Triangle Packing in (Sparse) Tournaments: **Approximation and Kernelization***

Stéphane Bessy¹, Marin Bougeret², and Jocelyn Thiebaut³

- Université de Montpellier CNRS, LIRMM, Montpellier, France 1 bessy@lirmm.fr
- Université de Montpellier CNRS, LIRMM, Montpellier, France 2 bougeret@lirmm.fr
- Université de Montpellier CNRS, LIRMM, Montpellier, France 3 thiebaut@lirmm.fr

- Abstract

Given a tournament \mathcal{T} and a positive integer k, the C₃-PACKING-T problem asks if there exists a least k (vertex-)disjoint directed 3-cycles in \mathcal{T} . This is the dual problem in tournaments of the classical minimal feedback vertex set problem. Surprisingly C_3 -PACKING-T did not receive a lot of attention in the literature. We show that it does not admit a PTAS unless P=NP, even if we restrict the considered instances to sparse tournaments, that is tournaments with a feedback arc set (FAS) being a matching. Focusing on sparse tournaments we provide a $(1 + \frac{6}{c-1})$ approximation algorithm for sparse tournaments having a linear representation where all the backward arcs have "length" at least c. Concerning kernelization, we show that C_3 -PACKING-T admits a kernel with $\mathcal{O}(m)$ vertices, where m is the size of a given feedback arc set. In particular, we derive a $\mathcal{O}(k)$ vertices kernel for C_3 -PACKING-T when restricted to sparse instances. On the negative size, we show that C_3 -PACKING-T does not admit a kernel of (total bit) size $\mathcal{O}(k^{2-\epsilon})$ unless NP \subseteq coNP / Poly. The existence of a kernel in $\mathcal{O}(k)$ vertices for C_3 -PACKING-T remains an open question.

1998 ACM Subject Classification G.2.2 [Graph Theory] Graph Algorithms

Keywords and phrases Tournament, triangle packing, feedback arc set, approximation and parameterized algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.14

1 Introduction and related work

Tournament

A tournament \mathcal{T} on *n* vertices is an orientation of the edges of the complete undirected graph K_n . Thus, given a tournament $\mathcal{T} = (V, A)$, where $V = \{v_i, i \in [n]\}$, for each $i, j \in [n]$, either $v_i v_i \in A$ or $v_i v_i \in A$. A tournament \mathcal{T} can alternatively be defined by an ordering $\sigma(\mathcal{T}) = (v_1, \ldots, v_n)$ of its vertices and a set of *backward arcs* $A_{\sigma}(\mathcal{T})$ (which will be denoted $A(\mathcal{T})$ as the considered ordering is not ambiguous), where each arc $a \in \overline{A}(\mathcal{T})$ is of the form $v_{i_1}v_{i_2}$ with $i_2 < i_1$. Indeed, given $\sigma(\mathcal{T})$ and $\overleftarrow{A}(\mathcal{T})$, we can define $V = \{v_i, i \in [n]\}$ and $A = \overleftarrow{A}(\mathcal{T}) \cup \overrightarrow{A}(\mathcal{T})$ where $\overrightarrow{A}(\mathcal{T}) = \{v_{i_1}v_{i_2} : (i_1 < i_2) \text{ and } v_{i_2}v_{i_1} \notin \overleftarrow{A}(\mathcal{T})\}$ is the set of forward arcs of \mathcal{T} in the given ordering $\sigma(\mathcal{T})$. In the following, $(\sigma(\mathcal{T}), A(\mathcal{T}))$ is called a *linear*

An extended version of this paper is available at [4], https://hal-lirmm.ccsd.cnrs.fr/ lirmm-01550313.

© • Stéphane Bessy, Marin Bougeret, and Jocelyn Thiebaut; licensed under Creative Commons License CC-BY

25th Annual European Symposium on Algorithms (ESA 2017).

Editors: Kirk Pruhs and Christian Sohler; Article No. 14; pp. 14:1–14:13

Leibniz International Proceedings in Informatics

LIPICS Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

14:2 Triangle Packing in (Sparse) Tournaments: Approximation and Kernelization

representation of the tournament \mathcal{T} . For a backward arc $e = v_j v_i$ of $\sigma(\mathcal{T})$ the span value of e is j - i - 1. Then $\operatorname{minspan}(\sigma(\mathcal{T}))$ (resp. $\operatorname{maxspan}(\sigma(\mathcal{T}))$) is simply the minimum (resp. maximum) of the span values of the backward arcs of $\sigma(\mathcal{T})$.

A set $A' \subseteq A$ of arcs of \mathcal{T} is a *feedback arc set* (or *FAS*) of \mathcal{T} if every directed cycle of \mathcal{T} contains at least one arc of A'. It is clear that for any linear representation $(\sigma(\mathcal{T}), \overline{A}(\mathcal{T}))$ of \mathcal{T} the set $\overline{A}(\mathcal{T})$ is a FAS of \mathcal{T} . A tournament is *sparse* if it admits a FAS which is a matching. We denote by C_3 -PACKING-T the problem of packing the maximum number of vertex disjoint triangles in a given tournament, where a triangle is a directed 3-cycle. More formally, an input of C_3 -PACKING-T is a tournament \mathcal{T} , an output is a set (called a *triangle packing*) $S = \{t_i, i \in [|S|]\}$ where each t_i is a triangle and for any $i \neq j$ we have $V(t_i) \cap V(t_j) = \emptyset$, and the objective is to maximize |S|. We denote by $opt(\mathcal{T})$ the optimal value of \mathcal{T} . We denote by C_3 -PERFECT-PACKING-T the decision problem associated to C_3 -PACKING-T where an input \mathcal{T} is positive iff there is a triangle packing S such that $V(S) = V(\mathcal{T})$ (which is called a *perfect triangle packing*).

Related work

We refer the reader to the extended version of the paper [4] where we recall the definitions of the problems mentioned bellow as well as the standard definitions about parameterized complexity and approximation. A first natural related problem is 3-SET-PACKING as we can reduce C_3 -PACKING-T to 3-SET-PACKING by creating an hyperedge for each triangle.

Classical complexity / approximation. It is known that C_3 -PACKING-T is polynomial if the tournament does not contain the three forbidden sub-tournaments described in [5]. From the point of view of approximability, the best approximation algorithm is the $\frac{4}{3} + \epsilon$ approximation of [7] for 3-SET-PACKING, implying the same result for K_3 -PACKING and C_3 -PACKING-T. Concerning negative results, it is known [9] that even K_3 -PACKING is MAX SNP-hard on graphs with maximum degree four. The related "dual" problems FAST and FVST received a lot of attention with for example the NP-hardness and PTAS for FAS in [6] and [12] respectively, and the $\frac{7}{3}$ approximation and inapproximability results for FVST in [13].

Kernelization. We precise that the implicitly considered parameter here is the size of the solution. There is a $\mathcal{O}(k^2)$ vertex kernel for K_3 -PACKING in [14], and even a $\mathcal{O}(k^2)$ vertex kernel for 3-SET-PACKING in [1], which is obtained by only removing vertices of the ground set. This remark is important as it directly implies a $\mathcal{O}(k^2)$ vertex kernel for C_3 -PACKING-T (see Section 4). Let us now turn to negative results. There is a whole line of research dedicated to finding lower bounds on the size of polynomial kernels. The main tool involved in these bounds is the weak composition introduced in [10] (whose definition is recalled in [4]). Weak composition allowed several almost tight lower bounds, with for examples the $\mathcal{O}(k^{d-\epsilon})$ for d-SET-PACKING and $\mathcal{O}(k^{d-4-\epsilon})$ for K_d -PACKING of [10]. These results where improved in [8] to $\mathcal{O}(k^{d-\epsilon})$ for PERFECT d-SET-PACKING, $\mathcal{O}(k^{d-1-\epsilon})$ for K_d -PACKING, and leading to $\mathcal{O}(k^{2-\epsilon})$ for PERFECT K_3 -PACKING. Notice that negative results for the "perfect" version of problems (where parameter $k = \frac{n}{d}$, where d is the number of vertices of the packed structure) are stronger than for the classical version where k is arbitrary. Kernel lower bound for these "perfect" versions is sometimes referred as *sparsification lower bounds*.

Our contributions

Our objective is to study the approximability and kernelization of C_3 -PACKING-T. On the approximation side, a natural question is a possible improvement of the $\frac{4}{3} + \epsilon$ approximation implied by 3-SET-PACKING. We show that, unlike FAST, C_3 -PACKING-T does not admit a PTAS unless P=NP, even if the tournament is sparse. We point out that, surprisingly, we were not able to find any reference establishing a negative result for C_3 -PACKING-T, even for the NP-hardness. As these results show that there is not much room for improving the approximation ratio, we focus on sparse tournaments and followed a different approach by looking for a condition that would allow ratio arbitrarily close to 1. In that spirit, we provide a $\left(1 + \frac{6}{c-1}\right)$ approximation algorithm for sparse tournaments having a linear representation with minspan at least c. Concerning kernelization, we complete the panorama of sparsification lower bounds of [11] by proving that C_3 -PERFECT-PACKING-T does not admit a kernel of (total bit) size $\mathcal{O}(n^{2-\epsilon})$ unless NP \subseteq coNP / Poly. This implies that C_3 -PACKING-T does not admit a kernel of (total bit) size $\mathcal{O}(k^{2-\epsilon})$ unless NP \subseteq coNP / Poly. We also prove that C_3 -PACKING-T admits a kernel of $\mathcal{O}(m)$ vertices, where m is the size of a given FAS of the instance, and that C_3 -PACKING-T restricted to sparse instances has a kernel in $\mathcal{O}(k)$ vertices (and so of total size bit $\mathcal{O}(k \log(k))$). The existence of a kernel in $\mathcal{O}(k)$ vertices for the general C_3 -PACKING-T remains our main open question.

2 Specific notations and observations

Given a linear representation $(\sigma(\mathcal{T}), \overleftarrow{A}(\mathcal{T}))$ of a tournament \mathcal{T} , a triangle t in \mathcal{T} is a triple $t = (v_{i_1}, v_{i_2}, v_{i_3})$ with $i_l < i_{l+1}$ such that either $v_{i_3}v_{i_1} \in \overleftarrow{A}(\mathcal{T}), v_{i_3}v_{i_2} \notin \overleftarrow{A}(\mathcal{T})$ and $v_{i_2}v_{i_1}\notin \overleftarrow{A}(\mathcal{T})$ (in this case we call t a triangle with backward arc $v_{i_3}v_{i_1}$), or $v_{i_3}v_{i_1}\notin \overleftarrow{A}(\mathcal{T})$, $v_{i_3}v_{i_2} \in \overline{A}(\mathcal{T})$ and $v_{i_2}v_{i_1} \in \overline{A}(\mathcal{T})$ (in this case we call t a triangle with two backward arcs $v_{i_3}v_{i_2}$ and $v_{i_2}v_{i_1}$). Given two tournaments $\mathcal{T}_1, \mathcal{T}_2$ defined by $\sigma(\mathcal{T}_l)$ and $\overleftarrow{A}(\mathcal{T}_l)$ we denote by $\mathcal{T} = \mathcal{T}_1 \mathcal{T}_2$ the tournament called the concatenation of \mathcal{T}_1 and \mathcal{T}_2 , where $\sigma(\mathcal{T}) = \sigma(\mathcal{T}_1)\sigma(\mathcal{T}_2)$ is the concatenation of the two sequences, and $A(\mathcal{T}) = A(\mathcal{T}_1) \cup A(\mathcal{T}_2)$. Given a tournament \mathcal{T} and a subset of vertices X, we denote by $\mathcal{T} \setminus X$ the tournament $\mathcal{T}[V(\mathcal{T}) \setminus X]$ induced by vertices $V(\mathcal{T}) \setminus X$, and we call this operation removing X from \mathcal{T} . Given an arc a = uv we define h(a) = v as the head of a and t(a) = u as the tail of a. Given a linear representation $(V(\mathcal{T}), \overleftarrow{A}(\mathcal{T}))$ and an arc $a \in \overleftarrow{A}(\mathcal{T})$, we define $s(a) = \{v : h(a) < v < t(a)\}$ as the span of a. Notice that the span value of a is then exactly |s(a)|. Given a linear representation $(V(\mathcal{T}), A(\mathcal{T}))$ and a vertex $v \in V(\mathcal{T})$, we define the degree of v by d(v) = (a, b), where $a = |\{vu \in \overleftarrow{A}(\mathcal{T}) : u < v\}|$ is called the *left degree* of v and $b = |\{uv \in \overleftarrow{A}(\mathcal{T}) : u > v\}|$ is called the *right degree* of v. We also define $V_{(a,b)} = \{v \in V(\mathcal{T}) | d(v) = (a,b)\}$. Given a set of pairwise distinct pairs D, we denote by C_3 -PACKING-T^D the problem C_3 -PACKING-T restricted to tournaments such that there exists a linear representation where $d(v) \in D$ for all v. Notice that when $D_M = \{(0,1), (1,0), (0,0)\}$, instances of C_3 -PACKING-T^{D_M} are the sparse tournaments. Finally let us point out that it is easy to decide in polynomial time if a tournament is sparse or not, and if so, to give a linear representation whose FAS is a matching. The corresponding algorithm is detailed in [4]. Thus, in the following, when considering a sparse tournament we will assume that a linear ordering of it where backward arcs form a matching is also given. Finally, due to space limitations, the proofs of the results marked with (\star) have been removed and are available in [4].

Figure 1 Example of a variable gadget L_i .

3 Approximation for sparse tournaments

3.1 APX-hardness for sparse tournaments

In this subsection we prove that C_3 -PACKING-T^{D_M} is APX-hard by providing a *L*-reduction (see Definition in [4]) from Max 2-SAT(3), which is known to be APX-hard [2, 3]. Recall that in the MAX 2-SAT(3) problem each clause contains exactly 2 variables and each variable appears in at most 3 clauses (and at most twice positively and once negatively).

Definition of the reduction. Let \mathcal{F} be an instance of MAX 2-SAT(3). In the following, we will denote by n the number of variables in \mathcal{F} and m the number of clauses. Let $\{x_i, 1 \in [n]\}$ be the set of variables of \mathcal{F} and $\{C_j, j \in [m]\}$ its set of clauses.

We now define a reduction f which maps an instance \mathcal{F} of MAX 2-SAT(3) to an instance \mathcal{T} of C_3 -PACKING-T^{D_M}. For each variable x_i with $i \in [n]$, we create a tournament L_i as follows and we call it variable gadget. We refer the reader to Figure 1 where an example of variable gadget is depicted. Let $\sigma(L_i) = (X_i, X'_i, \overline{X_i}, \overline{X_i}', \{\beta_i\}, \{\beta'_i\}, A_i, B_i, \{\alpha_i\}, A'_i, B'_i\}$. We define $C = \{X_i, X'_i, \overline{X_i}, \overline{X_i}', A_i, B_i, A'_i, B'_i\}$. All sets of C have size 4. We denote $X_i = (x_i^1, x_i^2, x_i^3, x_i^4)$, and we extend the notation in a straightforward manner to the other others sets of C. Let us now define $\widehat{A}(L_i)$. For each set of C, we add a backward arc whose head is the first element and the tail is the last element (for example for X_i we add the arc $x_i^4 x_i^1$). Then, we add to $\widehat{A}(L_i)$ the set $\{e_1, e_2, e_3, e_4\}$ where $e_1 = x_i^3 a_i^3$, $e_2 = x_i'^3 a_i'^3$, $e_3 = \overline{x_i^3} b_i^3$, $e_4 = \overline{x_i'^3} b_i'^3$ and the set $\{m_1, m_2\}$ where $m_1 = a_i'^2 a_i^2$, $m_2 = b_i'^2 b_i^2$ called the two medium arcs of the variable gadget. This completes the description of tournament L_i . Let $L = L_1 \dots L_n$

For each clause C_j with $j \in [1, m]$, we create a tournament K_j with ordering $\sigma(K_i) = (\theta_j, d_j^1, c_j^1, c_j^2, d_j^2)$ and $A(K_i) = \{d_j^2 d_j^1\}$. We also define $K = K_1 \dots K_m$. Let us now define $\mathcal{T} = LK$. We add to $A(\mathcal{T})$ the following backward arcs from V(K) to V(L). If $C_j = l_{i_1} \lor l_{i_2}$ is a clause in \mathcal{F} then we add the arcs $c_j^1 v_{i_1}, c_j^2 v_{i_2}$ where v_{i_c} is the vertex in $\{x_{i_c}^2, x_{i_c}^{\prime 2}, \overline{x_{i_c}^2}\}$ corresponding to l_{i_c} : if l_{i_c} is a positive occurrence of variable i_c we chose $v_{i_c} \in \{x_{i_c}^2, x_{i_c}^{\prime 2}\}$, otherwise we chose $v_{i_c} = \overline{x_{i_c}^2}$. Moreover, we chose vertices v_{i_c} in such a way that for any $i \in [n]$, for each $v \in \{x_i^2, x_i^{\prime 2}, \overline{x_i^2}\}$ there exists a unique arc $a \in A(\mathcal{T})$ such that h(a) = v. This is always possible as each variable has at most two positive occurrences and one negative occurrence. Thus, x_i^2 represent the first positive occurrence of variable i, and $x_i^{\prime 2}$ the second one. We refer the reader to Figure 2 where an example of the connection between variable and clause gadget is depicted.

Notice that vertices of $\overline{X_i}$ are never linked to the clauses gadget. However, we need this set to keep the variable gadget symmetric so that setting x_i to true or false leads to the same number of triangles inside L_i . This completes the description of \mathcal{T} . Notice that the degree of any vertex is in $\{(0, 1), (1, 0), (0, 0)\}$, and thus \mathcal{T} is an instance of C_3 -PACKING-T^{D_M}.

Let us now distinguish three different types of triangles in \mathcal{T} . A triangle $t = (v_1, v_2, v_3)$ of \mathcal{T} is called an *outer* triangle iff $\exists j \in [m]$ such that $v_2 = \theta_j$ and $v_3 = c_j^l$ (implying that $v_1 \in V(L)$),

Figure 2 Example showing how a clause gadget is attached to variable gadgets.

variable inner iff $\exists i \in [n]$ such that $V(t) \subseteq V(L_i)$, and clause inner iff $\exists j \in [m]$ such that $V(t) \subseteq V(K_j)$. Notice that a triangle $t = (v_1, v_2, v_3)$ of \mathcal{T} which is neither outer, variable or clause inner has necessarily $v_3 = c_j^l$ for some j, and $v_2 \neq \theta_j$ (v_2 could be in V(L) or V(K)). In the following definition, for any $Y \in C$ (where $C = \{X_i, X'_i, \overline{X_i}, \overline{X_i}', A_i, B_i, A'_i, B'_i\}$) with $Y = (y^1, y^2, y^3, y^4)$, we define $t_Y^2 = (y^1, y^2, y^4)$ and $t_Y^3 = (y^1, y^3, y^4)$. For example, $t_{X'_i}^2 = (x'_i^1, x'_i^2, x'_i^4)$. For any $i \in [n]$, we define P_i and $\overline{P_i}$, two sets of vertex disjoint variable inner triangles of $V(L_i)$, by:

$$P_{i} = \{t_{X_{i}}^{3}, t_{X_{i}}^{3}, t_{\overline{X_{i}}}^{2}, t_{\overline{X_{i}}}^{2}, t_{A_{i}}^{3}, t_{B_{i}}^{2}, t_{A_{i}'}^{3}, t_{B_{i}'}^{2}, (h(e_{3}), \beta_{i}, t(e_{3})), (h(e_{4}), \beta_{i}', t(e_{4})), (h(m_{1}), \alpha_{i}, t(m_{1}))\}$$
$$\overline{P_{i}} = \{t_{X_{i}}^{2}, t_{\overline{X_{i}'}}^{3}, t_{\overline{X_{i}}}^{3}, t_{A_{i}}^{3}, t_{B_{i}}^{3}, t_{A_{i}'}^{2}, t_{B_{i}'}^{3}, (h(e_{1}), \beta_{i}, t(e_{1})), (h(e_{2}), \beta_{i}', t(e_{2})), (h(m_{2}), \alpha_{i}, t(m_{2}))\}$$

Notice that P_i (resp. $\overline{P_i}$) uses all vertices of L_i except $\{x_i^2, x_i^{'2}\}$ (resp. $\{\overline{x_i^2}, \overline{x_i^{'2}}\}$). For any $j \in [m]$, and $x \in [2]$ we define the set of clause inner triangle of K_j , that is $Q_j^x = \{(d_j^1, c_j^x, d_j^2)\}$.

Informally, setting variable x_i to true corresponds to create the 11 triangles of P_i in L_i (as leaving vertices $\{x_i^2, x_i^{2'}\}$ available allows to create outer triangles corresponding to satisfied clauses), and setting it to false corresponds to create the 11 triangles of $\overline{P_i}$. Satisfying a clause j using its x^{th} literal (represented by a vertex $v \in V(L)$) corresponds to create triangle in Q_j^{3-x} as it leaves c_j^x available to create the triangle (v, θ_j, c_j^x) . Our final objective (in Lemma 4) is to prove that satisfying k clauses is equivalent to find 11n + m + k vertex disjoint triangles.

Restructuration lemmas. Given a solution S, let $I_i^L = \{t \in S : V(t) \subseteq V(L_i)\}, I_j^K = \{t \in S : V(t) \subseteq V(K_j)\}, I^L = \bigcup_{i \in [n]} I_i^L$ be the set of variable inner triangles of S, $I^K = \bigcup_{j \in [n]} I_j^K$ be the set of clause inner triangles of S, and $O = \{t \in S \ t \text{ is an outer triangle}\}$ be the set of outer triangles of S. Notice that a priori I^L, I^K, O does not necessarily form a partition of S. However, we will show in the next lemmas how to restructure S such that I^L, I^K, O becomes a partition.

▶ Lemma 1 (*). For any S we can compute in polynomial time a solution $S' = \{t'_l, l \in [k]\}$ such that $|S'| \ge |S|$ and for all $j \in [m]$ there exists $x \in [2]$ such that $I'_j{}^K = Q^x_j$ and

- either S' does not use any other vertex of K_j $(V(S') \cap V(K_j) = V(Q_j^x))$
- either S' contains an outer triangle $t'_l = (v, \theta_j, c_j^{3-x})$ with $v \in V(L)$ (implying $V(S') \cap V(K_j) = V(K_j)$)

▶ Corollary 2. For any S we can compute in polynomial time a solution S' such that $|S'| \ge |S|$, and S' only contains outer, variable inner, and clause inner triangles. Indeed, in the solution S' of Lemma 1, given any $t \in S'$, either V(t) intersects $V(K_j)$ for some j and then t is an outer or a clause inner triangle, or $V(t) \subseteq V(L_i)$ for $i \in [n]$ as there is no backward arc uv with $u \in V(L_{i_1})$ and $v \in V(L_{i_2})$ with $i_1 \neq i_2$.

▶ Lemma 3 (*). For any S we can compute in polynomial time a solution S' such that $|S'| \ge |S|, S'$ satisfies Lemma 1, and for every $i \in [n], I'_i{}^L = P_i \text{ or } I'_i{}^L = \overline{P_i}$.

14:5

14:6 Triangle Packing in (Sparse) Tournaments: Approximation and Kernelization

Proof of the L-reduction. We are now ready to prove the main lemma (recall that f is the reduction from MAX 2-SAT(3) to C_3 -PACKING-T^{D_M} described in Section 3.1), and also the main theorem of the section.

▶ Lemma 4. Let \mathcal{F} be an instance of MAX 2-SAT(3). For any k, there exists an assignment a of \mathcal{F} satisfying at least k clauses if and only if there exists a solution S of $f(\mathcal{F})$ with $|S| \ge 11n + m + k$, where n and m are respectively is the number of variables and clauses in \mathcal{F} . Moreover, in the \Leftarrow direction, assignment a can be computed from S in polynomial time.

Proof. For any $i \in [n]$, let $A_i = P_i$ if x_i is set to true in a, and $A_i = \overline{P_i}$ otherwise. We first add to S the set $\bigcup_{i \in [n]} A_i$. Then, let $\{C_{j_l}, l \in [k]\}$ be k clauses satisfied by a. For any $l \in [k]$, let i_l be the index of a literal satisfying C_{j_l} , let $x \in [2]$ such that $c_{j_l}^x$ corresponds to this literal, and let $Z_l = \{x_{i_l}^2, x_{i_l}'^2\}$ if literal i_l is positive, and $Z_l = \{\overline{x_{i_l}^2}\}$ otherwise. For any $j \in [m]$, if $j = i_l$ for some l (meaning that j corresponds to a satisfied clause), we add to S the triangle in Q_j^{3-x} , and otherwise we arbitrarily add the triangle Q_j^1 . Finally, for any $l \in [k]$ we add to S triangle $t_l = (y_l, \theta_{j_l}, c_{j_l}^x)$ where $y_l \in Z_l$ is such that y_l is not already used in another triangle. Notice that such an y_l always exists as triangles of $A_i, i \in [n]$ do not intersect Z_l (by definition of the A_i), and as there are at most two clauses that are true due to positive literal, and one clause that is true due to a negative literal. Thus, S has 11n + m + k vertex disjoint triangles.

Conversely, let S a solution of $f(\mathcal{F})$ with $|S| \geq 11n + m + k$. By Lemma 3 we can construct in polynomial time a solution S' from S such that $|S'| \geq |S|$, S' only contains outer, variable or clause inner triangles, for each $j \in [m]$ there exists $x \in [2]$ such that $I'_j{}^K = Q^x_j$, and for each $i \in [n], I'^L_i = P_i$ or $I'^L_i = \overline{P_i}$. This implies that the $k' \geq k$ remaining triangles must be outer triangles. Let $\{t'_l, l \in [k']\}$ be these k' outer triangles with $t'_l = (y_l, \theta_{j_l}, c^{x_l}_{j_l})$ Let us define the following assignation a: for each $i \in [n]$, we set x_i to true if $I'^L_i = P_i$, and false otherwise. This implies that a satisfies at least clauses $\{C_{j_l}, l \in [k']\}$.

▶ Theorem 5. C_3 -PACKING-T^{D_M} is APX-hard, and thus does not admit a PTAS unless P = NP.

Proof. Let us check that Lemma 4 implies a *L*-reduction (whose definition is recalled in [4]). Let OPT_1 (resp. OPT_2) be the optimal value of \mathcal{F} (resp. $f(\mathcal{F})$). Notice that Lemma 4 implies that $OPT_2 = OPT_1 + 11n + m$. It is known that $OPT_1 \geq \frac{3}{4}m$ (where *m* is the number of clauses of \mathcal{F}). As $n \leq m$ (each variable has at least one positive and one negative occurrence), we get $OPT_2 = OPT_1 + 11n + m \leq \alpha OPT_1$ for an appropriate constant α , and thus point (*a*) of the definition is verified. Then, given a solution S' of $f(\mathcal{F})$, according to Lemma 4 we can construct in polynomial time an assignment *a* satisfying c(a) clauses with $c(a) \geq S' - 11n - m$. Thus, the inequality (*b*) of the Definition of a L-reduction with $\beta = 1$ becomes $OPT_1 - c(a) \leq OPT_2 - S' = OPT_1 + 11n + m - S'$, which is true.

Reduction of Theorem 5 does not imply the NP-hardness of C_3 -PERFECT-PACKING-T as there remain some unused vertices. However, it is straightforward to adapt the reduction by adding backward arcs whose head (resp. tail) are before (resp. after) \mathcal{T} to consume the remaining vertices. This leads to the following result.

▶ Theorem 6 (*). C_3 -PERFECT-PACKING-T^{D_M} is NP-hard.

To establish the kernel lower bound of Section 4, we also need the NP-hardness of C_3 -PERFECT-PACKING-T where instances have a slightly simpler structure (to the price of losing the property that there exists a FAS which is a matching).

▶ Theorem 7 (*). C_3 -PERFECT-PACKING-T remains NP-hard even restricted to tournaments \mathcal{T} admitting the following linear ordering.

- $\mathcal{T} = LK$ where L and K are two tournaments
- tournaments L and K are "fixed":
 - $K = K_1 \dots K_m$ for some m, where for each $j \in [m]$ we have $V(K_j) = (\theta_j, c_j)$
 - $L = R_1 L_1 \dots L_n R_2$, where each L_i has is a copy of the variable gadget of Section 3.1, $R_i = \{r_i^l, l \in [n']\}$ where n' = 2n - m, and in addition L also contains $R = \{(r_2^l r_1^l), l \in [n']\}$ which are called the dummy arcs.

3.2 $(1 + \frac{6}{c-1})$ -approximation when backward arcs have large minspan

Given a set of pairwise distinct pairs D and an integer c, we denote by C_3 -PACKING- $T_{\geq c}^D$ the problem C_3 -PACKING- T^D restricted to tournaments such that there exists a linear representation of minspan at least c and where $d(v) \in D$ for all v. In all this section we consider an instance \mathcal{T} of C_3 -PACKING- $T_{\geq c}^{D_M}$ with a given linear ordering $(V(\mathcal{T}), A(\mathcal{T}))$ of minspan at least c and whose degrees belong to D_M . The motivation for studying the approximability of this special case comes from the situation of MAX-SAT(c) where the approximability becomes easier as c grows, as the derandomized uniform assignment provides a $\frac{2^c}{2^c-1}$ approximation algorithm. Somehow, one could claim that MAX-SAT(c) becomes easy to approximate for large c as there are many ways to satisfy a given clause. As the same intuition applies for tournaments admitting an ordering with large minspan (as there are c - 1 different ways to use a given backward in a triangle), our objective was to find a polynomial approximation algorithm whose ratio tends to 1 when c increases.

Let us now define algorithm Φ . We define a bipartite graph $G = (V_1, V_2, E)$ with $V_1 = \{v_a^1 : a \in A(\mathcal{T})\}$ and $V_2 = \{v_l^2 : v_l \in V_{(0,0)}\}$. Thus to each backward arc we associate a vertex in V_1 and to each vertex v_l with $d(v_l) = (0,0)$ we associate a vertex in V_2 . Then $\{v_a^1, v_l^2\} \in E$ iff $(h(a), v_l, t(a))$ is a triangle in \mathcal{T} .

In phase 1, Φ computes a maximum matching $M = \{e_l, l \in [|M|]\}$ in G. For every $e_l = \{v_{ij}^1, v_l^2\} \in M$ create a triangle $t_l^1 = (v_j, v_l, v_i)$. Let $S^1 = \{t_l^1, l \in [|M|]\}$. Notice that triangles of S^1 are vertex disjoint. Let us now turn to phase 2. Let \mathcal{T}^2 be the tournament \mathcal{T} where we removed all vertices $V(S^1)$. Let $(V(\mathcal{T}^2), \overline{A}(\mathcal{T}^2))$ be the linear ordering of \mathcal{T}^2 obtained by removing $V(S^1)$ in $(V(\mathcal{T}), \overline{A}(\mathcal{T}))$. We say that three distinct backward edges $\{a_1, a_2, a_3\} \subseteq \overline{A}(\mathcal{T}^2)$ can be packed into triangles t_1 and t_2 iff $V(\{t_1, t_2\}) = V(\{a_1, a_2, a_3\})$ and the t_i are vertex disjoint. For example, if $h(a_1) < h(a_2) < t(a_1) < h(a_3) < t(a_2) < t(a_3)$, then $\{a_1, a_2, a_3\}$ can be packed into $(h(a_1), h(a_2), t(a_1))$ and $(h(a_3), t(a_2), t(a_3))$ (recall that when $\overline{A}(\mathcal{T})$ form a matching, (u, v, w) is triangle iff $wu \in \overline{A}(\mathcal{T})$ and u < v < w), and if $h(a_1) < h(a_2) < t(a_2) < h(a_3) < t(a_3) < t(a_1)$, then $\{a_1, a_2, a_3\}$ cannot be packed into two triangles. In phase 2, while it is possible, Φ finds a triplet of arcs of $Y \subseteq \overline{A}(\mathcal{T}^2)$ that can be packed into triangles, create the two corresponding triangles, and remove V(Y). Let S^2 be the triangle created in phase 2 and let $S = S^1 \cup S^2$.

▶ **Observation 8.** For any $a \in \overleftarrow{A}(\mathcal{T})$, either $V(a) \subseteq V(S)$ or $V(a) \cap V(S) = \emptyset$. Equivalently, no backward arc has one endpoint in V(S) and the other outside V(S).

According to Observation 8, we can partition $\overleftarrow{A}(\mathcal{T}) = \overleftarrow{A}_0 \cup \overleftarrow{A}_1 \cup \overleftarrow{A}_2$, where for $i \in \{1, 2\}$, $\overleftarrow{A}^i = \{a \in \overleftarrow{A}(\mathcal{T}) : V(a) \subseteq V(S^i) \text{ is the set of arcs used in phase } i, \text{ and } \overleftarrow{A}_0 =_{def} \{b_i, i \in [x]\}$ are the remaining unused arcs. Let $\overleftarrow{A}_{\Phi} = \overleftarrow{A}_1 \cup \overleftarrow{A}_2$, $m_i = |\overleftarrow{A}_i|$, $m = m_0 + m_1 + m_2$ and $m_{\Phi} = m_1 + m_2$ the number of arcs (entirely) consumed by Φ . To prove the $1 + \frac{6}{c-1}$ desired approximation ratio, we will first prove in Lemma 9 that Φ uses at most all the arcs

14:8 Triangle Packing in (Sparse) Tournaments: Approximation and Kernelization

 $(m_A \ge (1 - \epsilon(c))m)$, and in Theorem 10 that the number of triangles made with these arcs is "optimal". Notice that the latter condition is mandatory as if Φ used its m_{Φ} arcs to only create $\frac{2}{3}(m_{\Phi})$ triangles in phase 2 instead of creating $m' \approx m_{\Phi}$ triangle with m' backward arcs and m' vertices of degree (0,0), we would have a $\frac{3}{2}$ approximation ratio.

▶ Lemma 9 (*). For any $c \ge 2$, $m_{\Phi} \ge (1 - \frac{6}{c+5})m$

▶ Theorem 10. For any $c \ge 2$, Φ is a polynomial $(1 + \frac{6}{c-1})$ approximation algorithm for C_3 -PACKING- $T_{>c}^{D_M}$.

Proof. Let OPT be an optimal solution. Let us define $OPT_i \subseteq OPT$ and $\overline{A}_i^* \subseteq \overline{A}(\mathcal{T})$ as follows. Let $t = (u, v, w) \in OPT$. As the FAS of the instance is a matching, we know that $wu \in \overline{A}(\mathcal{T})$ as we cannot have a triangle with two backward arcs. If d(v) = (0, 0) then we add t to OPT_1 and wu to \overline{A}_1^* . Otherwise, let v' be the other endpoint of the unique arc a containing v. If $v' \notin V(OPT)$, then we add t to OPT_3 and $\{wu, a\}$ to \overline{A}_3^* . Otherwise, let $t' \in OPT$ such that $v' \in V(t')$. As the FAS of the instance is a matching we know that v' is the middle point of t', or more formally that t' = (u', v', w') with $u'w' \in \overline{A}(\mathcal{T})$. We add $\{t, t'\}$ to OPT_2 and $\{wu, a, w'u'\}$ to \overline{A}_2^* . Notice that the OPT_i form a partition of OPT, and that the \overline{A}_i^* have pairwise empty intersection, implying $|\overline{A}_1^*| + |\overline{A}_2^*| + |\overline{A}_3^*| \leq m$. Notice also that as triangles of OPT_1 correspond to a matching of size $|OPT_1|$ in the bipartite graph defined in phase 1 of algorithm Φ , we have $|OPT_1| = |\overline{A}_1^*| \leq |\overline{A}_1|$.

Putting pieces together we get (recall that *S* is the solution computed by Φ) $|OPT| = |OPT_1| + |OPT_2| + |OPT_3| = |A_1^*| + \frac{2}{3}|A_2^*| + \frac{1}{2}|A_3^*| \le |A_1^*| + \frac{2}{3}(|A_2^*| + |A_3^*|) \le |A_1^*| + \frac{2}{3}(m - |A_1^*|) \le \frac{1}{3}|A_1| + \frac{2}{3}m$ and $|S| = |S^1| + |S^2| = |A_1| + \frac{2}{3}|A_2| \ge |A_1| + \frac{2}{3}((1 - \frac{6}{c+5})m - |A_1|) = \frac{1}{3}|A_1| + \frac{2}{3}(1 - \frac{6}{c+5})m$ which implies the desired ratio.

4 Kernelization

In all this section we consider the decision problem C_3 -PACKING-T parameterized by the size of the solution. Thus, an input is a pair $I = (\mathcal{T}, k)$ and we say that I is positive iff there exists a set of k vertex disjoint triangles in \mathcal{T} .

4.1 Positive results for sparse instances

Observe first that the kernel in $\mathcal{O}(k^2)$ vertices for 3-SET PACKING of [1] directly implies a kernel in $\mathcal{O}(k^2)$ vertices for C_3 -PACKING-T. Indeed, given an instance ($\mathcal{T} = (V, A), k$) of C_3 -PACKING-T, we create an instance (I' = (V, C), k) of 3-SET PACKING by creating an hyperedge $c \in C$ for each triangle of \mathcal{T} . Then, as the kernel of [1] only removes vertices, it outputs an induced instance ($\overline{I'} = I'[V'], k'$) of I with $V' \subseteq V$, and thus this induced instance can be interpreted as a subtournament, and the corresponding instance ($\mathcal{T}[V'], k'$) is an equivalent tournament with $\mathcal{O}(k^2)$ vertices.

As shown in the next theorem, as we could expect it is also possible to have kernel bounded by the number of backward arcs.

▶ **Theorem 11.** C_3 -PACKING-T admits a polynomial kernel with $\mathcal{O}(m)$ vertices, where m is the number of arcs in a given FAS of the input.

Proof. Let $I = (\mathcal{T}, k)$ be an input of the decision problem associated to C_3 -PACKING-T. Observe first that we can build in polynomial time a linear ordering $\sigma(\mathcal{T})$ whose backward arcs $\overleftarrow{A}(\mathcal{T})$ correspond to the given FAS. We will obtain the kernel by removing useless vertices

of degree (0, 0). Let us define a bipartite graph $G = (V_1, V_2, E)$ with $V_1 = \{v_a^1 : a \in \overline{A}(\mathcal{T})\}$ and $V_2 = \{v_l^2 : v_l \in V_{(0,0)}\}$. Thus, to each backward arc we associate a vertex in V_1 and to each vertex v_l with $d(v_l) = (0, 0)$ we associate a vertex in V_2 . Then, $\{v_a^1, v_l^2\} \in E$ iff $(h(a), v_l, t(a))$ is a triangle in \mathcal{T} . By Hall's theorem, we can in polynomial time partition V_1 and V_2 into $V_1 = A_1 \cup A_2$, $V_2 = B_0 \cup B_1 \cup B_2$ such that $N(A_2) \subseteq B_2$, $|B_2| \leq |A_2|$, and there is a perfect matching between vertices of A_1 and B_1 (B_0 is simply defined by $B_0 = V_2 \setminus (B_1 \cup B_2)$).

For any $i, 0 \leq i \leq 2$, let $X_i = \{v_l \in V_{(0,0)} : v_l^2 \in B_i\}$ be the vertices of \mathcal{T} corresponding to B_i . Let $V_{\neq(0,0)} = V(\mathcal{T}) \setminus V_{(0,0)}$. Notice that $|V_{\neq(0,0)}| \leq 2m$. We define $\mathcal{T}' = \mathcal{T}[V_{\neq(0,0)} \cup X_1 \cup X_2]$ the sub-tournament obtained from \mathcal{T} by removing vertices of X_0 , and $I' = (\mathcal{T}', k)$. We point out that this definition of \mathcal{T}' is similar to the final step of the kernel of [1] as our partition of V_1 and V_2 (more precisely $(A_1, B_0 \cup B_1)$) corresponds in fact to the crown decomposition of [1]. Observe that $|V(\mathcal{T}')| \leq 2m + |A_1| + |A_2| \leq 3m$, implying the desired bound of the number of vertices of the kernel.

It remains to prove that I and I' are equivalent. Let $k \in \mathbb{N}$, and let us prove that there exists a solution S of \mathcal{T} with $|S| \geq k$ iff there exists a solution S' of \mathcal{T}' with $|S'| \geq k$. Observe that the \Leftarrow direction is obvious as \mathcal{T}' is a subtournament of \mathcal{T} . Let us now prove the \Rightarrow direction. Let S be a solution of \mathcal{T} with $|S| \geq k$. Let $S = S_{(0,0)} \cup S_1$ with $S_{(0,0)} = \{t \in S : t = (h(a), v, t(a)) \text{ with } v \in V_{(0,0)}, a \in A(\mathcal{T})\}$ and $S_1 = S \setminus S_{(0,0)}$. Observe that $V(S_1) \cap V_{(0,0)} = \emptyset$, implying $V(S_1) \subseteq V_{\neq(0,0)}$. For any $i \in [2]$, let $S_{(0,0)}^i = \{t \in S_{(0,0)} : t = (h(a), v, t(a)) \text{ with } v \in V_{(0,0)}, v_a^1 \in A_i\}$ be a partition of $S_{(0,0)}$. We define $S' = S_1 \cup S_{(0,0)}^2 \cup S_{(0,0)}^{'1}$, where $S_{(0,0)}^{'1}$ is defined as follows. For any $v_a^1 \in A_1$, let $v_{\mu(a)}^2 \in B_1$ be the vertex associated to v_a^1 in the (A_1, B_1) matching. To any triangle $t = (h(a), v, t(a)) \in S_{(0,0)}^1$ we associate a triangle $f(t) = (h(a), v_{\mu(a)}, t(a)) \in S_{(0,0)}^{'1}$, where by definition $v_{\mu(a)} \in X_1$. For the sake of uniformity we also say that any $t \in S_1 \cup S_{(0,0)}^2$ is associated to f(t) = t.

Let us now verify that triangles of S' are vertex disjoint by verifying that triangles of $S_{(0,0)}^{\prime 1}$ do not intersect another triangle of S'. Let $f(t) = (h(a), v_{\mu(a)}, t(a)) \in S_{(0,0)}^{\prime 1}$. Observe that h(a) and t(a) cannot belong to any other triangle f(t') of S' as for any $f(t'') \in S'$, $V(f(t'')) \cap V_{\neq(0,0)} = V(t'') \cap V_{\neq(0,0)}$ (remember that we use the same notation $V_{\neq(0,0)}$ to denote vertices of degree (0,0) in \mathcal{T} and \mathcal{T}'). Let us now consider $v_{\mu(a)}$. For any $f(t') \in S_1$, as $V(f(t')) \cap V_{(0,0)} = \emptyset$ we have $v_{\mu(a)} \notin V(f(t'))$. For any $f(t') = (h(a'), v_l, t(a')) \in S_{(0,0)}^2$, we know by definition that $v_{a'}^1 \in A_2$, implying that $v_l^2 \in B_2$ (and $v_l \in X_2$) as $N(A_2) \subseteq B_2$ and thus that $v_l \neq v_{\mu(a)}$. Finally, for any $f(t') = (h(a'), v_l, t(a')) \in S_{(0,0)}^{\prime 1}$, we know that $v_l = v_{\mu(a')}$, where $a \neq a'$, leading to $v_l \neq v_{\mu(a)}$ as μ is a matching.

Using the previous result we can provide a $\mathcal{O}(k)$ vertices kernel for C_3 -PACKING-T restricted to sparse tournaments.

▶ Theorem 12 (*). C_3 -PACKING-T restricted to sparse tournaments admits a polynomial kernel with O(k) vertices, where k is the size of the solution.

4.2 No (generalised) kernel in $\mathcal{O}(k^{2-\epsilon})$

In this section we provide an OR-cross composition (see [4] where we recall the definition) from C_3 -PERFECT-PACKING-T restricted to instances of Theorem 7 to C_3 -PERFECT-PACKING-T parameterized by the total number of vertices.

Definition of the instance selector. The next lemma build a special tournament, called an *instance selector* that will be useful to design the cross composition.

▶ Lemma 13 (*). For any $\gamma = 2^{\gamma'}$ and ω we can construct in polynomial time (in γ and ω) a tournament $P_{\omega,\gamma}$ such that

- there exists γ subsets of ω vertices $X^i = \{x_j^i : j \in [\omega]\}$, that we call the distinguished set of vertices, such that
 - \blacksquare the X^i have pairwise empty intersection
 - for any $i \in [\gamma]$, there exists a packing S of triangles of $P_{\omega,\gamma}$ such that $V(P_{\omega,\gamma}) \setminus V(S) = X^i$ (using this packing of $P_{\omega,\gamma}$ corresponds to select instance i)
 - for any packing S of triangles of $P_{\omega,\gamma}$ with $|V(S)| = |V(P_{\omega,\gamma})| \omega$ there exists $i \in [\gamma]$ such that $V(P_{\omega,\gamma}) \setminus V(S) \subseteq X^i$
- $|V(P_{\omega,\gamma})| = \mathcal{O}(\omega\gamma).$

Definition of the reduction. We suppose given a family of t instances $F = \{\mathcal{I}_l, l \in [t]\}$ of C_3 -PERFECT-PACKING-T restricted to instances of Theorem 7 where \mathcal{I}_l asks if there is a perfect packing in $\mathcal{T}_l = L_l K_l$. We chose our equivalence relation of the cross-composition such that there exist n and m such that for any $l \in [t]$ we have $|V(L_l)| = n$ and $|V(K_l)| = m$. We can also copy some of the t instances such that t is a square number and $g = \sqrt{t}$ is a power of two. We reorganize our instances into $F = \{\mathcal{I}_{(p,q)} : 1 \leq p, q \leq g\}$ where $\mathcal{I}_{(p,q)}$ asks if there is a perfect packing in $\mathcal{T}_{(p,q)} = L_p K_q$. Remember that according to Theorem 7, all the L_p are equals, and all the K_q are equals. We point out that the idea of using a problem on "bipartite" instances to allow encoding t instances on a "meta" bipartite graph G = (A, B)(with $A = \{A_i, i \in \sqrt{t}\}, B = \{B_i, i \in \sqrt{t}\}$) such that each instance p, q is encoded in the graph induced by $G[A_i \cup B_i]$ comes from [8]. We refer the reader to Figure 3 which represents the different parts of the tournament. We define a tournament $G = LM_G LM_G P_{(n,q)}$, where $L = L_1 \dots L_g$, \overline{M}_G is a set of n vertices of degree (0,0), M_G is a set of (g-1)n vertices of degree (0,0), $\tilde{L} = \tilde{L}_1 \dots \tilde{L}_q$ where each \tilde{L}_p is a set of *n* vertices, and $P_{(n,q)}$ is a copy of the instance selector of Lemma 13. Then, for every $p \in [g]$ we add to G all the possible n^2 backward arcs going from \tilde{L}_p to L_p . Finally, for every distinguished set X^p of $P_{(n,q)}$ (see in Lemma 13), we add all the possible n^2 backward arcs from X^p to \tilde{L}_p .

Now, in a symmetric way we define a tournament $D = KM_D\tilde{K}M_DP'_{(m,g)}$, where $K = K_1 \ldots K_g$, \tilde{M}_D is a set of m vertices of degree (0,0), M_D is a set of (g-1)m vertices of degree (0,0), $\tilde{K} = \tilde{K}_1 \ldots \tilde{K}_g$ where each \tilde{K}_q is a set of m vertices, and $P'_{(m,g)}$ is a copy of the instance selector of Lemma 13. Then, for every $q \in [g]$ we add to G all the m^2 possible backward arcs going from \tilde{K}_p to K_p . For every distinguished set X'^q of $P'_{(m,g)}$ we also add all the possible m^2 backward arcs from X'^q to \tilde{K}_q . Finally, we define $\mathcal{T} = GD$. Let us add some backward arcs from D to G. For any p and q with $1 \leq p, q \leq g$, we add backward arcs from K_q to L_p such that $\mathcal{T}[K_q L_p]$ corresponds to $\mathcal{T}_{(p,q)}$. Notice that this is possible as for any fixed p, all the $\mathcal{T}_{(p,q)}, q \in [g]$ have the same left part L_p , and the same goes for any fixed right part.

Restructuration lemmas. Given a set of triangles S we define $S_{\subseteq P'} = \{t \in S | V(t) \subseteq P'_{(m,g)}\}$, $S_{\subseteq P} = \{t \in S : V(t) \subseteq P_{(n,g)}\}$, $S_{\tilde{M}_D} = \{t \in S : V(t) \text{ intersects } \tilde{K}, \tilde{M}_D \text{ and } P'_{m,g}\}$, $S_{M_D} = \{t \in S : V(t) \text{ intersects } \tilde{K}, M_D \text{ and } \tilde{K}\}$, $S_{\tilde{M}_G} = \{t \in S : V(t) \text{ intersects } \tilde{L}, \tilde{M}_G \text{ and } P_{n,g}\}$, $S_{M_G} = \{t \in S : V(t) \text{ intersects } L, M_G \text{ and } \tilde{L}\}$, $S_D = \{t \in S : V(t) \subseteq V(D)\}$, $S_G = \{t \in S : V(t) \subseteq V(G)\}$, and $S_{GD} = \{t \in S : V(t) \text{ intersects } V(G) \text{ and } V(D)\}$. Notice that S_G, S_{GD}, S_D is a partition of S.

Figure 3 A example of the weak composition. All depicted arcs are backward arcs. Bold arcs represents the n^2 (or m^2) possible arcs between the two groups.

▶ Claim 14. If there exists a perfect packing S of \mathcal{T} , then $|S_{\tilde{M}_D}| = m$ and $|S_{M_D}| = (g-1)m$. This implies that $V(S_{\tilde{M}_D} \cup S_{M_D}) \cap V(\tilde{K}) = V(\tilde{K})$, meaning that the vertices of \tilde{K} are entirely used by $S_{\tilde{M}_D} \cup S_{M_D}$.

Proof. We have $|S_{\tilde{M}_D}| \leq m$ since $|\tilde{M}_D| = m$. We obtain the equality since the vertices of \tilde{M}_D only lie in the span of backward arcs from $P'_{m,g}$ to \tilde{K} , and they are not the head or the tail of a backward arc in \mathcal{T} . Thus, the only way to use vertices of \tilde{M}_D is to create triangles in $S_{\tilde{M}_D}$, implying $|S_{\tilde{M}_D}| \geq m$. Using the same kind of arguments we also get $|S_{M_D}| = (g-1)m$. As $|V(\tilde{K})| = gm$ we get the last part of the claim.

▶ Claim 15. If there exists a perfect packing S of \mathcal{T} , then there exists $q_0 \in [g]$ such that $\tilde{K}_S = \tilde{K}_{q_0}$, where $\tilde{K}_S = \tilde{K} \cap V(S_{\tilde{M}_D})$.

Proof. Let $S_{P'}$ be the triangles of S with at least one vertex in $P'_{m,g}$. As according to Claim 14 vertices of \tilde{K} are entirely used by $S_{\tilde{M}_D} \cup S_{M_D}$, the only way to consume vertices of $P'_{m,g}$ is by creating local triangles in $P'_{m,g}$ or triangles in $S_{\tilde{M}_D}$. In particular, we cannot have a triangle (u, v, w) with $\{u, v\} \subseteq \tilde{K}$ and $w \in P'_{m,g}$, or with $u \in \tilde{K}$ and $\{v, w\} \subseteq P'_{m,g}$. More formally, we get the partition $S_{P'} = S_{\subseteq P'} \cup S_{\tilde{M}_D}$. As S is a perfect packing and uses in particular all vertices of $P'_{m,g}$ we get $|V(S_{P'})| = |V(P'_{m,g})|$, implying $|V(S_{\subseteq P'})| = |V(P'_{m,g})| - m$ by Claim 14. By Lemma 13, this implies that there exists $q_0 \in [g]$ such that $X' \subseteq X^{'q_0}$ where $X' = V(P'_{m,g}) \setminus V(S_{\subseteq P'})$. As X' are the only remaining vertices that can be used by triangles of $S_{\tilde{M}_D}$, we get that the m triangles of $S_{\tilde{M}_D}$ are of the form (u, v, w) with $u \in \tilde{K}_{q_0}$, $v \in \tilde{M}_D$, and $w \in X'$.

▶ Claim 16. If there exists a perfect packing S of \mathcal{T} , then there exists $q_0 \in [g]$ such that $V(S_{P'} \cup S_{\tilde{M}_D} \cup S_{M_D}) = V(D) \setminus K_{q_0}$.

Proof. By Claim 14 we know that $|S_{M_D}| = (g-1)m$. As by Claim 15 there exists $q_0 \in [g]$ such that $\tilde{K}_S = \tilde{K}_{q_0}$, we get that the (g-1)m triangles of S_{M_D} are of the form (u, v, w) with $u \in K \setminus K_{q_0}$, $v \in M_D$, and $w \in \tilde{K} \setminus \tilde{K}_{q_0}$.

▶ Lemma 17 (*). If there exists a perfect packing S of \mathcal{T} , then $V(S_{GD}) \cap V(G) \subseteq V(L)$. Informally, triangles of S_{GD} do not use any vertex of $M_G, \tilde{L}, \tilde{M}_T$ and $P_{n,q}$.

Lemma 17 will allow us to prove Claims 18, 19 and 20 using the same arguments as in the right part (D) of the tournament as all vertices of $M_G, \tilde{L}, \tilde{M}_T$ and $P_{n,g}$ must be used by triangles in S_G .

▶ Claim 18 (*). If there exists a perfect packing S of \mathcal{T} , then $|S_{\tilde{M}_G}| = n$ and $|S_{M_G}| = (g-1)n$. This implies that $V(S_{\tilde{M}_G} \cup S_{M_G}) \cap V(\tilde{L}) = V(\tilde{L})$, meaning that vertices of \tilde{L} are entirely used by $S_{\tilde{M}_G} \cup S_{M_G}$.

14:12 Triangle Packing in (Sparse) Tournaments: Approximation and Kernelization

▶ Claim 19 (*). If there exists a perfect packing S of \mathcal{T} , then there exists $p_0 \in [g]$ such that $\tilde{L}_S = \tilde{L}_{p_0}$, where $\tilde{L}_S = \tilde{L} \cap V(S_{\tilde{M}_G})$.

▶ Claim 20 (*). If there exists a perfect packing S of \mathcal{T} , then there exists $p_0 \in [g]$ such that $V(S_P \cup S_{\tilde{M}_G} \cup S_{M_G}) = V(G) \setminus L_{p_0}$.

We are now ready to state our final claim is now straightforward as according Claim 16 and 20 we can define $S_{(p_0,q_0)} = S \setminus ((S_{P'} \cup S_{\tilde{M}_D} \cup S_{M_D}) \cup (S_P \cup S_{\tilde{M}_G} \cup S_{M_G})).$

▶ Claim 21. If there exists a perfect packing S of \mathcal{T} , there exists $p_0, q_0 \in [g]$ and $S_{(p_0,q_0)} \subseteq S$ such that $V(S_{(p_0,q_0)}) = V(\mathcal{T}_{(p_0,q_0)})$ (or equivalently such that $S_{(p_0,q_0)}$ is a perfect packing of $\mathcal{T}_{(p_0,q_0)}$).

Proof of the weak composition

▶ **Theorem 22.** For any $\epsilon > 0$, C_3 -PERFECT-PACKING-T (parameterized by the total number of vertices N) does not admit a polynomial (generalized) kernelization with size bound $\mathcal{O}(N^{2-\epsilon})$ unless NP \subseteq coNP / Poly.

Proof. Given t instances $\{\mathcal{I}_l\}$ of C_3 -PERFECT-PACKING-T restricted to instances of Theorem 7, we define an instance \mathcal{T} of C_3 -PERFECT-PACKING-T as defined in Section 4. We recall that $g = \sqrt{t}$, and that for any $l \in [t]$, $|V(L_l)| = n$ and $|V(K_l)| = m$. Let $N = |V(\mathcal{T})|$. As $N = |V(P'_{(m,g)})| + m + (g-1)m + 2mg + |V(P_{(n,g)})| + n + (g-1)n + 2ng$ and $|V(P_{(\omega,\gamma)})| = O(\omega\gamma)$ by Lemma 13, we get $N = \mathcal{O}(g(n+m)) = \mathcal{O}(t^{\frac{1}{2+o(1)}} \max(|\mathcal{I}_l|))$. Let us now verify that there exists $l \in [t]$ such that \mathcal{I}_l admits a perfect packing iff \mathcal{T} admits a perfect packing. First assume that there exist $p_0, q_0 \in [g]$ such that $\mathcal{I}_{(p_0,q_0)}$ admits a perfect packing. By Lemma 21, there is a packing $S_{P'}$ of $P'_{(m,g)}$ such that $V(S_{p'}) = V(P'_{(m,g)}) \setminus X'^{q_0}$. We define a set $S_{\tilde{M}_D}$ of m vertex disjoint triangles of the form (u, v, w) with $u \in \tilde{L}_{q_0}, v \in \tilde{M}_D, w \in X'^{q_0}$. Then, we define a set S_{M_D} of (g-1)m vertex disjoint triangles of the form (u, v, w) with $u \in L \setminus L_{q_0}, v \in M_D, w \in \tilde{L} \setminus \tilde{L}_{q_0}$. In the same way we define $S_P, S_{\tilde{M}_G}$ and S_{M_G} . Observe that $V(\mathcal{T}) \setminus ((S_{P'} \cup S_{\tilde{M}_D} \cup S_{M_D}) \cup (S_P \cup S_{\tilde{M}_G} \cup S_{M_G})) = K_{q_0} \cup L_{p_0}$, and thus we can complete our packing into a perfect packing of \mathcal{T} as $\mathcal{I}_{(p_0,q_0)}$ admits a perfect packing. Conversely if there exists a perfect packing S of \mathcal{T} , then by Claim 21 there exists $p_0, q_0 \in [g]$ and $S_{(p_0,q_0)} \subseteq S$ such that $V(S_{(p_0,q_0)}) = V(\mathcal{T}_{(p_0,q_0)})$, implying that $\mathcal{I}_{(p_0,q_0)}$ admits a perfect packing.

▶ Corollary 23. For any $\epsilon > 0$, C_3 -PACKING-T (parameterized by the size k of the solution) does not admit a polynomial kernel with size $\mathcal{O}(k^{2-\epsilon})$ unless NP \subseteq coNP / Poly.

5 Conclusion and open questions

Concerning approximation algorithms for C_3 -PACKING-T restricted to sparse instances, we have provided a $(1 + \frac{6}{c+5})$ -approximation algorithm where c is a lower bound of the minspan of the instance. On the other hand, it is not hard to solve by dynamic programming C_3 -PACKING-T for instances where maxspan is bounded above. Using these two opposite approaches it could be interesting to derive an approximation algorithm for C_3 -PACKING-T T with factor better than 4/3 even for sparse tournaments.

Concerning FPT algorithms, the approach we used for sparse tournament (reducing to the case where $m = \mathcal{O}(k)$ and apply the $\mathcal{O}(m)$ vertices kernel) cannot work for the general case. Indeed, if we were able to sparsify the initial input such that $m' = \mathcal{O}(k^{2-\epsilon})$, applying the kernel in $\mathcal{O}(m')$ would lead to a tournament of total bit size (by encoding the two endpoint

of each arc) $\mathcal{O}(m'\log(m')) = \mathcal{O}(k^{2-\epsilon})$, contradicting Corollary 23. Thus the situation for C_3 -PACKING-T could be as in vertex cover where there exists a kernel in $\mathcal{O}(k)$ vertices, derived from [15], but the resulting instance cannot have $\mathcal{O}(k^{2-\epsilon})$ edges [8]. So it is challenging question to provide a kernel in $\mathcal{O}(k)$ vertices for the general C_3 -PACKING-T problem.

— References

- 1 Faisal N. Abu-Khzam. A quadratic kernel for 3-set packing. In International Conference on Theory and Applications of Models of Computation, pages 81–87. Springer, 2009.
- 2 Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto Marchetti-Spaccamela, and Marco Protasi. Complexity and approximation: Combinatorial optimization problems and their approximability properties. Springer Science & Business Media, 2012.
- 3 Piotr Berman and Marek Karpinski. On some tighter inapproximability results. In International Colloquium on Automata, Languages, and Programming, pages 200–209. Springer, 1999.
- 4 Stephane Bessy, Marin Bougeret, and Jocelyn Thiebaut. Triangle packing in (sparse) tournaments: approximation and kernelization. Technical report, HAL LIRMM, limm-01550313, v1, 2017. URL: https://hal-limm.ccsd.cnrs.fr/limm-01550313.
- 5 Mao-Cheng Cai, Xiaotie Deng, and Wenan Zang. A min-max theorem on feedback vertex sets. *Mathematics of Operations Research*, 27(2):361–371, 2002.
- 6 Pierre Charbit, Stéphan Thomassé, and Anders Yeo. The minimum feedback arc set problem is NP-hard for tournaments. *Combinatorics, Probability and Computing*, 16(01):1–4, 2007.
- 7 Marek Cygan. Improved approximation for 3-dimensional matching via bounded pathwidth local search. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 509–518. IEEE, 2013.
- 8 Holger Dell and Dániel Marx. Kernelization of packing problems. In *Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete algorithms, SODA'12, 2012.*
- 9 Venkatesan Guruswami, C. Pandu Rangan, Maw-Shang Chang, Gerard J. Chang, and C. K. Wong. The vertex-disjoint triangles problem. In *International Workshop on Graph-Theoretic Concepts in Computer Science*, pages 26–37. Springer, 1998.
- 10 Danny Hermelin and Xi Wu. Weak compositions and their applications to polynomial lower bounds for kernelization. In *Proceedings of the twenty-third annual ACM-SIAM symposium* on Discrete Algorithms, pages 104–113. Society for Industrial and Applied Mathematics, 2012.
- 11 Bart M. P. Jansen and Astrid Pieterse. Sparsification upper and lower bounds for graph problems and Not-All-Equal SAT. *Algorithmica*, pages 1–26, 2015.
- 12 Claire Kenyon-Mathieu and Warren Schudy. How to rank with few errors. In *Proceedings* of the thirty-ninth annual ACM symposium on Theory of computing, pages 95–103. ACM, 2007.
- 13 Matthias Mnich, Virginia Vassilevska Williams, and László A. Végh. A 7/3-Approximation for Feedback Vertex Sets in Tournaments. In 24th Annual European Symposium on Algorithms, ESA 2016, pages 67:1–67:14, 2016.
- 14 Hannes Moser. A problem kernelization for graph packing. In International Conference on Current Trends in Theory and Practice of Computer Science, pages 401–412. Springer, 2009.
- 15 George L. Nemhauser and Leslie E. Trotter Jr. Properties of vertex packing and independence system polyhedra. *Mathematical Programming*, 6(1):48–61, 1974.