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Abstract
The advent of new sources of spatial data and associated information (e.g. Volunteered Geo-
graphic Information (VGI)) allows us to explore non-expert conceptualisations of space, where
the number of participants and spatial extent coverage encompassed can be much greater than is
available through traditional empirical approaches. In this paper we explore such data through
the prism of landscape preference or scenicness. VGI in the form of photographs is particularly
suited to this task, and the volume of images has been suggested as a simple proxy for landscape
preference. We propose another approach, which models landscape aesthetics based on the de-
scriptions of some 220000 images collected in a large VGI project in the UK, and more than
1.5 million votes related to the perceived scenicness of these images collected in a crowdsourcing
project. We use image descriptions to build features for a supervised machine learning algorithm.
Features include the most frequent uni- and bigrams, adjectives, presence of verbs of perception
and adjectives from the “Landscape Adjective Checklist”. Our results include not only qualitative
information relating terms to scenicness in the UK, but a model based on our features which
can predict some 52% of the variation in scenicness, comparable to typical models using more
traditional approaches. The most useful features are the 800 most frequent unigrams, presence
of adjectives from the “Landscape Adjective Checklist” and a spatial weighting term.
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1 Introduction

The advent of new sources of spatial data, and in particular those which are generated
not through a top-down, regulated process, but bottom-up, by individuals with varying
backgrounds and motivations, has brought with it new opportunities for research. In
particular, the advent of spatial data associated with natural language, typically in the
form of tags or unstructured text provide a potential route to exploring ways in which
space is described in language, albeit typically in corpora where we as researchers have very
little control. The data studied in such research can be produced in a number of ways,
and differing, but overlapping, definitions have been assigned to such data including those
related to volunteered geographic information (VGI), crowdsourcing, user-generated content,
social media, citizen science and so on [7]. These definitions are important since they have
implications for the ways in which data are produced, and in turn the ways in which they
can reasonably be interpreted.
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19:2 A Crowdsourced Model of Landscape Preference

One obvious, and much studied, source of such data are the tags and descriptions associ-
ated with georeferenced images. Here, researchers typically assume that images and their
descriptions often capture information about named locations, their properties and, occasion-
ally, notions related to sense of place (e.g. [28, 16]). Indeed, Fisher and Unwin [8] presciently
recognised this potential in 2005, stating that “GI theory articulates the idea of absolute
Euclidean spaces quite well, but the socially-produced and continuously changing notion of
place has to date proved elusive to digital description except, perhaps, through photography
and film. (p. 6).” Nonetheless, in practice analysing text and extracting information related
to place has proved challenging, and many studies have either focussed above all on exploring
the properties of text related to location, with limited or no opportunities for validation, or
on using counts of images as a proxy for some spatially varying phenomena and generating
appropriate statistical models (e.g. [5, 36, 37]).

The act of georeferencing images typically implies that an individual wishes to relate a
particular image to an event (not relevant in the context of this work) or a location. The act
of producing an image however is not random, and neither is the act of choosing to share an
image with others in an online source [11]. Images capturing locations presumably capture
perceptually salient elements of a landscape, and thus, accompanied by their descriptions
might provide us with clues as to how landscape is conceptualised and parcelled up into
cognitive entities [22]. Understanding landscape, and the ways in which it is perceived
is not merely an abstract research question, but one with considerable direct policy and
societal relevance, since landscapes are the subject of national and international policies
and regulation. Contemporaneously with the emergence of new data sources such as those
described above, has been an increasing realisation in many areas of policy that there is
a need to include not only top-down definitions of landscapes in policy work, but also to
capture bottom-up ways in which landscapes are perceived and experienced. Even seemingly
simple notions such as landscape aesthetics have proved remarkably challenging to generalise
and model spatially, and although methods based in the social sciences can capture well the
diversity of opinions about individual locations, they are ill-suited to characterising large
regions [37].

In this paper we set out to demonstrate, through the use of two, related, datasets, how
we can firstly, capture through textual descriptions, elements of a landscape which are
perceived as more or less attractive across a large region. To do so, we combine descriptions
of georeferenced images which are an excellent example of VGI sensu Goodchild [12] with a
large crowdsourced data containing scenicness rating for more than 220000 images. We then
develop and evaluate a predictive model of scenicness, which as its primary input uses text
describing images, and thus aims to model scenicness as a function of language.

1.1 Related work
In the following we briefly set out related work from two key areas. Firstly, we summarise
concepts related to landscape aesthetics and its assessment. Secondly, we explore examples
of research which have used novel data sources to explore landscape properties in a range of
ways.

Theories seeking to explain landscape perception and aesthetics typically focus on both
evolutionary and cultural influences [19, 15]. Evolutionary approaches assume that preferences
with respect to landscape relate to the ability of landscapes to meet human needs such as
‘prospect’ (i.e. the ability to command a landscape through sight) and ‘refuge’ (the potential
to conceal oneself in a landscape) [1]. Other, related concepts include the ability to ‘make
sense’ of the environment (coherence and legibility of landscapes), and ‘involvement’ or ability
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to function well in the environment (complexity and mystery of landscapes) [18]. Cultural
influences on landscape preference are recognised in the emergence of work on landscape
and language, for example, through the study of ethnophysiography [22] which notes the
importance of cultural influences and the absence of universally shared landscape elements.

Irrespective of the theoretical perspective taken, typical approaches to capturing landscape
perception have focussed on in-situ methods using, for example, interviews and participatory
mapping [2, 27]. However, the need to be on site makes such approaches poorly suited to
capturing dynamic landscape preferences over large areas, and also makes it difficult to
control potential influences. Such limitations, and the simple need to generate more lab-based
reproducible experiments, led to the development of approaches based around photographs of
landscapes where participants can be presented with images controlling the visual field [31],
seasonal changes, or introducing extra factors (e.g. presence of animals [17] or anthropogenic
objects [20]).

The advent of VGI, and the realisation that such data might contain diverse, independent
and decentralised information, provided opportunities to replicate previous work on geographic
concepts [34], and to demonstrate that such data were a reliable source of information about
landscape characteristics and the ways in which landscapes were categorised [6, 28]. In
parallel, the need to generate landscape indicators related to cultural ecosystem services
and landscape preferences over large areas has led some of researchers to use the position
and number of images taken as a proxy indicator of landscape preference [36, 37], or to
incorporate the number of individuals taking pictures [3, 11] and their origins [10]. Others
have realised that the images themselves contain information central to understanding
landscape preference, and have analysed image content to explore cultural ecosystem services
[30]. The importance of scenicness in a policy context, and the possibilities offered by new
data sources are recognised in recent work exploring the link between wellbeing and scenicness
using crowdsourced data, and attempting to model scenicness using user generated content
[33, 32].

In this paper we seek to build on previous work in two key ways. Firstly, in-situ and
lab-based studies of landscape preference have typically worked, of necessity, with relatively
small groups of participants in focussed, often coherent, landscapes. Our study, by using
VGI at the scale of Great Britain, allows us to explore landscape preferences across a whole
country, and to explore regional differences between such preferences. Secondly, attempts to
model scenicness have typically focussed on using spatial data in some form as explanatory
variables (for example number of images, elevation, number of visible pixels, landcover type,
etc.). We take an approach which we argue is likely to be closer to the way in which a
particular landscape is perceived, and build a model of scenicness which uses language (in
the form of words and phrases extracted from written descriptions) as explanatory variables.

In the following, we first describe the datasets on which we carried out our experiment,
and the steps we took in processing, analysing and modelling scenicness with these data. We
then present our results, demonstrating that the words used to describe scenic areas make
clear distinctions especially between scenes perceived to be more or less anthropogenically
influenced. Our model of scenicness is capable of explaining about 52% of the variance in
scenicness in space, which is comparable to typical state of the art approaches. We then
discuss the implications of these results, before concluding with some suggestions for future
research.

COSIT 2017
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Figure 1 Steps of the data acquisition and preprocessing with an example.

2 Data and methods

As set out above, our aims are twofold. Firstly, we wish to identify which terms are typically
used with more or less scenic images, as described by votes in ScenicOrNot project and,
secondly, based only on terms describing images to develop a spatially contiguous model
of scenicness at the country level. In the following we describe the datasets used, and in
particular aspects relevant to our work. We then set out our approach to processing the
corpus, before describing the features used in producing our spatial model of scenicness.
Fig. 1 gives a visual overview of the material which follows.

2.1 Data and study region
We use two unique, and related, datasets in this work. The Geograph1 dataset (Fig. 2a) is a
crowdsourced collection with more than 12000 contributors, launched in 2005, with the aim
of collecting “geographically representative photographs and information for every square
kilometre of Great Britain and Ireland.” The project takes the form of a game, with users
receiving points for uploading georeferenced images and associated descriptions, and content
is moderated. The entire dataset is available under a Creative Commons Licence, and in this
paper we used a version downloaded in June 2016 consisting of ca. five million images.

The ScenicOrNot2 project (Fig. 2b) was initiated in 2009 by MySociety and is currently
hosted by the Data Science Lab at Warwick Business School. The goal of the project is

1 http://www.geograph.org.uk/
2 http://scenicornot.datasciencelab.co.uk/

http://www.geograph.org.uk/
http://scenicornot.datasciencelab.co.uk/
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(a) Interface of the Geograph project (b) Interface of the ScenicOrNot project

Figure 2 Interface of the Geograph project (Copyright Chris Heaton, Creative Commons Licence)
and the ScenicOrNot project, where users can rate a Geograph photograph from 1 (not scenic) to 10
(very scenic).

to crowdsource scenicness ratings using Geograph images. In contrast to Geograph, where
it is reasonable to assume that users uploading images typically also took the pictures in
question (and thus visited the landscape), the ScenicOrNot project is purely internet based.
Participants, about whom no demographic information is collected, are presented with a
series of random images, with neither associated locations or descriptions, and asked to rate
them on a scale of 1 (not scenic) to 10 (scenic) for scenicness. More than 220000 Geograph
images had amassed some 1.5 million votes by June 2016 in the ScenicOrNot collection.

In the following our corpus consists of the 160000 Geograph images which both have a
description, and are associated with three or more votes in ScenicOrNot.

2.2 Corpus processing
Our aim in corpus processing was to explore how terms used in describing Geograph images
were associated with scenicness ratings. Since our starting point are natural language captions,
standard corpus processing steps were applied. In the following, we briefly describe these
steps, which were, in the main, carried out using the Python-based NLTK3 library.

Each image description was in parallel tokenised, and part of speech tagged. The tokens
were then filtered for stopwords and punctuation, before being normalised by changing all
tokens to lower case and reducing tokens to their lemmas. Our aim was to build a term
index, with associated features, for use in exploring the semantics of scenic locations.

Since we were explicitly not interested in the names of locations, we filtered toponyms
from descriptions using gazetteer look-up in a 5km window around the coordinates associated
with images. We used a freely available gazetteer, based on the 1:50000 maps from the
Ordnance Survey for this process. This approach aims to strike a balance between removing
local toponyms, which may be the subject of considerable semantic ambiguity (e.g. does bath
refer to a place to bathe or the historic city) and retaining tokens which are being used in a
non-toponymic sense.

Having performed these steps we are left with a term index, where unique entries are made
up of tuples containing normalised tokens (unigrams and bigrams) present once or more in a
description, part of speech tagging and the images IDs with which they are associated. Since

3 http://www.nltk.org/
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each term can be present in one or more images, and each image is ranked three or more times,
we assign an average scenicness to every term in our index. Importantly, identical tokens
having different parts of speech will have different values of average scenicness. Furthermore,
since we store image IDs, we also have access to all locations associated with a term, the
array of votes and an overall frequency of the term, based on the number of images described
using a given term. Using our term index, it is possible to generate lists of terms, ranking or
filtering by, for example, average scenicness, part of speech or frequency.

2.3 Feature choice and modelling scenicness
The final step in our approach was to create a spatially contiguous model of scenicness based
on our term index. We predict scenicness for 5km grid cells, using Random Forests regression,
which is a state of the art non-linear, non-parametric method in supervised machine learning,
and which requires no assumptions with respect to the data distribution [4]. Our choice
of 5km was motivated by the underlying 1km granularity of the Geograph data and its
associated spatial distribution. We report briefly on sensitivity to resolution in the discussion.

A key task in creating such a model is the choice of appropriate features. Our basic
approach was to use training data associated with 5km grid cells, where average scenicness
was associated with features based on our terms. Only descriptions consisting of at least
five tokens, after filtering as described above, were used in the model. The simplest possible
feature set would be one based purely on unigrams, that is to say individual tokens from
image descriptions found in grid cells (e.g. ‘hill’, ‘mountain’, ‘shop’, etc.).

However, in natural language processing [21] it is typical to also consider n-grams, and
here we also experimented with bigrams (e.g. sequences of two tokens such as ‘steep hill’,
‘rugged mountain’, ‘closed shop’) as features. By reducing the feature space it is often
possible to maintain model predictive capacity, while improving performance, and we also
experimented by reducing the number of unigrams considered to the n-most frequent. Other
features of our data, and previous work on landscape description, suggest additional potential
model features which are listed below:

adjectives alone: since adjectives are assumed to be strong indicators of subjectivity and
sentiment; [14], we used unigrams consisting only of frequent adjectives;
“Landscape Adjective Checklist”: presence of adjectives pertaining specifically to land-
scape in Craik’s list [24];
the number of superlative adjectives as identified during part of speech tagging, with the
assumption that superlatives are more likely to be used in more scenic areas;
the number of distinct adjectives found in a description, with the assumption that more
adjectives are used in more scenic areas;
the presence of a verb of perception [39], where we assume that the presence of verbs of
perception may indicate descriptions more relevant with respect to scenicness (e.g. by
reducing the weight of descriptions focussing on historical events at a location);
a weight based on spatial tf-idf [29]: here terms which are used frequently in an individual
grid cell, but rarely in the collection as a whole are given a higher weight.

2.4 Training and test data
In any supervised model it is necessary to generate both training and test datasets. However,
the way in which the data are split can have important implications for not only the quality
of the model, but also for any implications which can be drawn from the results. Since an
important property of crowdsourced data are user-generated biases in data production [13], we
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(a) Scenicness between 1–3,
nimages = 14072, nusers = 2137.

(b) Scenicness between 3–5,
nimages = 155822, nusers = 4170.
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(c) Scenicness between 5–7,
nimages = 79752, nusers = 3340. (d) Scenicness between 7–10,

nimages = 3134, nusers = 851.

Figure 3 Average scenicness for 150 most frequent nouns extracted from image descriptions -
font size indicates relative frequency within scenicness range.

considered these, as well as the desired spatial contiguity of our model in generating training
and test data. Thus, our models were trained (and tested) on the following configurations,
with 50% assigned to training and test data respectively in both cases:

fully random: image descriptions are simply selected at random from the full corpus;
user dependent random: since we expect individual users to write characteristic descrip-
tions, and since Geograph is subject to participation inequality, meaning that a single
user may contribute a large proportion of the descriptions in a single area, we select
random images while allowing individual users only to appear in either training or test
datasets.

3 Results and interpretation

3.1 Semantics of scenicness
The word clouds in Fig. 3 exemplify our results, illustrating the average scenicness of nouns
after part of speech tagging of image descriptions. A number of features are worthy of
observation here. At a first glance, the lowest rated scenicness values are related to nouns
which are clearly in developed areas (e.g. ‘motorway’, ‘housing’, ‘shop’, ‘stadium’). The
highest rated scenicness nouns include Gaelic words, terms related to natural processes,
wildlife and some esoteric examples (e.g. ‘coire’, ‘avalanche’, ‘otter’, ‘backcloth’). However,
these classes contain a small proportion of the total set (ca. 6%), with only some 1% of
nouns being found in the most scenic class. Thus, many of these nouns belong to the long
tail of our data, and although they reflect a clear split between developed areas and more
natural landscapes (associated with Gaelic placenames in the Highlands of Scotland) we
should be careful not to overinterpret these terms.

Unsurprisingly, since each image was rated at least three times, and many of the nouns
are associated with multiple images, the vast majority (94%) of nouns have average scenicness

COSIT 2017



19:8 A Crowdsourced Model of Landscape Preference

ratings of between 3 and 7. Exploring these classes, it becomes apparent that the clear
split so visible in the two extreme classes is much less prominent. Thus, we find that nouns
such as ‘village’, ‘lane’ and ‘wood’ are all rated on average 3–5, even though these might be
terms typically expected to be associated with more rural, and thus potentially more scenic
images. However, exploring the nouns rated 5–7 it again becomes clear that differences exist.
Here, many more nouns appear to relate to perceived natural (as opposed to rural) scenes
(e.g. ‘moorland’, ‘summit’, ‘ridge’).

3.2 Predicting scenicness
We tested the goodness of fit of our Random Forest regression using the features as described
above, and two different configurations of test and training data. Independent of the
configuration chosen, we only predicted scenicness values for grid cells where at least two
descriptions were present in both training and test data.

Goodness of fit improved as we increased the number of unigrams in the model until
we reached the 800 most frequent unigrams. Including presence of adjectives from the
“Landscape Adjective Checklist” by Craik and weighting according to spatial tf-idf further
increased goodness of fit to a maximum value of around 52% (52.4% in the case of fully
random and 52.0% in the case of user dependent random division on training and test data).

Fig. 4 shows the spatial pattern of predicted scenicness for both configurations. Particu-
larly evident here are the larger number of grid cells for which no value could be predicted
where training and test data were randomly selected according to users. Here, the effects of
participation inequality result in many grid cells where the majority of images and associated
descriptions were taken by a single user, and we thus cannot predict scenicness. However,
given the limited variation in model goodness of fit, it appears that this restriction may be
unnecessary.

A further important issue in our model is the existence of spatial autocorrelation in
model residuals. Testing for Morans-I revealed values of around 0.12 according to model
configuration, implying that the chances of random clustering in our model are less than
1%. A typical approach to assessing the influence of spatial autocorrelation in Random
Forest regression is therefore to include grid centroids as features in the model [23]. Doing
so increased goodness of fit to 56% and reduced spatial autocorrelation in the residuals
to 0.05. An alternative model including spatial information by assigning county names
(administrative units) to every image, resulted in a decrease of Morans’s I to 0.10, with
goodness of fit remaining at 52%. This approach includes local neighbourhood relationships
and more natural divisions of landscape (since at least in the UK county boundaries typically
are a mix of the fiat and bona fide). Since model results for a model based only on language
and containing additional explicit spatial information are similar we thus conclude that our
results are not biased by spatial autocorrelation [37].

4 Discussion

In this paper we explored the use of two, related datasets which were both generated by
the crowd, though in very different ways, to understand how landscape, and in particular
scenicness is captured in language.

Our results were generated after a typical natural language pipeline to tokenise, classify
and filter image descriptions. Importantly, we also included a step to remove toponyms from
image descriptions, since we were not interested in the names of scenic places, but rather
in their properties. Our results demonstrate a clear transition from nouns associated with
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(a) User-based division. (b) Random division.

Figure 4 Maps of the scenicness prediction results with ‘user dependent random division’ and
‘fully random division’.

urban, developed scenes through more rural landscapes to natural landscapes and a long tail
of nouns associated with the Highlands of Scotland. This long tail also reveals one limitation
of our approach, since our natural language processing methods cannot deal with Gaelic,
and some misclassified words remained in the list of nouns (e.g. ruadh refers to the colour
red in Gaelic and is commonly used in toponyms i.e. Sgurr Ruadh refers to the Red Peak).

Exploration of the word clouds (Fig. 3) reveals that the scenicness of individual terms
sometimes contradicts classic ideas in work on landscape preference. For example, water is
commonly associated with scenic landscapes [40, 31], yet in our word clouds it has an average
scenicness of only 3–5. On closer examination it becomes apparent that water lies in a word
cloud containing many rural terms, and the presence of water is common in such scenes.
However, at least in our data, rural as opposed to perceived natural scenes are less highly
rated. Thus, treating individual nouns (or terms in general) as predictors of scenicness is
difficult, and our word clouds reveal more information about the complex interplay between
language and landscape. They further indicate the importance of using language, as opposed
to purely data-driven approaches to exploring landscape. Approaches extracting landscape
properties using intrinsic landscape qualities from standard spatial datasets and associating
these with landscape preferences (e.g. [9, 38]) based on ideas of evolutionary-driven landscape
perception [18] are unlikely to capture variation of the nature we observe here. Furthermore,
our word clouds are potentially powerful tools for generating datasets containing imagery for
use in landscape preference experiments and modelling, since they provide an empirical basis
for terms used in selecting candidate images, as opposed to approaches based on introspective
reasoning or intrinsic, evolutionary determined preferences (cf. [37]) to generate candidate
keywords for querying.

COSIT 2017
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Our model of scenicness, irrespective of training data is able to explain some 52% of the
variation in scenicness. This is comparable with typical results in more traditional approaches
based on interviews or participatory methods [25], approaches using land cover data [35] and
work at a continental scale using social media [37]. Although the explained variance is not
strongly influenced by our choice of training data, the total number of grid cells for which
average scenicness value can be predicted varies by some 20% from around 7000 cells where
individual users are only allowed to be present in either test or training data, to 9000 cells
where image descriptions are randomly assigned to test or training data. Furthermore, this
variation is strongly spatially autocorrelated, with, for example, a single user having taken
some 11000 images in the Lake District National Park, of which ca. 850 were rated in the
ScenicOrNot project. Such biases are a typical issue in VGI [13], whose handling requires
care. Our results were also sensitive to resolution - finer granularities of model reduced model
performance (e.g. at 2.5km we could explain 41% of the variation) and coarser granularities
increased model performance (e.g. at 10km we could explain 67% of the variation). These
results are not unexpected, since firstly the available training data is reduced as resolution
becomes finer and, secondly, a coarser model smooths variation and is thus easier to predict,
but conveys less fine grained information at the landscape scale.

Our best model used relatively simple features (800 most frequent unigrams, tf-idf and a
dictionary of adjectives associated with landscape). Using bigrams, which might be expected
to better capture noun phrases associated with scenic locations (e.g. ‘pleasant landscape’)
did not in practice improve model performance, an observation which has been made in other
contexts [26]. Verbs of perception appear equally likely to be used in scenic or non-scenic
contexts, and were also not useful features in our model.

To our knowledge, our approach is the first attempt to use language to spatially model
landscape preference, and it has obvious potential to be combined with other approaches to
modelling scenicness based either on user frequentation, physical properties of landscape, or
combinations thereof [36, 32, 37].

5 Conclusions and outlook

Our work took advantage of two datasets created by volunteers with very different charac-
teristics. Key to their use in our research were firstly the size and spatial extent of both
datasets, and secondly the richness of the textual descriptions associated with Geograph
images. Our results demonstrate ways in which VGI and crowdsourcing can allow us to
explore questions about how space, and in our case scenicness, is captured through use of
language, and demonstrate the potential of such approaches. In particular, we observed:

clear patterns in the nouns associated with scenicness, suggesting a continuum from
heavily developed scenes through more rural to perceived natural scenes. Interpreting
and using terms to explain scenicness in isolation is challenging, and we suggest that
terms should be analysed in isolation with caution;
a language-based model can predict some 52% of variance in scenicness, comparable with
traditional approaches and state of the art statistical models based on parameters known
to correlate with scenicness (e.g. terrain roughness or presence of water). Our approach
allows us to capture potentially culturally varying landscape preference through the proxy
of language; and
explained variance was not strongly influenced by the way single users describe landscapes.
This makes it unnecessary to restrict the appearance of descriptions of single user either
in training or in test datasets.
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It is important to note that the approaches we take to modelling scenicness, in contrast to
our interpretation of word clouds, essentially use a bag of words model, where dependencies
between terms are not explicitly modelled. In future research we will explore whether,
and how, modelling such dependencies might contribute to our understanding of landscape
aesthetics. Importantly, we do not claim that our results are universal, but rather reflect the
relationship between landscape and language in a particular cultural setting.

We see this work as an example of the use of textual descriptions to explore culturally
determined properties of landscape through language. We also intend to explore the trans-
ferability of our results to other user generated content (e.g. Flickr or OpenStreetMap), to
other spatial regions and languages (e.g. on mainland Europe) and the impact of includ-
ing additional spatial data on model performance (e.g. terrain models or land cover data).
Furthermore, we see great value in attempting to use the literature to build a taxonomy
of scene types, and explore their influence on our model. Such an approach could also
take advantage of the “unwritten” parts of our descriptions, for example in terms of the
arrangements or presence of objects in a particular image or the relationships between colours
through content-based analysis of image content associated with descriptions.
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