that has the effect
of multiplying v by M , and a backward phase that mimics assigning the new vector M · v
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M =

 1 −4 7
2 −5 −8
−3 −6 9
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Figure 3 Forward phase (right) simulating matrix M (left).

computed in the forward phase back to v. We also check for non-negativity in the backward
phase, and design the net N to terminate if any component becomes negative.

Forward Phase. The construction of the forward phase Petri net for a general matrix is
explained below. An example of the construction is shown in Figure 3. We have n places,
u1, u2, . . . , un, corresponding to the n components of vector v. Each place ui is connected
to a transition ti with a pre-arc of weight 1. Each ti also has a post-arc to a new place
uij for 1 ≤ i, j ≤ n with a weight |Mji|, i.e. the absolute value of the (j, i)th entry of
matrix M , corresponding to vi’s contribution to the new value of vj . Finally, we have places
u′1, u

′
2, . . . , u

′
n, corresponding to the n components of the new value of vector v. Each place

u′j is connected to place uij by a transition tij , with both the arcs being weighted 1. If
Mji ≥ 0, we make use of the fact that uij has a pre-arc to tij and tij has a post-arc to u′j .
This has the effect of adding the value of uij to u′j . On the other hand, if Mji < 0, then we
make use of the fact that both uij and u′j have pre-arcs to tij to subtract uij from u′j . The
above run simulates the forward phase, in effect multiplying the vector v, represented by
the column of ui in Figure 3, by M , and storing the new components in the column on u′i.
To simulate the while loop program, we need to copy back each u′i to ui, while performing
the check that each u′i is non-negative.

Backward phase. The copy back in the backward phase (Figure 4) is effected by a transfer
arc from u′i to ui via transition tR. To ensure that the backward phase starts only after
the forward phase completes (else, partially computed values would be copied back), we
introduce a new place G. The place G stores as many tokens as the total number of times
each transition tij fires, and has a pre-arc weighted 1 to each transition tij . The emptiness of
G ensures that each tij has completed its firings in the current loop iteration. An inhibitor
arc from G to tR ensures that the forward phase completes before tR fires. We introduce
place G′ which computes the initial value of G for the next loop iteration. G′ has an arc
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u1
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u3

u′1

u′2

u′3

G′ G

tR

Figure 4 Backward phase: Arc from G to tR is an inhibitor arc, rest are transfer arcs.

connected to tij with weight
∑n
k=1 |Mkj |. If u′j has a pre-arc to tij , then G′ has a pre-arc

to tij , while if tij has a post-arc to u′j , then it also has a post-arc to G′. Finally, there is
a transfer arc from G′ to G via tR. Once the forward phase finishes, the place G becomes
empty. Hence, the only transition that can fire is tR, which completes the backward phase in
one firing. Combining the forward and backward phases, we obtain a net N which simulates
the while loop program. The initial marking assigns (v0)i, i.e. the i-th component of vector
v0, to place ui, and

∑
1≤i≤n(

∑
1≤j≤n |Mji|)(v0)i tokens to G, while all other places are

assigned 0 tokens. The following lemma (see [1] for details) relates termination of N with
the Positivity problem.

I Lemma 6.4. There exists a non-terminating run in N iff Mkv0 ≥ 0 for all k ∈ N.

Note that the net N constructed above has only one transition with inhibitor and transfer
arcs; hence N is in T-HIPN as well as in HITPN. Thus, we have,

I Theorem 6.5. Termination in HITPN as well as T-HIPN is as hard as positivity problem.

7 Conclusion

In this paper, we investigated the effect of hierarchy on Petri nets extended with not only
inhibitor arcs (as classically considered), but also reset and transfer arcs. For four of the
standard decision problems, we settled the decidability for almost all these extensions using
different reductions and proof techniques. As future work, we are interested in questions of
boundedness and place-boundedness in these extended classes. We would also like to explore
further links to problems on linear recurrences. We leave open one technical question of
coverability for Petri nets with 1 reset and 1 inhibitor arc (without hierarchy).

Acknowledgments. We thank Alain Finkel and Mohamed Faouzi Atig for interesting and
insightful discussions and pointers to earlier results and reductions.
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