
Modeling and Engineering Constrained Shortest
Path Algorithms for Battery Electric Vehicles
Moritz Baum1, Julian Dibbelt2, Dorothea Wagner3, and
Tobias Zündorf ∗4

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
moritz.baum@kit.edu@kit.edu

2 Mountain View, CA, USA
algo@dibbelt.de

3 Karlsruhe Institute of Technology, Karlsruhe, Germany
dorothea.wagner@kit.edu

4 Karlsruhe Institute of Technology, Karlsruhe, Germany
tobias.zuendorf@kit.edu

Abstract
We study the problem of computing constrained shortest paths for battery electric vehicles. Since
battery capacities are limited, fastest routes are often infeasible. Instead, users are interested
in fast routes where the energy consumption does not exceed the battery capacity. For that,
drivers can deliberately reduce speed to save energy. Hence, route planning should provide
both path and speed recommendations. To tackle the resulting NP-hard optimization problem,
previous work trades correctness or accuracy of the underlying model for practical running times.
In this work, we present a novel framework to compute optimal constrained shortest paths for
electric vehicles that uses more realistic physical models, while taking speed adaptation into
account. Careful algorithm engineering makes the approach practical even on large, realistic
road networks: We compute optimal solutions in less than a second for typical battery capacities,
matching performance of previous inexact methods. For even faster performance, the approach
can easily be extended with heuristics that provide high quality solutions within milliseconds.

1998 ACM Subject Classification G.2.2 Graph Theory, G.2.3 Applications

Keywords and phrases electric vehicles, constrained shortest paths, algorithm engineering

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.11

1 Introduction

Battery electric vehicles (EVs) have matured, giving the prospect of high powertrain efficiency
and independence of fossil fuels, but a major hindrance of their adoption remains the limited
battery capacity of most vehicles combined with a lengthy recharge time. To overcome range
anxiety, careful route planning that prevents battery depletion during a ride is paramount.
Besides a limited cruising range, another substantial difference to vehicles run by combustion
engines is the ability to recuperate energy when braking. Naturally, such aspects have to be
reflected in any kind of route planning application for EVs.

Classic route planning approaches make use of a graph-based representation of the consid-
ered transportation network, where scalar edge weights correspond to, e. g., travel times. A
shortest path is then found by Dijkstra’s algorithm [15]. A wide range of speedup techniques [3]

∗ Supported by DFG Research Grant WA654/23-1.

© Moritz Baum, Julian Dibbelt, Dorothea Wagner, and Tobias Zündorf;
licensed under Creative Commons License CC-BY

25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 11; pp. 11:1–11:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Constrained Shortest Path Algorithms for Battery Electric Vehicles

enable provably correct but faster queries in practice. For instance, A* Search [27] uses
vertex potentials to guide the search towards the target. Contraction Hierarchies (CH) [23],
on the other hand, employs a preprocessing step to obtain a directed acyclic search graph
that allows to skip vast parts of the network at query time. For that, it iteratively contracts
vertices according to a heuristic vertex ranking, while adding shortcut edges to maintain
distances within the remaining graph. Extensions to multicriteria scenarios exist for both
A* [17, 32, 33, 36] and CH [21, 22, 38]. Moreover, CH and A* can be combined to Core-
ALT [6], where all but the highest-ranked vertices are contracted, which form the core graph.
On that, a variant of A* uses precomputed distances to landmark vertices [24].

Route planning for EVs requires handling battery capacity constraints and negative edge
weights (due to recuperation), which is tractable when optimizing energy consumption as a
single criterion [9, 16, 35]. However, energy-optimal routes often exhibit disproportionate
detours, as using minor, slow roads can save energy due to less air drag [9]. Variants of the
NP-hard Constrained Shortest Path (CSP) problem [26] overcome this by minimizing energy
consumption without exceeding a given time limit [37] or finding the fastest route that does not
exceed battery constraints [7, 41]. Yet, time–consumption tradeoffs are not only affected by
choice of route but also by driving behavior. Assuming a single, fixed speed per road segment
neglects attractive solutions that may still use major roads (e. g., motorways), saving energy
by deliberately driving below posted speed limits, instead. Sampling such alternative speeds,
tradeoffs can be modeled by parallel edges [8, 25], but this yields too many nondominated
intermediate solutions, growing exponentially even for chains of vertices. Accordingly, only
heuristics offer acceptable performance for common vehicle ranges [8, 25]. By discretizing
a continuous range of possible speeds, the approach has further undesirable effects: The
majority of its many intermediate solutions offers insignificant tradeoffs [8], while interesting
solutions are lost to the discretization; adding degree-two vertices (commonly included for
visualization) affects the solution space, even when distributing speeds and consumption
evenly. Instead, Hartmann and Funke [28] model tradeoffs as continuous functions per edge,
assuming the driver can go at any speed within limits. Yet, for that model they propose
only a heuristic extension of CH that requires minutes to answer queries on large networks.
Lv et al. [31] use dynamic programming to plan the speed of a solar-powered EV, but their
approach aims at simulation and is too slow for interactive applications.

Contribution and Outline. We study a generalization of the CSP problem to capture the
characteristics of EVs, considering continuous, adaptive speeds: We allow the EV to adjust
its speed to reach its target quickly and with sufficient state of charge (SoC). Using realistic
consumption models, we obtain for each road segment a function mapping travel time to
energy consumption, yielding a challenging, more precise problem setting (Section 2). As a
first solution, we propose an exponential-time extension of Dijkstra’s algorithm: By propa-
gating continuous consumption functions during network exploration, we greatly improve
performance and solution quality over previous discretized approaches (Section 3). We
also incorporate techniques based on A* and CH, for which a particular challenge is the
computation of shortcuts that represent bivariate functions to capture the constraints of our
model (Section 4). Our experimental evaluation (Section 5) reveals that we can compute
optimal solutions in well below a second for typical battery capacities and less than a minute
for large battery capacities, on par or faster than previous heuristic algorithms. Our own
heuristic variant provides high-quality solutions and is fast enough for interactive applications.

M. Baum, J. Dibbelt, D. Wagner, and T. Zündorf 11:3

2 Model and Problem Statement

We use directed graphs G = (V,E) to model road networks, where edges e ∈ E represent
road segments. For each, we assume that a given tradeoff function ge : R>0 → R maps desired
driving time x ∈ R>0 along e to energy consumption ge(x). Consumption can be negative,
due to recuperation. In reality, driving time cannot be chosen arbitrarily: Lower bounds are
induced by speed limits and the vehicle’s maximum speed. On the other hand, driving slower
than a reasonable minimum speed would mean to become an obstacle for other drivers. This
yields minimum and maximum driving times

¯
τ ∈ R>0 and τ̄ ∈ R>0, respectively, for ge. We

incorporate them into a consumption function ce : R≥0 → R ∪ {∞} with

ce(x) :=


∞ if x <

¯
τ,

ge(τ̄) if x > τ̄,

ge(x) otherwise.

Thus, driving times below
¯
τ are infeasible (modeled as infinite consumption) and driving

times above τ̄ become unprofitable. In the special (degenerate) case of
¯
τ = τ̄ , the function

ce represents a constant pair (
¯
τ, ce(¯

τ)) of driving time and consumption. We then call ce
constant, as the edge e allows no speed adaptation.

Further, the EV is equipped with a battery that has a capacity M ∈ R≥0. The SoC
must not drop below 0 nor exceed M . Incorporating these constraints, we obtain a bivariate
SoC function fe : R≥0 × [0,M] ∪ {−∞} → [0,M] ∪ {−∞} for every e = (u, v) ∈ E, mapping
SoC at u to SoC at v when traversing e with a specific driving time. It is given by

fe(x, b) :=


−∞ if b− ce(x) < 0,
M if b− ce(x) > M,

b− ce(x) otherwise,

where an SoC of −∞ denotes an empty battery. Hence, fe(x, b) = −∞ means that the edge
cannot be traversed at the corresponding speed (as the battery would run empty).

An s–t path in G is a sequence P = [s = v1, v2 . . . , vk = t] of vertices with (vi, vi+1) ∈ E
for 1 ≤ i ≤ k − 1. If s = t, we call P a cycle. Given the SoC bs ∈ [0,M] at s, we obtain
a corresponding SoC at t by iteratively picking driving times xi ∈ R≥0 (starting at s) and
evaluating the SoC function f(vi,vi+1) for xi and the SoC at vi. Due to physical constraints,
we presume that for cycles this procedure never increases the SoC at s = t. For paths
P = [v1, . . . vi] and Q = [vi, . . . , vk], P ◦Q := [v1, . . . , vi, . . . , vk] is their concatenation.

Given a source s ∈ V , a target t ∈ V , and an initial SoC bs ∈ [0,M], the Electric Vehicle
Constrained Shortest Path (EVCSP) Problem is to find an s–t path P = [s = v1, v2 . . . , vk = t]
together with driving times xi, i ∈ {1, . . . , k − 1}, for every edge in P that respect battery
constraints and minimize overall travel time x :=

∑k−1
i=1 xi in G. This yields an NP-hard

problem by reduction from CSP [26]. An instance of CSP corresponds to an instance of
EVCSP where all functions are degenerate constant tuples with nonnegative consumption.

A Simplified Model. We illustrate SoC functions in an example using simplistic but vivid
tradeoff functions. For now, let tradeoff functions be decreasing and linear, i. e., ge(x) = αx+β
for every e ∈ E, where α ∈ R≤0 and β ∈ R are constant coefficients. The values α and β
may differ between edges to reflect different road types or other relevant factors [12, 42].
Figures 1a and 1b show consumption functions (plugging in limits

¯
τ and τ̄ on driving time)

for two edges (u, v) and (v, w). We are interested in the consumption function of the path

ESA 2017

11:4 Constrained Shortest Path Algorithms for Battery Electric Vehicles

x

c(u,v)(x)

1 2 3
0
1
2
3
4

∞

(a)

x

c(v,w)(x)

1 2 3

−4
−3
−2
−1

0

∞

(b)

x

cP (x)

∞

2 3 4 5 6

−3
−2
−1

0
1

(c)

Figure 1 Consumption functions based on a simple model. (a) Function c(u,v) of an edge (u, v)
with

¯
τ = 1 and τ̄ = 3. (b) Function c(v,w) of an edge (v, w) with

¯
τ = 1 and τ̄ = 2. (c) The function

cP of P = [u, v, w]. The shaded area indicates possible pairs of driving time and consumption.

x

fP (x, b)
b = 4
b = 3
b = 2
b = 1

2 3 4 5
0

1

2

3

4

−∞

(a)

b

fP (x, b)

x = 4
x = 3
x = 2

1 2 3 4
0

1

2

3

4

−∞

(b)

Figure 2 The bivariate SoC function of the path P from Figure 1, for M = 4. (a) The SoC fP

at v, subject to driving time x on P for different fixed values b of initial SoC. (b) The SoC fP at v,
subject to initial SoC b for different fixed values x of driving time.

P = [u, v, w], i. e., a function cP that maps driving time x spent on P to minimum energy
consumption cP (x). Formally, to get cP (x) for a driving time x ∈ R≥0, we must pick values
x1 ∈ R≥0 and x2 ∈ R≥0, such that x = x1 + x2 and c(u,v)(x1) + c(v,w)(x2) is minimized.
Figure 1c shows possible distributions of driving times among the two edges and the resulting
energy consumption. Their lower envelope yields the desired function cP . Intuitively, we
want to spend as much of the available time as possible on the edge that provides the better
tradeoff for saving the most energy, i. e., the function with steeper slope. As a result, the
consumption function of a path is always convex on its finite imaginary part. Moreover,
while tradeoff functions of edges are linear in the interval [

¯
τ, τ̄] of admissible driving times,

the tradeoff function of a path is piecewise linear within its corresponding interval.
When considering battery constraints, energy consumption depends not only on driving

time but also on initial SoC. Note that consumption is positive on (u, v) and negative on (v, w).
As before, the edge (v, w) provides the better tradeoff. However, for low initial SoC, we must
ensure that (u, v) can be traversed first, spending additional time on this edge in order to
obtain a feasible solution at all. In contrast, high initial SoC values may prevent recuperation
along (v, w), limiting the payoff of driving slower. Figure 2 illustrates the resulting bivariate
SoC function fP for specific values of initial SoC and driving time.

A Realistic Model. In this work, we use a more realistic model, detailed below. Both
driving time and energy consumption depend on the vehicle’s speed. In accordance with
realistic physical models [1, 2, 10, 18, 28, 30, 31], we assume that energy consumption on a

M. Baum, J. Dibbelt, D. Wagner, and T. Zündorf 11:5

x

c1(x)

4
(x−1)2 − 1

2 3 4 5

−1

0

1

2

3

4

∞

(a)

x

c2(x)

0.5
(x−1)2 + 1

2 3 4 5
−1

0

1

2

3

4

∞

(b)

x

c(x)

4(x−
3) 2 +

12
13.5

(x−2)2

0.5
(x−5)2 + 4

9

∆opt(x)

x
−

∆opt(
x)

4 5 6 7 8 9
0

1

2

3

4

5

∞

(c)

Figure 3 Linking consumption functions. (a) Function c1 with α1 = 4, β1 = 1, γ1 = −1,
¯
τ = 2,

and τ̄1 = 4. (b) Function c2 with α1 = 0.5, β1 = 1, γ1 = 1,
¯
τ1 = 2, and τ̄1 = 5. (c) Function

c = link(c1c2), with c(x) = c1(∆opt(x)) + c2(x−∆opt(x)). It is defined by three subfunctions with
subdomains [4, 5], [5, 6.5], [6.5, 9]. Values ∆opt(x) and x−∆opt(x) indicate the share of c1 and c2.

road segment e ∈ E is expressed by a function he : R>0 → R with he(v) = λ1v
2 + λ2se + λ3,

where v ∈ R>0 is the (constant) vehicle speed, se ∈ R is the (constant) slope of the road
segment, and λ1 ∈ R≥0, λ2 ∈ R≥0, and λ3 ∈ R≥0 are constant nonnegative coefficients of the
consumption model (all values may vary for different edges). Note that assuming constant
speed and slope per edge is not a restriction, as intermediate vertices can be added to model
changing conditions. Further, one can show that varying the speed on a single road segment
(with constant slope and speed limit) never pays off in our model [28, Corollary 1].

As we are interested in functions mapping driving time x ∈ R>0 to energy consump-
tion ge(x), we substitute v = `e/x, where `e is the length of the road segment. Slope and
length of an edge are fixed, so we simplify this by setting α := λ1/`

2
e and γ := λ2se + λ3.

Observe that α ∈ R≥0 is nonnegative, while γ ∈ R may be negative (for downhill edges).
We introduce a third constant β ∈ R≥0, needed later to shift functions along the time axis.
Altogether, we obtain the tradeoff function ge : R>0 → R with

ge(x) := α

(x− β)2 + γ. (1)

For single edges, we always obtain β = 0 and assume driving time x to be strictly positive.
Thus, the denominator x− β is strictly positive and ge(x) is finite. Further, ge is decreasing
and convex on R>0 in this case. In the simplistic model discussed above, we have seen that
tradeoff functions of paths may be piecewise linear. Similarly, we allow tradeoff functions in
the realistic model to be defined piecewise, so they may consist of multiple subfunctions of
the form in Equation 1. Tradeoff functions of paths may also use values 0 < β < x to reflect
additional time spent on previous edges. Plugging in the values

¯
τ ∈ R>0 and τ̄ ∈ R>0, we

obtain the consumption function ce : R≥0 → R ∪ {∞}.

3 Basic Approach

We generalize the (exponential-time) bicriteria variant [34] of Dijkstra’s algorithm [15] to
solve EVCSP. As a crucial ingredient, the algorithm requires a link operation: For two
consumption functions c1 and c2 modeling consumption on two paths P1 and P2, the function
c := link(c1, c2) maps driving time spent on P := P1 ◦ P2 to minimum possible energy
consumption (bar battery constraints). Let

¯
τ1, τ̄1, ¯

τ2, and τ̄2 denote the respective minimum

ESA 2017

11:6 Constrained Shortest Path Algorithms for Battery Electric Vehicles

and maximum driving times of c1 and c2. We obtain c(x) = ∞ for all x <
¯
τ1 +

¯
τ2 and

c(x) = c1(τ̄1) + c2(τ̄2) for x > τ̄1 + τ̄2. For all x ∈ [
¯
τ1 +

¯
τ2, τ̄1 + τ̄2], we have to compute

c(x) = min
∆∈[

¯
τ1,τ̄1]

∆∈[x−τ̄2,x−¯
τ2]

c1(∆) + c2(x−∆).

In other words, we have to divide the amount of time that exceeds the minimum possible
total driving time among the two paths such that consumption is minimized; see Figure 3 for
an example. Although realistic functions require a more technical analysis, many observations
made for our simplistic (linear) model from the previous section carry over to the more
realistic (nonlinear) tradeoff functions. In fact, the function c can be computed in linear time
in the number of subfunctions defining c1 and c2.

Algorithm Description. Given a source s ∈ V , a target t ∈ V , and initial SoC bs ∈ [0,M],
the tradeoff function propagating (TFP) algorithm solves EVCSP. It propagates labels
consisting of consumption functions (defined piecewise, by sequences of tradeoff functions)
and applies battery constraints on-the-fly. Hence, it does not have to maintain bivariate
SoC functions explicitly. The algorithm starts with the constant label cs ≡ M − bs at s.
The label is also added to a priority queue, which uses minimum driving time of a label as
key. In each step of its main loop, the algorithm extracts and settles a label cu (at some
vertex u ∈ V) with minimum key from the queue. For every edge (u, v) ∈ E, the function
c := link(cu, c(u,v)) is computed. Note that c may violate battery constraints, so we set
c(x) :=∞ for all x ∈ R≥0 with c(x) > M and c(x) := 0 for all x ∈ R≥0 with c(x) < 0. The
resulting function is added to the priority queue, unless it is dominated by existing labels
at v; we say that a label c1 dominates another label c2 if c1(x) ≤ c2(x) for all x ∈ R≥0.

To keep the number of label comparisons low, each vertex v ∈ V maintains a set Lset(v)
and a heap Luns(v) containing its settled and unsettled labels, respectively. We maintain
the invariant that for each v ∈ V , the unsettled label in Luns(v) with minimum key is not
dominated by any settled label in Lset(v). Labels (at v) added to the priority queue are
also pushed into Luns(v). Every time the minimum element of Luns(v) changes (because an
element is added or extracted), we check whether the new minimum element is dominated
by any settled label in Lset(v) and discard it in this case [7]. Dominance is tested as follows.
For two subfunctions (with the form of Equation 1), we can test in constant time whether
one dominates the other (by evaluating extreme points of their difference and subdomain
borders). For piecewise-defined consumption functions, we exploit that we only need to
compare subfunctions whose subdomains intersect. This allows us to test for dominance
in a linear scan (comparing subfunctions in increasing order of driving time). Given a
consumption function c in the set Luns(v) of some vertex v ∈ V , a naïve implementation then
performs pairwise comparisons to functions in Lset(v) to determine whether c is dominated
by any of them. In doing so, the algorithm may miss cases where c is merely partially
dominated, or dominated only by the lower envelope of several functions. Although including
dominated labels in Lset(v) does not affect correctness, it may lead to unnecessary vertex
scans and increases the label size. Instead of pairwise dominance checks, we therefore identify
dominated parts of c in a single coordinated scan over c and all functions in Lset(v).

TFP is label setting, i. e., labels extracted from the queue are never dominated later on.
An optimal (constrained) path is found once a label at t is extracted, which gives the optimal
driving time. It is also possible to retrieve the optimal path and driving speeds.

A Polynomial-Time Heuristic. To improve running times, TFP can easily be extended to a
heuristic search, at the cost of inexact results. We propose a polynomial-time approach based
on ε-dominance [4]. When testing dominance of a label c ∈ Luns(v) at some vertex v ∈ V ,

M. Baum, J. Dibbelt, D. Wagner, and T. Zündorf 11:7

it is kept in Luns(v) only if it yields an improvement (over labels in Lset(v)) by at least a
certain fraction εM , with ε ∈ (0, 1], for some driving time. Hence, we test for every x ∈ R≥0
whether c(x) + εM ≤ cset(x) holds for all settled functions cset ∈ Lset(v). Then, the number
of settled labels per set can become at most d1/εe, which yields polynomial running time.

4 Speedup Techniques

We propose speedup techniques based on A* and CH for TFP (and its heuristic variant).
Combining both techniques, we obtain our fastest variant, CHAsp (CH, A*, Adaptive Speeds).
Our techniques do not alter the output of the algorithm, so correctness of TFP is maintained.

A* Search. This well-known technique [27, 33] uses a potential function π : V → R≥0. The
potential π(v) of a vertex v ∈ V is added to all keys of labels when running TFP, so labels
are extracted in a different order. We compute the potential function at query time.

Our first variant uses a cost functions
¯
d : E → R≥0 with

¯
d(e) = ce(¯

τe), i. e., minimum
driving time on an edge. Before running TFP, a backward search (i. e., Dijkstra’s algorithm
traversing edges in backward direction) from the target t computes, for each vertex v ∈ V ,
the minimum unconstrained driving time

¯
d(v, t) from v to the t. We obtain a consistent

potential function πd : V → R≥0 by setting πd(v) :=
¯
d(v, t) [40]. Similarly, we compute lower

bounds on energy consumption, which allow us to prune the TFP search [8].
The potential function πd(v) may be too conservative if consumption on the optimal path

is very high. In such cases, it pays off to use a potential function πf : V × [0,M] → R≥0
that incorporates current SoC at a vertex [7]. We represent πf (v, b) with a convex, piecewise
linear function that maps SoC b ∈ [0,M] at a vertex v ∈ V to a lower bound on remaining
driving time. The functions are determined in a label-correcting backward search from t.

Contraction Hierarchies. We propose an adaptation of CH to our scenario, which adds a
preprocessing step for faster queries. As in plain CH [23], vertices are contracted iteratively
(ordered by heuristic rank) during preprocessing and shortcut edges are added to maintain
distances. However, we contract only a subset of the vertices, leaving an uncontracted
core graph – a common approach in complex scenarios [7, 14, 28, 37]. Since the SoC at a
vertex u ∈ V is only known at query time in our setting, any shortcut (u, v) has to store
a bivariate SoC function f(u,v). Figure 4 illustrates how the initial SoC influences energy
consumption in our model. Their bivariate nature makes explicit construction and comparison
of SoC functions rather challenging. We discuss simple representations of SoC functions in
certain cases, exploiting that most consumption values are positive in realistic instances. We
say that a path P is discharging if the SoC on P never exceeds the (arbitrary) initial SoC,
i. e., there is no prefix of P that has negative minimum consumption for arbitrary driving
times (subpaths with negative consumption are allowed, though). Hence, it is not necessary
to explicitly check whether the SoC exceeds M on a discharging path. We show how the
SoC function of a discharging path is represented by at most two consumption functions.

As a first example, assume we are given a path P = P1 ◦P2 consisting of two subpaths P1
and P2 with respective consumption functions c1 and c2, as in Figure 4. Let

¯
τ1, τ̄1,¯

τ2, τ̄2
denote their corresponding minimum and maximum driving times. Assume that c1(x) > 0 is
positive for all x ∈ R≥0, while c2(x) ≤ 0 is nonpositive for all x ∈ [

¯
τ2,∞). Finally, assume

that |c1(τ̄1)| ≥ |c2(τ̄2)|, i. e., the cost of P1 is higher than the gain of P2 for any driving time,
so P is discharging. To derive the SoC function of P we introduce two auxiliary functions: a
positive part c+ with c+(x) := c1(x−

¯
τ2), and a negative part c− with c−(x) := c2(x+

¯
τ2).

ESA 2017

11:8 Constrained Shortest Path Algorithms for Battery Electric Vehicles

x

c1(x)

4
x2 + 41

9

2 3 4 5
2
3
4
5
6
7
8
∞

(a)

x

c2(x)

4
(x−1)2 − 5

2 3 4 5

−5
−4
−3
−2
−1

0
1
∞

(b)

x

b = 5
c+(x)

c+
b (x)

c(x) = 4
(x−4)2

4 5 6 7 8 9
0
1
2
3
4
5
6
∞

(c)

Figure 4 Constructing a consumption function depending on initial SoC. (a) Function c1 of a
path P1. (b) Function c2 of a path P2. (c) Due to battery constraints, the minimum driving time on
P = P1 ◦P2 is 5 for an initial SoC b = 5. This yields the consumption function c = link(c+

b , c
−). The

shaded area indicates possible values of consumption functions for different values of initial SoC.

The original functions are shifted along the x-axis to simplify the analysis (note that the
minimum feasible driving time of c− is 0). Given some initial SoC b ∈ [0,M], the positive
part c+, and the negative part c−, we first define the constrained positive part c+b as

c+b (x) :=
{
∞ if b < c+(x)
c+(x) otherwise,

which applies battery constraints along P1 for an initial SoC of b; see Figure 4. Then, the
SoC function fP of the path P evaluates to fP (x, b) = b − link(c+b , c−)(x) for arbitrary
x ∈ R≥0 and b ∈ [0,M]. The function first applies battery constraints on the positive part
and links the resulting function with the negative part.

We now describe how SoC functions representing general discharging paths are constructed
from two given SoC functions of discharging paths. Assume we are given a discharging
path P1 whose SoC function is defined by two consumption functions c+1 and c−1 , as described
above. Similarly, we are given a discharging path P2 with respective consumption functions
c+2 and c−2 . Observe that the path P := P1 ◦ P2 must be discharging as well. Apparently,
if we know the initial SoC, we can compute energy consumption on P by computing
link(link(link(c+1 , c

−
1)c+2)c−2) and applying battery constraints before each link operation,

like in the TFP algorithm. However, we want to represent P with only two consumption
functions c+ and c−. Recall that the only constraint we have to check for discharging paths
is whether the SoC drops below 0. Thus, we identify a new positive part c+ as follows. Since
both c−1 and c−2 are nonpositive for all admissible driving times, the constraint needs only
to be checked for c+1 and c+2 (i. e., before the first and third link operation). To integrate
these checks into a single positive part c+, we first compute the function h := link(c−1 , c

+
2).

Clearly, the battery can only run empty on P2 if this consumption function is positive for
some admissible driving time. To distinguish this case, we split h into a positive part h+

with h+(x) := max{h(x), 0} and a negative part h− with h−(x) := h(x) if h(x) ≤ 0
and h−(x) :=∞ otherwise. Since h is a decreasing consumption function, so are h+ and h−.
We obtain the positive part c+ of P by setting c+(x) := link(c+1 , h+)(x−

¯
τ) and the negative

part c− by setting c−(x) := link(h−, c−2)(x+
¯
τ), where

¯
τ is the minimum driving time of h−.

The SoC function of P is obtained from c+ and c− as described above.
During preprocessing, we only allow a vertex v ∈ V to be contracted if all new shortcuts

created as part of its contraction are discharging. We call v active in this case. Note that
the number of active vertices grows as contraction proceeds, as contraction produces longer

M. Baum, J. Dibbelt, D. Wagner, and T. Zündorf 11:9

Table 1 Benefits of our approach (Eur-PG, 2 kWh). For TFP and TFP-dom. (improved dominance
tests), we report the number of settled labels (#Lbls.), number of label comparisons during the
forward search (#Dom.), average and maximum running times, and relative driving time savings
over the constrained path found by BSP on discretized speeds.

Query Path Savings

Algo. #Lbls. #Dom. avg. [ms] max. [ms] avg. [%] max. [%]

BSP 30 990 276 21 300 657 522 47 755 779 756 – –
TFP 103 119 4 399 002 444 14 347 2.7% 9.4%
TFP-dom. 46 228 700 546 103 3 851 2.7% 9.4%

shortcuts, which are more likely to consist of long positive parts. Since we deal with a
bicriteria scenario, vertex contraction may produce multi-edges. In such cases, we only want
to keep shortcuts whose SoC functions are not dominated by parallel shortcuts. Hence, after
contraction of a vertex, we delete (parts of) SoC functions of shortcut candidates that are
dominated by existing functions between the same pair of vertices (and vice versa). To
this end, we derive efficient dominance checks for (simple) bivariate SoC functions that
can be performed in linear time (in the number of subfunctions of all involved functions).
Finally, before adding a (nondominated) shortcut candidate to the graph, we run a witness
search [23] to test if the shortcut is necessary to maintain distances. As an exact approach
would require propagation and comparison of bivariate SoC functions, our witness search
computes univariate upper bounds on energy consumption instead. This does not violate
correctness, but may result in unnecessary shortcuts.

Queries. Plain CH uses a bidirectional search, which scans only edges to vertices of higher
rank in the input graph enriched with shortcuts obtained during preprocessing. In our case,
however, the SoC at the target vertex t ∈ V is not known at query time, which makes
backward search difficult. Instead, we extract the search space in a (backward) BFS from t,
scanning and marking only edges to vertices of higher rank. Afterwards, we execute TFP from
the source vertex s, scanning upward edges (with respect to ranks of incident vertices), core
edges, and marked downward edges. For faster queries, we can combine this search with A*.

5 Experiments

We implemented all approaches in C++, using g++ 4.8.3 (-O3) as compiler. Experiments
were conducted on a single core of a 4-core Intel Xeon E5-1630v3 clocked at 3.7GHz, with
128GiB of DDR4-2133 RAM, 10MiB of L3 cache, and 256KiB of L2 cache.

We consider road networks of Europe with 22 198 628 vertices and 51 088 095 edges
and Germany with 4 692 091 vertices and 10 805 429 edges, provided by PTV AG (http:
//ptvgroup.com). Combining reasonable minimum speeds for different road types (e. g.,
80 km/h on motorways and 30 km/h in residential areas) with the posted speed limits (if
higher), we get intervals of allowed speeds per road segment, resulting in 25% and 38% of
nonconstant edges for Germany and Europe, respectively. Applying elevation data from
the Shuttle Radar Topography Mission, v4.1 (srtm.csi.cgiar.org), we derived realistic
energy consumption from two detailed micro-scale emission models [29]: one based on a
Peugeot iOn and one artificial model [39] that additionally accounts for auxiliary consumers
(e. g., air conditioning). These data sources are proprietary, but enable evaluation on

ESA 2017

http://ptvgroup.com
http://ptvgroup.com
srtm.csi.cgiar.org

11:10 Constrained Shortest Path Algorithms for Battery Electric Vehicles

0.25 0.5 1 2 4 8 16 32 64 128 256 512
10−1

100

101

102

103

104

105

Battery capacity [kWh]

T
im

e
[m

s]

BSP
TFP
TFP-dom.
A*-πd

CHAsp-πf

CHAsp-πd

CHAsp-ε-πd

Figure 5 Scalability of BSP, our TFP algorithm, TFP with improved dominance tests (TFP-dom.),
speedup techniques (A*-πd, CHAsp-πd, and CHAsp-πf), and our heuristic approach CHAsp-ε-πd

with ε := 0.1. A capacity of 512 kWh corresponds to a range of roughly 3 000 km.

detailed and realistic input data. We denote our instances by Germany-Aux (Ger-AX),
Germany-Peugeot (Ger-PG), Europe-Aux (Eur-AX), and Europe-Peugeot (Eur-PG). They
have negative consumption (for at least some driving times) on 7.8% (Ger-AX) to 12.9% (Eur-
PG) of their edges.

For comparison, we consider parallel edges and bicriteria shortest paths (BSP) [34]
to model adaptive speeds, as was best practice in previous approaches [8]. We generate
multi-edges by sampling consumption functions at discrete velocity steps of 10 km/h.

We evaluate random in-range queries, i. e., we pick a source vertex s ∈ V uniformly at
random. Among all vertices in range from s with an initial SoC bs = M , we pick the target
vertex t ∈ V uniformly at random. Since unreachable targets are easily detected by backward
search phases of A* (or any algorithm for computing energy-optimal routes [9, 16, 35]), this
yields more challenging and interesting queries for us.

Model Validation and Scalability. We have argued that an approach based fully on con-
sumption functions unlocks both better tractability and improved solution quality compared
to discrete speeds and BSP. Indeed, we observe a significant speedup by simply switching to
our more realistic model, as Table 1 shows. TFP is up to two orders of magnitudes faster than
BSP and finds paths that are up to 9.4% quicker (within SoC constraints), since it evaluates
speed–consumption tradeoffs more fine-granularly while maintaining less query state (labels
of continuous functions expressed by few parameters instead of large, discrete Pareto sets).
This is interesting, as sampling was expressly considered to manage tractability [8, 25, 28].
In fact, even though atomic operations (linking and comparing labels) are more expensive
for TFP, a drastic reduction in the number of vertex scans explains the speedup.

Figure 5 gives an overview of our approaches and their scalability across increasing battery
capacities. For each capacity, we ran 100 random in-range queries, reporting median running
time if all 100 queries terminated within one hour. Beyond the previously discussed BSP,
TFP, and TFP-dom., A* enables reasonable running times for capacities of up to 32 kWh,
without any preprocessing. Adding preprocessing, CHAsp-πd provides further speedup by
about an order of magnitude. In comparison, median running times of CHAsp-πf are slower
for all ranges up to 32 kWh. However, this algorithm is more robust against outliers and

M. Baum, J. Dibbelt, D. Wagner, and T. Zündorf 11:11

Table 2 Impact of core size on performance (Ger-PG, 16 kWh). Vertex contraction stopped once
the average degree of active vertices in the core reached a given threshold (ØDeg). We report the
resulting core size (#Vertices), preprocessing time, and average query times for 1 000 queries using
CHAsp with potential functions πd and πf , respectively.

Core size Prepr. Query [ms]

ØDeg. #Vertices [h:m:s] πd πf

0 – – 3 326.0 4 861.5
8 720 514 (15.36%) 5:07 737.2 798.3

16 400 174 (8.53%) 13:25 496.2 485.0
32 305 301 (6.51%) 31:44 451.8 434.0
64 268 436 (5.72%) 1:11:13 505.5 473.1

128 251 410 (5.36%) 2:37:23 649.1 586.1

Table 3 Preprocessing and exact query performance for the potential functions πd and πf . For
the ranges 16 kWh and 85 kWh, we show number of labels settled during the forward search (#Lbls.),
number of label comparisons during the forward search (#Dom.) and total query times.

Prepro. 16 kWh 85 kWh

Inst. [h:m:s] Algo. #Lbls. #Dom. Query [ms] #Lbls. #Dom. Query [ms]

Ger-AX 30:34 CHAsp-πd 152 3 788 4.2 24 715 4 312 923 552.3
Ger-AX 30:34 CHAsp-πf 61 448 17.0 406 11 813 1 236.7

Ger-PG 31:44 CHAsp-πd 32 773 6 352 488 451.8 2 272 350 2 130 447 427 131 562.0
Ger-PG 31:44 CHAsp-πf 6 008 491 173 434.0 32 182 6 836 380 14 873.5

Eur-AX 3:10:43 CHAsp-πd 124 2 175 4.0 27 358 12 159 343 960.9
Eur-AX 3:10:43 CHAsp-πf 73 1 006 15.8 871 46 529 1 174.7

Eur-PG 3:13:01 CHAsp-πd 23 304 5 024 403 346.1 – – –
Eur-PG 3:13:01 CHAsp-πf 6 629 800 430 341.7 105 792 44 986 403 34 617.4

is the only exact method that terminates within an hour for all queries at 64 kWh and up.
Finally, our heuristic variant scales very well with vehicle range: Query times actually bottom
out for large battery capacities, as the vehicle range gets close to the graph diameter.

Detailed Experiments. We evaluate different variants of our fastest approach, CHAsp.
Table 2 shows CH preprocessing effort and query performance subject to core size on Ger-PG,
for a common battery capacity of 16 kWh (corresponding to a range of 100 km). Contraction
becomes much slower beyond a core degree of 32, which is explained by the small number of
remaining active (i. e., contractable) vertices in the core. This also explains why speedup
compared to the baseline (Ødeg = 0 is equivalent to plain TFP combined with A*) is much
smaller than in simpler applications, where CH typically improves the baseline by several
orders of magnitude [23]. Similar observations were made in other complex settings, including
time-dependent [5, 11] and multicriteria [21, 22] scenarios. Nevertheless, CH still yields an
improvement by up to an order of magnitude in our case. In our subsequent experiments, we
pick an average core degree of 32 as stopping criterion of CH preprocessing.

Table 3 reports performance of CHAsp on all instances for capacities of 16 kWh and
85 kWh (as in Tesla models, with a range of 400–500 km). Figures are average values for 1 000
in-range queries. For 16 kWh, our techniques find the optimal solution in well below a second
on average. For Ger-AX and Eur-AX, we even achieve query times in the order of milliseconds.

ESA 2017

11:12 Constrained Shortest Path Algorithms for Battery Electric Vehicles

Table 4 Performance of the heuristic variant of CHAsp-πd, for different choices of the parameter ε
(see Section 3) on the hard instances Ger-PG and Eur-PG. We show figures on query performance for
1 000 random queries with a range of 16 kWh, as in Table 3. Additionally, we report the percentage
of feasible and optimal results, as well as the average and maximum relative error.

Query Result Quality

Inst. Prepro. ε #Lbls. #Dom. T. [ms] Feas. Opt. Avg. Max.

G
er
-P

G 31:43 0.00 32 773 6 352 488 451.8 100.0% 100.0% 1.0000 1.0000
30:41 0.01 19 922 1 949 458 225.6 100.0% 89.4% 1.0001 1.0047
25:49 0.10 6 891 208 058 75.6 98.9% 62.8% 1.0013 1.0502
17:48 1.00 1 742 11 149 30.7 95.1% 47.6% 1.0144 1.2294

E
ur
-P

G 3:09:22 0.00 23 304 5 024 403 346.1 100.0% 100.0% 1.0000 1.0000
3:04:48 0.01 12 803 1 132 685 151.6 100.0% 82.8% 1.0001 1.0145
2:47:09 0.10 5 045 126 662 60.9 99.5% 57.5% 1.0020 1.0418
2:14:03 1.00 1 428 7 641 28.2 92.7% 45.8% 1.0203 1.3960

This gap in running time is explained by the difference in the number of edges with negative
cost, caused by the underlying consumption model. One could even argue that the instances
Ger-PG and Eur-PG are actually rather excessive in this regard, by not accounting for any
auxiliary consumers at all. As a result, these instances are significantly more difficult to solve.
Regarding the potential functions πd and πf , the search space is consistently smaller when
using πf , but the backward search is more expensive. In fact, it becomes the major bottleneck
for a battery capacity of 16 kWh on the easier instances. Consequently, query times are slower
by about a factor of 4. For harder scenarios, however, the potential function πf provides
better results due to better scalability. Note that when using πd, at least one query exceeded
our threshold of one hour in computation time on Eur-PG. In summary, we can solve EVCSP
optimally for typical ranges in less than a second, even on hard instances. For very long
ranges, our algorithm computes the optimum in well below a minute on average (using πf),
despite its exponential running time.

In Table 4, we evaluate our heuristic approach for different choices of ε (in % of total SoC).
During preprocessing, new shortcuts are included only if they significantly improve on the
existing ones. Thus, preprocessing becomes faster and core sizes (not reported in the table)
decrease by up to 30%. Regarding queries, we achieve a speedup by an order of magnitude.
However, the choice of ε clearly matters. For ε = 0.01, the decrease in quality is negligible,
but speedup (about a factor of 2) is rather limited as well. For ε = 0.1, on the other hand,
the optimal solution is still found very often. The average error is roughly 0.2%, while the
overall maximum error is 5%, which is acceptable in practice. Finally, for ε = 1.0, both
the average and maximum error increase significantly. Given that speedup is also limited
compared to ε = 0.1, we conclude that the latter provides the best tradeoff in terms of
quality and query performance: providing high-quality solutions, it enables query times of
well below 100ms, which is fast enough even for interactive applications. Moreover, note
that in cases where no path is found (about 1% of all queries for ε = 0.1), a simple fallback
solution could return the energy-optimal path, which can be computed quickly [9, 16, 35].

6 Conclusion

We introduced a novel framework for computing constrained shortest paths for EVs in
practice, using realistic consumption models. Our base algorithm TFP respects battery

M. Baum, J. Dibbelt, D. Wagner, and T. Zündorf 11:13

constraints and accounts for adaptive speeds in a mathematically sounder way that unlocks
both better query performance and improved solution quality when compared to previous
approaches using discretized, sampled speeds. Nontrivial speedup techniques based on A*
and CH make the algorithm practical. For typical EV ranges, it computes optimal solutions
in less than a second, making it the first practical exact approach – with running times
similar to previous inexact methods [8, 25, 28]. Our own heuristic enables even faster queries
while retaining high-quality solutions.

The result of our computations is not only the suggested route from source to target but
also optimal driving speeds along that route. In practice, these can be passed to the driver as
recommendations or directly to a cruise control unit. With the advent of autonomous vehicles,
the output of our algorithms can also be used for speed planning of self-driving EVs, either
directly or after further refinement [19]. For future work, a next step would be the integration
of planned charging stops [7, 37]. From a practical point of view, it might also be interesting
to consider adaptive speeds only on the fastest roads (e. g., motorways), where going below
the speed limit really pays off the most. Then, contracting vertices incident to constant
edges in CH might be a promising approach. Finally, we are interested in the integration of
variable speed limits imposed by, e. g., historic knowledge of traffic patterns [5, 13, 20].

References
1 Shubham Agrawal, Hong Zheng, Srinivas Peeta, and Amit Kumar. Routing Aspects of

Electric Vehicle Drivers and their Effects on Network Performance. Transportation Research
Part D: Transport and Environment, 46:246–266, 2016.

2 Johannes Asamer, Anita Graser, Bernhard Heilmann, and Mario Ruthmair. Sensitivity
Analysis for Energy Demand Estimation of Electric Vehicles. Transportation Research
Part D: Transport and Environment, 46:182–199, 2016.

3 Hannah Bast, Daniel Delling, Andrew V. Goldberg, Matthias Müller-Hannemann, Thomas
Pajor, Peter Sanders, Dorothea Wagner, and Renato F. Werneck. Route Planning in
Transportation Networks. In Algorithm Engineering: Selected Results and Surveys, volume
9220 of Lecture Notes in Computer Science, pages 19–80. Springer, 2016.

4 Lucas S. Batista, Felipe Campelo, Frederico G. Guimarães, and Jaime A. Ramírez. A
Comparison of Dominance Criteria in Many-Objective Optimization Problems. In Proceed-
ings of the 13th IEEE Congress on Evolutionary Computation (CEC’11), pages 2359–2366.
IEEE, 2011.

5 Gernot V. Batz, Robert Geisberger, Peter Sanders, and Christian Vetter. Minimum Time-
Dependent Travel Times with Contraction Hierarchies. ACM Journal of Experimental
Algorithmics, 18:1.4:1–1.4:43, 2013.

6 Reinhard Bauer, Daniel Delling, Peter Sanders, Dennis Schieferdecker, Dominik Schultes,
and Dorothea Wagner. Combining Hierarchical and Goal-Directed Speed-up Techniques for
Dijkstra’s Algorithm. ACM Journal of Experimental Algorithmics, 15:2.3:1–2.3:31, 2010.

7 Moritz Baum, Julian Dibbelt, Andreas Gemsa, Dorothea Wagner, and Tobias Zündorf.
Shortest Feasible Paths with Charging Stops for Battery Electric Vehicles. In Proceed-
ings of the 23rd ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems (GIS’15), pages 44:1–44:10. ACM, 2015.

8 Moritz Baum, Julian Dibbelt, Lorenz Hübschle-Schneider, Thomas Pajor, and Dorothea
Wagner. Speed-Consumption Tradeoff for Electric Vehicle Route Planning. In Pro-
ceedings of the 14th Workshop on Algorithmic Approaches for Transportation Modeling,
Optimization, and Systems (ATMOS’14), volume 42 of OpenAccess Series in Informat-
ics (OASIcs), pages 138–151. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2014.
doi:10.4230/OASIcs.ATMOS.2014.138.

ESA 2017

http://dx.doi.org/10.4230/OASIcs.ATMOS.2014.138

11:14 Constrained Shortest Path Algorithms for Battery Electric Vehicles

9 Moritz Baum, Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. Energy-Optimal
Routes for Electric Vehicles. In Proceedings of the 21st ACM SIGSPATIAL International
Conference on Advances in Geographic Information Systems (GIS’13), pages 54–63. ACM,
2013.

10 Luca Bedogni, Luciano Bononi, Marco Di Felice, Alfredo D’Elia, Randolf Mock, Francesco
Morandi, Simone Rondelli, Tullio Salmon Cinotti, and Fabio Vergari. An Integrated Simu-
lation Framework to Model Electric Vehicles Operations and Services. IEEE Transactions
on Vehicular Technology, 65(8):5900–5917, 2016.

11 Marco Blanco, Ralf Borndörfer, Nam-Dung Hoang, Anton Kaier, Adam Schienle, Thomas
Schlechte, and Swen Schlobach. Solving Time Dependent Shortest Path Problems on Air-
way Networks Using Super-Optimal Wind. In Proceedings of the 16th Workshop on Algo-
rithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS’16),
volume 54 of OpenAccess Series in Informatics (OASIcs), pages 12:1–12:15. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/OASIcs.ATMOS.2016.12.

12 Karin Brundell-Freij and Eva Ericsson. Influence of Street Characteristics, Driver Cate-
gory and Car Performance on Urban Driving Patterns. Transportation Research Part D:
Transport and Environment, 10(3):213–229, 2005.

13 Daniel Delling and Dorothea Wagner. Time-Dependent Route Planning. In Robust and
Online Large-Scale Optimization, volume 5868 of Lecture Notes in Computer Science, pages
207–230. Springer, 2009.

14 Julian Dibbelt, Thomas Pajor, and Dorothea Wagner. User-Constrained Multi-Modal
Route Planning. ACM Journal of Experimental Algorithmics, 19:3.2:1–3.2:19, 2015.

15 Edsger W. Dijkstra. A Note on Two Problems in Connexion with Graphs. Numerische
Mathematik, 1(1):269–271, 1959.

16 Jochen Eisner, Stefan Funke, and Sabine Storandt. Optimal Route Planning for Electric
Vehicles in Large Networks. In Proceedings of the 25th AAAI Conference on Artificial
Intelligence (AAAI’11), pages 1108–1113. AAAI Press, 2011.

17 Stephan Erb, Moritz Kobitzsch, and Peter Sanders. Parallel Bi-Objective Shortest Paths
Using Weight-Balanced B-Trees with Bulk Updates. In Proceedings of the 13th Interna-
tional Symposium on Experimental Algorithms (SEA’14), volume 8504 of Lecture Notes in
Computer Science, pages 111–122. Springer, 2014.

18 Chiara Fiori, Kyoungho Ahn, and Hesham A. Rakha. Power-Based Electric Vehicle Energy
Consumption Model: Model Development and Validation. Applied Energy, 168:257–268,
2016.

19 Carlos Flores, Vicente Milanés, Joshué Pérez, David González, and Fawzi Nashashibi. Op-
timal Energy Consumption Algorithm Based on Speed Reference Generation for Urban
Electric Vehicles. In Proceedings of the 11th IEEE Intelligent Vehicles Symposium (IV’15),
pages 730–735. IEEE, 2015.

20 Luca Foschini, John Hershberger, and Subhash Suri. On the Complexity of Time-Dependent
Shortest Paths. Algorithmica, 68(4):1075–1097, 2014.

21 Stefan Funke and Sabine Storandt. Polynomial-Time Construction of Contraction Hier-
archies for Multi-Criteria Objectives. In Proceedings of the 15th Meeting on Algorithm
Engineering & Experiments (ALENEX’13), pages 31–54. SIAM, 2013.

22 Robert Geisberger, Moritz Kobitzsch, and Peter Sanders. Route Planning with Flexible
Objective Functions. In Proceedings of the 12th Workshop on Algorithm Engineering &
Experiments (ALENEX’10), pages 124–137. SIAM, 2010.

23 Robert Geisberger, Peter Sanders, Dominik Schultes, and Christian Vetter. Exact Routing
in Large Road Networks Using Contraction Hierarchies. Transportation Science, 46(3):388–
404, 2012.

http://dx.doi.org/10.4230/OASIcs.ATMOS.2016.12

M. Baum, J. Dibbelt, D. Wagner, and T. Zündorf 11:15

24 Andrew V. Goldberg and Chris Harrelson. Computing the Shortest Path: A* Search Meets
Graph Theory. In Proceedings of the 16th Annual ACM–SIAM Symposium on Discrete
Algorithms (SODA’05), pages 156–165. SIAM, 2005.

25 Michael T. Goodrich and Paweł Pszona. Two-Phase Bicriterion Search for Finding Fast
and Efficient Electric Vehicle Routes. In Proceedings of the 22nd ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems (GIS’14), pages
193–202. ACM, 2014.

26 Gabriel Y. Handler and Israel Zang. A Dual Algorithm for the Constrained Shortest Path
Problem. Networks, 10(4):293–309, 1980.

27 Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. A Formal Basis for the Heuris-
tic Determination of Minimum Cost Paths. IEEE Transactions on Systems Science and
Cybernetics, 4(2):100–107, 1968.

28 Frederik Hartmann and Stefan Funke. Energy-Efficient Routing: Taking Speed into Ac-
count. In Proceedings of the 37th Annual German Conference on Advances in Artificial
Intelligence (KI’14), volume 8736 of Lecture Notes in Computer Science, pages 86–97.
Springer, 2014.

29 Stefan Hausberger, Martin Rexeis, Michael Zallinger, and Raphael Luz. Emission Factors
from the Model PHEM for the HBEFA Version 3. Technical report I-20/2009, University
of Technology, Graz, 2009.

30 James Larminie and John Lowry. Electric Vehicle Technology Explained, 2nd Edition. John
Wiley & Sons, Ltd., 2012.

31 Mingsong Lv, Nan Guan, Ye Ma, Dong Ji, Erwin Knippel, Xue Liu, and Wang Yi. Speed
Planning for Solar-Powered Electric Vehicles. In Proceedings of the 7th International Con-
ference on Future Energy Systems (e-Energy’16), pages 6:1–6:10. ACM, 2016.

32 Enrique Machuca and Lawrence Mandow. Multiobjective Heuristic Search in Road Maps.
Expert Systems with Applications, 39(7):6435–6445, 2012.

33 Lawrence Mandow and José-Luis Pérez-de-la-Cruz. Multiobjective A* Search with Consis-
tent Heuristics. Journal of the ACM, 57(5):27:1–27:24, 2010.

34 Ernesto Q.V. Martins. On a Multicriteria Shortest Path Problem. European Journal of
Operational Research, 16(2):236–245, 1984.

35 Martin Sachenbacher, Martin Leucker, Andreas Artmeier, and Julian Haselmayr. Efficient
Energy-Optimal Routing for Electric Vehicles. In Proceedings of the 25th AAAI Conference
on Artificial Intelligence (AAAI’11), pages 1402–1407. AAAI Press, 2011.

36 Peter Sanders and Lawrence Mandow. Parallel Label-Setting Multi-Objective Shortest Path
Search. In Proceedings of the 27th IEEE International Parallel and Distributed Processing
Symposium (IPDPS’13), pages 215–224. IEEE, 2013.

37 Sabine Storandt. Quick and Energy-Efficient Routes: Computing Constrained Shortest
Paths for Electric Vehicles. In Proceedings of the 5th ACM SIGSPATIAL International
Workshop on Computational Transportation Science (IWCTS’12), pages 20–25. ACM, 2012.

38 Sabine Storandt. Route Planning for Bicycles – Exact Constrained Shortest Paths Made
Practical via Contraction Hierarchy. In Proceedings of the 22nd International Conference
on Automated Planning and Scheduling (ICAPS’12), pages 234–242. AAAI Press, 2012.

39 Tessa Tielert, David Rieger, Hannes Hartenstein, Raphael Luz, and Stefan Hausberger.
Can V2X Communication Help Electric Vehicles Save Energy? In Proceedings of the 12th
International Conference on ITS Telecommunications (ITST’12), pages 232–237. IEEE,
2012.

40 Chi Tung Tung and Kim Lin Chew. A Multicriteria Pareto-Optimal Path Algorithm.
European Journal of Operational Research, 62(2):203–209, 1992.

ESA 2017

11:16 Constrained Shortest Path Algorithms for Battery Electric Vehicles

41 Yan Wang, Jianmin Jiang, and Tingting Mu. Context-Aware and Energy-Driven Route Op-
timization for Fully Electric Vehicles via Crowdsourcing. IEEE Transactions on Intelligent
Transportation Systems, 14(3):1331–1345, 2013.

42 Enjian Yao, Zhiqiang Yang, Yuanyuan Song, and Ting Zuo. Comparison of Electric Vehi-
cle’s Energy Consumption Factors for Different Road Types. Discrete Dynamics in Nature
and Society, 2013.

	Introduction
	Model and Problem Statement
	Basic Approach
	Speedup Techniques
	Experiments
	Conclusion

