
Improved Algorithm for Dynamic b-Matching
Sayan Bhattacharya1, Manoj Gupta2, and Divyarthi Mohan3

1 University of Warwick, Coventry, UK
S.Bhattacharya@warwick.ac.uk

2 IIT Gandhinagar, Gandhinagar, India
gmanoj@iitgn.ac.in

3 Princeton University, Princeton, NJ, USA
dm23@cs.princeton.edu

Abstract
Recently there has been extensive work on maintaining (approximate) maximum matchings in
dynamic graphs. We consider a generalisation of this problem known as themaximum b-matching:
Every node v has a positive integral capacity bv, and the goal is to maintain an (approximate)
maximum-cardinality subset of edges that contains at most bv edges incident on every node v.
The maximum matching problem is a special case of this problem where bv = 1 for every node v.

Bhattacharya, Henzinger and Italiano [ICALP 2015] showed how to maintain a O(1) approx-
imate maximum b-matching in a graph in O(log3 n) amortised update time. Their approximation
ratio was a large (double digit) constant. We significantly improve their result both in terms
of approximation ratio as well as update time. Specifically, we design a randomised dynamic
algorithm that maintains a (2 + ε)-approximate maximum b-matching in expected amortised
O(1/ε4) update time. Thus, for every constant ε ∈ (0, 1), we get expected amortised O(1) up-
date time. Our algorithm generalises the framework of Baswana, Gupta, Sen [FOCS 2011] and
Solomon [FOCS 2016] for maintaining a maximal matching in a dynamic graph.
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1 Introduction

In dynamic graph algorithms, we want to maintain a solution to an optimisation problem on
an input graph that is undergoing a sequence of edge insertions/deletions. The time taken to
modify the solution after an update (edge insertion/deletion) is called the update time of the
dynamic data structure. The challenge is to design dynamic data structures whose update
times are significantly faster than recomputing the solution from scratch after each update
using the best static algorithm. In recent years, there has been extensive work on dynamic
graph algorithms for (approximate) maximum matching [10, 1, 12, 8, 3, 9, 2, 11, 6, 5]. A
matching M ⊆ E in a graph G = (V,E) is a subset of edges that do not share a common
endpoint. In this problem, the goal is to maintain a matching of (approximately) maximum
size in an input graph undergoing a sequence of edge insertions/deletions.

The first significant result on dynamic matching was due to Onak and Rubinfeld [10],
who gave a randomised data structure with approximation ratio O(1) and amortised update
time of O(log2 n). Baswana, Gupta and Sen [1] improved this approximation ratio to 2 and
the amortised update time to O(logn). Very recently, in a breakthrough result Solomon [12]
built upon the algorithmic framework of Baswana, Gupta and Sen [1] to present a randomised
data structure with approximation ratio 2 and constant amortised update time. This is the
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15:2 Improved Algorithm for Dynamic b-Matching

first paper to achieve constant (and hence optimal) update time for any graph problem. All
the data structures described so far are randomised. There are deterministic data structures
for this problem, with (2 + ε)-approximation ratio and O(poly logn) amortised update time,
that are due to Bhattacharya, Henzinger and Italiano [5] and Bhattacharya, Henzinger and
Nanongkai [6]. They show how to maintain a (2 + ε)-approximate maximum fractional
matching in O(logn/ε2) amortised update time. Then they round these fractional weights
deterministically in a dynamic setting to get an integral matching.

We focus on a generalisation of the dynamic matching problem. We are given an input
graph G = (V,E) with n = |V | nodes. At each time-step, an edge is inserted into/deleted
from the graph. Each node v ∈ V has a positive integral capacity bv. The node-set V and
the capacities {bv} remain unchanged over time. A b-matching is a subset of edgesM⊆ E
that contains at most bv edges incident on every node v ∈ V . Note that if bv = 1 for every
node v ∈ V , thenM is a matching. Our goal is to maintain a b-matching of (approximately)
maximum size in this dynamic graph G. This problem was first considered by Bhattacharya,
Henzinger and Italiano [4]. Extending the dynamic data structure for fractional matching [5],
they first showed how to maintain a fractional b-matching. Then they randomly sampled the
edges from this fractional b-matching, with probabilities proportional to their edge-weights,
and got an integral b-matching. This leads to a randomised data structure with a (large,
double digit) constant approximation ratio and O(log3 n) amortised update time with high
probability. Recently, Gupta et. al [7] improved the update time in [4] for the set cover
problem. However, their result does not imply our b-matching result.

Our result. We significantly improve upon the previous result on dynamic b-matching [4],
both in terms of the approximation ratio and update time. Specifically, we present a
randomised data structure with approximation ratio (2 + ε) and expected amortised update
time O(1/ε4). Note that our update time does not depend on the capacities {bv}. On the
other hand, similar to the previous paper [4], we assume an oblivious adversary.

Our technique. We build upon the work of Baswana, Gupta, Sen [1] and Solomon [12].
Before proceeding any further, we briefly review their framework for dynamic matching. A
matchingM ⊆ E is maximal if every unmatched edge (u, v) ∈ E\M has at least one matched
endpoint. The size of a maximal matching is a 2-approximation to the size of the maximum
matching. Note that we can easily maintain a maximal matching in a dynamic graph in
O(d) update time, where d is an upper bound on the maximum degree of a node. This holds
since after the insertion/deletion of an edge (u, v), we only need to check the neighbours of
u and v to preserve maximality, and there are at most O(d) such neighbours. To improve
the update time, the papers [1, 10, 12] use the following idea. We pick a neighbour y of x
uniformly at random from the set Nx, where Nx is the set of all neighbours of x, and add the
edge (x, y) to the matching M . If the sequence of edge insertions/deletions in G is oblivious
to the random bits used by the algorithm, then in expectation this edge (x, y) will not be
deleted from G before half of the current edges in Nx gets deleted. And when such an edge
(x, z) ∈ Nx \ {(x, y)} gets deleted, the algorithm does not need to perform any computation
for the node x (since the node remains matched in M). Thus, although the algorithm takes
O(|Nx|) time to find a new mate for x, it does not need to do anything for the next |Nx|/2
edge deletions incident on x, in expectation. This helps bring down the amortised update
time to O(1). This is the high level idea behind the dynamic algorithms in [1, 12]. The actual
algorithms, however, are significantly more complicated, for the following reason. In the
preceding summary, we said that the node x picks a neighbour y uniformly at random from
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the set Nx. But what if the node y itself is matched to some other node z (i.e., (y, z) ∈M)?
In that case, in order to add the edge (x, y) to the matching M , we first need to unmatch
the edge (y, z) by removing it from M . But this means that we will now need to find a new
mate for z. In general, this can lead to a long chain of edges alternately being matched and
unmatched. To address this concern, the papers [1, 12] construct a hierarchical partition of
the node-set into O(logn) levels. Suppose that a node x is at level i, and want to find a new
mate for x. The papers [1, 12] ensure that x has roughly αi many neighbours at strictly
lower levels {0, . . . , i − 1}, for some constant α > 1. We now pick a node y uniformly at
random only from these neighbours of x at levels j < i. The papers further ensure that
every matched edge has both its endpoints at the same level. Hence, the node (say z) that
is matched to y will have `(z) = `(y) < i = `(x). We now match the edge (x, y), bring the
node y up to level i, and unmatch the edge (y, z). The node z now has to find a new mate
for itself. But note that the level of z is strictly less than the level of x. Hence, this chain of
alternate matchings and unmatchings of edges cannot go on for more than O(logn) levels.

In order to extend the above framework to maximum b-matching, we have to overcome
several technical difficulties. First, since a node can have multiple matched edges incident on
it in a b-matching, we can no longer ensure that both the endpoints of every matched edge
are on the same level. Instead, we maintain an invariant which states that if a node v has bv
matched edges incident on it, then at least one of these matched edges, say (u, v), must have
its other endpoint u at a level that is not larger than the level of v (see Invariant 3). Second,
unlike the papers [1, 12], we can no longer ensure that if a node z becomes unmatched while
we are finding a new mate for a different node x, then `(x) > `(z). Indeed, there are instances
in our algorithm where both x and z can be at the same level, and we need to show that this
situation does not occur too often. Finally, in the papers [1, 12], at any point in time there
can be multiple nodes in the hierarchical partition that are dirty, meaning that they violate
one of the invariants. The algorithms in [1, 12] run a While loop, and each iteration of the
While loop picks any arbitrary dirty node and restores all the invariants it ought to satisfy
(this can lead to other nodes becoming dirty). In sharp contrast, the While loop in our
dynamic algorithm has to pick the dirty nodes in a specific order, preferring one type of dirty
nodes over another. This preferential ordering among the dirty nodes turns out to be crucial
in analysing the amortised update time of our algorithm. See Sections 2 and 3 for details.

2 Our Dynamic Algorithm for Maximum b-Matching

Let G = (V,E) denote the input graph whose edge-set E changes dynamically. Every node
v ∈ V has a positive integral capacity bv associated with it. The node-set V and the capacities
{bv} do not change over time. Let n = |V | be the number of nodes in G. A subset of edges
M⊆ E is a b-matching iff for all nodes v ∈ V , we have |{(u, v) ∈M| (u, v) ∈ E}| ≤ bv. We
say that an edge e ∈ E is matched inM iff e ∈M.

Throughout this paper, we fix any constant ε ∈ (0, 1/2) and define α = 5/ε. We will
maintain a partition of the node-set V into L+ 2 levels {−1, 0, . . . , L}, where L = dlogα ne.
Let `(v) ∈ {−1, . . . , L} denote the level of a node v. The value of `(v) changes over time. In
our dynamic algorithm, whenever a node v moves to a level j, we will require that it has at
most 2bv · αj+1 neighbours u with `(u) ≤ j. Further, any node v at level −1 has at most
O(bv · α0) = O(bv) many neighbours at level −1.

The level of an edge is the maximum level among its endpoints, i.e., `(u, v) = max(`(u), `(v))
for all (u, v) ∈ E. For every node v ∈ V and every level j ∈ [−1, L], we let Ejv = {(u, v) ∈ E :
`(u, v) = j} be the set of edges incident on v that are at level j. Since `(u, v) ≥ `(v) for all
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edges (u, v) ∈ E, it follows that Ejv = ∅ for all levels j < `(v). We say that an edge (u, v) ∈ E
is owned by its endpoint v iff `(u) < `(v). Equivalently, we say that v is the owner of the
edge (u, v). We let Ov = {(u, v) ∈ E : `(u) < `(v)} denote the set of edges owned by v ∈ V
(Note that if both the end-points are at the same level then no vertex owns the edge). In a
b-matchingM⊆ E, we letMv = {(u, v) ∈M} denote the set of all matched edges incident
on a node v ∈ V . For any level i ∈ [−1, L], we defineMv(i) = {(u, v) ∈Mv : `(u, v) = i} as
the set of all matched edges incident on a node v at level i. We say that a node v ∈ V is
Full in a b-matchingM⊆ E iff |Mv| = bv, and v is Deficient inM iff |Mv| < (1− ε)bv.
The node v is Non-deficient inM iff |Mv| ≥ (1− ε)bv. Finally, for every node v ∈ V , if v
is Full, then we define Base(v) to be the smallest level j for which there is a matched edge
(u, v) ∈Mv at level `(u, v) = j. Else if v is not Full, then we set Base(v) = `(v).

We maintain a b-matching M ⊆ E in G satisfying the three invariants below. The
approximation guarantee of the algorithm follows from the first two invariants (see Theorem 4).
Invariant 3 will be useful in bounding the amortised update time. The main result in this
paper follows from Theorems 4, 5.

I Invariant 1. Every node v ∈ V at level `(v) ≥ 0 is non-deficient.

I Invariant 2. Every unmatched edge with level −1 has at least one Non-deficient endpoint.

I Invariant 3. For every node v ∈ V , we have |{(u, v) ∈M : `(u) > `(v)}| < bv.

We will assume that the initial graph is empty. So, all the three invariants hold. We now
compare our invariants with those in ([1], [12]), that is in the maximal matching case when
bv = 1 for all v ∈ V . non-deficient vertices are free vertices in this simple case. The first
invariant then say that all the vertices at level ≥ 0 are matched . The second invariant says
that each un-matched edge at level −1 has both endpoints free. In ([1],[12]), there can be no
edge at level −1, since only free vertices settle at level −1. That is why the corresponding
invariant for maximal matching is that there is no edge with level −1. We have generalised
this invariant for b-matching. The last invariant implies that if at any point of time all the
other endpoints of the matched edges incident on v have levels greater than v, then v has to
move to a higher level. In the simple maximal matching case, this implies that end-points
of the matched edges should always be at the same level. The reader can check that these
three invariants are maintained in ([1],[12]), and here we generalise them for b-matching.

I Theorem 4. Invariants 1, 2 imply thatM is a (2 + ε)-approximate maximum b-matching.

Proof. (Sketch) Invariants 1, 2, ensure thatM is almost maximal, as every unmatched edge
has one endpoint x with |Mx| ≥ (1− ε)bx. This implies (2 + ε)-approximation. J

I Theorem 5. There is a randomised algorithm that maintains a b-matching in a dynamic
graph satisfying Invariants 1, 2, 3. It has an amortised update time of O(1/ε4) in expectation.

2.1 Handling the insertion/deletion of an edge
Data structures. Each node x ∈ V maintains the edge-sets Mx,Mx(j), Ejx and Ox as
doubly linked lists, and the node also maintains the sizes of these sets. From the size ofMx,
we can infer whether the node x is Deficient, Non-Deficient or Full. With appropriate
pointers, an edge can be inserted into or deleted from a linked list in O(1) time. Further,
each node x ∈ V maintains its level `(x) and the value of Base(x).
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01. While the set of Dirty nodes is nonempty
02. If the set of Full-from-above nodes is nonempty, Then
03. Let x be a Full-from-above node with the largest value of Base(x).
04. Call the subroutine FIX-DIRTY(x). // See Section 2.1.1.
05. Else
06. Let x be any Dirty node that is Deficient at level `(x) ≥ 0.
07. Call the subroutine FIX-DIRTY(x). // See Section 2.1.2.

Figure 1 Fixing the dirty nodes.

Insertion/deletion of an edge (u, v). When an edge (u, v) is inserted into or deleted from
the graph G = (V,E), we first update the relevant data structures in O(1) time. For the time
being, to highlight the main idea behind our algorithm, we assume that the insertion/deletion
of the edge (u, v) does not lead to a violation of Invariant 2 (which pertains to the subgraph
induced by the nodes at level −1). In Section 2.1.4, we will show how to handle the nodes in
level −1 and how to maintain Invariant 2. Right now we focus on maintaining the remaining
two invariants. Accordingly, suppose that after the insertion/deletion of the edge (u, v), at
least one of its endpoints violates Invariant 1 or 3. In general, if a node x ∈ V violates
Invariant 1 or 3, then we say that the node x is Dirty. A dirty node is either Deficient (if
it violates Invariant 1) or Full-from-above (if it violates Invariant 3). Thus, a node x is
Full-from-above iff Base(x) > `(x) and |Mx| = bx. Due to the insertion/deletion of an
edge, its endpoints can become Dirty. To ensure that no node remains Dirty, we call the
following subroutine in Figure 1.

We highlight two important aspects of this subroutine. First, during an iteration of the
While loop in Figure 1, the node x can move to a new level due to the call to FIX-DIRTY(x).
Immediately after the call to FIX-DIRTY(x), the node x is no longer Dirty. But the call to
FIX-DIRTY(x) might lead to some other nodes becoming Dirty, and these newly Dirty
nodes will be handled in subsequent iterations of the While loop. Second, the While loop
in Figure 1 always gives preference to the Full-from-above nodes over the Dirty nodes
that are Deficient at a nonnegative level. Furthermore, among the Full-from-above
nodes, the While loop picks the one with the largest Base(.) value. The While loop picks
a Dirty and Deficient node only if there is no Full-from-above node. This aspect of
our algorithm will ensure that Lemma 9 holds, which, in turn, will play a crucial role in the
analysis of the amortised update time.

2.1.1 The subroutine FIX-DIRTY(x) on a Full-from-above node x

Suppose that the subroutine FIX-DIRTY(x) is called on a Full-from-above node x at
level `(x) = i with Base(x) = j (say). Since the node x is Full-from-above, we have
j > i. We first move the node x up from level i to level j, and update all the relevant data
structures (as described in the beginning of Section 2.1). We next check the number of edges
in Ejx, and, accordingly, we consider two cases.

Case 1. |Ejx| ≤ 2bx · αj+1. In this case, the node x stays at level j and we terminate the
subroutine. At this stage the node x has |Mx| = bx and Base(x) = j = `(x). Hence, the
node x is no longer Dirty.
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Case 2. |Ejx| > 2bx · αj+1. In this case, we find the minimum level k ∈ [j + 1, L] such that
the number of edges (x, y) with `(y) ≤ k lies in the range (2bx · αk, 2bx · αk+1]. Such a level
exists since bx · αL+1 ≥ n > degree of x. We now move the node x from level j to level k.
In doing so, x becomes the owner of all the edges whose other endpoints are at level < k and
we update all the relevant data structures. Next, we unmatch all edges (x, y) ∈Mx whose
other endpoints are at levels `(y) < k, and update all the relevant data structures. Let λx be
the value of |Mx| at this stage. We now select (bx−λx) edges from Ox uniformly at random,
and add them toM by calling Random-Settle(x)(See Section 2.1.3). At this stage we
have |Mx| = bx and Base(x) = k = `(x), and hence x is no longer Dirty. We terminate
the subroutine at this point. This procedure can lead to other nodes becoming Dirty, for
two reasons. (1) When we unmatch an edge (x, y) with `(y) < k, the node y might become
Deficient and Dirty. (2) Suppose that while executing Random-Settle(x), we add an
edge (x, y) ∈ Ox toM. Then the node y can become Full-from-above (and Dirty). Else,
it might happen that |My| becomes equal to (by + 1) after we add the edge (x, y) to M.
Then we will need to unmatch some edge (y, z) ∈ My, so as to ensure thatM remains a
valid b-matching. But this might lead to z becoming Deficient and Dirty. These newly
Dirty nodes will be handled in subsequent iterations of the While loop in Figure 1.

I Lemma 6. Suppose that we call FIX-DIRTY(x) on a Full-from-above node x, and
this moves the node x up from level i to level k > i. Then it takes O(bx · αk+1) time.

Proof (Sketch). Only the edges (x, y) ∈ E with `(y) ≤ k get affected as the node x moves
to level k. The data structure associated with every other edge remains unchanged. Thus,
the total runtime of the subroutine is proportional to the number of edges in {(x, y) ∈ E :
`(y) ≤ k}, plus the time taken by the potential call to Random-Settle(x). The latter
quantity is bounded in Lemma 10. It is easy to check that the former quantity is at most
2bxαk+1, for otherwise the node x would have moved up to a level larger than k. J

2.1.2 The subroutine FIX-DIRTY(x) on a Deficient node x

Suppose that the subroutine FIX-DIRTY(x) is called on a Deficient node x at level
`(x) = j ≥ 0. We first check the number of edges in Ejx. Accordingly, we consider two cases.

Case 1. |Ejx| > 2bx · αj+1. Here, we perform the same steps as in Case 2 in Section 2.1.1.

Case 2. |Ejx| ≤ 2bx · αj+1. In this case, we try to find a maximal level k in range [0, j] such
that the number of edges (x, y) with `(y) < k lies in the range (2bx · αk, 2bx · αk+1]. If no
such level exists, then we set k = −1. Next, we move the node x from level j to level k. In
doing so, x dis-owns all the edges (and the other endpoints becomes the owner) that are at
level [k, j] and we update the relevant data structures. We then unmatch all the edges (x, y)
whose other endpoints are at levels `(y) < j, and update the relevant data structures. Let λx
be the value of |Mx| at this stage. If k ≥ 0, then we call Random-Settle(x), which selects
(bx−λx) edges uniformly at random from Ox = {(x, y) ∈ E : `(y) < k}, and adds those edges
toM. At this point |Mx| = bx and Base(x) = k = `(x), and hence x is no longer Dirty.
So we terminate the subroutine. If k = −1, then instead of calling Random-Settle(x), we
follow the procedure in Section 2.1.4.

I Lemma 7. Suppose that we call FIX-DIRTY(x) on a Deficient node x at level j ≥ 0.
If the subroutine moves the node x to a level k > j, then it takes O(bx · αk+1) time.

Proof. Exactly similar to the proof of Lemma 6. J



S. Bhattacharya, M. Gupta, and D. Mohan 15:7

01. While |Mx| < bx
02. Pick a uniformly random edge (x, y) ∈ Ox \Mx, and add it to the b-matching.

Specifically, setM←M∪ {(x, y)}, and update the relevant data structures.
03. If |My| = by + 1, Then
04. Select an edge (y, z) ∈My \ {(x, y)} which minimises the value of `(y, z),

and unmatch the edge (y, z). Specifically, setM←M\ {(y, z)},
and update the relevant data structures.

Figure 2 Random-Settle(x).

I Lemma 8. Suppose that we call FIX-DIRTY(x) on a Deficient node x at level j ≥ 0.
If the subroutine moves the node x to a level k ≤ j, then it takes O(bx · αj+1) time.

Proof (Sketch). Only the edges (x, y) ∈ E with `(y) ≤ j get affected as the node x moves
to level k. The data structure associated with every other edge remains unchanged. Thus,
the total running time of the subroutine is proportional to the number of edges (x, y) with
`(y) ≤ j, plus the time for the call to Random-Settle(x) or the procedure in Section 2.1.4.
The latter quantity is bounded in Lemma 10 and in Section 2.1.4. As we are in Case 2, the
former quantity is by definition at most 2bx · αj+1. J

2.1.3 The subroutine Random-Settle(x)
Suppose that we call RANDOM-SETTLE(x) on a node x at level `(x) = k ≥ 0. From
Sections 2.1.1 and 2.1.2, we infer that 2bx · αk < |Ox| ≤ 2bx · αk+1 at this point in time.
Let λx = |Mx| be the number of matched edges incident on x just before the call to the
subroutine. The subroutine selects (bx − λx) edges uniformly at random from Ox and adds
them toM. Thus, at the end of the subroutine we have |Mx| = bx. The following lemma
crucially uses our preferential treatment to Full-From-Above nodes over Deficient nodes.

I Lemma 9. If a call to RANDOM-SETTLE(x) matches an edge (x, y) and unmatches an
edge (y, z) (Step (04) in Figure 2), then we have `(z) < `(x) during that call.

Proof. Consider two possible cases, depending on the state of the node x.

Case 1. The node x is Deficient just before the call to FIX-DIRTY(x) in Figure 1. Then
at this stage there is no Full-from-above node. This holds since the While loop in
Figure 1 always picks a Full-from-above node over a Deficient node. In particular, the
node y is not Full-from-above. Since (y, z) is a matched edge that minimises the value of
`(y, z), and since y is not Full-from-above, we must have `(z) ≤ `(y, z) = `(y). Finally,
note that (x, y) ∈ Ox, and hence we get: `(z) ≤ `(y) < `(x).

Case 2. The node x is Full-from-above just before the call to FIX-DIRTY(x) in Figure 1.
Then at this stage the node x has the highest Base(x) value among all the Full-from-
above nodes. Suppose that Base(x) = j at this point in time. Since the subroutine
FIX-DIRTY(x) called the subroutine RANDOM-SETTLE(x), we must have been in Case 2
of Section 2.1.1. This means that the node x moves to a level strictly larger than j. Thus,
we have `(x) > j during the call to RANDOM-SETTLE(x). We now consider two cases,
depending on the state of the node y. (a) If the node y is not Full-from-above during
the call to RANDOM-SETTLE(x), then using an argument exactly similar to the one used
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in Case 1, we infer that: `(z) ≤ `(y, z) = `(y) < `(x). This concludes the proof. (b) Else if
the node y is Full-from-above during the call to RANDOM-SETTLE(x), then we claim
that Base(y) ≤ j at the same time-instant. This is true since the While loop in Figure 1
picked the node x over y, and so we must have j = Base(x) ≥ Base(y) just before the call
to FIX-DIRTY(x). Since (y, z) is an edge in M that minimises the value `(y, z), we get:
`(z) ≤ `(y, z) = Base(y) ≤ j < `(x). This concludes the proof. J

I Lemma 10. A call to the subroutine RANDOM-SETTLE(x) takes O(bx · α`(x)+1) time.

Proof (Sketch). Let λx = |Mx| be the number of matched edges incident on x just before
the call to the RANDOM-SETTLE(x). The subroutine picks (bx − λx) edges uniformly
at random from its set of owned edges Ox. This takes O(|Ox|) time. Further, steps (03) –
(04) in each iteration of the While loop in Figure 2 takes O(1) time. Thus, the total time
taken by the subroutine is O(|Ox| + bx) = O(bx · α`(x)+1). The last equality holds since
|Ox| ≤ 2bx · α`(x)+1 (see the discussion in the beginning of Section 2.1.3). J

2.1.4 Handling the nodes in level −1: Maintaining Invariant 2
Every node at level −1 can be in two states: dead or alive. A node x becomes alive when:
(1) x moves down to level −1 from a higher level. In this case, it scans all its incident edges

at level −1 and tries to add them toM till |Mx| becomes equal to bx. If it cannot find
sufficient number of edges at level −1 to be Full, then it remains alive, otherwise it
becomes dead. The total computation cost for this step is O(bx) since x has at most
O(bx · α0) neighbours in level −1. This cost is charged to Lemma 8.

(2) x is dead at level −1, and it becomes Deficient due to either an unmatching or a
deletion of an incident edge. In case (1), x became dead only when it was Full. Thus,
at least εbx edges incident on x have been either deleted from the graph or removed from
M. In the former event, we give one unit of credit to x for each edge deletion incident on
it. In the latter event, we give one unit of credit to x for every unmatching of an edge
incident on it at level j ≥ 0 from the Fix-Dirty(·) procedure that removes this edge
from the matching. Thus, node x accumulates at least εbx worth of credit by the time it
becomes Deficient. Hence, it can now scan all its incident edges at level −1, as there
are O(bx) such edges.

Finally, if x is not Full, and an edge (x, y) is added at level −1 where y is also not Full,
then we add the edge (x, y) to the b-matching. This takes O(1) time. A node x at level −1
becomes dead when it is Full. Once x becomes dead, we wait till it becomes Deficient
again. So there is no processing done on x as long as it remains dead. The only non-trivial
processing done on x is when it becomes alive, and this takes O(bx) time. We amortise this
cost over the εbx many edge deletions/unmatchings that lead to the change in the state of x.

3 Bounding the Amortised Update Time of Our Algorithm

We fix a sequence of T edge insertions/deletions starting from an empty graph. We show that
our algorithm takes O(T/ε4) time in expectation to handle these T edge insertions/deletions.
This implies an amortised update time of O(1/ε4). Without any loss of generality, we assume
that the graph G becomes empty at the end of this sequence of edge insertion/deletions.1

1 Otherwise, we can ourselves delete the existing edges from G one after the other, and get a new sequence
of at most 2T edge insertions/deletions. We then bound the total update time on this new sequence.
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Further, to highlight the main ideas, we only focus on bounding the time spent on handling
the nodes at levels j ≥ 0. From the discussion in Section 2.1.4, it is easy to infer that the
amortised time spent on the nodes at level −1 is at most O(1/ε) per update.

Epochs. The notion of an epoch will play a key role in our analysis of the amortised update
time. We say that a node x ∈ V creates an epoch when it matches a new edge (x, y) during
a given iteration of the While loop in RANDOM-SETTLE(v). Note that this is the only
way an edge can be added to the b-matching at levels ≥ 0. At most bv matched edges can
be created in RANDOM-SETTLE(v). For the j-th edge selected by v, define the epoch of
j-th edge, γj to be the contiguous time interval for which this edge remains in the matching.
While creating an epoch γj , we select an edge (x, y) uniformly at random from Ox \ M
and add this edge toM (see Step (02) in Figure 2). This random edge (x, y) is called the
candidate edge of epoch γj . We denote the level of epoch γj by `(γj). This is same as the
level of x during the call to RANDOM-SETTLE(x) in Figure 2. We say that an epoch
is destroyed when its candidate edge is removed from the b-matching M. This happens
either when the candidate edge gets deleted from the graph, or when the candidate edge gets
unmatched during the course of our algorithm. As the graph G is empty at the end of T
edge insertions/deletions, every epoch gets destroyed at some point in time.

Overview of the analysis. For every node v ∈ V and level i ∈ [0, L], let Xv,i be a random
variable that denotes the total number of epochs created by v at level i, as we handle the
fixed sequence of T edge insertions/deletions. In Lemma 11, we express the total update
time as a function of these random variables {Xv,i}. In Lemma 12, we upper bound the
expected value of this function in terms of T . The bound on the expected amortised update
time of our algorithm follows from Lemmas 11 and 12 (see Corollary 13).

I Lemma 11. It takes
∑
v,iXv,i ·O(αi+1/ε) time to handle T edge insertions/deletions.

Proof (Sketch). The time taken is dominated by the While loop in Figure 1. Hence, it
suffices to bound the time spent on the calls to FIX-DIRTY(v) over all v ∈ V . We will charge
the total time spent in Fix-Dirty to the start or an end of an epoch in the following way:

Scenario 1. We have `(v) = i, v is Deficient, and FIX-DIRTY(v) moves the node v up to
some level j > i and calls Random-Settle. By Lemma 7 the runtime of FIX-DIRTY(v) is
O(bvαj+1). When v comes to level j, it calls RANDOM-SETTLE(v) and starts at least εbv
new epochs at level j. So, the computation cost charged per new epoch created is O(αj+1/ε).

Scenario 2. We have `(v) = i, v is Deficient, and FIX-DIRTY(v) moves v down to some
level j ≤ i. By Lemma 8 the runtime of FIX-DIRTY(v) is O(bvαi+1). Since, v became
deficient at level i, at least εbv epochs involving v have been destroyed (since the last time v
came to level i, Fix-Dirty makes it Full). Note that all such epochs have level ≥ i. So,
the computation cost charged to all epochs destroyed is O(αi+1/ε).

Scenario 3. The hard case is as follows: `(v) = i, v is Full-from-above, and FIX-
DIRTY(v) moves the node v up to some level j = Base(v) (or at j >Base(v), Case 2,
Section 2.1.1). By Lemma 6 the runtime of FIX-DIRTY(v) is O(bvαj+1). However, it is
not necessary that v starts εbv epochs when it arrives at level j. So, we cannot charge this
computation cost new epoch of v as no new epochs are created at level j. To overcome this
problem, we crucially use the fact that v will eventually become deficient at some higher
level. This holds since there are only logn levels in our partition and v cannot always be
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Full-From-Above. Formally, define a phase φ of v to be the maximal time interval in which
Fix-Dirty is not called on v. A phase of v is called Deficient if v becomes deficient during
the phase, otherwise it is called Full-from-above. Define a directed graph Hv = (Uv, Ev)
where Uv is the set of all phases of v. For two phases φ1, φ2 ∈ Uv, we have (φ1, φ2) ∈ Ev
iff φ1 is a Full-from-above phase and φ2 is the phase that begins just after φ1 ends. If
l(φ) denote the level of v when the phase φ starts, then `(φ1) < `(φ2). The graph Hv is a
collection of paths and each path ends with a Deficient phase. Let Φ = (φ1, φ2, . . . , φk) be
a maximal path in Hv. So φk is a Deficient phase and φi is a Full-from-above phase
for all i < k, and hence `(φ1) < · · · < `(φk). Let YΦ be the total computation cost (due to
Fix-Dirty(v)) in phases in Φ. We get: YΦ ≤

∑k
i=1 2bv · α`(φi)+1 = O(bv · α`(φk)+1). So all

the computation cost can be charged to the epochs destroyed during the deficient phase of
v, that is φ(k). When v move to φk, it is full (or it calls Random-Settle(v) to become
full. So at least εbv epochs involving v must be destroyed for v to become deficient (All such
epochs have level ≥ i). So we can charge the computation cost Yφ to these εbv epochs and
the cost associated with each epoch is O(αi+1/ε).

From Scenario 1,2 and 3, the computation cost charged to each epoch at level i is
O(αi+1/ε). So the total time taken by our algorithm is

∑
v,iXv,iO(αi+1/ε) J

I Lemma 12. We have
∑
v,iE[Xv,i].O(αi+1/ε) = O(α4T ).

I Corollary 13. The expected amortised update time of our algorithm is O(1/ε4).

We now focus on justifying Lemma 12. In Section 3.1, we classify the epochs into three
types. Due to space constraints, in Section 3.2 we present a (hand-wavy) intuition behind
the proof of Lemma 12. A complete proof appears in the full version of the paper.

3.1 Natural, induced and forced epochs

We say that an epoch is natural iff it gets destroyed when its candidate edge is deleted from
the graph. If an epoch is not natural, then it gets destroyed when its candidate edge is
removed fromM (but does not get deleted from G). This can happen under four possible
situations: (1) In Case 2 of Section 2.1.1, when a node x moves up from level j to level k > j,
we unmatch all its incident edges (x, y) ∈ E whose other endpoints are at levels `(y) < k.
(2) In Case 1 of Section 2.1.2, when a node x moves up from a level j to a level k > j, we
unmatch all its incident edges (x, y) ∈ E whose other endpoints are at levels `(y) < k. (3)
During a call to the subroutine RANDOM-SETTLE(x), we unmatch an edge (y, z) because
y gets matched to x. See Step (04) in Figure 1. (4) In Case 2 of Section 2.1.2, when a node
x moves down from a level j, we unmatch all its incident edges (x, y) whose other endpoints
are at levels `(y) < j. The epochs whose candidate edges get unmatched under situations
(1), (2) and (3) are called induced epochs. In contrast, the epochs whose candidate edges get
unmatched under situation (4) are called forced epochs.

3.2 Intuition behind the proof of Lemma 12: A token based argument

Let V be the set of all epochs. We assign T (γ) = α`(γ)+1 tokens to every epoch γ ∈ V.
Since the computation cost charged to γ (by Lemma 11) is O(αl(γ)+1/ε), each token is
charged with O(1/ε) amount of computation cost. In Lemma 14, we show that the sum∑
γ∈V T (γ) is at most O(1/ε) times the total number of tokens assigned to the natural epochs,



S. Bhattacharya, M. Gupta, and D. Mohan 15:11

which is given by the sum
∑
γ∈N T (γ). In the paragraph below, we intuitively explain that

E
[∑

γ∈N T (γ)
]

= O(α · T ). These observations, taken together, justify Lemma 12.2

Suppose that each time an edge (x, y) gets deleted from G, we generate 2 dollars and
give 1 dollar to each of the endpoints {x, y}. For the sequence of T edge insertions/deletions
in G, the total number of dollars generated is O(T ). We will try to convince the reader
that a natural epoch γ at level `(γ) = i receives Θ(α`(γ)) dollars under this scheme, in
expectation. This will give us: E

[∑
γ∈N T (γ)

]
= O(α · T ). Accordingly, suppose that a

node x at level `(x) = i creates an epoch γ as per Step (02) in Figure 2. From the discussion
in the beginning of Section 2.1.3, we get |Ox \ M| > bx · αi at this point in time. We
say that each edge e ∈ Ox \M is a witness for the epoch γ. Since the sequence of edge
insertions/deletions in G is oblivious to the random bits used by the algorithm, in expectation
half of these witness-edges will get deleted before the candidate edge (x, y) of the epoch
γ. Thus, intuitively, if the epoch is natural, then in expectation at least (bx/2) · αi of its
witness edges get deleted during the lifespan of the epoch. For each of these deletions of the
witness edges, the node x receives 1 dollar. Note that each such edge can be a witness to
at most bx epochs of x (since |Mx| ≤ bx). Consider the time-instant when an edge (x, y)
gets deleted from G and the node x receives 1 dollar. If we distribute this 1 dollar received
by x evenly among all the epochs of x which have (x, y) as a witness, then each of those
epochs will receive at least 1/bx dollars. From the preceding discussion, recall that at least
(bx/2) · αi many witness edges get deleted from G during the lifespan of a natural epoch
γ of x at level i. Hence, as promised, we conclude that such an epoch will receive at least
(1/bx) · (bx/2) · αi = Θ(αi) dollars during its lifespan, in expectation.

I Lemma 14. Let V be the set of all epochs, and let N ⊆ V be the set of all natural epochs.
Assign T (γ) = α`(γ)+1 tokens to every epoch γ ∈ V. Then

∑
γ∈V T (γ) = O(1/ε) ·

∑
γ∈N T (γ).

We devote the rest of this section to the proof of Lemma 14. Towards this end, we
construct a directed graph G = (V, E). To distinguish this from the input graph G = (V,E),
we refer to each vertex in V as a meta-node and each edge in E as a meta-edge. The set of
meta-nodes V corresponds to the set of all epochs. The set of meta-edges E is defined as
follows. Each natural epoch has no incoming meta-edge. Each induced or forced epoch has
exactly one incoming meta-edge. Thus, without any loss of generality, for every meta-edge
(x, y) ∈ E directed from x towards y, we say that y is the parent of x and x is a child of y.
Note that each meta-node has at most one parent, but it can have multiple children. We will
now describe the rules that specify the parent of each induced or forced epoch.

The parent of an induced epoch is specified as follows. Note that an induced epoch is
destroyed under three possible scenarios: These are situations (1), (2) and (3) as described
in Section 3.1. In situation (3), we define the parent of the induced epoch (with (y, z) as
the candidate edge) to be the epoch of x which lead to its destruction (i.e., the epoch with
(x, y) as the candidate edge). Both in situation (1) and situation (2), a node x moves up to
a higher level, unmatches some incident edges (thereby destroying some induced epochs),
and adds some new incident edges toM (thereby creating some new epochs). As per the
descriptions in Sections 2.1.1 and 2.1.2, the node x becomes Full after these operations.
Hence, the number of new epochs created during these steps is at least the number of induced
epochs that get destroyed. Accordingly, for each induced epoch γ that gets destroyed, we

2 This intuitive argument implies that the total expected running time of the algorithm is O(α · T/ε2). A
technically precise argument will lose an extra α multiplicative factor in the running time.
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find a unique epoch γ′ that gets created, and make γ′ the parent of γ. This way of defining
parents for the induced epochs ensures the following property.

I Claim 15. If an epoch γ′ is the parent of an induced epoch γ, then `(γ′) > `(γ). Further,
an epoch γ′ can have at most two children that are induced epochs.

Proof. Let γ′ be the parent of an induced epoch γ. Let x and z respectively be the nodes
that created the epochs γ′ and γ. If γ is destroyed during situation (3) in Section 3.1, then
Lemma 9 implies that `(γ′) = `(x) > `(y, z) = `(γ) when γ is destroyed. Else if γ is destroyed
during situation (1) or (2) in Section 3.1, then the descriptions in Sections 2.1.1, 2.1.2 lead us
to the following conclusion: The node x moves up from a level l to some higher level l′ > l.
The epoch γ′ is created at level l′. Further, the candidate edge of the epoch γ had both
endpoints at a level strictly less than l′ when γ was created. Thus, we again get `(γ′) > `(γ).
Finally, an epoch γ′ can have at most one child that is an induced epoch which gets destroyed
during situation (1) or (2) in Section 3.1, and at most one child that is an induced epoch
which gets destroyed during situation (3) in Section 3.1. The claim follows. J

We now define the parents of forced epochs. The forced epochs are destroyed during
situation (4) in Section 3.1. Thus, we consider the following scenario. A node x is at
level `(x) = j ≥ 0, and it becomes Deficient at time t1 (say). At this stage we have
|Mx| < (1 − ε) · bx. Hence, as the node x moves down, at most (1 − ε) · bx many forced
epochs get destroyed. Let F denote the set of these forced epochs. We have |F | ≤ (1− ε) · bx.
Also note that the node x must have been Full the last time (say t0) it settled at level j
after a call to FIX-DIRTY(x). Thus, for situation (4) to occur, the node x must have lost at
least εbx many edges inMx during the time-interval [t0, t1]. Let H denote the set of these
epochs that were alive at time t0, were destroyed before time t1, and whose candidate edges
were part ofMx. We have |H| ≥ ε · bx.

We claim that `(h) > j for every forced epoch h ∈ H. To see why this is true, let (x, y)
be the candidate edge for h. Clearly, when h was destroyed the node x stayed put at level
j. It follows that since h is a forced epoch, the node y must have created h. The claim is
equivalent to the statement that `(y) > j when h gets created, and this in turn is equivalent
to the statement that `(y) > j when h gets destroyed (since `(y) does not change during the
lifespan of epoch h). To see why the latter statement is true, note that by definition y moves
down to a lower level when the epoch h gets destroyed. Thus, as per Case 2 of Section 2.1.2,
the node y can unmatch the edge (x, y) only if `(y) > j at that time-instant. Hence, we get:

I Property 16. Every forced epoch h ∈ H has level `(h) > j.

We now assign the epochs in F evenly among the epochs in H. To be more specific, after
this step, each epoch h ∈ H gets |F |/|H| ≤ (1− ε)/ε many epochs f ∈ F assigned to it. We
are now ready to define the parents of the forced epochs F . Suppose that an epoch f ∈ F is
assigned to an epoch h ∈ H. If `(h) > j, then h becomes the parent of f . Else if `(h) = j,
then from Property 16 it follows that either h is a natural epoch or h is an induced epoch. In
the former event, again h becomes the parent of f . In the latter event, Claim 15 guarantees
that h has a parent, say p(h), and this epoch p(h) becomes the parent of f . Claim 15 also
implies that `(p(h)) > `(h) = j. Since `(f) = j, we immediately get the following claim.

I Claim 17. Suppose that an epoch γ′ is the parent of a forced epoch γ. Then either (1)
{`(γ′) > `(γ)} or (2) {γ′ is a natural epoch and `(γ′) ≥ `(γ)}.

Claim 18 holds since: (1) An epoch h ∈ H gets at most (1− ε)/ε many epochs f ∈ F assigned
to it. (2) An epoch γ can have two children h, h′ ∈ H both of which are induced epochs (see
Claim 15), and both h, h′ can get at most (1− ε)/ε many epochs f ∈ F assigned to them.
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I Claim 18. An epoch can have at most 3(1− ε)/ε many forced epochs as its children.

Proof of Lemma 14. In the meta-graph G, every induced or forced epoch has exactly one
incoming edge, and every natural epoch has zero incoming edge. Hence, the meta-graph G is
a collection of rooted directed trees, where the tree-edges are directed away from the roots.
The root of each tree is a natural epoch, and any internal node is either an induced epoch or
a forced epoch. Let V ′ be the set of meta-nodes in any such tree with r ∈ V ′ as its root. To
prove the lemma, it suffices to show that

∑
γ∈V′ T (γ) = O(1/ε) · T (r).

Only the root r is a natural epoch in V ′. Hence, Claims 15, 17, 18 imply that: (1)
`(γ′) > `(γ) whenever an internal meta-node γ′ ∈ V ′ is the parent of γ ∈ V ′. (2) Any internal
meta-node in V ′ has at most 2 + 3(1− ε)/ε ≤ 3/ε children. (3) The root also has at most
2 + 3(1− ε)/ε ≤ 3/ε children. Let C be the set of children of the root. Then for all γ ∈ C,
we have `(r) ≥ `(γ).

Consider a meta-node γ ∈ C. Let T ∗(γ) denote the total number of tokens assigned to
the meta-nodes in the subtree rooted at γ. From the above discussions, we get: T ∗(γ) ≤∑`(γ)
j=0

( 3
ε

)`(γ)−j · αj+1 = O(α`(γ)+1) = O(α`(r)+1). The first inequality holds since there
are at most (3/ε)`(γ)−j descendants of γ at level j ≤ `(γ), and each of these descendants
get αj+1 tokens. The second equality holds since α = 5/ε >> (3/ε). The third equality
holds since `(γ) ≤ `(r). Hence, the total number of tokens assigned to the tree is given by:∑
γ∈V′ T (γ) = T (r) +

∑
γ∈C T ∗(γ) ≤ α`(r)+1 + (3/ε) ·O(α`(r)+1) = O(1/ε) · T (r).
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