
Triangle Packing in (Sparse) Tournaments:
Approximation and Kernelization∗

Stéphane Bessy1, Marin Bougeret2, and Jocelyn Thiebaut3

1 Université de Montpellier – CNRS, LIRMM, Montpellier, France
bessy@lirmm.fr

2 Université de Montpellier – CNRS, LIRMM, Montpellier, France
bougeret@lirmm.fr

3 Université de Montpellier – CNRS, LIRMM, Montpellier, France
thiebaut@lirmm.fr

Abstract
Given a tournament T and a positive integer k, the C3-Packing-T problem asks if there exists
a least k (vertex-)disjoint directed 3-cycles in T . This is the dual problem in tournaments of
the classical minimal feedback vertex set problem. Surprisingly C3-Packing-T did not receive
a lot of attention in the literature. We show that it does not admit a PTAS unless P=NP,
even if we restrict the considered instances to sparse tournaments, that is tournaments with a
feedback arc set (FAS) being a matching. Focusing on sparse tournaments we provide a (1+ 6

c−1)
approximation algorithm for sparse tournaments having a linear representation where all the
backward arcs have “length” at least c. Concerning kernelization, we show that C3-Packing-
T admits a kernel withO(m) vertices, wherem is the size of a given feedback arc set. In particular,
we derive a O(k) vertices kernel for C3-Packing-T when restricted to sparse instances. On the
negative size, we show that C3-Packing-T does not admit a kernel of (total bit) size O(k2−ε)
unless NP ⊆ coNP / Poly. The existence of a kernel in O(k) vertices for C3-Packing-T remains
an open question.

1998 ACM Subject Classification G.2.2 [Graph Theory] Graph Algorithms

Keywords and phrases Tournament, triangle packing, feedback arc set, approximation and para-
meterized algorithms

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.14

1 Introduction and related work

Tournament

A tournament T on n vertices is an orientation of the edges of the complete undirected
graph Kn. Thus, given a tournament T = (V,A), where V = {vi, i ∈ [n]}, for each i, j ∈ [n],
either vivj ∈ A or vjvi ∈ A. A tournament T can alternatively be defined by an ordering
σ(T) = (v1, . . . , vn) of its vertices and a set of backward arcs Aσ(T) (which will be denoted
A(T) as the considered ordering is not ambiguous), where each arc a ∈ A(T) is of the
form vi1vi2 with i2 < i1. Indeed, given σ(T) and A(T), we can define V = {vi, i ∈ [n]}
and A = A(T) ∪ A(T) where A(T) = {vi1vi2 : (i1 < i2) and vi2vi1 /∈ A(T)} is the set of
forward arcs of T in the given ordering σ(T). In the following, (σ(T),A(T)) is called a linear

∗ An extended version of this paper is available at [4], https://hal-lirmm.ccsd.cnrs.fr/
lirmm-01550313.

© Stéphane Bessy, Marin Bougeret, and Jocelyn Thiebaut;
licensed under Creative Commons License CC-BY

25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 14; pp. 14:1–14:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.14
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01550313
https://hal-lirmm.ccsd.cnrs.fr/lirmm-01550313
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Triangle Packing in (Sparse) Tournaments: Approximation and Kernelization

representation of the tournament T . For a backward arc e = vjvi of σ(T) the span value
of e is j − i− 1. Then minspan(σ(T)) (resp. maxspan(σ(T))) is simply the minimum (resp.
maximum) of the span values of the backward arcs of σ(T).
A set A′ ⊆ A of arcs of T is a feedback arc set (or FAS) of T if every directed cycle of T
contains at least one arc of A′. It is clear that for any linear representation (σ(T),A(T)) of
T the set A(T) is a FAS of T . A tournament is sparse if it admits a FAS which is a matching.
We denote by C3-Packing-T the problem of packing the maximum number of vertex disjoint
triangles in a given tournament, where a triangle is a directed 3-cycle. More formally, an
input of C3-Packing-T is a tournament T , an output is a set (called a triangle packing)
S = {ti, i ∈ [|S|]} where each ti is a triangle and for any i 6= j we have V (ti)∩V (tj) = ∅, and
the objective is to maximize |S|. We denote by opt(T) the optimal value of T . We denote
by C3-Perfect-Packing-T the decision problem associated to C3-Packing-T where an
input T is positive iff there is a triangle packing S such that V (S) = V (T) (which is called a
perfect triangle packing).

Related work

We refer the reader to the extended version of the paper [4] where we recall the definitions
of the problems mentioned bellow as well as the standard definitions about parameterized
complexity and approximation. A first natural related problem is 3-Set-Packing as we can
reduce C3-Packing-T to 3-Set-Packing by creating an hyperedge for each triangle.

Classical complexity / approximation. It is known that C3-Packing-T is polynomial
if the tournament does not contain the three forbidden sub-tournaments described in [5].
From the point of view of approximability, the best approximation algorithm is the 4

3 + ε

approximation of [7] for 3-Set-Packing, implying the same result for K3-packing and
C3-Packing-T. Concerning negative results, it is known [9] that even K3-packing is MAX
SNP-hard on graphs with maximum degree four. The related “dual” problems FAST and
FVST received a lot of attention with for example the NP-hardness and PTAS for FAS
in [6] and [12] respectively, and the 7

3 approximation and inapproximability results for FVST
in [13].

Kernelization. We precise that the implicitly considered parameter here is the size of the
solution. There is a O(k2) vertex kernel for K3-packing in [14], and even a O(k2) vertex
kernel for 3-Set-Packing in [1], which is obtained by only removing vertices of the ground
set. This remark is important as it directly implies a O(k2) vertex kernel for C3-Packing-
T (see Section 4). Let us now turn to negative results. There is a whole line of research
dedicated to finding lower bounds on the size of polynomial kernels. The main tool involved
in these bounds is the weak composition introduced in [10] (whose definition is recalled in [4]).
Weak composition allowed several almost tight lower bounds, with for examples the O(kd−ε)
for d-Set-Packing and O(kd−4−ε) for Kd-packing of [10]. These results where improved
in [8] to O(kd−ε) for perfect d-Set-Packing, O(kd−1−ε) for Kd-packing, and leading to
O(k2−ε) for perfect K3-packing. Notice that negative results for the “perfect” version of
problems (where parameter k = n

d , where d is the number of vertices of the packed structure)
are stronger than for the classical version where k is arbitrary. Kernel lower bound for these
“perfect” versions is sometimes referred as sparsification lower bounds.

S. Bessy, M. Bougeret, and J. Thiebaut 14:3

Our contributions

Our objective is to study the approximability and kernelization of C3-Packing-T. On the
approximation side, a natural question is a possible improvement of the 4

3 + ε approximation
implied by 3-Set-Packing. We show that, unlike FAST, C3-Packing-T does not admit a
PTAS unless P=NP, even if the tournament is sparse. We point out that, surprisingly, we
were not able to find any reference establishing a negative result for C3-Packing-T, even
for the NP-hardness. As these results show that there is not much room for improving the
approximation ratio, we focus on sparse tournaments and followed a different approach by
looking for a condition that would allow ratio arbitrarily close to 1. In that spirit, we provide
a (1 + 6

c−1) approximation algorithm for sparse tournaments having a linear representation
with minspan at least c. Concerning kernelization, we complete the panorama of sparsification
lower bounds of [11] by proving that C3-Perfect-Packing-T does not admit a kernel of
(total bit) size O(n2−ε) unless NP ⊆ coNP / Poly. This implies that C3-Packing-T does
not admit a kernel of (total bit) size O(k2−ε) unless NP ⊆ coNP / Poly. We also prove that
C3-Packing-T admits a kernel of O(m) vertices, where m is the size of a given FAS of
the instance, and that C3-Packing-T restricted to sparse instances has a kernel in O(k)
vertices (and so of total size bit O(k log(k))). The existence of a kernel in O(k) vertices for
the general C3-Packing-T remains our main open question.

2 Specific notations and observations

Given a linear representation (σ(T),A(T)) of a tournament T , a triangle t in T is a
triple t = (vi1 , vi2 , vi3) with il < il+1 such that either vi3vi1 ∈ A(T), vi3vi2 /∈ A(T) and
vi2vi1 /∈ A(T) (in this case we call t a triangle with backward arc vi3vi1), or vi3vi1 /∈ A(T),
vi3vi2 ∈ A(T) and vi2vi1 ∈ A(T) (in this case we call t a triangle with two backward arcs
vi3vi2 and vi2vi1). Given two tournaments T1, T2 defined by σ(Tl) and A(Tl) we denote by
T = T1T2 the tournament called the concatenation of T1 and T2, where σ(T) = σ(T1)σ(T2)
is the concatenation of the two sequences, and A(T) = A(T1) ∪A(T2). Given a tournament
T and a subset of vertices X, we denote by T \X the tournament T [V (T) \X] induced by
vertices V (T) \X, and we call this operation removing X from T . Given an arc a = uv we
define h(a) = v as the head of a and t(a) = u as the tail of a. Given a linear representation
(V (T),A(T)) and an arc a ∈ A(T), we define s(a) = {v : h(a) < v < t(a)} as the span
of a. Notice that the span value of a is then exactly |s(a)|. Given a linear representation
(V (T),A(T)) and a vertex v ∈ V (T), we define the degree of v by d(v) = (a, b), where
a = |{vu ∈ A(T) : u < v}| is called the left degree of v and b = |{uv ∈ A(T) : u > v}|
is called the right degree of v. We also define V(a,b) = {v ∈ V (T)|d(v) = (a, b)}. Given a
set of pairwise distinct pairs D, we denote by C3-Packing-TD the problem C3-Packing-
T restricted to tournaments such that there exists a linear representation where d(v) ∈ D
for all v. Notice that when DM = {(0, 1), (1, 0), (0, 0)}, instances of C3-Packing-TDM are
the sparse tournaments. Finally let us point out that it is easy to decide in polynomial
time if a tournament is sparse or not, and if so, to give a linear representation whose FAS is
a matching. The corresponding algorithm is detailed in [4]. Thus, in the following, when
considering a sparse tournament we will assume that a linear ordering of it where backward
arcs form a matching is also given. Finally, due to space limitations, the proofs of the results
marked with ‘(?)’ have been removed and are available in [4].

ESA 2017

14:4 Triangle Packing in (Sparse) Tournaments: Approximation and Kernelization

a2i a
3
i a

4
ia1i

βiXi X ′
i Xi X ′

i β′
i αi

Ai Bi B′
iA′

i

e1 e2

e3 e4

m1 m2

Figure 1 Example of a variable gadget Li.

3 Approximation for sparse tournaments

3.1 APX-hardness for sparse tournaments
In this subsection we prove that C3-Packing-TDM is APX-hard by providing a L-reduction
(see Definition in [4]) from Max 2-SAT(3), which is known to be APX-hard [2, 3]. Recall that
in the Max 2-SAT(3) problem each clause contains exactly 2 variables and each variable
appears in at most 3 clauses (and at most twice positively and once negatively).

Definition of the reduction. Let F be an instance of Max 2-SAT(3). In the following, we
will denote by n the number of variables in F and m the number of clauses. Let {xi, 1 ∈ [n]}
be the set of variables of F and {Cj , j ∈ [m]} its set of clauses.

We now define a reduction f which maps an instance F of Max 2-SAT(3) to an instance
T of C3-Packing-TDM . For each variable xi with i ∈ [n], we create a tournament Li as
follows and we call it variable gadget. We refer the reader to Figure 1 where an example
of variable gadget is depicted. Let σ(Li) = (Xi, X

′
i, Xi, Xi

′
, {βi}, {β′i} , Ai, Bi, {αi}, A′i, B′i).

We define C = {Xi, X
′
i, Xi, Xi

′
, Ai, Bi, A

′
i, B
′
i}. All sets of C have size 4. We denote Xi =

(x1
i , x

2
i , x

3
i , x

4
i), and we extend the notation in a straightforward manner to the other others

sets of C. Let us now define A(Li). For each set of C, we add a backward arc whose head
is the first element and the tail is the last element (for example for Xi we add the arc
x4
ix

1
i). Then, we add to A(Li) the set {e1, e2, e3, e4} where e1 = x3

i a
3
i , e2 = x

′3
i a

′3
i , e3 = x3

i b
3
i ,

e4 = x
′3
i b

′3
i and the set {m1,m2} where m1 = a

′2
i a

2
i , m2 = b

′2
i b

2
i called the two medium arcs

of the variable gadget. This completes the description of tournament Li. Let L = L1 . . . Ln
be the concatenation of the Li.

For each clause Cj with j ∈ [1,m], we create a tournament Kj with ordering σ(Ki) =
(θj , d1

j , c
1
j , c

2
j , d

2
j) and A(Ki) = {d2

jd
1
j}. We also define K = K1 . . .Km. Let us now define

T = LK. We add to A(T) the following backward arcs from V (K) to V (L). If Cj = li1 ∨ li2
is a clause in F then we add the arcs c1jvi1 , c2jvi2 where vic is the vertex in {x2

ic
, x

′2
ic
, x2
ic
}

corresponding to lic : if lic is a positive occurrence of variable ic we chose vic ∈ {x2
ic
, x

′2
ic
},

otherwise we chose vic = x2
ic
. Moreover, we chose vertices vic in such a way that for any

i ∈ [n], for each v ∈ {x2
i , x

′2
i , x

2
i } there exists a unique arc a ∈ A(T) such that h(a) = v. This

is always possible as each variable has at most two positive occurrences and one negative
occurrence. Thus, x2

i represent the first positive occurrence of variable i, and x′2
i the second

one. We refer the reader to Figure 2 where an example of the connection between variable
and clause gadget is depicted.

Notice that vertices of X ′i are never linked to the clauses gadget. However, we need this
set to keep the variable gadget symmetric so that setting xi to true or false leads to the same
number of triangles inside Li. This completes the description of T . Notice that the degree of
any vertex is in {(0, 1), (1, 0), (0, 0)}, and thus T is an instance of C3-Packing-TDM .

Let us now distinguish three different types of triangles in T . A triangle t = (v1, v2, v3) of T
is called an outer triangle iff ∃j ∈ [m] such that v2 = θj and v3 = clj (implying that v1 ∈ V (L)),

S. Bessy, M. Bougeret, and J. Thiebaut 14:5

d2jc2jd1j c
1
jθjX ′

3

e2

L3
Kj representing Cj = x3 ∨ x5

X5

L5

e3

Figure 2 Example showing how a clause gadget is attached to variable gadgets.

variable inner iff ∃i ∈ [n] such that V (t) ⊆ V (Li), and clause inner iff ∃j ∈ [m] such that
V (t) ⊆ V (Kj). Notice that a triangle t = (v1, v2, v3) of T which is neither outer, variable or
clause inner has necessarily v3 = clj for some j, and v2 6= θj (v2 could be in V (L) or V (K)).
In the following definition, for any Y ∈ C (where C = {Xi, X

′
i, Xi, Xi

′
, Ai, Bi, A

′
i, B
′
i})

with Y = (y1, y2, y3, y4), we define t2Y = (y1, y2, y4) and t3Y = (y1, y3, y4). For example,
t2X′

i
= (x′1

i , x
′2
i , x

′4
i). For any i ∈ [n], we define Pi and Pi, two sets of vertex disjoint variable

inner triangles of V (Li), by:
Pi = {t3Xi

, t3X′
i
, t2

Xi
, t2

X′
i

, t3Ai
, t2Bi

, t3A′
i
, t2B′

i
, (h(e3), βi, t(e3)), (h(e4), β′

i, t(e4)), (h(m1), αi, t(m1))}

Pi = {t2Xi
, t2X′

i
, t3

Xi
, t3

X′
i

, t2Ai
, t3Bi

, t2A′
i
, t3B′

i
, (h(e1), βi, t(e1)), (h(e2), β′

i, t(e2)), (h(m2), αi, t(m2))}

Notice that Pi (resp. Pi) uses all vertices of Li except {x2
i , x

′2
i } (resp. {x2

i , x
′2
i }). For any

j ∈ [m], and x ∈ [2] we define the set of clause inner triangle of Kj , that is Qxj = {(d1
j , c

x
j , d

2
j)}.

Informally, setting variable xi to true corresponds to create the 11 triangles of Pi in Li (as
leaving vertices {x2

i , x
2′

i } available allows to create outer triangles corresponding to satisfied
clauses), and setting it to false corresponds to create the 11 triangles of Pi. Satisfying a
clause j using its xth literal (represented by a vertex v ∈ V (L)) corresponds to create triangle
in Q3−x

j as it leaves cxj available to create the triangle (v, θj , cxj). Our final objective (in
Lemma 4) is to prove that satisfying k clauses is equivalent to find 11n+m+k vertex disjoint
triangles.

Restructuration lemmas. Given a solution S, let ILi = {t ∈ S : V (t) ⊆ V (Li)}, IKj = {t ∈
S : V (t) ⊆ V (Kj)}, IL = ∪i∈[n]I

L
i be the set of variable inner triangles of S, IK = ∪j∈[m]I

K
j

be the set of clause inner triangles of S, and O = {t ∈ S t is an outer triangle } be the set
of outer triangles of S. Notice that a priori IL, IK , O does not necessarily form a partition
of S. However, we will show in the next lemmas how to restructure S such that IL, IK , O
becomes a partition.

I Lemma 1 (?). For any S we can compute in polynomial time a solution S′ = {t′l, l ∈ [k]}
such that |S′| ≥ |S| and for all j ∈ [m] there exists x ∈ [2] such that I ′K

j = Qxj and
either S′ does not use any other vertex of Kj (V (S′) ∩ V (Kj) = V (Qxj))
either S′ contains an outer triangle t′l = (v, θj , c3−xj) with v ∈ V (L) (implying V (S′) ∩
V (Kj) = V (Kj))

I Corollary 2. For any S we can compute in polynomial time a solution S′ such that
|S′| ≥ |S|, and S′ only contains outer, variable inner, and clause inner triangles. Indeed,
in the solution S′ of Lemma 1, given any t ∈ S′, either V (t) intersects V (Kj) for some j
and then t is an outer or a clause inner triangle, or V (t) ⊆ V (Li) for i ∈ [n] as there is no
backward arc uv with u ∈ V (Li1) and v ∈ V (Li2) with i1 6= i2 .

I Lemma 3 (?). For any S we can compute in polynomial time a solution S′ such that
|S′| ≥ |S|, S′ satisfies Lemma 1, and for every i ∈ [n], I ′L

i = Pi or I
′L
i = Pi.

ESA 2017

14:6 Triangle Packing in (Sparse) Tournaments: Approximation and Kernelization

Proof of the L-reduction. We are now ready to prove the main lemma (recall that f is the
reduction from Max 2-SAT(3) to C3-Packing-TDM described in Section 3.1), and also the
main theorem of the section.

I Lemma 4. Let F be an instance of Max 2-SAT(3). For any k, there exists an assignment
a of F satisfying at least k clauses if and only if there exists a solution S of f(F) with
|S| ≥ 11n+m+ k, where n and m are respectively is the number of variables and clauses in
F . Moreover, in the ⇐ direction, assignment a can be computed from S in polynomial time.

Proof. For any i ∈ [n], let Ai = Pi if xi is set to true in a, and Ai = Pi otherwise. We
first add to S the set ∪i∈[n]Ai. Then, let {Cjl

, l ∈ [k]} be k clauses satisfied by a. For any
l ∈ [k], let il be the index of a literal satisfying Cjl

, let x ∈ [2] such that cxjl
corresponds to

this literal, and let Zl = {x2
il
, x

′2
il
} if literal il is positive, and Zl = {x2

il
} otherwise. For any

j ∈ [m], if j = il for some l (meaning that j corresponds to a satisfied clause), we add to
S the triangle in Q3−x

j , and otherwise we arbitrarily add the triangle Q1
j . Finally, for any

l ∈ [k] we add to S triangle tl = (yl, θjl
, cxjl

) where yl ∈ Zl is such that yl is not already used
in another triangle. Notice that such an yl always exists as triangles of Ai, i ∈ [n] do not
intersect Zl (by definition of the Ai), and as there are at most two clauses that are true
due to positive literal, and one clause that is true due to a negative literal. Thus, S has
11n+m+ k vertex disjoint triangles.

Conversely, let S a solution of f(F) with |S| ≥ 11n + m + k. By Lemma 3 we can
construct in polynomial time a solution S′ from S such that |S′| ≥ |S|, S′ only contains outer,
variable or clause inner triangles, for each j ∈ [m] there exists x ∈ [2] such that I ′K

j = Qxj ,
and for each i ∈ [n], I ′L

i = Pi or I
′L
i = Pi. This implies that the k′ ≥ k remaining triangles

must be outer triangles. Let {t′l, l ∈ [k′]} be these k′ outer triangles with t′l = (yl, θjl
, cxl
jl

)
Let us define the following assignation a: for each i ∈ [n], we set xi to true if I ′L

i = Pi, and
false otherwise. This implies that a satisfies at least clauses {Cjl

, l ∈ [k′]}. J

I Theorem 5. C3-Packing-TDM is APX-hard, and thus does not admit a PTAS unless
P = NP.

Proof. Let us check that Lemma 4 implies a L-reduction (whose definition is recalled in [4]).
Let OPT1 (resp. OPT2) be the optimal value of F (resp. f(F)). Notice that Lemma 4
implies that OPT2 = OPT1 + 11n + m. It is known that OPT1 ≥ 3

4m (where m is the
number of clauses of F). As n ≤ m (each variable has at least one positive and one negative
occurrence), we get OPT2 = OPT1 + 11n+m ≤ αOPT1 for an appropriate constant α, and
thus point (a) of the definition is verified. Then, given a solution S′ of f(F), according to
Lemma 4 we can construct in polynomial time an assignment a satisfying c(a) clauses with
c(a) ≥ S′ − 11n−m. Thus, the inequality (b) of the Definition of a L-reduction with β = 1
becomes OPT1 − c(a) ≤ OPT2 − S′ = OPT1 + 11n+m− S′, which is true. J

Reduction of Theorem 5 does not imply the NP-hardness of C3-Perfect-Packing-T as
there remain some unused vertices. However, it is straightforward to adapt the reduction
by adding backward arcs whose head (resp. tail) are before (resp. after) T to consume the
remaining vertices. This leads to the following result.

I Theorem 6 (?). C3-Perfect-Packing-TDM is NP-hard.

To establish the kernel lower bound of Section 4, we also need the NP-hardness of C3-
Perfect-Packing-T where instances have a slightly simpler structure (to the price of losing
the property that there exists a FAS which is a matching).

S. Bessy, M. Bougeret, and J. Thiebaut 14:7

I Theorem 7 (?). C3-Perfect-Packing-T remains NP-hard even restricted to tournaments
T admitting the following linear ordering.
T = LK where L and K are two tournaments
tournaments L and K are “fixed”:
K = K1 . . .Km for some m, where for each j ∈ [m] we have V (Kj) = (θj , cj)
L = R1L1 . . . LnR2, where each Li has is a copy of the variable gadget of Section 3.1,
Ri = {rli, l ∈ [n′]} where n′ = 2n−m, and in addition L also contains R = {(rl2rl1), l ∈
[n′]} which are called the dummy arcs.

3.2 (1 + 6
c−1)-approximation when backward arcs have large minspan

Given a set of pairwise distinct pairs D and an integer c, we denote by C3-Packing-TD
≥c

the problem C3-Packing-TD restricted to tournaments such that there exists a linear
representation of minspan at least c and where d(v) ∈ D for all v. In all this section we
consider an instance T of C3-Packing-TDM

≥c with a given linear ordering (V (T),A(T))
of minspan at least c and whose degrees belong to DM . The motivation for studying the
approximability of this special case comes from the situation of MAX-SAT(c) where the
approximability becomes easier as c grows, as the derandomized uniform assignment provides
a 2c

2c−1 approximation algorithm. Somehow, one could claim that MAX-SAT(c) becomes
easy to approximate for large c as there are many ways to satisfy a given clause. As the
same intuition applies for tournaments admitting an ordering with large minspan (as there
are c− 1 different ways to use a given backward in a triangle), our objective was to find a
polynomial approximation algorithm whose ratio tends to 1 when c increases.

Let us now define algorithm Φ. We define a bipartite graph G = (V1, V2, E) with
V1 = {v1

a : a ∈ A(T)} and V2 = {v2
l : vl ∈ V(0,0)}. Thus to each backward arc we associate

a vertex in V1 and to each vertex vl with d(vl) = (0, 0) we associate a vertex in V2. Then
{v1
a, v

2
l } ∈ E iff (h(a), vl, t(a)) is a triangle in T .

In phase 1, Φ computes a maximum matching M = {el, l ∈ [|M |]} in G. For every
el = {v1

ij , v
2
l } ∈ M create a triangle t1l = (vj , vl, vi). Let S1 = {t1l , l ∈ [|M |]}. Notice that

triangles of S1 are vertex disjoint. Let us now turn to phase 2. Let T 2 be the tournament
T where we removed all vertices V (S1). Let (V (T 2),A(T 2)) be the linear ordering of T 2

obtained by removing V (S1) in (V (T),A(T)). We say that three distinct backward edges
{a1, a2, a3} ⊆ A(T 2) can be packed into triangles t1 and t2 iff V ({t1, t2}) = V ({a1, a2, a3})
and the ti are vertex disjoint. For example, if h(a1) < h(a2) < t(a1) < h(a3) < t(a2) < t(a3),
then {a1, a2, a3} can be packed into (h(a1), h(a2), t(a1)) and (h(a3), t(a2), t(a3)) (recall that
when A(T) form a matching, (u, v, w) is triangle iff wu ∈ A(T) and u < v < w), and if
h(a1) < h(a2) < t(a2) < h(a3) < t(a3) < t(a1), then {a1, a2, a3} cannot be packed into two
triangles. In phase 2, while it is possible, Φ finds a triplet of arcs of Y ⊆ A(T 2) that can be
packed into triangles, create the two corresponding triangles, and remove V (Y). Let S2 be
the triangle created in phase 2 and let S = S1 ∪ S2.

I Observation 8. For any a ∈ A(T), either V (a) ⊆ V (S) or V (a)∩V (S) = ∅. Equivalently,
no backward arc has one endpoint in V (S) and the other outside V (S).

According to Observation 8, we can partition A(T) = A0 ∪ A1 ∪ A2, where for i ∈ {1, 2},
Ai = {a ∈ A(T) : V (a) ⊆ V (Si) is the set of arcs used in phase i, and A0 =def {bi, i ∈ [x]}
are the remaining unused arcs. Let AΦ = A1 ∪ A2, mi = |Ai|, m = m0 + m1 + m2 and
mΦ = m1 + m2 the number of arcs (entirely) consumed by Φ. To prove the 1 + 6

c−1
desired approximation ratio, we will first prove in Lemma 9 that Φ uses at most all the arcs

ESA 2017

14:8 Triangle Packing in (Sparse) Tournaments: Approximation and Kernelization

(mA ≥ (1− ε(c))m), and in Theorem 10 that the number of triangles made with these arcs
is “optimal”. Notice that the latter condition is mandatory as if Φ used its mΦ arcs to only
create 2

3 (mΦ) triangles in phase 2 instead of creating m′ ≈ mΦ triangle with m′ backward
arcs and m′ vertices of degree (0, 0), we would have a 3

2 approximation ratio.

I Lemma 9 (?). For any c ≥ 2, mΦ ≥ (1− 6
c+5)m

I Theorem 10. For any c ≥ 2, Φ is a polynomial (1 + 6
c−1) approximation algorithm for

C3-Packing-TDM

≥c .

Proof. Let OPT be an optimal solution. Let us define OPTi ⊆ OPT and A∗i ⊆ A(T) as
follows. Let t = (u, v, w) ∈ OPT . As the FAS of the instance is a matching, we know that
wu ∈ A(T) as we cannot have a triangle with two backward arcs. If d(v) = (0, 0) then we
add t to OPT1 and wu to A∗1. Otherwise, let v′ be the other endpoint of the unique arc a
containing v. If v′ /∈ V (OPT), then we add t to OPT3 and {wu, a} to A∗3. Otherwise, let
t′ ∈ OPT such that v′ ∈ V (t′). As the FAS of the instance is a matching we know that v′
is the middle point of t′, or more formally that t′ = (u′, v′, w′) with u′w′ ∈ A(T). We add
{t, t′} to OPT2 and {wu, a, w′u′} to A∗2. Notice that the OPTi form a partition of OPT , and
that the A∗i have pairwise empty intersection, implying |A∗1|+ |A∗2|+ |A∗3| ≤ m. Notice also
that as triangles of OPT1 correspond to a matching of size |OPT1| in the bipartite graph
defined in phase 1 of algorithm Φ, we have |OPT1| = |A∗1| ≤ |A1|.

Putting pieces together we get (recall that S is the solution computed by Φ) |OPT | =
|OPT1|+ |OPT2|+ |OPT3| = |A∗1|+ 2

3 |A
∗
2|+ 1

2 |A
∗
3| ≤ |A∗1|+ 2

3 (|A∗2|+ |A∗3|) ≤ |A∗1|+ 2
3 (m−

|A∗1|) ≤ 1
3 |A1|+ 2

3m and |S| = |S1|+ |S2| = |A1|+ 2
3 |A2| ≥ |A1|+ 2

3 ((1− 6
c+5)m− |A1|) =

1
3 |A1|+ 2

3 (1− 6
c+5)m which implies the desired ratio. J

4 Kernelization

In all this section we consider the decision problem C3-Packing-T parameterized by the
size of the solution. Thus, an input is a pair I = (T , k) and we say that I is positive iff there
exists a set of k vertex disjoint triangles in T .

4.1 Positive results for sparse instances
Observe first that the kernel in O(k2) vertices for 3-Set Packing of [1] directly implies a
kernel in O(k2) vertices for C3-Packing-T. Indeed, given an instance (T = (V,A), k) of
C3-Packing-T, we create an instance (I ′ = (V,C), k) of 3-Set Packing by creating an
hyperedge c ∈ C for each triangle of T . Then, as the kernel of [1] only removes vertices,
it outputs an induced instance (I ′ = I ′[V ′], k′) of I with V ′ ⊆ V , and thus this induced
instance can be interpreted as a subtournament, and the corresponding instance (T [V ′], k′)
is an equivalent tournament with O(k2) vertices.

As shown in the next theorem, as we could expect it is also possible to have kernel
bounded by the number of backward arcs.

I Theorem 11. C3-Packing-T admits a polynomial kernel with O(m) vertices, where m is
the number of arcs in a given FAS of the input.

Proof. Let I = (T , k) be an input of the decision problem associated to C3-Packing-T.
Observe first that we can build in polynomial time a linear ordering σ(T) whose backward
arcs A(T) correspond to the given FAS. We will obtain the kernel by removing useless vertices

S. Bessy, M. Bougeret, and J. Thiebaut 14:9

of degree (0, 0). Let us define a bipartite graph G = (V1, V2, E) with V1 = {v1
a : a ∈ A(T)}

and V2 = {v2
l : vl ∈ V(0,0)}. Thus, to each backward arc we associate a vertex in V1 and

to each vertex vl with d(vl) = (0, 0) we associate a vertex in V2. Then, {v1
a, v

2
l } ∈ E iff

(h(a), vl, t(a)) is a triangle in T . By Hall’s theorem, we can in polynomial time partition
V1 and V2 into V1 = A1 ∪ A2, V2 = B0 ∪ B1 ∪ B2 such that N(A2) ⊆ B2, |B2| ≤ |A2|,
and there is a perfect matching between vertices of A1 and B1 (B0 is simply defined by
B0 = V2 \ (B1 ∪B2)).

For any i, 0 ≤ i ≤ 2, let Xi = {vl ∈ V(0,0) : v2
l ∈ Bi} be the vertices of T corresponding

to Bi. Let V6=(0,0) = V (T) \ V(0,0). Notice that |V 6=(0,0)| ≤ 2m. We define T ′ = T [V 6=(0,0) ∪
X1 ∪X2] the sub-tournament obtained from T by removing vertices of X0, and I ′ = (T ′, k).
We point out that this definition of T ′ is similar to the final step of the kernel of [1] as
our partition of V1 and V2 (more precisely (A1, B0 ∪B1)) corresponds in fact to the crown
decomposition of [1]. Observe that |V (T ′)| ≤ 2m+ |A1|+ |A2| ≤ 3m, implying the desired
bound of the number of vertices of the kernel.

It remains to prove that I and I ′ are equivalent. Let k ∈ N, and let us prove that
there exists a solution S of T with |S| ≥ k iff there exists a solution S′ of T ′ with |S′| ≥ k.
Observe that the ⇐ direction is obvious as T ′ is a subtournament of T . Let us now
prove the ⇒ direction. Let S be a solution of T with |S| ≥ k. Let S = S(0,0) ∪ S1

with S(0,0) = {t ∈ S : t = (h(a), v, t(a)) with v ∈ V(0,0), a ∈ A(T)} and S1 = S \ S(0,0).
Observe that V (S1) ∩ V(0,0) = ∅, implying V (S1) ⊆ V6=(0,0). For any i ∈ [2], let Si(0,0) =
{t ∈ S(0,0) : t = (h(a), v, t(a)) with v ∈ V(0,0), v

1
a ∈ Ai} be a partition of S(0,0). We

define S′ = S1 ∪ S2
(0,0) ∪ S

′1
(0,0), where S

′1
(0,0) is defined as follows. For any v1

a ∈ A1, let
v2
µ(a) ∈ B1 be the vertex associated to v1

a in the (A1, B1) matching. To any triangle
t = (h(a), v, t(a)) ∈ S1

(0,0) we associate a triangle f(t) = (h(a), vµ(a), t(a)) ∈ S′1
(0,0), where

by definition vµ(a) ∈ X1. For the sake of uniformity we also say that any t ∈ S1 ∪ S2
(0,0) is

associated to f(t) = t.
Let us now verify that triangles of S′ are vertex disjoint by verifying that triangles of

S
′1
(0,0) do not intersect another triangle of S′. Let f(t) = (h(a), vµ(a), t(a)) ∈ S′1

(0,0). Observe
that h(a) and t(a) cannot belong to any other triangle f(t′) of S′ as for any f(t′′) ∈ S′,
V (f(t′′)) ∩ V6=(0,0) = V (t′′) ∩ V 6=(0,0) (remember that we use the same notation V6=(0,0) to
denote vertices of degree (0, 0) in T and T ′). Let us now consider vµ(a). For any f(t′) ∈ S1,
as V (f(t′)) ∩ V(0,0) = ∅ we have vµ(a) /∈ V (f(t′)). For any f(t′) = (h(a′), vl, t(a′)) ∈ S2

(0,0),
we know by definition that v1

a′ ∈ A2, implying that v2
l ∈ B2 (and vl ∈ X2) as N(A2) ⊆ B2

and thus that vl 6= vµ(a). Finally, for any f(t′) = (h(a′), vl, t(a′)) ∈ S
′1
(0,0), we know that

vl = vµ(a′), where a 6= a′, leading to vl 6= vµ(a) as µ is a matching. J

Using the previous result we can provide a O(k) vertices kernel for C3-Packing-T re-
stricted to sparse tournaments.

I Theorem 12 (?). C3-Packing-T restricted to sparse tournaments admits a polynomial
kernel with O(k) vertices, where k is the size of the solution.

4.2 No (generalised) kernel in O(k2−ε)

In this section we provide an OR-cross composition (see [4] where we recall the definition) from
C3-Perfect-Packing-T restricted to instances of Theorem 7 to C3-Perfect-Packing-
T parameterized by the total number of vertices.

ESA 2017

14:10 Triangle Packing in (Sparse) Tournaments: Approximation and Kernelization

Definition of the instance selector. The next lemma build a special tournament, called
an instance selector that will be useful to design the cross composition.

I Lemma 13 (?). For any γ = 2γ′ and ω we can construct in polynomial time (in γ and ω)
a tournament Pω,γ such that

there exists γ subsets of ω vertices Xi = {xij : j ∈ [ω]}, that we call the distinguished set
of vertices, such that

the Xi have pairwise empty intersection
for any i ∈ [γ], there exists a packing S of triangles of Pω,γ such that V (Pω,γ)\V (S) =
Xi (using this packing of Pω,γ corresponds to select instance i)
for any packing S of triangles of Pω,γ with |V (S)| = |V (Pω,γ)| − ω there exists i ∈ [γ]
such that V (Pω,γ) \ V (S) ⊆ Xi

|V (Pω,γ)| = O(ωγ).

Definition of the reduction. We suppose given a family of t instances F = {Il, l ∈ [t]} of
C3-Perfect-Packing-T restricted to instances of Theorem 7 where Il asks if there is a
perfect packing in Tl = LlKl. We chose our equivalence relation of the cross-composition
such that there exist n and m such that for any l ∈ [t] we have |V (Ll)| = n and |V (Kl)| = m.
We can also copy some of the t instances such that t is a square number and g =

√
t is a

power of two. We reorganize our instances into F = {I(p,q) : 1 ≤ p, q ≤ g} where I(p,q) asks if
there is a perfect packing in T(p,q) = LpKq. Remember that according to Theorem 7, all the
Lp are equals, and all the Kq are equals. We point out that the idea of using a problem on
“bipartite” instances to allow encoding t instances on a “meta” bipartite graph G = (A,B)
(with A = {Ai, i ∈

√
t}, B = {Bi, i ∈

√
t}) such that each instance p, q is encoded in the

graph induced by G[Ai∪Bi] comes from [8]. We refer the reader to Figure 3 which represents
the different parts of the tournament. We define a tournament G = LMGL̃M̃GP(n,g), where
L = L1 . . . Lg, M̃G is a set of n vertices of degree (0, 0), MG is a set of (g − 1)n vertices
of degree (0, 0), L̃ = L̃1 . . . L̃g where each L̃p is a set of n vertices, and P(n,g) is a copy of
the instance selector of Lemma 13. Then, for every p ∈ [g] we add to G all the possible n2

backward arcs going from L̃p to Lp. Finally, for every distinguished set Xp of P(n,g) (see in
Lemma 13), we add all the possible n2 backward arcs from Xp to L̃p.

Now, in a symmetric way we define a tournament D = KMDK̃M̃DP
′
(m,g), where K =

K1 . . .Kg, M̃D is a set of m vertices of degree (0, 0), MD is a set of (g − 1)m vertices of
degree (0, 0), K̃ = K̃1 . . . K̃g where each K̃q is a set of m vertices, and P ′(m,g) is a copy of
the instance selector of Lemma 13. Then, for every q ∈ [g] we add to G all the m2 possible
backward arcs going from K̃p to Kp. For every distinguished set X ′q of P ′(m,g) we also add
all the possible m2 backward arcs from X

′q to K̃q. Finally, we define T = GD. Let us add
some backward arcs from D to G. For any p and q with 1 ≤ p, q ≤ g, we add backward arcs
from Kq to Lp such that T [KqLp] corresponds to T(p,q). Notice that this is possible as for
any fixed p, all the T(p,q), q ∈ [g] have the same left part Lp, and the same goes for any fixed
right part.

Restructuration lemmas. Given a set of triangles S we define S⊆P ′ = {t ∈ S|V (t) ⊆
P ′(m,g)}, S⊆P = {t ∈ S : V (t) ⊆ P(n,g)}, SM̃D

= {t ∈ S : V (t) intersects K̃, M̃D and P ′m,g},
SMD

= {t ∈ S : V (t) intersects K, MD and K̃}, SM̃G
= {t ∈ S : V (t) intersects L̃, M̃G

and Pn,g}, SMG
= {t ∈ S : V (t) intersects L, MG and L̃}, SD = {t ∈ S : V (t) ⊆ V (D)},

SG = {t ∈ S : V (t) ⊆ V (G)}, and SGD = {t ∈ S : V (t) intersects V (G) and V (D)}. Notice
that SG, SGD, SD is a partition of S.

S. Bessy, M. Bougeret, and J. Thiebaut 14:11

(g − 1)n nn m

G D

θj cj

L̃1 L̃p0 L̃nL1 Lp0 Ln K1 Kq0 Km K̃1 K̃q0 K̃m

Xp0n (g − 1)m X
′q0m

outer arcs of T(p0,q0)

mP(n,g) P ′
(m,g)

Figure 3 A example of the weak composition. All depicted arcs are backward arcs. Bold arcs
represents the n2 (or m2) possible arcs between the two groups.

I Claim 14. If there exists a perfect packing S of T , then |SM̃D
| = m and |SMD

| = (g−1)m.
This implies that V (SM̃D

∪SMD
)∩V (K̃) = V (K̃), meaning that the vertices of K̃ are entirely

used by SM̃D
∪ SMD

.

Proof. We have |SM̃D
| ≤ m since |M̃D| = m. We obtain the equality since the vertices of

M̃D only lie in the span of backward arcs from P ′m,g to K̃, and they are not the head or the
tail of a backward arc in T . Thus, the only way to use vertices of M̃D is to create triangles in
SM̃D

, implying |SM̃D
| ≥ m. Using the same kind of arguments we also get |SMD

| = (g− 1)m.
As |V (K̃)| = gm we get the last part of the claim. J

I Claim 15. If there exists a perfect packing S of T , then there exists q0 ∈ [g] such that
K̃S = K̃q0 , where K̃S = K̃ ∩ V (SM̃D

).

Proof. Let SP ′ be the triangles of S with at least one vertex in P ′m,g. As according to Claim 14
vertices of K̃ are entirely used by SM̃D

∪SMD
, the only way to consume vertices of P ′m,g is by

creating local triangles in P ′m,g or triangles in SM̃D
. In particular, we cannot have a triangle

(u, v, w) with {u, v} ⊆ K̃ and w ∈ P ′m,g, or with u ∈ K̃ and {v, w} ⊆ P ′m,g. More formally,
we get the partition SP ′ = S⊆P ′ ∪ SM̃D

. As S is a perfect packing and uses in particular
all vertices of P ′m,g we get |V (SP ′)| = |V (P ′m,g)|, implying |V (S⊆P ′)| = |V (P ′m,g)| −m by
Claim 14. By Lemma 13, this implies that there exists q0 ∈ [g] such that X ′ ⊆ X ′q0 where
X ′ = V (P ′m,g)\V (S⊆P ′). As X ′ are the only remaining vertices that can be used by triangles
of SM̃D

, we get that the m triangles of SM̃D
are of the form (u, v, w) with u ∈ K̃q0 , v ∈ M̃D,

and w ∈ X ′. J

I Claim 16. If there exists a perfect packing S of T , then there exists q0 ∈ [g] such that
V (SP ′ ∪ SM̃D

∪ SMD
) = V (D) \Kq0 .

Proof. By Claim 14 we know that |SMD
| = (g − 1)m. As by Claim 15 there exists q0 ∈ [g]

such that K̃S = K̃q0 , we get that the (g − 1)m triangles of SMD
are of the form (u, v, w)

with u ∈ K \Kq0 , v ∈MD, and w ∈ K̃ \ K̃q0 . J

I Lemma 17 (?). If there exists a perfect packing S of T , then V (SGD) ∩ V (G) ⊆ V (L).
Informally, triangles of SGD do not use any vertex of MG, L̃, M̃T and Pn,g.

Lemma 17 will allow us to prove Claims 18, 19 and 20 using the same arguments as in
the right part (D) of the tournament as all vertices of MG, L̃, M̃T and Pn,g must be used by
triangles in SG.

I Claim 18 (?). If there exists a perfect packing S of T , then |SM̃G
| = n and |SMG

| = (g−1)n.
This implies that V (SM̃G

∪ SMG
) ∩ V (L̃) = V (L̃), meaning that vertices of L̃ are entirely

used by SM̃G
∪ SMG

.

ESA 2017

14:12 Triangle Packing in (Sparse) Tournaments: Approximation and Kernelization

I Claim 19 (?). If there exists a perfect packing S of T , then there exists p0 ∈ [g] such that
L̃S = L̃p0 , where L̃S = L̃ ∩ V (SM̃G

).

I Claim 20 (?). If there exists a perfect packing S of T , then there exists p0 ∈ [g] such that
V (SP ∪ SM̃G

∪ SMG
) = V (G) \ Lp0 .

We are now ready to state our final claim is now straightforward as according Claim 16
and 20 we can define S(p0,q0) = S \ ((SP ′ ∪ SM̃D

∪ SMD
) ∪ (SP ∪ SM̃G

∪ SMG
)).

I Claim 21. If there exists a perfect packing S of T , there exists p0, q0 ∈ [g] and S(p0,q0) ⊆ S
such that V (S(p0,q0)) = V (T(p0,q0)) (or equivalently such that S(p0,q0) is a perfect packing of
T(p0,q0)).

Proof of the weak composition

I Theorem 22. For any ε > 0, C3-Perfect-Packing-T (parameterized by the total
number of vertices N) does not admit a polynomial (generalized) kernelization with size bound
O(N2−ε) unless NP ⊆ coNP / Poly.

Proof. Given t instances {Il} of C3-Perfect-Packing-T restricted to instances of The-
orem 7, we define an instance T of C3-Perfect-Packing-T as defined in Section 4.
We recall that g =

√
t, and that for any l ∈ [t], |V (Ll)| = n and |V (Kl)| = m. Let

N = |V (T)|. As N = |V (P ′(m,g))|+m+(g−1)m+2mg+ |V (P(n,g))|+n+(g−1)n+2ng and
|V (P(ω,γ))| = O(ωγ) by Lemma 13, we get N = O(g(n+m)) = O(t

1
2+o(1) max(|Il|)). Let us

now verify that there exists l ∈ [t] such that Il admits a perfect packing iff T admits a perfect
packing. First assume that there exist p0, q0 ∈ [g] such that I(p0,q0) admits a perfect packing.
By Lemma 21, there is a packing SP ′ of P ′(m,g) such that V (Sp′) = V (P ′(m,g))\X

′q0 . We define
a set SM̃D

of m vertex disjoint triangles of the form (u, v, w) with u ∈ L̃q0 , v ∈ M̃D, w ∈ X
′q0 .

Then, we define a set SMD
of (g − 1)m vertex disjoint triangles of the form (u, v, w) with

u ∈ L\Lq0 , v ∈MD, w ∈ L̃\L̃q0 . In the same way we define SP , SM̃G
and SMG

. Observe that
V (T)\ ((SP ′ ∪SM̃D

∪SMD
)∪ (SP ∪SM̃G

∪SMG
)) = Kq0 ∪Lp0 , and thus we can complete our

packing into a perfect packing of T as I(p0,q0) admits a perfect packing. Conversely if there
exists a perfect packing S of T , then by Claim 21 there exists p0, q0 ∈ [g] and S(p0,q0) ⊆ S
such that V (S(p0,q0)) = V (T(p0,q0)), implying that I(p0,q0) admits a perfect packing. J

I Corollary 23. For any ε > 0, C3-Packing-T (parameterized by the size k of the solution)
does not admit a polynomial kernel with size O(k2−ε) unless NP ⊆ coNP / Poly.

5 Conclusion and open questions

Concerning approximation algorithms for C3-Packing-T restricted to sparse instances,
we have provided a (1 + 6

c+5)-approximation algorithm where c is a lower bound of the
minspan of the instance. On the other hand, it is not hard to solve by dynamic programming
C3-Packing-T for instances where maxspan is bounded above. Using these two opposite
approaches it could be interesting to derive an approximation algorithm for C3-Packing-
T with factor better than 4/3 even for sparse tournaments.

Concerning FPT algorithms, the approach we used for sparse tournament (reducing to the
case where m = O(k) and apply the O(m) vertices kernel) cannot work for the general case.
Indeed, if we were able to sparsify the initial input such that m′ = O(k2−ε), applying the
kernel in O(m′) would lead to a tournament of total bit size (by encoding the two endpoint

S. Bessy, M. Bougeret, and J. Thiebaut 14:13

of each arc) O(m′log(m′)) = O(k2−ε), contradicting Corollary 23. Thus the situation for C3-
Packing-T could be as in vertex cover where there exists a kernel in O(k) vertices, derived
from [15], but the resulting instance cannot have O(k2−ε) edges [8]. So it is challenging
question to provide a kernel in O(k) vertices for the general C3-Packing-T problem.

References
1 Faisal N. Abu-Khzam. A quadratic kernel for 3-set packing. In International Conference

on Theory and Applications of Models of Computation, pages 81–87. Springer, 2009.
2 Giorgio Ausiello, Pierluigi Crescenzi, Giorgio Gambosi, Viggo Kann, Alberto Marchetti-

Spaccamela, and Marco Protasi. Complexity and approximation: Combinatorial optimiz-
ation problems and their approximability properties. Springer Science & Business Media,
2012.

3 Piotr Berman and Marek Karpinski. On some tighter inapproximability results. In Inter-
national Colloquium on Automata, Languages, and Programming, pages 200–209. Springer,
1999.

4 Stephane Bessy, Marin Bougeret, and Jocelyn Thiebaut. Triangle packing in (sparse)
tournaments: approximation and kernelization. Technical report, HAL LIRMM, lirmm-
01550313, v1, 2017. URL: https://hal-lirmm.ccsd.cnrs.fr/lirmm-01550313.

5 Mao-Cheng Cai, Xiaotie Deng, and Wenan Zang. A min-max theorem on feedback vertex
sets. Mathematics of Operations Research, 27(2):361–371, 2002.

6 Pierre Charbit, Stéphan Thomassé, and Anders Yeo. The minimum feedback arc set prob-
lem is NP-hard for tournaments. Combinatorics, Probability and Computing, 16(01):1–4,
2007.

7 Marek Cygan. Improved approximation for 3-dimensional matching via bounded path-
width local search. In Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual
Symposium on, pages 509–518. IEEE, 2013.

8 Holger Dell and Dániel Marx. Kernelization of packing problems. In Proceedings of the
twenty-third annual ACM-SIAM symposium on Discrete algorithms, SODA’12, 2012.

9 Venkatesan Guruswami, C. Pandu Rangan, Maw-Shang Chang, Gerard J. Chang, and
C.K. Wong. The vertex-disjoint triangles problem. In International Workshop on Graph-
Theoretic Concepts in Computer Science, pages 26–37. Springer, 1998.

10 Danny Hermelin and Xi Wu. Weak compositions and their applications to polynomial lower
bounds for kernelization. In Proceedings of the twenty-third annual ACM-SIAM symposium
on Discrete Algorithms, pages 104–113. Society for Industrial and Applied Mathematics,
2012.

11 Bart M.P. Jansen and Astrid Pieterse. Sparsification upper and lower bounds for graph
problems and Not-All-Equal SAT. Algorithmica, pages 1–26, 2015.

12 Claire Kenyon-Mathieu and Warren Schudy. How to rank with few errors. In Proceedings
of the thirty-ninth annual ACM symposium on Theory of computing, pages 95–103. ACM,
2007.

13 Matthias Mnich, Virginia Vassilevska Williams, and László A. Végh. A 7/3-Approximation
for Feedback Vertex Sets in Tournaments. In 24th Annual European Symposium on Al-
gorithms, ESA 2016, pages 67:1–67:14, 2016.

14 Hannes Moser. A problem kernelization for graph packing. In International Conference
on Current Trends in Theory and Practice of Computer Science, pages 401–412. Springer,
2009.

15 George L. Nemhauser and Leslie E. Trotter Jr. Properties of vertex packing and independ-
ence system polyhedra. Mathematical Programming, 6(1):48–61, 1974.

ESA 2017

https://hal-lirmm.ccsd.cnrs.fr/lirmm-01550313

	Introduction and related work
	Specific notations and observations
	Approximation for sparse tournaments
	APX-hardness for sparse tournaments
	(1+6/(c-1))-approximation when backward arcs have large minspan

	Kernelization
	Positive results for sparse instances
	No (generalised) kernel in O(k(2-e))

	Conclusion and open questions

