Triangle Packing in (Sparse) Tournaments: Approximation and Kernelization*

Stéphane Bessy ${ }^{1}$, Marin Bougeret ${ }^{2}$, and Jocelyn Thiebaut ${ }^{3}$
1 Université de Montpellier - CNRS, LIRMM, Montpellier, France bessy@lirmm.fr
2 Université de Montpellier - CNRS, LIRMM, Montpellier, France bougeret@lirmm.fr
3 Université de Montpellier - CNRS, LIRMM, Montpellier, France
thiebaut@lirmm.fr

Abstract

Given a tournament \mathcal{T} and a positive integer k, the C_{3}-Packing-T problem asks if there exists a least k (vertex-)disjoint directed 3 -cycles in \mathcal{T}. This is the dual problem in tournaments of the classical minimal feedback vertex set problem. Surprisingly C_{3}-Packing-T did not receive a lot of attention in the literature. We show that it does not admit a PTAS unless $P=N P$, even if we restrict the considered instances to sparse tournaments, that is tournaments with a feedback arc set (FAS) being a matching. Focusing on sparse tournaments we provide a ($1+\frac{6}{c-1}$) approximation algorithm for sparse tournaments having a linear representation where all the backward arcs have "length" at least c. Concerning kernelization, we show that C_{3}-PackingT admits a kernel with $\mathcal{O}(m)$ vertices, where m is the size of a given feedback arc set. In particular, we derive a $\mathcal{O}(k)$ vertices kernel for C_{3}-Packing-T when restricted to sparse instances. On the negative size, we show that C_{3}-Packing-T does not admit a kernel of (total bit) size $\mathcal{O}\left(k^{2-\epsilon}\right)$ unless NP \subseteq coNP / Poly. The existence of a kernel in $\mathcal{O}(k)$ vertices for C_{3}-Packing-T remains an open question.

1998 ACM Subject Classification G.2.2 [Graph Theory] Graph Algorithms
Keywords and phrases Tournament, triangle packing, feedback arc set, approximation and parameterized algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.14

1 Introduction and related work

Tournament

A tournament \mathcal{T} on n vertices is an orientation of the edges of the complete undirected graph K_{n}. Thus, given a tournament $\mathcal{T}=(V, A)$, where $V=\left\{v_{i}, i \in[n]\right\}$, for each $i, j \in[n]$, either $v_{i} v_{j} \in A$ or $v_{j} v_{i} \in A$. A tournament \mathcal{T} can alternatively be defined by an ordering $\sigma(\mathcal{T})=\left(v_{1}, \ldots, v_{n}\right)$ of its vertices and a set of backward $\operatorname{arcs} \overleftarrow{A}_{\sigma}(\mathcal{T})$ (which will be denoted $\overleftarrow{A}(\mathcal{T})$ as the considered ordering is not ambiguous), where each arc $a \in \overleftarrow{A}(\mathcal{T})$ is of the form $v_{i_{1}} v_{i_{2}}$ with $i_{2}<i_{1}$. Indeed, given $\sigma(\mathcal{T})$ and $\overleftarrow{A}(\mathcal{T})$, we can define $V=\left\{v_{i}, i \in[n]\right\}$ and $A=\overleftarrow{A}(\mathcal{T}) \cup \vec{A}(\mathcal{T})$ where $\vec{A}(\mathcal{T})=\left\{v_{i_{1}} v_{i_{2}}:\left(i_{1}<i_{2}\right)\right.$ and $\left.v_{i_{2}} v_{i_{1}} \notin \overleftarrow{A}(\mathcal{T})\right\}$ is the set of forward arcs of \mathcal{T} in the given ordering $\sigma(\mathcal{T})$. In the following, $(\sigma(\mathcal{T}), \overleftarrow{A}(\mathcal{T}))$ is called a linear

[^0]representation of the tournament \mathcal{T}. For a backward arc $e=v_{j} v_{i}$ of $\sigma(\mathcal{T})$ the span value of e is $j-i-1$. Then minspan $(\sigma(\mathcal{T}))$ (resp. $\max \operatorname{span}(\sigma(\mathcal{T}))$) is simply the minimum (resp. maximum) of the span values of the backward arcs of $\sigma(\mathcal{T})$.
A set $A^{\prime} \subseteq A$ of arcs of \mathcal{T} is a feedback arc set (or FAS) of \mathcal{T} if every directed cycle of \mathcal{T} contains at least one arc of A^{\prime}. It is clear that for any linear representation $(\sigma(\mathcal{T}), \overleftarrow{A}(\mathcal{T}))$ of \mathcal{T} the set $\overleftarrow{A}(\mathcal{T})$ is a FAS of \mathcal{T}. A tournament is sparse if it admits a FAS which is a matching. We denote by C_{3}-Packing- T the problem of packing the maximum number of vertex disjoint triangles in a given tournament, where a triangle is a directed 3-cycle. More formally, an input of C_{3}-PACKING- T is a tournament \mathcal{T}, an output is a set (called a triangle packing) $S=\left\{t_{i}, i \in[|S|]\right\}$ where each t_{i} is a triangle and for any $i \neq j$ we have $V\left(t_{i}\right) \cap V\left(t_{j}\right)=\emptyset$, and the objective is to maximize $|S|$. We denote by $\operatorname{opt}(\mathcal{T})$ the optimal value of \mathcal{T}. We denote by C_{3}-Perfect-Packing-T the decision problem associated to C_{3}-Packing- T where an input \mathcal{T} is positive iff there is a triangle packing S such that $V(S)=V(\mathcal{T})$ (which is called a perfect triangle packing).

Related work

We refer the reader to the extended version of the paper [4] where we recall the definitions of the problems mentioned bellow as well as the standard definitions about parameterized complexity and approximation. A first natural related problem is 3-SEt-PaCKING as we can reduce C_{3}-Packing-T to 3 -SEt-PACKING by creating an hyperedge for each triangle.

Classical complexity / approximation. It is known that C_{3}-PACKING- T is polynomial if the tournament does not contain the three forbidden sub-tournaments described in [5]. From the point of view of approximability, the best approximation algorithm is the $\frac{4}{3}+\epsilon$ approximation of [7] for 3-Set-Packing, implying the same result for K_{3}-Packing and C_{3}-Packing-T. Concerning negative results, it is known [9] that even K_{3}-PACKING is MAX SNP-hard on graphs with maximum degree four. The related "dual" problems FAST and FVST received a lot of attention with for example the NP-hardness and PTAS for FAS in [6] and [12] respectively, and the $\frac{7}{3}$ approximation and inapproximability results for FVST in [13].

Kernelization. We precise that the implicitly considered parameter here is the size of the solution. There is a $\mathcal{O}\left(k^{2}\right)$ vertex kernel for K_{3}-PaCKing in [14], and even a $\mathcal{O}\left(k^{2}\right)$ vertex kernel for 3-Set-Packing in [1], which is obtained by only removing vertices of the ground set. This remark is important as it directly implies a $\mathcal{O}\left(k^{2}\right)$ vertex kernel for C_{3}-PackingT (see Section 4). Let us now turn to negative results. There is a whole line of research dedicated to finding lower bounds on the size of polynomial kernels. The main tool involved in these bounds is the weak composition introduced in [10] (whose definition is recalled in [4]). Weak composition allowed several almost tight lower bounds, with for examples the $\mathcal{O}\left(k^{d-\epsilon}\right)$ for d-Set-Packing and $\mathcal{O}\left(k^{d-4-\epsilon}\right)$ for K_{d}-Packing of [10]. These results where improved in [8] to $\mathcal{O}\left(k^{d-\epsilon}\right)$ for Perfect d-Set-Packing, $\mathcal{O}\left(k^{d-1-\epsilon}\right)$ for K_{d}-Packing, and leading to $\mathcal{O}\left(k^{2-\epsilon}\right)$ for PERFECT K_{3}-PACKING. Notice that negative results for the "perfect" version of problems (where parameter $k=\frac{n}{d}$, where d is the number of vertices of the packed structure) are stronger than for the classical version where k is arbitrary. Kernel lower bound for these "perfect" versions is sometimes referred as sparsification lower bounds.

Our contributions

Our objective is to study the approximability and kernelization of C_{3}-Packing-T. On the approximation side, a natural question is a possible improvement of the $\frac{4}{3}+\epsilon$ approximation implied by 3 -Set-Packing. We show that, unlike FAST, C_{3}-Packing-T does not admit a PTAS unless $\mathrm{P}=\mathrm{NP}$, even if the tournament is sparse. We point out that, surprisingly, we were not able to find any reference establishing a negative result for C_{3}-PaCKING- T , even for the NP-hardness. As these results show that there is not much room for improving the approximation ratio, we focus on sparse tournaments and followed a different approach by looking for a condition that would allow ratio arbitrarily close to 1 . In that spirit, we provide a $\left(1+\frac{6}{c-1}\right)$ approximation algorithm for sparse tournaments having a linear representation with minspan at least c. Concerning kernelization, we complete the panorama of sparsification lower bounds of [11] by proving that C_{3}-Perfect-Packing-T does not admit a kernel of (total bit) size $\mathcal{O}\left(n^{2-\epsilon}\right)$ unless NP \subseteq coNP / Poly. This implies that C_{3}-Packing-T does not admit a kernel of (total bit) size $\mathcal{O}\left(k^{2-\epsilon}\right)$ unless NP \subseteq coNP / Poly. We also prove that C_{3}-Packing-T admits a kernel of $\mathcal{O}(m)$ vertices, where m is the size of a given FAS of the instance, and that C_{3}-Packing-T restricted to sparse instances has a kernel in $\mathcal{O}(k)$ vertices (and so of total size bit $\mathcal{O}(k \log (k)))$. The existence of a kernel in $\mathcal{O}(k)$ vertices for the general C_{3}-PACKING-T remains our main open question.

2 Specific notations and observations

Given a linear representation $(\sigma(\mathcal{T}), \overleftarrow{A}(\mathcal{T}))$ of a tournament \mathcal{T}, a triangle t in \mathcal{T} is a triple $t=\left(v_{i_{1}}, v_{i_{2}}, v_{i_{3}}\right)$ with $i_{l}<i_{l+1}$ such that either $v_{i_{3}} v_{i_{1}} \in \overleftarrow{A}(\mathcal{T}), v_{i_{3}} v_{i_{2}} \notin \overleftarrow{A}(\mathcal{T})$ and $v_{i_{2}} v_{i_{1}} \notin \overleftarrow{A}(\mathcal{T})$ (in this case we call t a triangle with backward arc $v_{i_{3}} v_{i_{1}}$), or $v_{i_{3}} v_{i_{1}} \notin \overleftarrow{A}(\mathcal{T})$, $v_{i_{3}} v_{i_{2}} \in \overleftarrow{A}(\mathcal{T})$ and $v_{i_{2}} v_{i_{1}} \in \overleftarrow{A}(\mathcal{T})$ (in this case we call t a triangle with two backward arcs $v_{i_{3}} v_{i_{2}}$ and $\left.v_{i_{2}} v_{i_{1}}\right)$. Given two tournaments $\mathcal{T}_{1}, \mathcal{T}_{2}$ defined by $\sigma\left(\mathcal{T}_{l}\right)$ and $\overleftarrow{A}\left(\mathcal{T}_{l}\right)$ we denote by $\mathcal{T}=\mathcal{T}_{1} \mathcal{T}_{2}$ the tournament called the concatenation of \mathcal{T}_{1} and \mathcal{T}_{2}, where $\sigma(\mathcal{T})=\sigma\left(\mathcal{T}_{1}\right) \sigma\left(\mathcal{T}_{2}\right)$ is the concatenation of the two sequences, and $\overleftarrow{A}(\mathcal{T})=\overleftarrow{A}\left(\mathcal{T}_{1}\right) \cup \overleftarrow{A}\left(\mathcal{T}_{2}\right)$. Given a tournament \mathcal{T} and a subset of vertices X, we denote by $\mathcal{T} \backslash X$ the tournament $\mathcal{T}[V(\mathcal{T}) \backslash X]$ induced by vertices $V(\mathcal{T}) \backslash X$, and we call this operation removing X from \mathcal{T}. Given an arc $a=u v$ we define $h(a)=v$ as the head of a and $t(a)=u$ as the tail of a. Given a linear representation $(V(\mathcal{T}), \overleftarrow{A}(\mathcal{T}))$ and an $\operatorname{arc} a \in \overleftarrow{A}(\mathcal{T})$, we define $s(a)=\{v: h(a)<v<t(a)\}$ as the span of a. Notice that the span value of a is then exactly $|s(a)|$. Given a linear representation $(V(\mathcal{T}), \overleftarrow{A}(\mathcal{T}))$ and a vertex $v \in V(\mathcal{T})$, we define the degree of v by $d(v)=(a, b)$, where $a=|\{v u \in \overleftarrow{A}(\mathcal{T}): u<v\}|$ is called the left degree of v and $b=|\{u v \in \overleftarrow{A}(\mathcal{T}): u>v\}|$ is called the right degree of v. We also define $V_{(a, b)}=\{v \in V(\mathcal{T}) \mid d(v)=(a, b)\}$. Given a set of pairwise distinct pairs D, we denote by C_{3}-PACKING- ${ }^{D}$ the problem C_{3}-PackingT restricted to tournaments such that there exists a linear representation where $d(v) \in D$ for all v. Notice that when $D_{M}=\{(0,1),(1,0),(0,0)\}$, instances of C_{3}-PACKING-T ${ }^{D_{M}}$ are the sparse tournaments. Finally let us point out that it is easy to decide in polynomial time if a tournament is sparse or not, and if so, to give a linear representation whose FAS is a matching. The corresponding algorithm is detailed in [4]. Thus, in the following, when considering a sparse tournament we will assume that a linear ordering of it where backward arcs form a matching is also given. Finally, due to space limitations, the proofs of the results marked with ' (\star) ' have been removed and are available in [4].

Figure 1 Example of a variable gadget L_{i}.

3 Approximation for sparse tournaments

3.1 APX-hardness for sparse tournaments

In this subsection we prove that C_{3}-PACKING- $T^{D_{M}}$ is APX-hard by providing a L-reduction (see Definition in [4]) from Max 2-SAT(3), which is known to be APX-hard [2, 3]. Recall that in the Max 2-SAT(3) problem each clause contains exactly 2 variables and each variable appears in at most 3 clauses (and at most twice positively and once negatively).

Definition of the reduction. Let \mathcal{F} be an instance of MAx 2-SAT(3). In the following, we will denote by n the number of variables in \mathcal{F} and m the number of clauses. Let $\left\{x_{i}, 1 \in[n]\right\}$ be the set of variables of \mathcal{F} and $\left\{C_{j}, j \in[m]\right\}$ its set of clauses.

We now define a reduction f which maps an instance \mathcal{F} of Max 2 -SAT(3) to an instance \mathcal{T} of C_{3}-Packing- $\mathrm{T}^{D_{M}}$. For each variable x_{i} with $i \in[n]$, we create a tournament L_{i} as follows and we call it variable gadget. We refer the reader to Figure 1 where an example of variable gadget is depicted. Let $\sigma\left(L_{i}\right)=\left(X_{i}, X_{i}^{\prime}, \bar{X}_{i},{\overline{X_{i}}}^{\prime},\left\{\beta_{i}\right\},\left\{\beta_{i}^{\prime}\right\}, A_{i}, B_{i},\left\{\alpha_{i}\right\}, A_{i}^{\prime}, B_{i}^{\prime}\right)$. We define $C=\left\{X_{i}, X_{i}^{\prime}, \overline{X_{i}}, \bar{X}_{i}^{\prime}, A_{i}, B_{i}, A_{i}^{\prime}, B_{i}^{\prime}\right\}$. All sets of C have size 4 . We denote $X_{i}=$ $\left(x_{i}^{1}, x_{i}^{2}, x_{i}^{3}, x_{i}^{4}\right)$, and we extend the notation in a straightforward manner to the other others sets of C. Let us now define $\overleftarrow{A}\left(L_{i}\right)$. For each set of C, we add a backward arc whose head is the first element and the tail is the last element (for example for X_{i} we add the arc $\left.x_{i}^{4} x_{i}^{1}\right)$. Then, we add to $\overleftarrow{A}\left(L_{i}\right)$ the set $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}$ where $e_{1}=x_{i}^{3} a_{i}^{3}, e_{2}=x_{i}^{\prime 3} a_{i}^{\prime 3}, e_{3}=\overline{x_{i}^{3}} b_{i}^{3}$ $e_{4}=\overline{x_{i}^{\prime 3}} b_{i}^{\prime 3}$ and the set $\left\{m_{1}, m_{2}\right\}$ where $m_{1}=a_{i}^{\prime 2} a_{i}^{2}, m_{2}=b_{i}^{\prime 2} b_{i}^{2}$ called the two medium arcs of the variable gadget. This completes the description of tournament L_{i}. Let $L=L_{1} \ldots L_{n}$ be the concatenation of the L_{i}.

For each clause C_{j} with $j \in[1, m]$, we create a tournament K_{j} with ordering $\sigma\left(K_{i}\right)=$ $\left(\theta_{j}, d_{j}^{1}, c_{j}^{1}, c_{j}^{2}, d_{j}^{2}\right)$ and $\overleftarrow{A}\left(K_{i}\right)=\left\{d_{j}^{2} d_{j}^{1}\right\}$. We also define $K=K_{1} \ldots K_{m}$. Let us now define $\mathcal{T}=L K$. We add to $\overleftarrow{A}(\mathcal{T})$ the following backward arcs from $V(K)$ to $V(L)$. If $C_{j}=l_{i_{1}} \underline{\vee l_{i_{2}}}$ is a clause in \mathcal{F} then we add the $\operatorname{arcs} c_{j}^{1} v_{i_{1}}, c_{j}^{2} v_{i_{2}}$ where $v_{i_{c}}$ is the vertex in $\left\{x_{i_{c}}^{2}, x_{i_{c}}^{\prime 2}, \overline{x_{i_{c}}^{2}}\right\}$ corresponding to $l_{i_{c}}$: if $l_{i_{c}}$ is a positive occurrence of variable i_{c} we chose $v_{i_{c}} \in\left\{x_{i_{c}}^{2}, x_{i_{c}}^{\prime 2}\right\}$, otherwise we chose $v_{i_{c}}=\overline{x_{i_{c}}^{2}}$. Moreover, we chose vertices $v_{i_{c}}$ in such a way that for any $i \in[n]$, for each $v \in\left\{x_{i}^{2}, x_{i}^{\prime 2}, \overline{x_{i}^{2}}\right\}$ there exists a unique $\operatorname{arc} a \in \overleftarrow{A}(\mathcal{T})$ such that $h(a)=v$. This is always possible as each variable has at most two positive occurrences and one negative occurrence. Thus, x_{i}^{2} represent the first positive occurrence of variable i, and $x_{i}^{\prime 2}$ the second one. We refer the reader to Figure 2 where an example of the connection between variable and clause gadget is depicted.

Notice that vertices of $\overline{X_{i}^{\prime}}$ are never linked to the clauses gadget. However, we need this set to keep the variable gadget symmetric so that setting x_{i} to true or false leads to the same number of triangles inside L_{i}. This completes the description of \mathcal{T}. Notice that the degree of any vertex is in $\{(0,1),(1,0),(0,0)\}$, and thus \mathcal{T} is an instance of C_{3}-PACKING- $\mathrm{T}^{D_{M}}$.

Let us now distinguish three different types of triangles in \mathcal{T}. A triangle $t=\left(v_{1}, v_{2}, v_{3}\right)$ of \mathcal{T} is called an outer triangle iff $\exists j \in[m]$ such that $v_{2}=\theta_{j}$ and $v_{3}=c_{j}^{l}$ (implying that $v_{1} \in V(L)$),

Figure 2 Example showing how a clause gadget is attached to variable gadgets.
variable inner iff $\exists i \in[n]$ such that $V(t) \subseteq V\left(L_{i}\right)$, and clause inner iff $\exists j \in[m]$ such that $V(t) \subseteq V\left(K_{j}\right)$. Notice that a triangle $t=\left(v_{1}, v_{2}, v_{3}\right)$ of \mathcal{T} which is neither outer, variable or clause inner has necessarily $v_{3}=c_{j}^{l}$ for some j, and $v_{2} \neq \theta_{j}\left(v_{2}\right.$ could be in $V(L)$ or $\left.V(K)\right)$. In the following definition, for any $Y \in C$ (where $\left.C=\left\{X_{i}, X_{i}^{\prime}, \overline{X_{i}},{\overline{X_{i}}}^{\prime}, A_{i}, B_{i}, A_{i}^{\prime}, B_{i}^{\prime}\right\}\right)$ with $Y=\left(y^{1}, y^{2}, y^{3}, y^{4}\right)$, we define $t_{Y}^{2}=\left(y^{1}, y^{2}, y^{4}\right)$ and $t_{Y}^{3}=\left(y^{1}, y^{3}, y^{4}\right)$. For example, $t_{X_{i}^{\prime}}^{2}=\left(x_{i}^{\prime}{ }^{1}, x_{i}^{\prime 2}, x_{i}^{\prime 4}\right)$. For any $i \in[n]$, we define P_{i} and $\overline{P_{i}}$, two sets of vertex disjoint variable inner triangles of $V\left(L_{i}\right)$, by:

- $P_{i}=\left\{t_{X_{i}}^{3}, t_{X_{i}^{\prime}}^{3}, t_{\overline{X_{i}}}^{2}, t_{\overline{X_{i}^{\prime}}}^{2}, t_{A_{i}}^{3}, t_{B_{i}}^{2}, t_{A_{i}^{\prime}}^{3}, t_{B_{i}^{\prime}}^{2},\left(h\left(e_{3}\right), \beta_{i}, t\left(e_{3}\right)\right),\left(h\left(e_{4}\right), \beta_{i}^{\prime}, t\left(e_{4}\right)\right),\left(h\left(m_{1}\right), \alpha_{i}, t\left(m_{1}\right)\right)\right\}$
- $\overline{P_{i}}=\left\{t_{X_{i}}^{2}, t_{X_{i}^{\prime}}^{2}, t_{\overline{X_{i}}}^{3}, t_{\overline{X_{i}^{\prime}}}^{3}, t_{A_{i}}^{2}, t_{B_{i}}^{3}, t_{A_{i}^{\prime}}^{2}, t_{B_{i}^{\prime}}^{3},\left(h\left(e_{1}\right), \beta_{i}, t\left(e_{1}\right)\right),\left(h\left(e_{2}\right), \beta_{i}^{\prime}, t\left(e_{2}\right)\right),\left(h\left(m_{2}\right), \alpha_{i}, t\left(m_{2}\right)\right)\right\}$

Notice that P_{i} (resp. $\overline{P_{i}}$) uses all vertices of L_{i} except $\left\{x_{i}^{2}, x_{i}^{\prime 2}\right\}$ (resp. $\left\{\overline{x_{i}^{2}}, \overline{x_{i}^{\prime 2}}\right\}$). For any $j \in[m]$, and $x \in[2]$ we define the set of clause inner triangle of K_{j}, that is $Q_{j}^{x}=\left\{\left(d_{j}^{1}, c_{j}^{x}, d_{j}^{2}\right)\right\}$.

Informally, setting variable x_{i} to true corresponds to create the 11 triangles of P_{i} in L_{i} (as leaving vertices $\left\{x_{i}^{2}, x_{i}^{2^{\prime}}\right\}$ available allows to create outer triangles corresponding to satisfied clauses), and setting it to false corresponds to create the 11 triangles of $\overline{P_{i}}$. Satisfying a clause j using its $x^{t h}$ literal (represented by a vertex $v \in V(L)$) corresponds to create triangle in Q_{j}^{3-x} as it leaves c_{j}^{x} available to create the triangle $\left(v, \theta_{j}, c_{j}^{x}\right)$. Our final objective (in Lemma 4) is to prove that satisfying k clauses is equivalent to find $11 n+m+k$ vertex disjoint triangles.

Restructuration lemmas. Given a solution S, let $I_{i}^{L}=\left\{t \in S: V(t) \subseteq V\left(L_{i}\right)\right\}, I_{j}^{K}=\{t \in$ $\left.S: V(t) \subseteq V\left(K_{j}\right)\right\}, I^{L}=\cup_{i \in[n]} I_{i}^{L}$ be the set of variable inner triangles of $S, I^{K}=\cup_{j \in[m]} I_{j}^{K}$ be the set of clause inner triangles of S, and $O=\{t \in S t$ is an outer triangle $\}$ be the set of outer triangles of S. Notice that a priori I^{L}, I^{K}, O does not necessarily form a partition of S. However, we will show in the next lemmas how to restructure S such that I^{L}, I^{K}, O becomes a partition.

- Lemma $1(\star)$. For any S we can compute in polynomial time a solution $S^{\prime}=\left\{t_{l}^{\prime}, l \in[k]\right\}$ such that $\left|S^{\prime}\right| \geq|S|$ and for all $j \in[m]$ there exists $x \in[2]$ such that $I_{j}^{\prime}{ }^{K}=Q_{j}^{x}$ and
- either S^{\prime} does not use any other vertex of $K_{j}\left(V\left(S^{\prime}\right) \cap V\left(K_{j}\right)=V\left(Q_{j}^{x}\right)\right)$
- either S^{\prime} contains an outer triangle $t_{l}^{\prime}=\left(v, \theta_{j}, c_{j}^{3-x}\right)$ with $v \in V(L)$ (implying $V\left(S^{\prime}\right) \cap$ $\left.V\left(K_{j}\right)=V\left(K_{j}\right)\right)$
- Corollary 2. For any S we can compute in polynomial time a solution S^{\prime} such that $\left|S^{\prime}\right| \geq|S|$, and S^{\prime} only contains outer, variable inner, and clause inner triangles. Indeed, in the solution S^{\prime} of Lemma 1, given any $t \in S^{\prime}$, either $V(t)$ intersects $V\left(K_{j}\right)$ for some j and then t is an outer or a clause inner triangle, or $V(t) \subseteq V\left(L_{i}\right)$ for $i \in[n]$ as there is no backward arc $u v$ with $u \in V\left(L_{i_{1}}\right)$ and $v \in V\left(L_{i_{2}}\right)$ with $i_{1} \neq i_{2}$.
- Lemma 3 (\star). For any S we can compute in polynomial time a solution S^{\prime} such that $\left|S^{\prime}\right| \geq|S|, S^{\prime}$ satisfies Lemma 1, and for every $i \in[n], I_{i}^{\prime L}=P_{i}$ or $I_{i}^{\prime}{ }^{L}=\overline{P_{i}}$.

Proof of the L-reduction. We are now ready to prove the main lemma (recall that f is the reduction from Max 2-SAT(3) to C_{3}-Packing- $\mathrm{T}^{D_{M}}$ described in Section 3.1), and also the main theorem of the section.

- Lemma 4. Let \mathcal{F} be an instance of Max 2-SAT(3). For any k, there exists an assignment a of \mathcal{F} satisfying at least k clauses if and only if there exists a solution S of $f(\mathcal{F})$ with $|S| \geq 11 n+m+k$, where n and m are respectively is the number of variables and clauses in \mathcal{F}. Moreover, in the \Leftarrow direction, assignment a can be computed from S in polynomial time.

Proof. For any $i \in[n]$, let $A_{i}=P_{i}$ if x_{i} is set to true in a, and $A_{i}=\overline{P_{i}}$ otherwise. We first add to S the set $\cup_{i \in[n]} A_{i}$. Then, let $\left\{C_{j_{l}}, l \in[k]\right\}$ be k clauses satisfied by a. For any $l \in[k]$, let i_{l} be the index of a literal satisfying $C_{j_{l}}$, let $x \in[2]$ such that $c_{j_{l}}^{x}$ corresponds to this literal, and let $Z_{l}=\left\{x_{i_{l}}^{2}, x_{i_{l}}^{\prime 2}\right\}$ if literal i_{l} is positive, and $Z_{l}=\left\{\overline{x_{i_{l}}^{2}}\right\}$ otherwise. For any $j \in[m]$, if $j=i_{l}$ for some l (meaning that j corresponds to a satisfied clause), we add to S the triangle in Q_{j}^{3-x}, and otherwise we arbitrarily add the triangle Q_{j}^{1}. Finally, for any $l \in[k]$ we add to S triangle $t_{l}=\left(y_{l}, \theta_{j_{l}}, c_{j_{l}}^{x}\right)$ where $y_{l} \in Z_{l}$ is such that y_{l} is not already used in another triangle. Notice that such an y_{l} always exists as triangles of $A_{i}, i \in[n]$ do not intersect Z_{l} (by definition of the A_{i}), and as there are at most two clauses that are true due to positive literal, and one clause that is true due to a negative literal. Thus, S has $11 n+m+k$ vertex disjoint triangles.

Conversely, let S a solution of $f(\mathcal{F})$ with $|S| \geq 11 n+m+k$. By Lemma 3 we can construct in polynomial time a solution S^{\prime} from S such that $\left|S^{\prime}\right| \geq|S|, S^{\prime}$ only contains outer, variable or clause inner triangles, for each $j \in[m]$ there exists $x \in[2]$ such that $I_{j}^{\prime} K=Q_{j}^{x}$, and for each $i \in[n], I_{i}^{\prime} L=P_{i}$ or $I_{i}^{\prime} L=\overline{P_{i}}$. This implies that the $k^{\prime} \geq k$ remaining triangles must be outer triangles. Let $\left\{t_{l}^{\prime}, l \in\left[k^{\prime}\right]\right\}$ be these k^{\prime} outer triangles with $t_{l}^{\prime}=\left(y_{l}, \theta_{j_{l}}, c_{j_{l}}^{x_{l}}\right)$ Let us define the following assignation a : for each $i \in[n]$, we set x_{i} to true if $I_{i}^{\prime} L=P_{i}$, and false otherwise. This implies that a satisfies at least clauses $\left\{C_{j_{l}}, l \in\left[k^{\prime}\right]\right\}$.

- Theorem 5. C_{3}-Packing- $\mathrm{T}^{D_{M}}$ is $A P X$-hard, and thus does not admit a PTAS unless $P=N P$.

Proof. Let us check that Lemma 4 implies a L-reduction (whose definition is recalled in [4]). Let $O P T_{1}$ (resp. $O P T_{2}$) be the optimal value of \mathcal{F} (resp. $f(\mathcal{F})$). Notice that Lemma 4 implies that $O P T_{2}=O P T_{1}+11 n+m$. It is known that $O P T_{1} \geq \frac{3}{4} m$ (where m is the number of clauses of \mathcal{F}). As $n \leq m$ (each variable has at least one positive and one negative occurrence), we get $O P T_{2}=O P T_{1}+11 n+m \leq \alpha O P T_{1}$ for an appropriate constant α, and thus point (a) of the definition is verified. Then, given a solution S^{\prime} of $f(\mathcal{F})$, according to Lemma 4 we can construct in polynomial time an assignment a satisfying $c(a)$ clauses with $c(a) \geq S^{\prime}-11 n-m$. Thus, the inequality (b) of the Definition of a L-reduction with $\beta=1$ becomes $O P T_{1}-c(a) \leq O P T_{2}-S^{\prime}=O P T_{1}+11 n+m-S^{\prime}$, which is true.

Reduction of Theorem 5 does not imply the NP-hardness of C_{3}-Perfect-Packing-T as there remain some unused vertices. However, it is straightforward to adapt the reduction by adding backward arcs whose head (resp. tail) are before (resp. after) \mathcal{T} to consume the remaining vertices. This leads to the following result.

- Theorem $6(\star) . C_{3}$-Perfect-Packing- $\mathrm{T}^{D_{M}}$ is NP-hard.

To establish the kernel lower bound of Section 4, we also need the NP-hardness of C_{3} -Perfect-Packing-T where instances have a slightly simpler structure (to the price of losing the property that there exists a FAS which is a matching).

- Theorem $7(\star) . C_{3}$-Perfect-Packing-T remains NP-hard even restricted to tournaments \mathcal{T} admitting the following linear ordering.
- $\mathcal{T}=L K$ where L and K are two tournaments
- tournaments L and K are "fixed":
- $K=K_{1} \ldots K_{m}$ for some m, where for each $j \in[m]$ we have $V\left(K_{j}\right)=\left(\theta_{j}, c_{j}\right)$
= $L=R_{1} L_{1} \ldots L_{n} R_{2}$, where each L_{i} has is a copy of the variable gadget of Section 3.1, $R_{i}=\left\{r_{i}^{l}, l \in\left[n^{\prime}\right]\right\}$ where $n^{\prime}=2 n-m$, and in addition \overleftarrow{L} also contains $R=\left\{\left(r_{2}^{l} r_{1}^{l}\right), l \in\right.$ $\left.\left[n^{\prime}\right]\right\}$ which are called the dummy arcs.

$3.2\left(1+\frac{6}{c-1}\right)$-approximation when backward arcs have large minspan

Given a set of pairwise distinct pairs D and an integer c, we denote by C_{3}-Packing- $\mathrm{T}_{\geq c}^{D}$ the problem C_{3}-Packing- ${ }^{D}$ restricted to tournaments such that there exists a linear representation of minspan at least c and where $d(v) \in D$ for all v. In all this section we consider an instance \mathcal{T} of C_{3}-PACKING- $\mathrm{T}_{\geq c}^{D_{M}}$ with a given linear ordering $(V(\mathcal{T}), \overleftarrow{A}(\mathcal{T}))$ of minspan at least c and whose degrees belong to D_{M}. The motivation for studying the approximability of this special case comes from the situation of MAX-SAT(c) where the approximability becomes easier as c grows, as the derandomized uniform assignment provides a $\frac{2^{c}}{2^{c}-1}$ approximation algorithm. Somehow, one could claim that MAX-SAT(c) becomes easy to approximate for large c as there are many ways to satisfy a given clause. As the same intuition applies for tournaments admitting an ordering with large minspan (as there are $c-1$ different ways to use a given backward in a triangle), our objective was to find a polynomial approximation algorithm whose ratio tends to 1 when c increases.

Let us now define algorithm Φ. We define a bipartite graph $G=\left(V_{1}, V_{2}, E\right)$ with $V_{1}=\left\{v_{a}^{1}: a \in \overleftarrow{A}(\mathcal{T})\right\}$ and $V_{2}=\left\{v_{l}^{2}: v_{l} \in V_{(0,0)}\right\}$. Thus to each backward arc we associate a vertex in V_{1} and to each vertex v_{l} with $d\left(v_{l}\right)=(0,0)$ we associate a vertex in V_{2}. Then $\left\{v_{a}^{1}, v_{l}^{2}\right\} \in E$ iff $\left(h(a), v_{l}, t(a)\right)$ is a triangle in \mathcal{T}.

In phase $1, \Phi$ computes a maximum matching $M=\left\{e_{l}, l \in[|M|]\right\}$ in G. For every $e_{l}=\left\{v_{i j}^{1}, v_{l}^{2}\right\} \in M$ create a triangle $t_{l}^{1}=\left(v_{j}, v_{l}, v_{i}\right)$. Let $S^{1}=\left\{t_{l}^{1}, l \in[|M|]\right\}$. Notice that triangles of S^{1} are vertex disjoint. Let us now turn to phase 2. Let \mathcal{T}^{2} be the tournament \mathcal{T} where we removed all vertices $V\left(S^{1}\right)$. Let $\left(V\left(\mathcal{T}^{2}\right), \overleftarrow{A}\left(\mathcal{T}^{2}\right)\right)$ be the linear ordering of \mathcal{T}^{2} obtained by removing $V\left(S^{1}\right)$ in $(V(\mathcal{T}), \overleftarrow{A}(\mathcal{T}))$. We say that three distinct backward edges $\left\{a_{1}, a_{2}, a_{3}\right\} \subseteq \overleftarrow{A}\left(\mathcal{T}^{2}\right)$ can be packed into triangles t_{1} and t_{2} iff $V\left(\left\{t_{1}, t_{2}\right\}\right)=V\left(\left\{a_{1}, a_{2}, a_{3}\right\}\right)$ and the t_{i} are vertex disjoint. For example, if $h\left(a_{1}\right)<h\left(a_{2}\right)<t\left(a_{1}\right)<h\left(a_{3}\right)<t\left(a_{2}\right)<t\left(a_{3}\right)$, then $\left\{a_{1}, a_{2}, a_{3}\right\}$ can be packed into $\left(h\left(a_{1}\right), h\left(a_{2}\right), t\left(a_{1}\right)\right)$ and $\left(h\left(a_{3}\right), t\left(a_{2}\right), t\left(a_{3}\right)\right)$ (recall that when $\overleftarrow{A}(\mathcal{T})$ form a matching, (u, v, w) is triangle iff $w u \in \overleftarrow{A}(\mathcal{T})$ and $u<v<w)$, and if $h\left(a_{1}\right)<h\left(a_{2}\right)<t\left(a_{2}\right)<h\left(a_{3}\right)<t\left(a_{3}\right)<t\left(a_{1}\right)$, then $\left\{a_{1}, a_{2}, a_{3}\right\}$ cannot be packed into two triangles. In phase 2, while it is possible, Φ finds a triplet of arcs of $Y \subseteq \overleftarrow{A}\left(\mathcal{T}^{2}\right)$ that can be packed into triangles, create the two corresponding triangles, and remove $V(Y)$. Let S^{2} be the triangle created in phase 2 and let $S=S^{1} \cup S^{2}$.

- Observation 8. For any $a \in \overleftarrow{A}(\mathcal{T})$, either $V(a) \subseteq V(S)$ or $V(a) \cap V(S)=\emptyset$. Equivalently, no backward arc has one endpoint in $V(S)$ and the other outside $V(S)$.

According to Observation 8, we can partition $\overleftarrow{A}(\mathcal{T})=\overleftarrow{A}_{0} \cup \overleftarrow{A}_{1} \cup \overleftarrow{A}_{2}$, where for $i \in\{1,2\}$, $\overleftarrow{A}^{i}=\left\{a \in \overleftarrow{A}(\mathcal{T}): V(a) \subseteq V\left(S^{i}\right)\right.$ is the set of arcs used in phase i, and $\overleftarrow{A}_{0}=$ def $\left\{b_{i}, i \in[x]\right\}$ are the remaining unused arcs. Let $\overleftarrow{A}_{\Phi}=\overleftarrow{A}_{1} \cup \overleftarrow{A}_{2}, m_{i}=\left|\overleftarrow{A}_{i}\right|, m=m_{0}+m_{1}+m_{2}$ and $m_{\Phi}=m_{1}+m_{2}$ the number of arcs (entirely) consumed by Φ. To prove the $1+\frac{6}{c-1}$ desired approximation ratio, we will first prove in Lemma 9 that Φ uses at most all the arcs
$\left(m_{A} \geq(1-\epsilon(c)) m\right)$, and in Theorem 10 that the number of triangles made with these arcs is "optimal". Notice that the latter condition is mandatory as if Φ used its m_{Φ} arcs to only create $\frac{2}{3}\left(m_{\Phi}\right)$ triangles in phase 2 instead of creating $m^{\prime} \approx m_{\Phi}$ triangle with m^{\prime} backward arcs and m^{\prime} vertices of degree $(0,0)$, we would have a $\frac{3}{2}$ approximation ratio.

- Lemma $9(\star)$. For any $c \geq 2, m_{\Phi} \geq\left(1-\frac{6}{c+5}\right) m$
- Theorem 10. For any $c \geq 2$, Φ is a polynomial $\left(1+\frac{6}{c-1}\right)$ approximation algorithm for C_{3}-Packing-T ${ }_{\geq c}^{D_{M}}$.
Proof. Let $O P T$ be an optimal solution. Let us define $O P T_{i} \subseteq O P T$ and $\overleftarrow{A_{i}^{*}} \subseteq \overleftarrow{A}(\mathcal{T})$ as follows. Let $t=(u, v, w) \in O P T$. As the FAS of the instance is a matching, we know that $w u \in \overleftarrow{A}(\mathcal{T})$ as we cannot have a triangle with two backward arcs. If $d(v)=(0,0)$ then we add t to $O P T_{1}$ and $w u$ to $\overleftarrow{A}_{1}^{*}$. Otherwise, let v^{\prime} be the other endpoint of the unique arc a containing v. If $v^{\prime} \notin V(O P T)$, then we add t to $O P T_{3}$ and $\{w u, a\}$ to $\overleftarrow{A}_{3}^{*}$. Otherwise, let $t^{\prime} \in O P T$ such that $v^{\prime} \in V\left(t^{\prime}\right)$. As the FAS of the instance is a matching we know that v^{\prime} is the middle point of t^{\prime}, or more formally that $t^{\prime}=\left(u^{\prime}, v^{\prime}, w^{\prime}\right)$ with $u^{\prime} w^{\prime} \in \overleftarrow{A}(\mathcal{T})$. We add $\left\{t, t^{\prime}\right\}$ to $O P T_{2}$ and $\left\{w u, a, w^{\prime} u^{\prime}\right\}$ to $\overleftarrow{A}_{2}^{*}$. Notice that the $O P T_{i}$ form a partition of $O P T$, and that the $\overleftarrow{A}_{i}^{*}$ have pairwise empty intersection, implying $\left|\overleftarrow{A}_{1}^{*}\right|+\left|\overleftarrow{A}_{2}^{*}\right|+\left|\overleftarrow{A}_{3}^{*}\right| \leq m$. Notice also that as triangles of $O P T_{1}$ correspond to a matching of size $\left|O P T_{1}\right|$ in the bipartite graph defined in phase 1 of algorithm Φ, we have $\left|O P T_{1}\right|=\left|\overleftarrow{A}_{1}^{*}\right| \leq\left|\overleftarrow{A}_{1}\right|$.

Putting pieces together we get (recall that S is the solution computed by Φ) $|O P T|=$ $\left|O P T_{1}\right|+\left|O P T_{2}\right|+\left|O P T_{3}\right|=\left|\overleftarrow{A}_{1}^{*}\right|+\frac{2}{3}\left|\overleftarrow{A}_{2}^{*}\right|+\frac{1}{2}\left|\overleftarrow{A}_{3}^{*}\right| \leq\left|\overleftarrow{A}_{1}^{*}\right|+\frac{2}{3}\left(\left|\overleftarrow{A}_{2}^{*}\right|+\left|\overleftarrow{A_{3}^{*}}\right|\right) \leq\left|\overleftarrow{A_{1}^{*}}\right|+\frac{2}{3}(m-$ $\left.\left|\overleftarrow{A}_{1}^{*}\right|\right) \leq \frac{1}{3}\left|\overleftarrow{A}_{1}\right|+\frac{2}{3} m$ and $|S|=\left|S^{1}\right|+\left|S^{2}\right|=\left|\overleftarrow{A}_{1}\right|+\frac{2}{3}\left|\overleftarrow{A}_{2}\right| \geq\left|\overleftarrow{A}_{1}\right|+\frac{2}{3}\left(\left(1-\frac{6}{c+5}\right) m-\left|\overleftarrow{A}_{1}\right|\right)=$ $\frac{1}{3}\left|\overleftarrow{A}_{1}\right|+\frac{2}{3}\left(1-\frac{6}{c+5}\right) m$ which implies the desired ratio.

4 Kernelization

In all this section we consider the decision problem C_{3}-PACKING- T parameterized by the size of the solution. Thus, an input is a pair $I=(\mathcal{T}, k)$ and we say that I is positive iff there exists a set of k vertex disjoint triangles in \mathcal{T}.

4.1 Positive results for sparse instances

Observe first that the kernel in $\mathcal{O}\left(k^{2}\right)$ vertices for 3 -Set Packing of [1] directly implies a kernel in $\mathcal{O}\left(k^{2}\right)$ vertices for C_{3}-Packing-T. Indeed, given an instance $(\mathcal{T}=(V, A), k)$ of C_{3}-Packing-T, we create an instance $\left(I^{\prime}=(V, C), k\right)$ of 3 -Set Packing by creating an hyperedge $c \in C$ for each triangle of \mathcal{T}. Then, as the kernel of [1] only removes vertices, it outputs an induced instance ($\overline{I^{\prime}}=I^{\prime}\left[V^{\prime}\right], k^{\prime}$) of I with $V^{\prime} \subseteq V$, and thus this induced instance can be interpreted as a subtournament, and the corresponding instance ($\mathcal{T}\left[V^{\prime}\right], k^{\prime}$) is an equivalent tournament with $\mathcal{O}\left(k^{2}\right)$ vertices.

As shown in the next theorem, as we could expect it is also possible to have kernel bounded by the number of backward arcs.

- Theorem 11. C_{3}-Packing-T admits a polynomial kernel with $\mathcal{O}(m)$ vertices, where m is the number of arcs in a given FAS of the input.

Proof. Let $I=(\mathcal{T}, k)$ be an input of the decision problem associated to C_{3}-Packing-T. Observe first that we can build in polynomial time a linear ordering $\sigma(\mathcal{T})$ whose backward $\operatorname{arcs} \overleftarrow{A}(\mathcal{T})$ correspond to the given FAS. We will obtain the kernel by removing useless vertices
of degree $(0,0)$. Let us define a bipartite graph $G=\left(V_{1}, V_{2}, E\right)$ with $V_{1}=\left\{v_{a}^{1}: a \in \overleftarrow{A}(\mathcal{T})\right\}$ and $V_{2}=\left\{v_{l}^{2}: v_{l} \in V_{(0,0)}\right\}$. Thus, to each backward arc we associate a vertex in V_{1} and to each vertex v_{l} with $d\left(v_{l}\right)=(0,0)$ we associate a vertex in V_{2}. Then, $\left\{v_{a}^{1}, v_{l}^{2}\right\} \in E$ iff $\left(h(a), v_{l}, t(a)\right)$ is a triangle in \mathcal{T}. By Hall's theorem, we can in polynomial time partition V_{1} and V_{2} into $V_{1}=A_{1} \cup A_{2}, V_{2}=B_{0} \cup B_{1} \cup B_{2}$ such that $N\left(A_{2}\right) \subseteq B_{2},\left|B_{2}\right| \leq\left|A_{2}\right|$, and there is a perfect matching between vertices of A_{1} and B_{1} (B_{0} is simply defined by $\left.B_{0}=V_{2} \backslash\left(B_{1} \cup B_{2}\right)\right)$.

For any $i, 0 \leq i \leq 2$, let $X_{i}=\left\{v_{l} \in V_{(0,0)}: v_{l}^{2} \in B_{i}\right\}$ be the vertices of \mathcal{T} corresponding to B_{i}. Let $V_{\neq(0,0)}=V(\mathcal{T}) \backslash V_{(0,0)}$. Notice that $\left|V_{\neq(0,0)}\right| \leq 2 m$. We define $\mathcal{T}^{\prime}=\mathcal{T}\left[V_{\neq(0,0)} \cup\right.$ $X_{1} \cup X_{2}$] the sub-tournament obtained from \mathcal{T} by removing vertices of X_{0}, and $I^{\prime}=\left(\mathcal{T}^{\prime}, k\right)$. We point out that this definition of \mathcal{T}^{\prime} is similar to the final step of the kernel of [1] as our partition of V_{1} and V_{2} (more precisely $\left(A_{1}, B_{0} \cup B_{1}\right)$) corresponds in fact to the crown decomposition of [1]. Observe that $\left|V\left(\mathcal{T}^{\prime}\right)\right| \leq 2 m+\left|A_{1}\right|+\left|A_{2}\right| \leq 3 m$, implying the desired bound of the number of vertices of the kernel.

It remains to prove that I and I^{\prime} are equivalent. Let $k \in \mathbb{N}$, and let us prove that there exists a solution S of \mathcal{T} with $|S| \geq k$ iff there exists a solution S^{\prime} of \mathcal{T}^{\prime} with $\left|S^{\prime}\right| \geq k$. Observe that the \Leftarrow direction is obvious as \mathcal{T}^{\prime} is a subtournament of \mathcal{T}. Let us now prove the \Rightarrow direction. Let S be a solution of \mathcal{T} with $|S| \geq k$. Let $S=S_{(0,0)} \cup S_{1}$ with $S_{(0,0)}=\left\{t \in S: t=(h(a), v, t(a))\right.$ with $\left.v \in V_{(0,0)}, a \in \overleftarrow{A}(\mathcal{T})\right\}$ and $S_{1}=S \backslash S_{(0,0)}$ Observe that $V\left(S_{1}\right) \cap V_{(0,0)}=\emptyset$, implying $V\left(S_{1}\right) \subseteq V_{\neq(0,0)}$. For any $i \in[2]$, let $S_{(0,0)}^{i}=$ $\left\{t \in S_{(0,0)}: t=(h(a), v, t(a))\right.$ with $\left.v \in V_{(0,0)}, v_{a}^{1} \in A_{i}\right\}$ be a partition of $S_{(0,0)}$. We define $S^{\prime}=S_{1} \cup S_{(0,0)}^{2} \cup S_{(0,0)}^{\prime 1}$, where $S_{(0,0)}^{\prime}$ is defined as follows. For any $v_{a}^{1} \in A_{1}$, let $v_{\mu(a)}^{2} \in B_{1}$ be the vertex associated to v_{a}^{1} in the $\left(A_{1}, B_{1}\right)$ matching. To any triangle $t=(h(a), v, t(a)) \in S_{(0,0)}^{1}$ we associate a triangle $f(t)=\left(h(a), v_{\mu(a)}, t(a)\right) \in S_{(0,0)}^{\prime}$, where by definition $v_{\mu(a)} \in X_{1}$. For the sake of uniformity we also say that any $t \in S_{1} \cup S_{(0,0)}^{2}$ is associated to $f(t)=t$.

Let us now verify that triangles of S^{\prime} are vertex disjoint by verifying that triangles of $S_{(0,0)}^{\prime 1}$ do not intersect another triangle of S^{\prime}. Let $f(t)=\left(h(a), v_{\mu(a)}, t(a)\right) \in S_{(0,0)}^{\prime 1}$. Observe that $h(a)$ and $t(a)$ cannot belong to any other triangle $f\left(t^{\prime}\right)$ of S^{\prime} as for any $f\left(t^{\prime \prime}\right) \in S^{\prime}$, $V\left(f\left(t^{\prime \prime}\right)\right) \cap V_{\neq(0,0)}=V\left(t^{\prime \prime}\right) \cap V_{\neq(0,0)}$ (remember that we use the same notation $V_{\neq(0,0)}$ to denote vertices of degree $(0,0)$ in \mathcal{T} and $\left.\mathcal{T}^{\prime}\right)$. Let us now consider $v_{\mu(a)}$. For any $f\left(t^{\prime}\right) \in S_{1}$, as $V\left(f\left(t^{\prime}\right)\right) \cap V_{(0,0)}=\emptyset$ we have $v_{\mu(a)} \notin V\left(f\left(t^{\prime}\right)\right)$. For any $f\left(t^{\prime}\right)=\left(h\left(a^{\prime}\right), v_{l}, t\left(a^{\prime}\right)\right) \in S_{(0,0)}^{2}$, we know by definition that $v_{a^{\prime}}^{1} \in A_{2}$, implying that $v_{l}^{2} \in B_{2}$ (and $v_{l} \in X_{2}$) as $N\left(A_{2}\right) \subseteq B_{2}$ and thus that $v_{l} \neq v_{\mu(a)}$. Finally, for any $f\left(t^{\prime}\right)=\left(h\left(a^{\prime}\right), v_{l}, t\left(a^{\prime}\right)\right) \in S_{(0,0)}^{\prime}$, we know that $v_{l}=v_{\mu\left(a^{\prime}\right)}$, where $a \neq a^{\prime}$, leading to $v_{l} \neq v_{\mu(a)}$ as μ is a matching.

Using the previous result we can provide a $\mathcal{O}(k)$ vertices kernel for C_{3}-PACKING- T restricted to sparse tournaments.

- Theorem $12(\star) . C_{3}$-PACKING-T restricted to sparse tournaments admits a polynomial kernel with $\mathcal{O}(k)$ vertices, where k is the size of the solution.

4.2 No (generalised) kernel in $\mathcal{O}\left(\boldsymbol{k}^{2-\epsilon}\right)$

In this section we provide an OR-cross composition (see [4] where we recall the definition) from C_{3}-Perfect-Packing-T restricted to instances of Theorem 7 to C_{3}-Perfect-PackingT parameterized by the total number of vertices.

Definition of the instance selector. The next lemma build a special tournament, called an instance selector that will be useful to design the cross composition.

- Lemma $13(\star)$. For any $\gamma=2^{\gamma^{\prime}}$ and ω we can construct in polynomial time (in γ and ω) a tournament $P_{\omega, \gamma}$ such that
- there exists γ subsets of ω vertices $X^{i}=\left\{x_{j}^{i}: j \in[\omega]\right\}$, that we call the distinguished set of vertices, such that
- the X^{i} have pairwise empty intersection
= for any $i \in[\gamma]$, there exists a packing S of triangles of $P_{\omega, \gamma}$ such that $V\left(P_{\omega, \gamma}\right) \backslash V(S)=$ X^{i} (using this packing of $P_{\omega, \gamma}$ corresponds to select instance i)
- for any packing S of triangles of $P_{\omega, \gamma}$ with $|V(S)|=\left|V\left(P_{\omega, \gamma}\right)\right|-\omega$ there exists $i \in[\gamma]$ such that $V\left(P_{\omega, \gamma}\right) \backslash V(S) \subseteq X^{i}$
- $\left|V\left(P_{\omega, \gamma}\right)\right|=\mathcal{O}(\omega \gamma)$.

Definition of the reduction. We suppose given a family of t instances $F=\left\{\mathcal{I}_{l}, l \in[t]\right\}$ of C_{3}-Perfect-Packing-T restricted to instances of Theorem 7 where \mathcal{I}_{l} asks if there is a perfect packing in $\mathcal{T}_{l}=L_{l} K_{l}$. We chose our equivalence relation of the cross-composition such that there exist n and m such that for any $l \in[t]$ we have $\left|V\left(L_{l}\right)\right|=n$ and $\left|V\left(K_{l}\right)\right|=m$. We can also copy some of the t instances such that t is a square number and $g=\sqrt{t}$ is a power of two. We reorganize our instances into $F=\left\{\mathcal{I}_{(p, q)}: 1 \leq p, q \leq g\right\}$ where $\mathcal{I}_{(p, q)}$ asks if there is a perfect packing in $\mathcal{T}_{(p, q)}=L_{p} K_{q}$. Remember that according to Theorem 7, all the L_{p} are equals, and all the K_{q} are equals. We point out that the idea of using a problem on "bipartite" instances to allow encoding t instances on a "meta" bipartite graph $G=(A, B)$ (with $A=\left\{A_{i}, i \in \sqrt{t}\right\}, B=\left\{B_{i}, i \in \sqrt{t}\right\}$) such that each instance p, q is encoded in the graph induced by $G\left[A_{i} \cup B_{i}\right]$ comes from [8]. We refer the reader to Figure 3 which represents the different parts of the tournament. We define a tournament $G=L M_{G} \tilde{L} \tilde{M}_{G} P_{(n, g)}$, where $L=L_{1} \ldots L_{g}, \tilde{M}_{G}$ is a set of n vertices of degree $(0,0), M_{G}$ is a set of $(g-1) n$ vertices of degree $(0,0), \tilde{L}=\tilde{L}_{1} \ldots \tilde{L}_{g}$ where each \tilde{L}_{p} is a set of n vertices, and $P_{(n, g)}$ is a copy of the instance selector of Lemma 13. Then, for every $p \in[g]$ we add to G all the possible n^{2} backward arcs going from \tilde{L}_{p} to L_{p}. Finally, for every distinguished set X^{p} of $P_{(n, g)}$ (see in Lemma 13), we add all the possible n^{2} backward arcs from X^{p} to \tilde{L}_{p}.

Now, in a symmetric way we define a tournament $D=K M_{D} \tilde{K} \tilde{M}_{D} P_{(m, g)}^{\prime}$, where $K=$ $K_{1} \ldots K_{g}, \tilde{M}_{D}$ is a set of m vertices of degree $(0,0), M_{D}$ is a set of $(g-1) m$ vertices of degree $(0,0), \tilde{K}=\tilde{K}_{1} \ldots \tilde{K}_{g}$ where each \tilde{K}_{q} is a set of m vertices, and $P_{(m, g)}^{\prime}$ is a copy of the instance selector of Lemma 13. Then, for every $q \in[g]$ we add to G all the m^{2} possible backward arcs going from \tilde{K}_{p} to K_{p}. For every distinguished set $X^{\prime q}$ of $P_{(m, g)}^{\prime}$ we also add all the possible m^{2} backward arcs from $X^{\prime} q$ to \tilde{K}_{q}. Finally, we define $\mathcal{T}=G D$. Let us add some backward arcs from D to G. For any p and q with $1 \leq p, q \leq g$, we add backward arcs from K_{q} to L_{p} such that $\mathcal{T}\left[K_{q} L_{p}\right]$ corresponds to $\mathcal{T}_{(p, q)}$. Notice that this is possible as for any fixed p, all the $\mathcal{T}_{(p, q)}, q \in[g]$ have the same left part L_{p}, and the same goes for any fixed right part.

Restructuration lemmas. Given a set of triangles S we define $S_{\subseteq P^{\prime}}=\{t \in S \mid V(t) \subseteq$ $\left.P_{(m, g)}^{\prime}\right\}, S_{\subseteq P}=\left\{t \in S: V(t) \subseteq P_{(n, g)}\right\}, S_{\tilde{M}_{D}}=\left\{t \in S: V(t)\right.$ intersects \tilde{K}, \tilde{M}_{D} and $\left.P_{m, g}^{\prime}\right\}$, $S_{M_{D}}=\left\{t \in S: V(t)\right.$ intersects K, M_{D} and $\left.\tilde{K}\right\}, S_{\tilde{M}_{G}}=\left\{t \in S: V(t)\right.$ intersects \tilde{L}, \tilde{M}_{G} and $\left.P_{n, g}\right\}, S_{M_{G}}=\left\{t \in S: V(t)\right.$ intersects L, M_{G} and $\left.\tilde{L}\right\}, S_{D}=\{t \in S: V(t) \subseteq V(D)\}$, $S_{G}=\{t \in S: V(t) \subseteq V(G)\}$, and $S_{G D}=\{t \in S: V(t)$ intersects $V(G)$ and $V(D)\}$. Notice that $S_{G}, S_{G D}, S_{D}$ is a partition of S.

Figure 3 A example of the weak composition. All depicted arcs are backward arcs. Bold arcs represents the n^{2} (or m^{2}) possible arcs between the two groups.

- Claim 14. If there exists a perfect packing S of \mathcal{T}, then $\left|S_{\tilde{M}_{D}}\right|=m$ and $\left|S_{M_{D}}\right|=(g-1) m$. This implies that $V\left(S_{\tilde{M}_{D}} \cup S_{M_{D}}\right) \cap V(\tilde{K})=V(\tilde{K})$, meaning that the vertices of \tilde{K} are entirely used by $S_{\tilde{M}_{D}} \cup S_{M_{D}}$.
Proof. We have $\left|S_{\tilde{M}_{D}}\right| \leq m$ since $\left|\tilde{M}_{D}\right|=m$. We obtain the equality since the vertices of \tilde{M}_{D} only lie in the span of backward arcs from $P_{m, g}^{\prime}$ to \tilde{K}, and they are not the head or the tail of a backward arc in \mathcal{T}. Thus, the only way to use vertices of \tilde{M}_{D} is to create triangles in $S_{\tilde{M}_{D}}$, implying $\left|S_{\tilde{M}_{D}}\right| \geq m$. Using the same kind of arguments we also get $\left|S_{M_{D}}\right|=(g-1) m$. As $|V(\tilde{K})|=g m$ we get the last part of the claim.
- Claim 15. If there exists a perfect packing S of \mathcal{T}, then there exists $q_{0} \in[g]$ such that $\tilde{K}_{S}=\tilde{K}_{q_{0}}$, where $\tilde{K}_{S}=\tilde{K} \cap V\left(S_{\tilde{M}_{D}}\right)$.

Proof. Let $S_{P^{\prime}}$ be the triangles of S with at least one vertex in $P_{m, g}^{\prime}$. As according to Claim 14 vertices of \tilde{K} are entirely used by $S_{\tilde{M}_{D}} \cup S_{M_{D}}$, the only way to consume vertices of $P_{m, g}^{\prime}$ is by creating local triangles in $P_{m, g}^{\prime}$ or triangles in $S_{\tilde{M}_{D}}$. In particular, we cannot have a triangle (u, v, w) with $\{u, v\} \subseteq \tilde{K}$ and $w \in P_{m, g}^{\prime}$, or with $u \in \tilde{K}$ and $\{v, w\} \subseteq P_{m, g}^{\prime}$. More formally, we get the partition $S_{P^{\prime}}=S_{\subseteq P^{\prime}} \cup S_{\tilde{M}_{D}}$. As S is a perfect packing and uses in particular all vertices of $P_{m, g}^{\prime}$ we get $\left|V\left(S_{P^{\prime}}\right)\right|=\left|V\left(P_{m, g}^{\prime}\right)\right|$, implying $\left|V\left(S_{\subseteq P^{\prime}}\right)\right|=\left|V\left(P_{m, g}^{\prime}\right)\right|-m$ by Claim 14. By Lemma 13, this implies that there exists $q_{0} \in[g]$ such that $X^{\prime} \subseteq X^{\prime} q_{0}$ where $X^{\prime}=V\left(P_{m, g}^{\prime}\right) \backslash V\left(S_{\subseteq P^{\prime}}\right)$. As X^{\prime} are the only remaining vertices that can be used by triangles of $S_{\tilde{M}_{D}}$, we get that the m triangles of $S_{\tilde{M}_{D}}$ are of the form (u, v, w) with $u \in \tilde{K}_{q_{0}}, v \in \tilde{M}_{D}$, and $w \in X^{\prime}$.

- Claim 16. If there exists a perfect packing S of \mathcal{T}, then there exists $q_{0} \in[g]$ such that $V\left(S_{P^{\prime}} \cup S_{\tilde{M}_{D}} \cup S_{M_{D}}\right)=V(D) \backslash K_{q_{0}}$.
Proof. By Claim 14 we know that $\left|S_{M_{D}}\right|=(g-1) m$. As by Claim 15 there exists $q_{0} \in[g]$ such that $\tilde{K}_{S}=\tilde{K}_{q_{0}}$, we get that the $(g-1) m$ triangles of $S_{M_{D}}$ are of the form (u, v, w) with $u \in K \backslash K_{q_{0}}, v \in M_{D}$, and $w \in \tilde{K} \backslash \tilde{K}_{q_{0}}$.
- Lemma 17 (\star). If there exists a perfect packing S of \mathcal{T}, then $V\left(S_{G D}\right) \cap V(G) \subseteq V(L)$. Informally, triangles of $S_{G D}$ do not use any vertex of $M_{G}, \tilde{L}, \tilde{M}_{T}$ and $P_{n, g}$.

Lemma 17 will allow us to prove Claims 18, 19 and 20 using the same arguments as in the right part (D) of the tournament as all vertices of $M_{G}, \tilde{L}, \tilde{M}_{T}$ and $P_{n, g}$ must be used by triangles in S_{G}.

- Claim $18(\star)$. If there exists a perfect packing S of \mathcal{T}, then $\left|S_{\tilde{M}_{G}}\right|=n$ and $\left|S_{M_{G}}\right|=(g-1) n$. This implies that $V\left(S_{\tilde{M}_{G}} \cup S_{M_{G}}\right) \cap V(\tilde{L})=V(\tilde{L})$, meaning that vertices of \tilde{L} are entirely used by $S_{\tilde{M}_{G}} \cup S_{M_{G}}$.
- Claim $19(\star)$. If there exists a perfect packing S of \mathcal{T}, then there exists $p_{0} \in[g]$ such that $\tilde{L}_{S}=\tilde{L}_{p_{0}}$, where $\tilde{L}_{S}=\tilde{L} \cap V\left(S_{\tilde{M}_{G}}\right)$.
- Claim $20(\star)$. If there exists a perfect packing S of \mathcal{T}, then there exists $p_{0} \in[g]$ such that $V\left(S_{P} \cup S_{\tilde{M}_{G}} \cup S_{M_{G}}\right)=V(G) \backslash L_{p_{0}}$.

We are now ready to state our final claim is now straightforward as according Claim 16 and 20 we can define $S_{\left(p_{0}, q_{0}\right)}=S \backslash\left(\left(S_{P^{\prime}} \cup S_{\tilde{M}_{D}} \cup S_{M_{D}}\right) \cup\left(S_{P} \cup S_{\tilde{M}_{G}} \cup S_{M_{G}}\right)\right)$.

- Claim 21. If there exists a perfect packing S of \mathcal{T}, there exists $p_{0}, q_{0} \in[g]$ and $S_{\left(p_{0}, q_{0}\right)} \subseteq S$ such that $V\left(S_{\left(p_{0}, q_{0}\right)}\right)=V\left(\mathcal{T}_{\left(p_{0}, q_{0}\right)}\right)$ (or equivalently such that $S_{\left(p_{0}, q_{0}\right)}$ is a perfect packing of $\left.\mathcal{T}_{\left(p_{0}, q_{0}\right)}\right)$.

Proof of the weak composition

- Theorem 22. For any $\epsilon>0, C_{3}$-Perfect-Packing-T (parameterized by the total number of vertices N) does not admit a polynomial (generalized) kernelization with size bound $\mathcal{O}\left(N^{2-\epsilon}\right)$ unless $N P \subseteq$ coNP / Poly.

Proof. Given t instances $\left\{\mathcal{I}_{l}\right\}$ of C_{3}-Perfect-Packing-T restricted to instances of Theorem 7, we define an instance \mathcal{T} of C_{3}-Perfect-Packing-T as defined in Section 4. We recall that $g=\sqrt{t}$, and that for any $l \in[t],\left|V\left(L_{l}\right)\right|=n$ and $\left|V\left(K_{l}\right)\right|=m$. Let $N=|V(\mathcal{T})|$. As $N=\left|V\left(P_{(m, g)}^{\prime}\right)\right|+m+(g-1) m+2 m g+\left|V\left(P_{(n, g)}\right)\right|+n+(g-1) n+2 n g$ and $\left|V\left(P_{(\omega, \gamma)}\right)\right|=O(\omega \gamma)$ by Lemma 13 , we get $N=\mathcal{O}(g(n+m))=\mathcal{O}\left(t^{\frac{1}{2+o(1)}} \max \left(\left|\mathcal{I}_{l}\right|\right)\right)$. Let us now verify that there exists $l \in[t]$ such that \mathcal{I}_{l} admits a perfect packing iff \mathcal{T} admits a perfect packing. First assume that there exist $p_{0}, q_{0} \in[g]$ such that $\mathcal{I}_{\left(p_{0}, q_{0}\right)}$ admits a perfect packing. By Lemma 21, there is a packing $S_{P^{\prime}}$ of $P_{(m, g)}^{\prime}$ such that $V\left(S_{p^{\prime}}\right)=V\left(P_{(m, g)}^{\prime}\right) \backslash X^{\prime} q_{0}$. We define a set $S_{\tilde{M}_{D}}$ of m vertex disjoint triangles of the form (u, v, w) with $u \in \tilde{L}_{q_{0}}, v \in \tilde{M}_{D}, w \in X^{\prime} q_{0}$. Then, we define a set $S_{M_{D}}$ of $(g-1) m$ vertex disjoint triangles of the form (u, v, w) with $u \in L \backslash L_{q_{0}}, v \in M_{D}, w \in \tilde{L} \backslash \tilde{L}_{q_{0}}$. In the same way we define $S_{P}, S_{\tilde{M}_{G}}$ and $S_{M_{G}}$. Observe that $V(\mathcal{T}) \backslash\left(\left(S_{P^{\prime}} \cup S_{\tilde{M}_{D}} \cup S_{M_{D}}\right) \cup\left(S_{P} \cup S_{\tilde{M}_{G}} \cup S_{M_{G}}\right)\right)=K_{q_{0}} \cup L_{p_{0}}$, and thus we can complete our packing into a perfect packing of \mathcal{T} as $\mathcal{I}_{\left(p_{0}, q_{0}\right)}$ admits a perfect packing. Conversely if there exists a perfect packing S of \mathcal{T}, then by Claim 21 there exists $p_{0}, q_{0} \in[g]$ and $S_{\left(p_{0}, q_{0}\right)} \subseteq S$ such that $V\left(S_{\left(p_{0}, q_{0}\right)}\right)=V\left(\mathcal{T}_{\left(p_{0}, q_{0}\right)}\right)$, implying that $\mathcal{I}_{\left(p_{0}, q_{0}\right)}$ admits a perfect packing.

- Corollary 23. For any $\epsilon>0, C_{3}$-Packing-T (parameterized by the size k of the solution) does not admit a polynomial kernel with size $\mathcal{O}\left(k^{2-\epsilon}\right)$ unless $N P \subseteq$ coNP / Poly.

5 Conclusion and open questions

Concerning approximation algorithms for C_{3}-PaCkING- T restricted to sparse instances, we have provided a $\left(1+\frac{6}{c+5}\right)$-approximation algorithm where c is a lower bound of the minspan of the instance. On the other hand, it is not hard to solve by dynamic programming C_{3}-Packing-T for instances where maxspan is bounded above. Using these two opposite approaches it could be interesting to derive an approximation algorithm for C_{3}-PACKINGT with factor better than $4 / 3$ even for sparse tournaments.

Concerning FPT algorithms, the approach we used for sparse tournament (reducing to the case where $m=\mathcal{O}(k)$ and apply the $\mathcal{O}(m)$ vertices kernel) cannot work for the general case. Indeed, if we were able to sparsify the initial input such that $m^{\prime}=\mathcal{O}\left(k^{2-\epsilon}\right)$, applying the kernel in $\mathcal{O}\left(m^{\prime}\right)$ would lead to a tournament of total bit size (by encoding the two endpoint
of each arc) $\mathcal{O}\left(m^{\prime} \log \left(m^{\prime}\right)\right)=\mathcal{O}\left(k^{2-\epsilon}\right)$, contradicting Corollary 23. Thus the situation for $C_{3^{-}}$ Packing-T could be as in vertex cover where there exists a kernel in $\mathcal{O}(k)$ vertices, derived from [15], but the resulting instance cannot have $\mathcal{O}\left(k^{2-\epsilon}\right)$ edges [8]. So it is challenging question to provide a kernel in $\mathcal{O}(k)$ vertices for the general C_{3}-Packing-T problem.
——References
1 Faisal N. Abu-Khzam. A quadratic kernel for 3-set packing. In International Conference on Theory and Applications of Models of Computation, pages 81-87. Springer, 2009.
2 Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto MarchettiSpaccamela, and Marco Protasi. Complexity and approximation: Combinatorial optimization problems and their approximability properties. Springer Science \& Business Media, 2012.

3 Piotr Berman and Marek Karpinski. On some tighter inapproximability results. In International Colloquium on Automata, Languages, and Programming, pages 200-209. Springer, 1999.

4 Stephane Bessy, Marin Bougeret, and Jocelyn Thiebaut. Triangle packing in (sparse) tournaments: approximation and kernelization. Technical report, HAL LIRMM, lirmm01550313, v1, 2017. URL: https://hal-lirmm.ccsd.cnrs.fr/lirmm-01550313.
5 Mao-Cheng Cai, Xiaotie Deng, and Wenan Zang. A min-max theorem on feedback vertex sets. Mathematics of Operations Research, 27(2):361-371, 2002.
6 Pierre Charbit, Stéphan Thomassé, and Anders Yeo. The minimum feedback arc set problem is NP-hard for tournaments. Combinatorics, Probability and Computing, 16(01):1-4, 2007.

7 Marek Cygan. Improved approximation for 3-dimensional matching via bounded pathwidth local search. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual Symposium on, pages 509-518. IEEE, 2013.
8 Holger Dell and Dániel Marx. Kernelization of packing problems. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete algorithms, SODA'12, 2012.
9 Venkatesan Guruswami, C. Pandu Rangan, Maw-Shang Chang, Gerard J. Chang, and C. K. Wong. The vertex-disjoint triangles problem. In International Workshop on GraphTheoretic Concepts in Computer Science, pages 26-37. Springer, 1998.
10 Danny Hermelin and Xi Wu. Weak compositions and their applications to polynomial lower bounds for kernelization. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pages 104-113. Society for Industrial and Applied Mathematics, 2012.

11 Bart M. P. Jansen and Astrid Pieterse. Sparsification upper and lower bounds for graph problems and Not-All-Equal SAT. Algorithmica, pages 1-26, 2015.
12 Claire Kenyon-Mathieu and Warren Schudy. How to rank with few errors. In Proceedings of the thirty-ninth annual ACM symposium on Theory of computing, pages 95-103. ACM, 2007.

13 Matthias Mnich, Virginia Vassilevska Williams, and László A. Végh. A 7/3-Approximation for Feedback Vertex Sets in Tournaments. In 24th Annual European Symposium on Algorithms, ESA 2016, pages 67:1-67:14, 2016.
14 Hannes Moser. A problem kernelization for graph packing. In International Conference on Current Trends in Theory and Practice of Computer Science, pages 401-412. Springer, 2009.

15 George L. Nemhauser and Leslie E. Trotter Jr. Properties of vertex packing and independence system polyhedra. Mathematical Programming, 6(1):48-61, 1974.

[^0]: * An extended version of this paper is available at [4], https://hal-lirmm.ccsd.cnrs.fr/ lirmm-01550313.

 © Stéphane Bessy, Marin Bougeret, and Jocelyn Thiebaut; licensed under Creative Commons License CC-BY

