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Abstract
In this invited talk at the European Symposium on Algorithms (ESA), 2017, I will discuss a
tool called sketching, which is a form of data dimensionality reduction, and its applications to
several problems in high dimensional geometry. In particular, I will show how to obtain the
fastest possible algorithms for fundamental problems such as projection onto a flat, and also
study generalizations of projection onto more complicated objects such as the union of flats
or subspaces. Some of these problems are just least squares regression problems, with many
applications in machine learning, numerical linear algebra, and optimization. I will also discuss
low rank approximation, with applications to clustering. Finally I will mention a number of other
applications of sketching in machine learning, numerical linear algebra, and optimization.
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1 Projection

Formally, in the projection problem, we are given a point b ∈ Rn and a d-dimensional flat
(affine subspace) H, and would like to compute the distance of b to H. In a typical setting,
n is very large, and d, while much smaller than n, is also fairly large. Thus we cannot afford
algorithms that say, are exponential in d. One way of being presented H is in its coordinate
representation, so we can think of H as being the set of points y of the form y = Ax + v,
where A is an n×d matrix and v is a point in Rn, which we think of as an offset. Note that A
is a tall and thin matrix. Letting dist(b,H) denote the Euclidean distance of b to H, we have
that dist(b,H) = dist(b− v,H − v) by translation, where H − v is the set of points y of the
form y = Ax. Thus we can write dist(b− v,H − v) = minx∈Rd ‖Ax− (b− v)‖2, which is just
a regression problem. If A has linearly independent columns, i.e., represents a d-dimensional
flat instead of a lower-dimensional flat, then the solution x∗ = (ATA)−1AT (b− v). One can
compute x∗ in O(nd2) time, or faster by using fast matrix multiplication algorithms, but for
large n and d this is too slow.

In the sketch and solve paradigm, one first relaxes the problem to a randomized approx-
imation problem, instead allowing for one to output an x′ ∈ Rd for which ‖Ax′ − b‖2 ≤
(1 + ε)‖Ax∗ − b‖2 with large probability. We refer the reader to the survey [21] for more
details and proofs of claims, but we describe the basic idea below. The crux of the sketch
and solve paradigm is to first choose S from a random family of matrices, and many such
families of matrices work, with the important property that S is wide and fat, that is, it has
k rows and n columns for k � n. One then computes S · A and S · b. Then one replaces
the original regression problem with minx ‖(SA)x− (Sb)‖2. For small k, which we should
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think of as being poly(d/ε), this problem does not even depend on the large dimension n.
Therefore, one can now afford to compute the minimizer x′ to this small regression problem
using the closed form expression above, in only poly(d/ε) time. The goal is to choose S from
an appropriate random family of matrices so that if one does this, then the minimizer x′ is
such that ‖Ax′ − b‖2 ≤ (1 + ε)‖Ax∗ − b‖2 with large probability.

It turns out that a number of families of random matrices work, such as a k × n matrix
S of i.i.d. normal random variables, where k = O(d/ε2), and the entries in S are scaled by
1/
√
k. The main difficulty with such matrices is that computing S · A is slow. That is, S

is a dense matrix, and computing S · A naïvely takes at least nd2/ε2 time, which is even
slower than the exact algorithm for computing x∗, which just took nd2 time. Note that for
the exact algorithm, the bottleneck was in the computation of ATA, and note that both
algorithms can be sped up with fast matrix multiplication. While this is too slow for our
purposes, in a very nice paper of Sárlos [19], he showed that one could choose S from a much
more structured random family of matrices called Fast Johnson Lindenstrauss transforms.
This reduces the time for computing S ·A to nd logn, and using the connection to regression
described above, gives an overall algorithm in nd logn + poly(d/ε) time for least squares
regression. While this is optimal in the matrix dimensions, often A is itself a sparse matrix
and one would like algorithms which run in time proportional to the number nnz(A) of
non-zero entries of A. In work with Clarkson [7] we show this is in fact possible by using the
so-called CountSketch matrices from the data stream literature, where we achieve an overall
running time of O(nnz(A)) + poly(d/ε) for regression. The key property of CountSketch
matrices is that they are extremely sparse, having only a single non-zero entry per column.
This enables the matrix-matrix product S ·A to be computed in only nnz(A) time. This is
easily shown to be optimal, as any algorithm achieving relative error for general matrices
A needs to read a constant fraction of the non-zero entries, as otherwise it might miss a
very large entry. A number of interesting tradeoffs between the number of rows of S and its
sparsity are possible, see also the followup works [15, 17].

In many settings one does not only want to project a point to a flat, but rather to a much
more complicated object, such as the union of flats. A natural question is what properties
of the object allow for sparse, low-dimensional sketching matrices S. A natural concept
that arises is the sphereical mean width, or equivalently, the Gaussian mean width of the
object. Intuitively this measures the average fatness of an object, over all directions on the
unit sphere. While the sphere is very fat, a line is not. The less fat the object, the fewer
dimensions one needs to preserve the norms of points in the object by a sketching matrix. In
recent work of Bourgain, Dirksen, and Nelson, sparse sketching matrices for projecting onto
general objects were developed [4]. One application of this is to tensor regression [14].

2 Low Rank Approximation

I will also discuss the low rank approximation problem, where the goal is to approximate a
high rank matrix by a matrix of much lower rank. Low rank matrices have fewer parameters,
and consequently can be stored much more efficiently in factored form and applied to vectors
very quickly. Also, in many instances one has an underlying matrix which is of low rank,
which then becomes high rank because of noise that was added. Hence in some settings, low
rank approximation can also be viewed as a tool for noise removal.

Formally, one is given an n× d matrix A, and think of the n rows of A as being points
in Rd. The goal is to find a rank k matrix A′ such that ‖A − A′‖F ≤ (1 + ε)‖A − Ak‖F ,

where for a matrix B, ‖B‖F =
(∑

i∈[n],j∈[d] B
2
i,j

)1/2
is the Frobenius norm, and Ak is the
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best rank-k approximation to A under Frobenius norm. A natural way of solving low rank
approximation is via the truncated singular value decomposition (SVD). Recalling that any
matrix A can be expressed as UΣV T , where U and V have orthonormal columns, and Σ is a
diagonal matrix with non-negative non-increasing values as one moves down the diagonal, we
have that Ak is given by zero-ing out all but the top k diagonal entries of Σ, obtaining Σk.
This effectively selects the k leftmost vectors of U and k uppermost vectors of V T , which are
also known as the principal components.

While the SVD gives an exact solution, it runs in time min(nd2, dn2), which can be sped
up using fast matrix multiplication, but is still much slower than what we would like. As
in the case of least squares regression, we can use sketching to obtain significantly faster
algorithms if we allow randomization and approximation. Namely, if we allow for outputting
a rank-k matrix A′ for which ‖A−A′‖F ≤ (1 + ε)‖A−Ak‖F , then we can solve this problem
in nnz(A) + (n+d)poly(k/ε) time [7]. To get some perspective on this, even when A is dense,
the time, up to poly(k/ε) factors, is nd, which is significantly faster than what is achievable
by the SVD. For sparse matrices, we obtain even larger speedups.

The basic idea behind using sketching for low rank approximation is to first compute
S ·A, where S is one of the random matrices discussed above with a small number of rows, on
the order of poly(k/ε). One then argues that there is a (1 + ε)-approximate rank-k solution
in the span of the rows of SA. It follows that by projecting each of the rows of A onto the
rowspan of SA, and then working in the coordinate representation of SA, one effectively
reduces the dimension from d to poly(k/ε). Since the running time of the SVD is O(nd2),
this smaller value of d allows one to now compute the SVD in only n · poly(k/ε) time. One
argues by the Pythagorean theorem that by first projecting the rows of A onto the rowspan
of SA, and then performing an SVD, that one still obtains a (1 + ε)-approximation. Choosing
S to be a CountSketch matrix, this whole procedure, except for the projection of the rows
of A onto the rowspan of SA, can be executed in nnz(A) + (n + d)poly(k/ε) time. The
bottleneck is the projection of the rows of A onto the rowspan of SA, but this can be done
in nnz(A) + (n+ d)poly(k/ε) time by using the approximate projection algorithms discussed
above.

I will also discuss applications of low rank approximation to k-means clustering. Here
the general idea is, if given n points in Rd, to form an n× d matrix A and then compute a
so-called projection-cost preserving sketch of A, which can then be used to prove a low rank
approximation with certain strong properties [10, 11, 12]. One then replaces the original
dimension d with a much smaller dimension depending on only k and 1/ε. Given such a
small dimension, one then runs standard algorithms from the coreset literature to reduce the
number n of points to poly(k/ε).

3 Additional Applications

Finally, I will conclude by mentioning a number of other problems sketching has been applied
to, such as special kinds of low rank approximations callled CUR decompositions, in which
the goal is to approximate a matrix A by a low rank matrix in which the factors of the
low rank matrix consist of actual rows and columns of A. Thus, if A has sparse rows or
columns, then so do its factors. Sketching has been applied successfully to obtain nnz(A)
time algorithms for CUR decompositions [5, 20].

Another interesting use of sketching is to high precision regression. One might complain
that the natural sketch and solve algorithm producing a vector x′ ∈ Rd for which ‖Ax′−b‖2 ≤
(1 + ε)‖Ax∗ − b‖2 has running time nnz(A) + poly(d/ε) and is undesirable if ε is very small.

ESA 2017
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By using sketching it is possible to obtain algorithms running in roughly nnz(A) log(1/ε)
time [7]. The main idea is to use sketching to obtain an O(1)-approximate initialization to
gradient descent as well as an O(1)-approximate preconditioner.

Other applications include robust low rank approximation [8, 20], kernelized problems
[1], distributed and streaming computation [2, 3, 6, 13], tensor low rank approximation
[20], weighted low rank approximation [18], structure-preseving low rank approximation
[9, 16], etc. I refer the reader to my recent monograph for many of the details and additional
applications of sketching [21]. While this accompanying article to my ESA talk is primarily
focused on my own work, this is just due to the nature of the talk, and please see the above
monograph for many other references on these and related topics.
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