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Abstract
Open bisimilarity is a strong bisimulation congruence for the π-calculus. In open bisimilarity,
free names in processes are treated as variables that may be instantiated; in contrast to late
bisimilarity where free names are constants. An established modal logic due to Milner, Parrow,
and Walker characterises late bisimilarity, that is, two processes satisfy the same set of formulae
if and only if they are bisimilar. We propose an intuitionistic variation of this modal logic
and prove that it characterises open bisimilarity. The soundness proof is mechanised in Abella.
The completeness proof provides an algorithm for generating distinguishing formulae, useful for
explaining and certifying whenever processes are non-bisimilar.
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1 Introduction

In this work, we consider open bisimilarity [13] which ensures processes equivalence under
any context at any point in their execution. Open bisimulation is an appealing choice of
equivalence for state-space reduction due to its lazy call-by-need approach to inputs, which
makes it easier to automate [15]. In such a call-by-need approach, a value received is only
observed when it needs to be used. Furthermore, some process calculi have been shown to
enjoy sound and complete algebraic characterisations with respect to open bisimilarity.

The fine algebraic properties of open bisimilarity may be desirable for some applications.
For many applications, it is desirable to avoid a situation where an equivalence technique
proves that two components are equivalent in a sandbox test environment, when, in fact, they
are distinguishable when plugged into a larger system. More subtly, processes may change
context during execution [10]; for example, virtual machines migrate between devices, and
replicas replace components at runtime to keep a system live in the face of unavoidable node
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failures. For some notions of observational equivalence two processes may be indistinguish-
able when executed in any context prescribed; however, if the same two processes execute
a few steps and then are migrated to another context, then it is possible that, from that
point, the processes can exhibit observably distinct behaviours.

Process equivalences for the π-calculus coarser than open bisimilarity are prone to lim-
itations described above. For instance, late bisimilarity [8] is not a congruence, since it
is not preserved by input prefixes. Furthermore, even if we take the greatest congruence
relation contained in late bisimilarity, called late congruence, late congruence is no longer a
bisimulation hence is not necessarily preserved during execution. These issues are remedied
by open bisimilarity [13].

The problem we address is the nature of a modal logic characterising open bisimilarity,
in the tradition pioneered by Hennessy and Milner [6]. A modal logic characterising a
bisimulation should have the property that whenever two processes are not bisimilar there
should exist a distinguishing formula in the modal logic that holds for one process, but not for
the other process. Such distinguishing formulae are useful for explaining why two processes
are not bisimilar. Modal logics characterising late bisimilarity and coarser bisimulations
were developed early in the literature on the π-calculus, by Milner, Parrow and Walker [9].

A novelty of our modal logic characterising open bisimilarity, which we name OM, is
that it is intuitionistic rather than classical. A non-classical feature of OM is that box and
diamond modalities have independent interpretations, except in special cases such as

[
τ
]
ff

which is equivalent to ¬
〈
τ
〉
tt. In general, in OM it is rarely the case that box can be defined

in terms of diamond and negation. This contrasts to a classical modal logic we would expect
that

[
π
]
φ and ¬

〈
π
〉
¬φ define equivalent formulae, however such de Morgan dualities do not

hold for most OM formulae.
More profoundly, the law of excluded middle does not hold in OM. For example, the

process ab ‖ c(x) does not satisfy the formula
〈
τ
〉
tt ∨ ¬

〈
τ
〉
tt, that is, ab ‖ c(x) 6|=

〈
τ
〉
tt ∨

¬
〈
τ
〉
tt. The failure of the formula above relies on the fact that we have not yet fixed

whether a = c or a 6= c, which amounts to the absence of the law of excluded middle for
name equality, as observed in related work on logical encodings of open bisimilarity [16]. In
open bisimulation, both a and c are variables that may or may not be instantiated with the
same value.

As a further example, consider the following two processes.

R , τ.(ab.a(x) + a(x).ab+ τ) + τ.(ab.c(x) + c(x).ab) S , R+ τ.(ab ‖ c(x))

The above processes are not open bisimilar. Process R satisfies
[
τ
](〈

τ
〉
tt ∨ ¬

〈
τ
〉
tt
)
but

process S does not, since there is a τ -transition to process ab ‖ c(x) that we just agreed
above does not satisfy

〈
τ
〉
tt ∨ ¬

〈
τ
〉
tt. In this example, the absence of the law of excluded

middle is necessary for the existence of a formula distinguishing these processes in OM.
The absence of de Morgan dualities discussed above complicates the construction of

distinguishing formulae for processes that are not open bisimilar. For example, τ and [a = c]τ
are not open bisimilar, so there should be a formula distinguishing these processes. Such a
formula is

〈
τ
〉
tt, for which τ |=

〈
τ
〉
tt and [a = c]τ 6|=

〈
τ
〉
tt. This particular construction

has a bias towards τ . In the classical setting of modal logic for late bisimilarity, given
such a distinguishing formula, we can dualise it to obtain another distinguishing formula
¬
〈
τ
〉
tt that has a bias towards [a = c]τ , i.e., [a = c]τ |= ¬

〈
τ
〉
tt but τ 6|= ¬

〈
τ
〉
tt. This dual

construction fails in the case of our intuitionistic modal logic characterising open bisimilarity.
In the intuitionistic setting, we have both τ 6|= ¬

〈
τ
〉
tt and [a = c]τ 6|= ¬

〈
τ
〉
tt. To address

this problem, our algorithm (c.f. Section 3) simultaneously constructs two distinguishing
formulae, that are not necessarily dual to each other.
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π ::= τ (progress)
xz (free out)
x(z) (bound out)
x(z) (input)

P ::= 0 (deadlock)
νx.P (nu)
π.P (action)
[x = y]P (match)
P ‖ P (par)
P + P (choice)

π.P π
I P

P xz
I Q

νz.P
x(z)

I Q
x 6= z

P π
I R

P +Q π
I R

P π
I R

[x = x]P π
I R

P π
I Q

νx.P π
I νx.Q

x 6∈ n(π)
P π

I Q

P ‖ R π
I Q ‖ R

if x ∈ bn(π)
then x fresh for R

P
x(z)

I P ′ Q
x(z)

I Q′

P ‖ Q τ
I νz.(P ′ ‖ Q′)

P xy
I P ′ Q

x(z)
I Q′

P ‖ Q τ
I P ′ ‖ Q′{y rz}

Figure 1 Syntax and semantics of the π-calculus, plus symmetric rules for choice and parallel
composition, where n(x(y)) = n(x(y)) = n(xy) = {x, y}, bn(x(y)) = bn(x(y)) = {y} and n(τ) =
bn(τ) = bn(xy) = ∅; and α-conversion is such that νx.P , z(x).P and z̄(x).P bind x in P .

The precise semantics is presented in the body of this paper. The techniques are clean
and modular, so results extend to open bisimilarity for more expressive process calculi.

Outline

Section 2 introduces the semantics of Open Milner–Parrow–Walker logic (OM) and states
the soundness and completeness results. Section 3 presents the proof of the correctness of
an algorithm for generating distinguishing formulae, which is used to establish completeness
of the logic with respect to open bisimilarity.

2 Open Milner–Parrow–Walker logic (OM)

We recall the syntax and labelled transition semantics for the finite π-calculus (Fig. 1). All
features are standard: the deadlocked process that can do nothing, the ν quantifier that
binds private names, the output prefix that outputs a name on a channel, the input prefix
that binds the name received on a channel, the silent progress action τ , the name match
guard, parallel composition and non-deterministic choice. There are four types of action
ranged over by π, where a free output sends a free name, whereas a bound output extrudes
a ν-bounded private name. Stylistically, the semantics is the late labelled transition system
for the π-calculus, where the name on the input channel is a symbolic place holder for a
name that is not chosen until after an input transition.

Histories are used to define both the intuitionistic modal logic and open bisimilarity.
Histories represent what is known about free variables due to how they have been commu-
nicated previously to the environment. There are two types of event to record in a history:
The output of a fresh private name, using action a(x), which is denoted xo; and a (symbolic)
input, using action a(z), which is denoted zi. The only thing that matters about the order
of events in the history is the alternation between the bound outputs and symbolic inputs,
since an input variable can only be instantiated with private names that were output earlier
in the history. E.g., for history xo ·zi, input variable z may be instantiated with private name
x; in contrast, for history zi ·xo, input variable z may not be instantiated with private name
x. This is reflected by the constraints on substitutions in the following inductive definition.

CONCUR 2017



7:4 A Characterisation of Open Bisimilarity using an Intuitionistic Modal Logic

I Definition 1 (σ respecting h). A substitution σ invariant on names not in fv(h) is re-
specting a history h according to the following inductive definition.

σ respecting ε
σ respecting h

σ respecting h · xi
x 6∈ dom(σ) ∪ fv(hσ) σ respecting h

σ respecting h · xo

Note that the above inductive definition fulfils the role of sets of inequality constraints
called distinctions in the original work on open bisimilarity [13]. The definition above also
captures the alternations between nominal and universal quantifiers in embeddings of open
bisimilarity in the intuitionistic logic LINC [16, 3]. Although distinctions are more general
than histories, it is shown in [16] that given a history h and its corresponding distinction D,
the corresponding definitions of open bisimilarity coincide.

2.1 The semantics of the intuitionistic modal logic OM

The semantics of the modal logic OM is defined in terms of the late labelled transitions sys-
tem (Fig. 2) and history respecting substitutions (Definition 1). Intuitively, each judgement
must hold for all possible respectful substitutions, which explains the asymmetry between
the box and diamond modalities. For the diamond modality

〈
π
〉
, a π transition must be

possible regardless of the substitution. It is sufficient to consider the identity substitution
because applying a respectful substitution cannot prevent a transition. For the box modal-
ity
[
π
]
there may exist substitutions σ other than the identity substitution enabling a πσ

transition, hence we should consider all respectful substitutions.

I Definition 2 (satisfaction). Process P satisfies formula φ with history h, written P |=h φ,
according to the inductive definition in Fig. 2. Satisfaction, written P |= φ, is satisfaction
with a history of inputs xi0 · . . . · xin, where fv(P ) ⊆ {x0, . . . , xn}.

2.1.1 Why an intuitionistic modal logic?

In the open bisimulation game, every transition step is closed under respectful substitutions.
Modal logic OM reflects in its semantics the substitutions that can be applied to a process.
A natural semantics would be a Kripke-like semantics, where worlds are process-history
pairs and the accessibility relation relates instances of such world. More precisely, consider
a relation on worlds as follows: (P, h) ≤ (Q, h′) iff there exists a substitution σ respecting
h such that Pσ = Q and hσ = h′. The pair (P,≤), where P is the set of worlds, forms a
Kripke frame that is reflexive and transitive. Consequently, we obtain a semantics for an
intuitionistic logic, where implication is closed under respectful substitutions as follows.
P |=h φ1 ⊃ φ2 iff ∀σ respecting h, Pσ |=hσ φ1σ =⇒ Pσ |=hσ φ2σ

Intuitionistic negation ¬φ can then be defined as φ ⊃ ff.
Recall the example from the introduction ab ‖ c(x) 6|=

〈
τ
〉
tt ∨ ¬

〈
τ
〉
tt, demonstrating

that the law of excluded middle is invalid. Neither ab ‖ c(x) |=
〈
τ
〉
tt nor ab ‖ c(x) |= ¬

〈
τ
〉
tt

hold. The former holds only if ab ‖ c(x) is guaranteed to make a τ transition; but such
a transition is only possible assuming a = c, hence ab ‖ c(x) 6|=

〈
τ
〉
tt. For the latter, we

should consider all substitutions which enable a τ transition; and, since such a substitution
{c ra} exists, ab ‖ c(x) 6|= ¬

〈
τ
〉
tt. Notice that the satisfaction would hold by forcing the

assumption a 6= c. Of course, for open bisimilarity we make no a priori assumption about
whether a = c or a 6= c, since both are variables that may, or may not, be instantiated with
the same value.
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P |=h tt always holds.
P |=h φ1 ∧ φ2 iff P |=h φ1 and P |=h φ2.

P |=h φ1 ∨ φ1 iff P |=h φ1 or P |=h φ2.

P |=h
〈
x = x

〉
φ iff P |=h φ.

P |=h
〈
α
〉
φ iff ∃Q, P α

I Q and Q |=h φ.

P |=h
〈
a(z)

〉
φ iff ∃Q, P a(z)

I Q and Q |=h·zo

φ.

P |=h
〈
a(z)

〉
φ iff ∃Q, P a(z)

I Q and Q |=h·zi

φ.

P |=h
[
x = y

]
φ iff ∀σ respecting h, xσ = yσ =⇒ Pσ |=hσ φσ.

P |=h
[
α
]
φ iff ∀σ respecting h,∀Q, Pσ ασ

I Q =⇒ Q |=hσ φσ.

P |=h
[
a(z)

]
φ iff ∀σ respecting h, ∀Q,Pσ aσ(z)

I Q =⇒ Q |=hσ·zo

φσ.

P |=h
[
a(z)

]
φ iff ∀σ respecting h,∀Q,Pσ aσ(z)

I Q =⇒ Q |=hσ·zi

φσ.

h ::= ε (empty)
h · xo (name)
h · xi (variable)

φ ::= tt (true)
ff (false)
φ ∧ φ (and)
φ ∨ φ (or)〈
x = y

〉
φ (dia-match)〈

π
〉
φ (dia-action)[

x = y
]
φ (box-match)[

π
]
φ (box-action)

Figure 2 Syntax and semantics of the modal logic OM, where α is τ or ab; and z is fresh for P ,
h, and σ.

The intuitionistic implication and negation above are used only to explain the origin of
OM and for contrast with properties expected of classical modal logics. The distinguishing
formula algorithm, considered in subsequent sections, does not depend on these connectives.

2.2 Open bisimilarity, soundness and completeness

We recall the definition of open bisimilarity. Open bisimilarity is a greatest fixed point of
symmetric relations closed under all respectful substitutions and labelled transitions actions
at every step. Notice that a symbolic input or output of a fresh private name updates the
history.

I Definition 3 (open bisimilarity). Open bisimilarity with history h is the greatest symmetric
relation such that: if P ∼h Q then, for all substitutions σ respecting h, the following hold,
where α is a τ or ab action and x is fresh for Pσ, Qσ and hσ:

Pσ ασ
I P ′ =⇒ ∃Q′, Qσ ασ

I Q′ and P ′ ∼hσ Q′.
Pσ

aσ(x)
I P ′ =⇒ ∃Q′, Qσ aσ(x)

I Q′ and P ′ ∼hσ·xo

Q′.
Pσ

aσ(x)
I P ′ =⇒ ∃Q′, Qσ aσ(x)

I Q′ and P ′ ∼hσ·xi

Q′.
Open bisimilarity, written P ∼ Q, is defined to be open bisimilarity with a history xi0 · . . . ·xin
such that fv(P ) ∪ fv(Q) ⊆ {x0, . . . , xn}.
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7:6 A Characterisation of Open Bisimilarity using an Intuitionistic Modal Logic

2.2.1 Soundness and completeness results
The main result of this paper is that, for finite π-calculus processes open bisimilarity (∼)
coincides with the relation between processes with no distinguishing formula (∼|= ).

I Definition 4 (logical equivalence). P ∼|= Q is defined whenever, for all φ, P |= φ iff Q |= φ.

I Theorem 5 (soundness). For π-calculus processes (including replication), P ∼ Q implies
P ∼|= Q.

I Theorem 6 (completeness). For finite π-calculus processes, P ∼|= Q implies P ∼ Q.

The proof of soundness has been mechanically checked in the proof assistant Abella [2]
using the two-level logic approach [4] to reason about the π-calculus semantics specified in
λProlog [11]. The proof of soundness proceeds by induction on the structure of the logical
formulae in the definition of logical equivalence. The proof of completeness is explained in
detail in Section 3. Soundness extends to infinite π-calculus processes with replication, but
completeness holds for decidable fragments such as Fig. 1.

Firstly, we provide examples demonstrating the implications of Theorems 5 and 6. Due
to soundness, if two processes are bisimilar, we cannot find a distinguishing formula that
holds for one process but does not hold for the other process. Due to completeness, if it is im-
possible to prove that two process are open bisimilar, then we can construct a distinguishing
formula that holds for one process but does not hold for the other process. Thus Theorems 5
and 6 guarantee that an OM formulae can be used to characterise non-bisimilarity.

2.2.2 Example processes distinguishable by postconditions
All modalities are essential for the soundness and completeness of OM. Perhaps the least
obvious modality is

〈
x = y

〉
. When prefixed with a box modality it indicates a postcondition

that always holds after an action. To see, this consider the process [x = y]τ . The judgement
[x = y]τ |=

[
τ
]〈
x = y

〉
tt holds since for any θ such that ([x = y]τ)θ τ

I 0 it must be the case
that xθ = yθ. Hence, by definition of diamond, 0 |=

〈
xθ = yθ

〉
tt iff 0 |= tt. In contrast,

τ 6|=
[
τ
]〈
x = y

〉
tt since, taking the identity substitution in the definition of box, τ τ

I 0,
but 0 |=

〈
x = y

〉
tt cannot be proven in general. The formula

[
τ
]〈
x = y

〉
tt is therefore a

distinguishing formula satisfied by [x = y]τ but not τ .
The use of

〈
x = y

〉
as a postcondition contrasts to the use of

[
x = y

]
as a precondition.

Consider the same process as above with the formula
[
x = y

]〈
τ
〉
tt. Observe that, for substi-

tutions θ such that xθ = yθ, ([x = y]τ)θ τ
I 0 and 0 |= tt holds, hence ([x = y]τ)θ |=

〈
τ
〉
tt;

and thereby the judgement [x = y]τ |=
[
x = y

]〈
τ
〉
tt holds. In contrast, 0 6|=

[
x = y

]〈
τ
〉
tt.

We will return to the above two formulae shortly, as they are critical for the algorithm
for generating distinguishing formulae.

2.3 Sketch of algorithm for generating distinguishing formulae
The completeness proof in Section 3 relies on an algorithm for generating distinguishing
formulae for non-bisimilar processes. Here, we provide a sketch of the algorithm executed
on key examples.

2.3.1 Example requiring intuitionistic assumptions
The algorithm proceeds over the structure of a tree of moves that show two processes are
non-bisimilar. In base cases, we have a pair of processes where, under a substitution, one
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process can make a transition, but the other process cannot match the transition. We revisit
two examples of base cases, discussed previously:
[x = y]τ 6∼ 0 : The left process leads by ([x = y]τ){y rx} τ

I 0, but 0 cannot make a τ

transition, under any substitution; hence [x = y]τ |=
[
x = y

]〈
τ
〉
tt and 0 |=

[
τ
]
ff are

distinguishing formulae.
[x = y]τ 6∼ τ : The right process leads by τ τ

I 0, but [x = y]τθ can make a τ transition
only when xθ = yθ; hence [x = y]τ |=

[
τ
]〈
x = y

〉
tt and τ |=

〈
τ
〉
tt are distinguishing

formulae.

In an inductive case, the two processes cannot be distinguished by an immediate trans-
ition. However, under some substitutions, one process can make a π transition to a state,
say P ′, that, under the same substitution the other process can only make a corresponding
π transition to reach states Q′i that are non-bisimilar to P ′. This allows a distinguishing
formula to be inductively constructed from the distinguishing formulae for P ′ paired with
each Q′i.

For example, consider how the algorithm would find distinguishing formulae for P and
Q below.

P
τ��
, τ.[x = y]τ + τ + τ.τ � τ + τ.τ , Q

τ ��
τ

""
P ′ , [x = y]τ 0 , Q′1 τ , Q′2

The first step in the strategy for non-bisimilarity is to show that P can make a τ transition
to a state that is not bisimilar to any state reachable by a τ transition from the other
process. One possibility is the transition to P ′ as illustrated above. In reply, Q may
attempt a corresponding τ transition either to Q′1 or Q′2. Inductively, we require that
P ′ � Q′1 and P ′ � Q′2. Both are instances of the base case discussed above where we
discovered distinguishing formulae for each of them.

This enables us to construct distinguishing formulae for the inductive case. The dis-
tinguishing formula satisfied by P is a diamond followed by the conjunction of the left
distinguishing formulae that is satisfied by P ′ in the base cases: τ.[x = y]τ + τ + τ.τ |=〈
τ
〉([

τ
]〈
x = y

〉
tt ∧

[
x = y

]〈
τ
〉
tt
)
. The distinguishing formula satisfied by Q is a box fol-

lowed by the disjunction of the right distinguishing formulae from the base cases: τ + τ.τ |=[
τ
](〈

τ
〉
tt ∨

[
τ
]
ff
)
.

To confirm that they are indeed distinguishing formulae for P and Q, swap the processes
and formulae above to observe that each process fails to satisfy the other formula. To be
precise, assume for contradiction that τ+τ.τ |=

〈
τ
〉([

τ
]〈
x = y

〉
tt ∧

[
x = y

]〈
τ
〉
tt
)
holds. By

definition of
〈
τ
〉
, this holds iff either 0 |=

[
τ
]〈
x = y

〉
tt∧

[
x = y

]〈
τ
〉
tt or τ |=

[
τ
]〈
x = y

〉
tt∧[

x = y
]〈
τ
〉
tt holds. Now observe that 0 |=

[
x = y

]〈
τ
〉
tt holds iff we make the additional

assumption in the meta framework that x and y are persistently distinct, i.e., for all σ, xσ 6=
yσ. In addition, observe that τ |=

[
τ
]〈
x = y

〉
tt holds iff we make the additional assumption

in the meta framework that x and y are persistently equal, i.e., for all σ, xσ = yσ. In fact, by
these observations we are able to mechanically prove the following in intuitionistic framework
Abella: τ + τ.τ |=

〈
τ
〉([

τ
]〈
x = y

〉
tt ∧

[
x = y

]〈
τ
〉
tt
)
iff ∀x, y. (x = y ∨ x 6= y). Notice that

∀x, y. (x = y ∨ x 6= y) is an instance of the law of excluded middle; hence, assuming the law
of excluded middle, the formula for Q also holds for P ; and vice versa. Indeed there would
be no distinguishing formulae for these processes; and hence in a classical framework the
modal logic would be incomplete. Fortunately, since intuitionistic logics do not assume the
law of excluded middle, as long as we evaluate the semantics in an intuitionistic framework,
we are able to establish that Q 6|=

〈
τ
〉([

τ
]〈
x = y

〉
tt ∧

[
x = y

]〈
τ
〉
tt
)
, as required.

CONCUR 2017
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2.3.2 Example involving private names that are distinguishable
The alternation between inputs and outputs in the history affects what counts as a respectful
substitution. Intuitively, respectful substitutions ensure that a private name can never be
input earlier than it was output. Consider the following processes: P , νx.ax.a(y).τ �
νx.ax.a(y).[x = y]τ , Q.

These processes are not open bisimilar because P can make the following three transition
steps: νx.ax.a(y).τ a(x)

I a(y).τ a(y)
I τ τ

I 0. However, Q can only match the first two
steps. At the third step, a base case of the algorithm for τ 6∼aixoyi [x = y]τ applies. In
this case, any substitution θ respecting aixoyi where [x = y]τθ τ

I 0 is such that yθ = x,
x 6∈ dom(θ) and aθ 6= x, which is satisfiable. Thus [x = y]τ |=aixoyi [

τ
]〈
x = y

〉
tt and

τ |=aixoyi 〈
τ
〉
tt. By applying inductive cases, we obtain νx.ax.a(y).τ |=

〈
a(x)

〉〈
a(y)

〉〈
τ
〉
tt

and νx.ax.a(y).[x = y]τ |=
[
a(x)

][
a(y)

][
τ
]〈
x = y

〉
tt.

2.3.3 Example involving private names that are indistinguishable
In contrast to the previous example, consider the following processes where a fresh name is
output and compared to a name already known: νx.ax ∼ νx.ax.[x = a]τ .
These processes are open bisimilar, hence by Theorem 5 there is no distinguishing formula.
The existence of a distinguishing formula of the form

〈
a(x)

〉[
x = a

]〈
τ
〉
tt is prevented by the

history. Both νx.ax.[x = a]τ |=
〈
a(x)

〉[
x = a

]〈
τ
〉
tt and νx.ax |=

〈
a(x)

〉[
x = a

]〈
τ
〉
tt hold.

The latter holds since νx.ax |=ai 〈
a(x)

〉[
x = a

]〈
τ
〉
tt holds if and only if νx.ax a(x)

I 0 and
0 |=aixo [

x = a
]〈
τ
〉
tt. By definition of

[
x = a

]
, this holds if only if for all θ respecting aixo

and such that xθ = aθ, 0 |=aixo 〈
τ
〉
tt. Clearly 0 cannot make a τ transition, hence 0 |=aixo〈

τ
〉
tt does not hold. However, fortunately, there is no substitution θ respecting aixo such

that xθ = aθ. By the definition of respecting substitution, θ must satisfy x 6∈ dom(θ) and
x 6= aθ, contradicting constraint xθ = aθ. Thereby 0 |=aixo [

x = a
]〈
τ
〉
tt holds vacuously;

hence νx.ax |=ai 〈
a(x)

〉[
x = a

]〈
τ
〉
tt holds as required.

3 Completeness of open bisimilarity with respect to OM

There is a constructive definition of non-bisimilarity. Since bisimilarity is defined in terms
of a greatest fixed point of relations satisfying a certain closure property, non-bisimilarity is
defined in terms of a least fixed point satisfying the dual property. This leads to the following
constructive definition of non-bisimilarity from which a non-bisimilarity algorithm can be
extracted. Since non-bisimilarity is defined in terms of a least fixed point, there is a finite
winning strategy, consisting of a finite tree of moves such that in each branch eventually a
pair of processes and a history is reached such that one process can make a move that the
other cannot always match.

I Definition 7 (non-bisimilarity). Firstly, we inductively define the family of relation 6∼hn,
for n ∈ N. The base case is when, for some respectful substitution one player can make a
move, that cannot be matched by the other player without assuming a stronger substitution.
The class of all such pairs of processes form the base case for the construction of the non-
bisimilarity relation, say P 6∼h0 Q. More precisely, the relation 6∼h0 is the least symmetric
relation such that for any P and Q, P 6∼h0 Q whenever there exist process P ′, action π and
substitution σ respecting h, such that the following holds.

Pσ πσ
I P ′, for x ∈ bn(π), x is fresh for Pσ, Qσ and hσ, and there is no Q′ such that

Qσ πσ
I Q′.
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Inductively, 6∼hn+1 is the least symmetric relation extending 6∼hn such that P 6∼hn+1 Q

whenever for some substitution σ respecting h, one of the following holds, where α is τ or
ab:

Pσ ασ
I P ′ and for all Qi such that Qσ α

I Qi, P ′ 6∼hσn Qi.
Pσ

aσ(x)
I P ′, and for all Qi and x fresh for Pσ, Qσ and hσ, such that Qσ aσ(x)

I Qi,
P ′ 6∼hσ·xo

n Qi.
Pσ

aσ(x)
I P ′, and for all Qi and x fresh for Pσ, Qσ and hσ, such that Qσ aσ(x)

I Qi,
P ′ 6∼hσ·xi

n Qi.
Thereby, the relation P 6∼hn Q contains all processes that can be distinguished by a strategy
with depth at most n, i.e., at most n moves are required to reach a pair of processes in 6∼h0 ,
at which point there is an accessible world in which a process can make a move that the
other process cannot match.

The relation 6∼h, pronounced non-bisimilarity with history h, is defined to be the least
relation containing 6∼hn for all n ∈ N, i.e.

⋃
n∈N 6∼hn. Similarly to open bisimulation, P 6∼ Q

is defined as P 6∼xi
1·...x

i
m Q where fv(P ) ∪ fv(Q) ⊆ {x1, . . . xm}.

3.1 Preliminaries
We require the following terminology for substitutions, and abbreviations for formulae.

I Definition 8. Composition of substitutions σ and θ is defined such that P
(
σ ·θ

)
=
(
Pσ
)
θ,

for all processes P . For substitutions σ and θ, σ ≤ θ whenever there exists σ′ such that
σ · σ′ = θ. For a finite substitution σ = {z1 rx1} · · · {zn rxn

} the formula
[
σ
]
φ abbreviates the

formula [xn = zn] . . . [x1 = z1]φ. Similarly,
〈
σ
〉
φ abbreviates 〈xn = zn〉 . . . 〈x1 = z1〉φ. For

finite set of formulae φi, formula
∨
i φi abbreviates φ1∨. . .∨φn, where the empty disjunction

is ff. Similarly
∧
i φi abbreviates φ1 ∧ . . . ∧ φn, where the empty conjunction is tt.

We require the following technical lemmas. The first (image finiteness, as used in [5])
ensures that there are finitely many reachable states in one step, up to renaming. The
second extends the definition of the box-match modality to finite substitutions. The third is
required in inductive cases involving bound output and input. The fourth is a monotonicity
property for satisfaction. The fifth is a monotonicity property for transitions ensuring names
bound by label are not changed by a substitution.

I Lemma 9. For process P and action π there are finitely many Pi such that P π
I Pi.

I Lemma 10. If for all θ respecting h and σ ≤ θ, it holds that Pθ |=hθ φθ, then P |=h
[
σ
]
φ

holds.

I Lemma 11. If σ · θ respects h, then θ respects hσ.

I Lemma 12. If P |=h φ holds then Pθ |=hθ φθ holds for any θ respecting h.

I Lemma 13. If P π
I Q then Pθ πθI Qθ, for all θ such that if x ∈ bn(π) and yθ = x then

x = y.

3.2 Algorithm for distinguishing formulae
The constructive definition of non-bisimilarity gives a tree of substitutions and actions form-
ing a strategy showing that two processes are not open bisimilar. The following proposition
shows that OM formulae are sufficient to capture such strategies. For any strategy that
distinguishes two processes, we can construct distinguishing OM formulae. A distinguishing
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formula holds for one process but not for the other process. Furthermore, there are always
at least two distinguishing formulae, one biased to the left and another biased to the right,
as in the construction of the proof for the following proposition. As discussed in the intro-
duction, the left bias cannot be simply obtained by negating the right bias and vice versa;
both must be constructed simultaneously and may be unrelated by negation.

I Proposition 14. If P 6∼ Q then there exists φL such that P |= φL and Q 6|= φL, and also
there exists φR such that Q |= φR and P 6|= φR.

Proof. Since 6∼h is defined by a least fixed point over a family of relations 6∼hn, if P 6∼h Q,
there exists n such that P 6∼hn Q, so we can proceed by induction on the depth of a winning
strategy.

In the base case, assume that P 6∼h0 Q, hence by definition, for substitution σ respecting
h, Pσ πσ

I P ′, for x ∈ bn(π), x is fresh for Pσ, Qσ and hσ, such that there is no Q′ such
that Qσ πσ

I Q′, up to symmetry of 6∼hn. There exist finitely many pairs of variables xj and
yj , selected from fv(P )∪ fv(Q)∪ fv(π) such that xjσ 6= yjσ, and, for any R and substitution
θ respecting h, if Qθ πθ

I R there exists j such that xjθ = yjθ. To see why, assume for
contradiction that there is some θ respecting h such that Qθ πθ

I R but there is no x and
y in fv(P ) ∪ fv(Q) ∪ fv(π) such that xσ 6= yσ and xθ = yθ. Stated otherwise, for all x and
y in fv(P ) ∪ fv(Q) ∪ fv(π) if xθ = yθ then xσ = yσ, which is precisely the definition of a
function, i.e. substitution, say θ′, defined on fv(Pθ) ∪ fv(Qθ) ∪ fv(πθ) such that θ′ maps zθ
to zσ. In that case, θ · θ′ = σ on fv(P ) ∪ fv(Q) ∪ fv(π); and hence, by Lemma 13, since for
x ∈ bn(π), x is fresh, Qθθ′ πθθ

′
I Rθ′ contradicting the initial assumption for the base case

that no transition Qσ πσ
I Q′ exists for any Q′.

In this case, there are two distinguishing formulae
[
σ
]〈
π
〉
tt and

[
π
]∨

j

〈
xj = yj

〉
tt biased

to P and Q respectively. There are four cases to check to confirm that these are distinguish-
ing formulae.
Case P |=h

[
σ
]〈
π
〉
tt : Consider all θ respecting h such that σ ≤ θ. By definition there

exists θ′ such that σ · θ′ = θ, so since Pσ πσ
I P ′, by Lemma 13, Pθ πθI P ′θ′. Thereby,

since P ′θ′ |=h′
tt holds, Pθ |=hθ

〈
πθ
〉
tt. Hence, by Lemma 10, P |=h

[
σ
]〈
π
〉
tt.

Case Q 6|=h
[
σ
]〈
π
〉
tt : Assume Q |=h

[
σ
]〈
π
〉
tt for contradiction. Now, since σ respects h

and σ ≤ σ, by Lemma 10, Q |=h
[
σ
]〈
π
〉
tt holds only if Qσ |=hσ

〈
πσ
〉
tt holds; which

holds only if there exists Q′ such that Qσ πσ
I Q′, contradicting the assumption that no

such Q′ exists. Thereby Q 6|=h
[
σ
]〈
π
〉
tt.

Case Q |=h
[
π
]∨

j

〈
xj = yj

〉
tt : Consider substitutions θ respecting h and Q′ such that

Qθ πθ
I Q′. It must be the case that there exists j such that xjθ = yjθ, thereby

Q′ |=hθ
〈
xjθ = yjθ

〉
tt holds; hence clearly Q′ |=hθ

(∨
j

〈
xj = yj

〉
tt
)
θ holds. Hence

Q |=h
[
π
]∨

j

〈
xj = yj

〉
tt.

Case P 6|=h
[
π
]∨

j

〈
xj = yj

〉
tt : Assume for contradiction P |=h

[
π
]∨

j

〈
xj = yj

〉
tt. This

holds iff for all processes S and substitutions θ respecting h, Pθ πθ
I S implies S |=h′(∨

j

〈
xj = yj

〉
tt
)
θ. Since we know that σ respects h and Pσ πσ

I P ′, we have P ′ |=h′′(∨
j

〈
xj = yj

〉
tt
)
σ. This holds only if for some j, P ′ |=h′′ 〈

xjσ = yjσ
〉
tt; hence, xjσ =

yjσ for some j, which contradicts the assumption that xjσ 6= yjσ. Thereby P 6|=h[
π
]∨

j

〈
xj = yj

〉
tt.

Now consider the inductive cases. Given P , Q, if P 6∼hn+1 Q, up to symmetry of 6∼hn+1,
there are three cases to consider, for some substitution σ respecting h, where α is either τ
or ab:
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Pσ ασ
I P ′ and for all Qi such that Qσ ασ

I Qi, P ′ 6∼hσn Qi.
Pσ

aσ(x)
I P ′, and for all Qi and x fresh for Pσ, Qσ and hσ, such that Qσ aσ(x)

I Qi,
P ′ 6∼hσ·xo

n Qi.
Pσ

aσ(x)
I P ′, and for all Qi and x fresh for Pσ, Qσ and hσ, such that Qσ aσ(x)

I Qi,
P ′ 6∼hσ·xi

n Qi.
We consider the second case above involving bound output only, the other two cases are
similar — differing only in the accounting for respectful substitutions according to Def. 1.

For Pσ aσ(x)
I P ′, by Lemma 9, there exist finitely many Qi such that Qσ aσ(x)

I Qi. For
each i, since P ′ 6∼hσ·xo

n Qi, by the induction hypothesis, there exist φLi and φRi such that
P ′ |=hσ·xo

φLi σ and Qi 6|=hσ·xo

φLi σ and P ′ 6|=hσ·xo

φRi σ and Qi |=hσ·xo

φRi σ. Furthermore,
assume that σ is minimal with respect to the order over substitutions in the sense that, if
θ ≤ σ is such that Pθ aθ(x)

I P ′′, where x is fresh for Pθ, Qθ and hθ, and for all Q′′ such
that Qθ aθ(x)

I Q′′, P ′′ 6∼hθ·xo

n Q′′, then θ = σ.
By a similar argument to the base case, there are finitely many pairs of variables xj

and yj selected from fv(P ) ∪ fv(Q) ∪ {a} such that xjσ 6= yjσ and, for any substitution θ
respecting h, if, for some S, Qθ aθ(x)

I S then either: there exists some j such that xjθ = yjθ;
or both σ ≤ θ and θ ≤ σ hold and hence there exist i and θ′ such that σ ·θ′ = θ and Siθ′ = S.
Notice cases where θ < σ are eliminated by minimality of σ.

From the above, distinguishing formulae
[
σ
]〈
a(x)

〉∧
i φ

L
i and[

a(x)
](∨

i φ
R
i ∨

∨
j

〈
xj = yj

〉)
can be constructed. There are four cases to consider to verify

these are indeed distinguishing formulae.
Case P |=h

[
σ
]〈
a(x)

〉∧
i φ

L
i : Consider all θ such that σ ≤ θ, θ respects h, and without

loss of generality x is fresh such that x 6∈ dom(θ) and x 6∈ fv(hθ). By definition, there
exists θ′ such that σ · θ′ = θ. Now since σ · θ′ respects h, by Lemma 11, θ′ respects hσ
hence since x 6∈ dom(θ′) and x 6∈ fv(hσθ′), θ′ respects hσ · xo. Thereby since θ′ respects
hσ · xo and also P ′ |=hσ·xo

φLi σ holds, by Lemma 12, it holds that P ′θ′ |=hθ·xo

φLi θ. The
above holds for all i, hence it holds that P ′θ′ |=hθ·xo ∧

i φ
L
i θ. Now, since Pσ aσ(x)

I P ′,
by Lemma 13, since x is fresh, Pθ aθ(x)

I P ′θ′ holds; and hence Pθ |=hθ
(〈
a(x)

〉∧
i φ

L
i

)
θ

holds. Thereby, by Lemma 10, P |=h
[
σ
]〈
a(x)

〉∧
i φ

L
i holds.

Case Q 6|=h
[
σ
]〈
a(x)

〉∧
i φ

L
i : Assume for contradiction that Q |=h

[
σ
]〈
a(x)

〉∧
i φ

L
i . Since

σ respects h and σ ≤ σ, by Lemma 10, the above assumption holds only if Qσ |=hσ(〈
a(x)

〉∧
i φ

L
i

)
σ holds. Now Qσ |=hσ

〈
aσ(x)

〉∧
i φ

L
i σ holds only if there exists Q′ such

that Qσ aσ(x)
I Q′ and Q′ |=hσ·xo ∧

i φ
L
i σ, which holds only if Q′ |=hσ·xo

φLi σ for all i.
Notice that Q′ = Qk for some k, and therefore Qk |=hσ·xo

φLk σ; but it was assumed that
Qk 6|=hσ·xo

φLk σ leading to a contradiction. Therefore Q 6|=h
[
σ
]〈
a(x)

〉∧
i φ

L
i .

Case Q |=h
[
a(x)

]( ∨
i φ

R
i ∨

∨
j

〈
xj = yj

〉
tt
)
: Fix Q′ and θ respecting h such that

Qθ
aθ(x)

I Q′ and without loss of generality assume x is fresh such that x 6∈ dom(θ)
and x 6∈ fv(hθ). There are two sub-cases to consider. Firstly consider where for
some k, xkθ = ykθ, in which case it holds that Q′ |=hθ·xo 〈

xkθ = ykθ
〉
tt, and hence

Q′ |=hθ·xo (∨
i φ

R
i ∨

∨
j

〈
xj = yj

〉
tt
)
θ, by definition of disjunction. Secondly consider

where there exists θ′ such that σ · θ′ = θ and for some `, Qσ aσ(x)
I Q` such that

Q`θ
′ = Q′. Now since σ · θ′ respects h, by Lemma 11, θ′ respects hσ, hence by defin-

ition of respectful substitutions, since x 6∈ dom(θ) and x 6∈ fv(hθ), θ′ respects hσ · xo.
Thereby, by Lemma 12, since Q` |=hσ·xo

φR` σ and θ′ respects hσ · xo, Q`θ′ |=hθ·xo

φR` θ

holds. Hence Q′ |=hθ·xo (∨
i φ

R
i ∨

∨
j

〈
xj = yj

〉
tt
)
θ, by definition of disjunction. Thus by

definition of
[
a(x)

]
, we can conclude that Q |=h

[
a(x)

](∨
i φ

R
i ∨

∨
j

〈
xj = yj

〉
tt
)
holds.
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Case P 6|=h
[
a(x)

]( ∨
i φ

R
i ∨

∨
j

〈
xj = yj

〉
tt
)
: Assume

P |=h
[
a(x)

](∨
i φ

R
i ∨
∨
j

〈
xj = yj

〉
tt
)
for contradition. Since σ respects h and Pσ aσ(x)

I

P ′, the previous assumption can hold only if P ′ |=hσ·xo (∨
i φ

R
i ∨

∨
j

〈
xj = yj

〉
tt
)
σ. This

holds only if, for some i, P ′ |=hσ·xo

φRi σ, or, for some j, P ′ |=hσ·xo 〈
xjσ = yjσ

〉
tt. How-

ever, for all i, P ′ 6|=hσ·xo

φRi σ; and also, for all j, we have xjσ 6= yjσ and P ′ 6|=hσ·xo〈
xjσ = yjσ

〉
tt, leading to a contradiction in either case. Thereby P 6|=h

[
a(x)

](∨
i φ

R
i ∨∨

j

〈
xj = yj

〉
tt
)
.

By induction we have established that, for any history h, processes P and Q, and any
n, if P 6∼hn Q then there exists φL such that P |=h φL and Q 6|=h φL, and also there exists
φR such that Q |=h φR and P 6|=h φR. The result then follows by observing that 6∼h is the
least relation containing all 6∼hn; and, furthermore, P 6∼ Q holds simply when P 6∼xi

1·...·x
i
n Q

holds, where fv(P ) ∪ fv(Q) ⊆
{
xi1, . . . , x

i
n

}
. J

Since open bisimilarity is decidable for finite π-calculus processes, the constructive non-
bisimilarity in Definition 7 coincides with the negation of open bisimilarity.

I Lemma 15. For finite processes, P 6∼ Q holds, according to constructive non-bisimilarity
in Definition 7, if and only if P ∼ Q does not hold.

Combining Proposition 14 with Lemma 15 yields immediately the completeness of OM
with respect to open bisimilarity. Completeness (Theorem 6) establishes that the set of all
pairs of processes that have the same set of distinguishing formulae is an open bisimilarity.
The proof can now be stated as follows.

Proof of Theorem 6: Assume that for finite processes P and Q, for all formulae φ, P |= φ

iff Q |= φ. Now for contradiction suppose that P ∼ Q does not hold. By Lemma 15, P 6∼ Q
must hold. Hence by Proposition 14 there exists φL such that P |= φL but Q 6|= φL, but by
the assumption above Q |= φL, leading to a contradiction. Thereby P ∼ Q. J

Notice that soundness (Theorem 5) and the non-bisimilarity algorithm (Proposition 14)
also hold for infinite π-calculus processes (using replication for instance). However, for
infinite π-calculus processes, open bisimilarity is undecidable; hence additional insight may
be needed to justify whether Lemma 15 holds for infinite processes. Thereby in the infinite
case, while it is impossible that P ∼ Q and P 6∼ Q holds, it may be the case that neither
holds. A possibility is that a more expressive logic is required to completely characterise
open bisimilarity for infinite processes.

3.3 Example runs of distinguishing formulae algorithm
We provide further examples of non-bisimilar processes that illustrate subtle aspects of the
algorithm. In particular, these examples illustrate the need for disjunctions of postcondi-
tions in both the base case and inductive steps.

3.3.1 Multiple postconditions and postconditions in an inductive step
The following example leads to multiple postcondition. Consider the following non-bisimilar
processes: [x = y]τ + [w = z]τ 6∼ τ . Observe that clearly τ τ

I 0 but
(
[x = y]τ + [w =

z]τ
)
θ τ

I only if xθ = yθ or wθ = zθ. Thus, [x = y]τ+[w = z]τ |=
[
τ
](〈

x = y
〉
tt∨
〈
w = z

〉
tt
)

is a distinguishing formula biased to the left process, while τ |=
〈
τ
〉
tt is biased to the right.

Now consider an example where postconditions are required in the inductive case. Firstly
observe that aa + bb 6∼ aa are distinguished since aa + bb bb

I 0, but process aa can only
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make a bb transition under a substitution such that a = b. Hence we have the distinguishing
formulae aa+ bb |=

〈
bb
〉
tt and aa |=

[
bb
]〈
a = b

〉
tt.

For the inductive case, consider P , τ.
(
aa+bb

)
+[x = y]τ.aa 6∼ τ.

(
aa+bb

)
+τ.aa , Q.

Let us lead by Q τ
I aa, which can only be matched by P τ

I aa + bb. By the above
observation, we have distinguishing formulae for aa + bb 6∼ aa. Furthermore, Pθ τ

I for
substitutions θ such that xθ = yθ.

This leads to the following distinguishing formula for the left side, consisting of a box
τ followed by a disjunction of the left distinguishing formula for aa + bb 6∼ aa, and the
postcondition for any additional τ transitions. τ.

(
aa + bb

)
+ [x = y]τ.aa |=

[
τ
](〈

bb
〉
tt ∨〈

x = y
〉
tt
)
.

The distinguishing formula for the right process is diamond τ followed by the right
distinguishing formula for aa+ bb 6∼ aa, as follows: τ.

(
aa+ bb

)
+ τ.aa |=

〈
τ
〉[
bb
]〈
a = b

〉
tt.

3.3.2 Formulae generated by substitutions applied to labels
In some cases substitutions applied to labels play a role when generating distinguishing
formulae. For a minimal example consider the following non-bisimilar processes: aa 6∼
ab. A distinguishing strategy is where process ab makes a ab transition, which cannot be
matched by aa. However, (aa)σ (ab)σ

I 0 for any substitution such that aσ = bσ, leading to
distinguishing formula

[
ab
]〈
a = b

〉
tt biased to aa. Notice substitution σ is applied to both

the process and the label.
For a trickier example consider the following: νb.ab.a(x).[x = b]xx 6∼ νb.ab.a(x).xx. After

two actions, the problem reduces to base case [x = b]xx 6∼ai·bo·xi

xx, where xx can perform
a xx action, but [x = b]xx cannot. However, ([x = b]xx){b rx} xx{

b rx}I 0 does hold, and fur-
thermore {b rx} respects ai · bo ·xi. From these observations we can construct a distinguishing
formula biased to the left as follows: νb.ab.a(x).[x = b]xx |=

[
a(b)

][
a(x)

][
xx
]〈
x = b

〉
tt.

3.3.3 Alternative forms for distinguishing formulae
For the two non-bisimilar processes

[
x = y

]
τ.τ + τ 6∼ τ.τ + τ , we can think of a distin-

guishing formula biased to the left process:
[
x = y

]
τ.τ + τ |=

[
τ
][
τ
]〈
x = y

〉
tt. However,

this is different from the left-biased formula generated by the algorithm:
[
x = y

]
τ.τ + τ |=[

τ
]([
τ
]
ff∨

〈
x = y

〉
tt
)
. Thus, there may exist alternative distinguishing formulae other than

those generated by the algorithm.

3.3.4 An elaborate example demanding intuitionistic assumptions
For a more elaborate example consider the following.

τ.
(
τ + τ.τ + τ.[x = y][w = z]τ︸ ︷︷ ︸

P ′

)
, P 6∼ Q , τ.

(
τ + τ.τ + τ.[x = y]τ︸ ︷︷ ︸

Q′

)
+ P

A non-bisimilarity strategy is as follows: firstly, lead by transition Q τ
I Q′ on the right,

matched by transition P τ
I P ′; secondly, lead by P ′ τ

I [x = y][w = z]τ on the left,
matched in three possible ways by Q′ τI 0, Q′ τI τ and Q′ τI [x = y]τ . To distinguish
0 from [x = y][w = z]τ observe that ([x = y][w = z]τ){y rx}{z rw} τ

I 0 but 0 can make no
τ transition; hence distinguishing formulae for 0 and [x = y][w = z]τ are 0 |=

[
τ
]
ff and

[x = y][w = z]τ |=
[
x = y

][
w = z

]〈
τ
〉
tt. To distinguish [x = y]τ from [x = y][w = z]τ ,

observe that ([x = y]τ){y rx} τ
I 0, but ([x = y][w = z]τ){y rx} can only make a τ transition

under a substitution such that also w = z; hence [x = y]τ |=
[
x = y

]〈
τ
〉
tt and [x = y][w =
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z]τ |=
[
τ
]〈
w = z

〉
tt are distinguishing formulae. The same formulae also distinguish τ from

[x = y][w = z]τ . Thereby the algorithm in the completeness proof generates the following:

P |=
[
τ
]〈
τ
〉([

τ
]〈
w = z

〉
tt ∧

[
x = y

][
w = z

]〈
τ
〉
tt
)

Q |=
〈
τ
〉[
τ
]([
τ
]
ff∨

[
x = y

]〈
τ
〉
tt
)

The strategy explained above is not unique. An alternative strategy can generate different
distinguishing formulae: P |=

[
τ
][
τ
](〈

τ
〉
tt ∨

[
τ
]〈
w = z

〉
tt
)
and Q |=

〈
τ
〉〈
τ
〉([

x = y
]〈
τ
〉
tt∧[

τ
]〈
x = y

〉
tt
)
. Note if we assume the law of excluded middle, both processes above become

equivalent to τ.
(
τ + τ.τ

)
. Fortunately, we do not assume the law of excluded middle.

4 Related work

We consider the relationship between the intuitionistic modal logic for open bisimilarity
presented in this work and established classical logics. We also compare this work to existing
work claiming to characterise open bisimilarity for the π-calculus.

4.1 Comparison to classical logics for late bisimilarity

The late Milner-Parrow-Walker logic, called LM [9] for “(L) late modality with (M) match”
differs from the logic presented in this paper in three significant ways: firstly, free names
are a priori assumed to be distinct; secondly, LM is classical, that is, the law of excluded
middle for name equalities is assumed; and thirdly the late input box modality is defined
differently as follows — involving an existential quantification over substitutions:

P |=L
[
a(x)

]L
φ iff for all Q such that P a(x)

I Q there exists name z such that Q{z rx} |=L

φ{z rx}.

To see that logical equivalence for LM does not define a congruence, consider the pro-
cesses [x = y]xx and 0. These processes satisfy the same set of late formulae (any formula
equivalent to tt), since, for LM, x and y are a priori assumed to be distinct names. However,
a(y).[x = y]xx and a(y).0 have distinguishing formulae a(y).[x = y]xx |=L

[
a(y)

]L〈
xx
〉
tt

biased to the left and its de Morgan complement a(y).0 |=L
〈
a(y)

〉[
xx
]
ff biased to the

right.
Between open bisimilarity and late bisimilarity there is late congruence, which is the

greatest congruence relation contained in late bisimilarity. Late congruence must contain
open bisimilarity, since open bisimilarity is contained in late bisimilarity and open bisim-
ilarity is a congruence. Late congruence also has a simpler characterisation: P and Q are
late congruent whenever for all substitutions σ, and Pσ is late bisimilar to Qσ. The quan-
tification over all substitutions, combined with the law of excluded middle, has the effect
that we check late bisimilarity with respect to all combinations of equalities and inequalities
between free names.

As for open bisimilarity, [x = y]xx and 0 are not late congruent. This is because for
substitution {x ry}, ([x = y]xx){x ry} and 0{x ry} are clearly not late bisimilar. This illustrates
that late congruence is strictly finer than late bisimilarity. However, open bisimilarity is still
strictly finer than late congruence, since τ + τ.τ + τ.[x = y]τ and τ + τ.τ are late congruent.
Late congruence holds since, for any substitution θ, (τ + τ.τ)θ and (τ + τ.τ + τ.[x = y]τ)θ
are late bisimilar. In contrast, we know these processes are not open bisimilar; and further-
more, have distinguishing formula that rely on the absence of the law of excluded middle.
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4.2 Other embeddings into intuitionistic nominal logic

Tiu and Miller [16] studied embeddings of the π-calculus into the logic LINC, as well as late
and open bisimilarity and their respectful modal logics. This is the most closely related work
since our encodings in Abella were adapted from their work. In their encoding, both late
and open bisimilarity are encoded by essentially the same modalities, differing only in the
the law of the excluded middle for names and the quantification of free variables. However,
no examples of distinguishing formulae for open bisimilarity were provided; and, critically,
the proof made flawed assumptions about the existence of a syntactic negation of a formula,
which we observe in this work is not permitted.

A problem with the approach of Tiu and Miller is the reuse of the input box modality from
LM, which involves an existential quantification over substitutions. In contrast, our input
box modality in OM involves universal quantification over all respectful substitutions. Our
choice in OM is critical for generating distinguishing formulae. For example, the following
processes are not open bisimilar: a(x).τ + a(x) + a(x).[x = a]τ 6∼ a(x).τ + a(x).

For the above processes, the algorithm for distinguishing formulae in Proposition 14,
correctly generates the following OM formula biased to the right:
a(x).τ + a(x) |=

[
a(x)

](〈
τ
〉
tt ∨

[
τ
]
ff
)
.

However, using only late modalities, as in Tiu and Miller, there is no distinguishing
formula for these processes biased to the right: e.g., the formula with a late modality[
a(x)

]L(〈
τ
〉
tt ∨

[
τ
]
ff
)
succeeds for both processes, even when rejecting the law of excluded

middle; also the formula
[
a(x)

]L(〈
x = a

〉[
τ
]
ff ∨

〈
τ
〉[
x = a

]
ff
)
fails for both processes, des-

pite being distinguishing in classical LM. The choice of modalities we make in OM make
sense, since in open bisimilarity the choice of substitution is deferred as late as possible —
possibly several transitions later.

4.3 A generic formalisation using nominal logic

Recently, Parrow et al. [12] provided a general proof of the soundness and completeness of
logical equivalence for various modal logics with respect to corresponding bisimulations. The
proof is parametric on properties of substitutions, which can be instantiated for a range of
bisimulations. Moreover, their proof is mechanised using Nominal Isabelle. The conference
version [12], sketches how to instantiate the abstract framework for open bisimilarity in the
π-calculus without input prefixes only. However, we understand from communication with
the authors that open bisimilarity for the π-calculus with input prefixes will be covered in
a forthcoming extended version.

Stylistically, our intuitionistic modal logic is quite different from an instantiation of the
abstract framework of Parrow et al. for open bisimilarity. Their framework, is classical and
works by syntactically restricting “effect” modalities in formulae, depending on the type of
bisimulation. Their effects represent substitutions that reach worlds permitted by the type of
bisimulation. In contrast, the modalities of the intuitionistic modal logic OM in this paper
are syntactically closer to long established modalities for the π-calculus [9]; differing instead
in their semantic interpretation and in the absence of classical negation. An explanation
for the stylistic differences is that for every intuitionistic logic, such as the intuitionistic
modal logic in this work, there should be a corresponding classical modal logic based on an
underlying Kripke semantics. Such a Kripke semantics would reflect the accessible worlds, as
achieved by the syntactically restricted effect modalities in the abstract classical framework
instantiated for open bisimilarity.

CONCUR 2017
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5 Conclusion

The main result of this paper is a sound and complete logical characterisation of open bisim-
ilarity for the π-calculus. To achieve this result, we introduce modal logic OM, defined in
Fig. 2. The soundness of OM with respect to open bisimilarity, Theorem 5, is mechanically
proven in Abella. The details of the completeness, Theorem 6, are provided in Section 3.

There are several novel features of OM compared to established modal logics for π-
calculus, such as LM characterising late bisimilarity. Firstly, as demonstrated in Ex-
amples 2.3.1 and 3.3.4, the absence of the law of excluded middle is essential for the existence
of distinguishing formulae in OM for certain processes that are not open bisimilar (but are
late congruent). The absence of the law of excluded middle is an intuitionistic assumption;
and, as explained in the introduction, OM can indeed be considered to be a conservative
extension of intuitionistic logic. Furthermore, in contrast to classical modal logics such as
LM, diamond and box modalities have independent interpretations, not dual to each other.
These properties are expected under criterion set out for intuitionistic modal logics [14]. The
absence of de Morgan dualities over modalities complicates the construction of distinguishing
formulae.

The completeness proof involves an algorithm, Proposition 14, that constructs distin-
guishing formulae for non-bisimilar processes. To use this algorithm, firstly attempt to
prove that two processes are open bisimilar. If they are non-bisimilar, after a finite number
of steps, a distinguishing strategy, according to Def. 7, will be discovered. The strategy can
then be used to inductively construct two distinguishing formulae, biased to each process. A
key feature of the construction is that there are restricted versions of absolute truth by pre-
conditions (

[
σ
]〈
π
〉
tt restricted from

〈
π
〉
tt) and, dually, there are relaxed versions of absolute

falsity by postconditions (
[
π
]〈
σ
〉
tt relaxed from

[
π
]
ff), as demonstrated in Examples 2.2.2

and 3.3.1.
Our logic OM is suitable for formal and automated reasoning; in particular, it has

natural encodings in Abella for mechanised reasoning, used to establish Theorem 5, and
Bedwyr [3] for automatic proof search. All bisimulations and satisfactions in examples
have been automatically checked in Bedwyr and are available online: https://github.
com/kyagrd/NonBisim2DF. In addition, our distinguishing formulae generation algorithm is
implemented in Haskell [1].

Future work includes justifying whether or not OM is complete for infinite processes
with replication or recursion, as discussed around Lemma 15. A related problem is to extend
OM with fixed points, as in the µ-calculus [7]. Such an extension could lead to intuitionistic
model checkers invariant under open bisimulation, where the call-by-need approach to inputs
is related to symbolic execution. We are also interested in extensions of OM for open
bisimulation in the spi-calculus [15].

Acknowledgments. We are grateful to Sam Staton for providing an example that helped
us in the completeness proof.
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