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Abstract
Robust network design concerns the design of networks to support uncertain or varying traffic
patterns. An especially important case is the VPN problem, where the total traffic emanating
from any node is bounded, but there are no further constraints on the traffic pattern. Recently,
Fréchette et al. [10] studied a generalization of the VPN problem where in addition to these so-
called hose constraints, there are individual upper bounds on the demands between pairs of nodes.
They motivate their model, give some theoretical results, and propose a heuristic algorithm that
performs well on real-world instances.

Our theoretical understanding of this model is limited; it is APX-hard in general, but tractable
when either the hose constraints or the individual demand bounds are redundant. In this work,
we uncover further tractable cases of this model; our main result concerns the case where each
terminal needs to communicate only with two others. Our algorithms all involve optimally
embedding a certain auxiliary graph into the network, and have a connection to a heuristic
suggested by Fréchette et al. for the capped hose model in general.
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1 Introduction

Robust network design (RND) [2] is concerned with designing networks that can efficiently
handle uncertain or varying utilization. The motivation comes primarily (though not
exclusively) from communication networks. Let G = (V,E), be a graph with edge costs
that describes an existing, high-capacity network. A set of terminals W ⊆ V is required to
communicate over the network, and to enable this, we must reserve capacity on the edges
of G for our exclusive use (this is in order to guarantee reliable performance). On each
edge, we may buy multiple units of capacity (measured, say, in Mb/s); the cost of the edge
represents the per-unit cost of capacity. In the RND framework, demand uncertainty is
described by a demand universe U . It is simply a set containing all of the demands that need
to be routed; the choice of this set will be determined by operational needs or historical data.
More precisely, each D ∈ U is a matrix where entry Dij describes the demand (measured
again, say, in Mb/s) from terminal i to terminal j. It turns out that the universe can always
be taken to be a convex set, and will frequently be a polytope.
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We will consider only single-path, oblivious routing (other routing schemes are possible,
but less relevant to practice). This means that a solution to the RND problem must specify,
for each pair of terminals i, j ∈W , a path Pij that will be used to route the demand between
this pair. This path must be fixed ahead of time, and cannot be adjusted as a function of the
current demand. Once all these paths have been fixed, a capacity reservation must be made
on the network. For any edge e ∈ E, the capacity u(e) must be chosen so that no matter
which demand matrix D ∈ U is instantiated, the total amount of traffic traversing e does not
exceed u(e).

The most studied case of universe is the hose model [5, 8]. Here, each terminal i ∈W has
an associated marginal bi, and the universe H(b) consists of all demand matrices D for which∑

j∈W Dij ≤ bi for all i, and Dij = Dji
1. The optimization problem for the hose model is

called the VPN problem, and it was shown by Goyal et al. [11] to be polynomially solvable.
While the hose model is particularly appealing, especially given its exact solvability,

it is very natural to consider generalizations with more expressive modelling power. A
number of such generalizations have been considered in the literature [7, 17, 10, 9]. One such
generalization, the capped hose model was introduced by Fréchette, Shepherd, Thottan and
Winzer [10]. It is very natural: in addition to the hose constraints bi for each i ∈W , there is
an upper bound dij on the demand between a given pair i, j ∈W . This leads to the capped
hose polytope Hcap(b,d). If dij =∞ for all pairs i, j ∈W , then this recovers the hose model;
and if bi = ∞ for all i ∈ W , then this recovers the pipe model, the somewhat trivial case
where the problem is to route a single fixed demand matrix. We refer to Fréchette et al. [10]
for further discussion and motivation.

As Fréchette et al. [10] observed, the problem of finding the cheapest solution in the
capped hose model generalizes Steiner tree, and hence is APX-hard. Simply consider, for an
arbitrarily chosen root r ∈W , the choice bi = 1 for all i ∈W , and dir = dri = 1 for all i ∈W ,
dij = 0 otherwise. Beyond this, the complexity and approximability of this problem is poorly
understood. In particular, it is open as to whether there is a constant factor approximation
algorithm. (The general robust network design problem is hard to approximate within polylog
factors [17], but this construction does not apply to this restricted setting.) Moreover, the
RND problem under Hcap(b,d) is polynomially solvable for some choices of b and d, for
example when d is sufficiently large (recovering the hose model), or b is sufficiently large
(recovering the pipe model). Our goal in this work is to expand the class of exactly solvable
cases.

We focus on the setting where bi = 1 for all i ∈ W and dij ∈ {0,∞} (or equivalently,
dij ∈ {0, 1}) for all i, j ∈W , which we call the masked hose model. Instead of parametrizing
an instance with d and b, we can describe it via the mask graph H, which has vertex set W
and an edge between each pair of terminals which may communicate. In other words, the
universe is the set of all fractional matchings in H. The resulting masked VPN problem is a
clean generalization of the standard VPN problem (the case where H is the complete graph),
and is already very rich from a theoretical standpoint. Again, it is not known if a constant
approximation factor is possible for arbitrary mask graphs, and the case where H is a star is
APX-hard. It is harmless to restrict to connected mask graphs, since otherwise the problem
can be solved separately on each connected component, and the resulting solutions overlaid
in G.

1 This is the symmetric hose model; an asymmetric variant which does not require Dij = Dji is also
possible, and different [14, 6, 13].
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H Ĥ Embedding into G

Figure 1 The embedding algorithm for H a cycle; in this example, G is a grid.

Our main result is the following

I Theorem 1. The masked VPN problem is polynomially solvable if H is a cycle.

The algorithm is based on embedding an appropriate auxiliary graph (see Figure 1). Let Ĥ
denote the graph obtained by replacing each terminal i by a new node î, and then adding
back the terminal i along with the edge {i, î}. We give each edge e of Ĥ a capacity of 1. An
embedding of Ĥ into G is simply a mapping φ satisfying the following. Each node of Ĥ is
mapped to a node of G, with φ(i) = i for all i ∈ W ; and each edge {u, v} ∈ E(Ĥ) maps
to a path in G between φ(u) and φ(v). Any embedding implies a path in G between any
adjacent pair of adjacent terminals {i, j} ∈ E(H); simply the image under the embedding of
the path (i, î, ĵ, j). After assigning a capacity reservation u(e) = |{f ∈ E(Ĥ) : e ∈ φ(f)}|, it
is easy to see that this yields a feasible solution to the masked VPN problem for H. Our
algorithm simply finds the cheapest possible embedding of Ĥ into G; this can easily be done
by dynamic programming. We show that this is optimal; an overview of the proof strategy
can be found in Section 3.1

The cycle may seem like a very specific and restricted case. But understanding cycles has
historically been an important stepping stone in the area towards more general results. The
VPN Conjecture on the polynomial solvability of the hose model was first solved for the case
where the network is a cycle [15, 12], and ideas from [12] were crucial for the resolution of
the full conjecture.

We also prove the following.

I Theorem 2. The masked VPN problem is exactly solvable if H is a tree with bounded
degree.

Technically, this result is much more straightforward, and we give the proof in Section 4.
It exploits the well-known Dreyfus-Wagner algorithm for Steiner tree on a fixed number of
terminals [4], which corresponds to the case where H is a bounded degree star. We make
heavy use of the dual viewpoint, discussed in Section 2, in order to argue that the solution
can be efficiently decomposed into Steiner tree problems. And while our focus is on exactly
solvable cases, we remark that an O(1)-approximation without any degree bound can readily
be obtained (see Theorem 15 in Section 4).

While this result does not require major technical novelty, it yields an interesting message.
The algorithm can also be interpreted as an embedding algorithm. This time, however, there
are multiple options regarding which graph to embed, and we have to choose the best. Begin
by constructing Ĥ in the same fashion as above, splitting out each terminal. But now we go
further; for each node v ∈ V (Ĥ) with degree 4 or more, consider all possible ways of “blowing
up” v into a tree with only degree 3 nodes (see Figure 2). Each possible way of blowing up

ESA 2017



19:4 Exploring the Tractability of the Capped Hose Model

H Ĥ H(1) H(2) H(3)

Figure 2 Potential graphs to embed in the case where H is a star.

each node v yields a graph whose embedding yields a solution. The algorithm computes the
cheapest possible embedding from all of these possibilities; by using dynamic programming,
combined with the assumption of bounded degree, this can be done in polynomial time.
Again, this is precisely the idea of the Dreyfus-Wagner algorithm for Steiner tree [4], extended
from H a star to H a tree. We also observe that if H was a path, then Ĥ has maximum
degree 3, and so only Ĥ itself needs to be embedded.

Further, embedding algorithms of this form have been used before in RND, though only
embeddings of trees. For the standard VPN problem, the optimal solution is simply the
optimal embedding of a star with a leaf for each terminal [11]. This is very natural when
one considers that the demand universe for the hose model – fractional matchings on the
complete graph – is nothing more than the set of demands that are routable on such a star.
A generalization of the hose model (different to the one discussed here) defines the universe
to be the set of demands routable on a given capacitated tree (with leaf set equal to W ) [17].
It has been conjectured that the optimal algorithm is given by the optimal embedding of
this tree [18]; it is only known that this yields a constant factor approximation [17].

Partially motivated by this, Fréchette et al. proposed a tree embedding algorithm as
a heuristic for the capped hose model. The tree they embed is chosen carefully, albeit
heuristically, and they show that this performs well in practice. Our work can be seen as
providing an initial theoretical basis for their approach, while suggesting that extending
beyond trees may be beneficial.

2 Problem definition and preliminaries

An instance of the masked VPN (mVPN) problem consists of a graph G = (V,E), with edge
costs c : E → R+ (where R+ denotes the nonnegative reals), a set of terminals W ⊆ V , and
a second graph H which has W as its vertex set.

We use
(

W
2
)
to denote the collection of unordered pairs of distinct terminals. The demand

universe is defined as

Hmask(H) :=
{
D ∈ R(W

2 )
+ :

∑
j

Dij ≤ 1 ∀i and Dij = 0 unless {i, j} ∈ E(H)
}
.

Our goal is to specify a routing template P = {Pij : {i, j} ∈ E(H)}, where Pij is a fixed
(possibly non-simple) i-j-path used for traffic between terminal i and j. (Pij and Pji refer to
the same path.) Given a set of routing paths, we are required to make a capacity reservation
u : E → R, sufficient to route any traffic vector in Hmask(H). The minimum capacity
requirement on edge e is therefore

u(e) = max
D∈Hmask(H)

∑
{i,j}∈(W

2 ):e∈Pij

Dij . (1)

The resulting solution has cost
∑

e c(e)u(e), and this we wish to minimize.
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We will often take a dual viewpoint of (1). This viewpoint has been exploited before,
see [1, 15, 11]. Since (1) is a fractional matching problem, its dual is a fractional vertex cover
problem:

u(e) = min
∑
i∈W

yi(e)

s.t. yi(e) + yj(e) ≥ 1 ∀{i, j} ∈ E(H), e ∈ Pij

yi(e) ≥ 0 .

(2)

So, we may rephrase the problem as follows. Each terminal i buys a capacity vector yi,
with the property that {e ∈ E : yi(e)+yj(e) ≥ 1} contains an i-j-path, for each {i, j} ∈ E(H).
The goal is to minimize the total cost

∑
i c(yi), where c(yi) =

∑
e∈E c(e)yi(e).

Let y denote the vector whose i’th component yi is the capacity vector purchased by
i ∈ W . At this point we note that, since (2) is a fractional vertex cover problem, y can
always assumed to be half-integral. In fact, we will mainly be able to restrict ourselves to
integral capacity vectors. In such a case it is convenient to express the solution as a collection
of edge sets Y = (Yi)i∈W where Yi = {e : yi(e) = 1}.
I Remark. Through this dual viewpoint, a connection can be made with the work of Iglesias
et al. [16]. With a completely different motivation, they consider essentially this problem,
explicitly requiring integrality but also connectivity of the set of edges purchase by each
terminal. Since we show that the optimal solutions satisfy these properties, our results apply
in their setting as well.

3 The cycle case

We consider the case where H is a cycle. Let k denote the number of terminals, and assume
for convenience thatW = {1, 2, . . . , k}, with the ordering corresponding to the cycle structure
of H. We will interpret all references to terminals modulo k; so terminal 0 refers to terminal
k, and terminal k + 1 to terminal 1.

Our main technical theorem shows that there is always an optimal solution to the mVPN
problem that satisfies a simple structure.

I Theorem 3 (Hubbed solution). There exists an optimal solution to the mVPN problem on
cycles such that:

for each terminal i there exists a hub vertex hi; and
the routing path Pi,i+1 is given by concatenating shortest paths from i to hi, from hi to
hi+1, and from hi+1 to i+ 1.

The optimal location of the hub vertices minimizes the cost∑
i∈W

spc(i, hi) + spc(hi, hi+1),

where spc denotes the shortest path distance with respect to the edge costs c. Since H is
a cycle the optimal location of hubs hi+1, . . . , hj−1 are independent of hubs hj+1, . . . , hi−1
given the location of hi and hj , so we can find these hubs in polynomial time with dynamic
programming, yielding Theorem 1.

3.1 Overview
The proof of Theorem 3 involves first showing that there is always an optimal solution of a
certain nice form, albeit not yet of the hubbed form we are looking for. We first argue that

ESA 2017



19:6 Exploring the Tractability of the Capped Hose Model

we may restrict our focus to solutions y that are integral. Next, we show that there is an
integral solution satisfying a certain structure theorem. Roughly speaking, this structure
is similar to the hubbed structure we are looking for, but instead of a single hub hi, there
is an odd-cardinality set Ti; instead of a path between i and hi, we have a ({i} 4 Ti)-join;
and instead of a path between hi and hi+1, we have a (Ti 4 Ti+1)-join. The final step of
the argument is then to show that we can take |Ti| = 1 for each i, which is then precisely a
hubbed solution. This step uses a rather non-obvious “rotation” of the solution to reduce
the cardinality of the Ti’s.

3.2 Integrality
It will be convenient to work with integral solutions. If k is even, so that H is bipartite, then
each fractional matching problem in (2) has an integral optimum. We have to work a bit
harder in the case where k is odd.

I Lemma 4. There exists an integral optimal solution to the cycle mVPN problem.

Proof. Since any strict subgraph of a cycle is bipartite, the only case where (2) does not have
an integral optimal solution, is if it corresponds to a vertex cover problem on the complete
cycle. This only happens if the routing path between every pair of neighbours uses the edge.
So suppose e = {u, v} is used on every routing path in a solution y. We claim the integral
solution Z, given by taking Zi to be the edges of a shortest i-v-path for all terminals i, costs
no more than y.

Let D be a traffic vector with Di,i+1 = 1
2 for all i. Now if we route D according to the

solution y, the flow between i and i+ 1 can be split into half a unit of i-v flow and half a
unit of v-(i+ 1)-flow, since every routing path passes through e, and thus v.

So D induces a unit i-v flow for each i ∈W . So y has sufficient capacity to route 1 unit
of flow from each i ∈W simultaneously. But this costs at least as much as the sum of the
shortest paths from each terminal to v, as required. J

For the remainder of the proof we will therefore assume that each terminal buys a set of
edges. It will be useful to partition these edges into a different collection of sets based on the
routing paths they support.

I Definition 5. A feasible solution X̄ consists of edge sets X̄i and X̄i,i+1 for each i, such
that all edge sets are disjoint and for each i there exists a path Pi,i+1 connecting terminal i
to i+ 1 with

Pi,i+1 ⊆ X̄i ∪ X̄i,i+1 ∪ X̄i+1.

The cost of the solution is
∑

i c(X̄i) +
∑

i c(X̄i,i+1).

One should think of X̄i as the edges on both Pi,i+1 and Pi−1,i and X̄i,i+1 as the remaining
edges on Pi,i+1. Such a solution can be transformed into a feasible solution in original form
by setting Xi = X̄i ∪ X̄i,i+1 for all i. Indeed, the definition does not confer any advantage to
choosing any of the sets X̄i,i+1 to be nonempty. But as we will see in the next section, this
formulation provides a natural way to express the structure of a feasible solution.

3.3 Structure theorem
For the remainder we will assume that G is a complete graph satisfying the triangle inequality.
We may simply replace G with its metric completion to ensure this, and it allows us to
bypass some substantial technical awkwardness.
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I Definition 6. Let T be a collection consisting of an odd cardinality sets Ti ⊆ V \W for
each terminal i. Then a T -solution X̄ consists of a collection of edge sets X̄i and X̄i,i+1 for
each terminal i satisfying:
1. X̄i is a perfect matching on Ti 4 {i},
2. X̄i,i+1 is a perfect matching on Ti 4 Ti+1.
The cost of the solution is

∑
i c(X̄i) +

∑
i c(X̄i,i+1).

It is good to observe that Property 1 and 2 of this definition imply that X̄ is a feasible
solution. The odd degree vertices of X̄i ∪̇ X̄i,i+1 ∪̇ X̄i+1 are precisely

Ti 4 {i} 4 Ti 4 Ti+1 4 Ti+1 4 {i+ 1} = {i, i+ 1},

implying that i and i+ 1 are in the same component.
The restriction in the above definition that Ti ∩W = ∅ is without loss of generality, since

we may always modify any given instance by replacing each terminal i in the instance and
the solution with a new dummy node ī, and then replacing i in the instance at the same
location, attaching the terminal to this dummy node by an edge of zero cost, and including
{i, ī} in X̄i.

The following lemma shows that we do not lose anything if we restrict ourselves to
T -solutions.

I Lemma 7 (Weak Structure Lemma). Any feasible solution X̄ may be transformed into a
T -solution Ȳ of no higher cost for some T satisfying Ti ⊆ V (X̄i) \ {i} for all i ∈W .

Proof. Define:
Ȳ ′i = X̄i ∩ E(Pi−1,i) ∩ E(Pi,i+1), and
Ȳ ′i,i+1 = E(Pi,i+1) \ (X̄i ∪ X̄i+1).

We then obtain Ȳ from Ȳ
′ by shortcutting paths, so that Ȳi is a collection of vertex disjoint

edges for each i ∈W .
Now for each terminal i choose the vertex set Ti such that Ti 4 {i} is the set of vertices

incident to an edge in Ȳi. We claim that Ȳ is a T -solution.
By construction, Ȳi is a perfect matching on Ti 4 {i}. To see that Ȳi,i+1 is a perfect

matching on Ti 4 Ti+1, note that since Ȳ ′i and Ȳ ′i+1 are both contained in the path Pi,i+1,
we may write

Ȳ ′i,i+1 = E(Pi,i+1)4 Ȳi 4 Ȳi+1.

Thus the odd degree nodes of Ȳ ′i,i+1 are precisely

{i, i+ 1} 4 Ti 4 {i} 4 Ti+1 4 {i+ 1} = Ti 4 Ti+1.

As the odd degree nodes in Ȳ ′i,i+1 and Ȳi,i+1 are equal, the result follows. J

I Definition 8. A strong T -solution is a T -solution with the additional properties:
(i) X̄i ∪̇ X̄i,i+1 ∪̇ X̄i+1 consists of a single i-(i+ 1)-path, and
(ii) each edge in X̄i,i+1 is incident to one vertex in Ti and one in Ti+1.

Notice that in a strong T -solution X̄, |Ti| = |Tj | for all i, j ∈W .

I Lemma 9 (Strong Structure Lemma). Any T -solution X̄ can be transformed into a strong
R-solution Ȳ of no higher cost, with Ri ⊆ Ti for all i ∈W .

For the proof of this lemma we will need two auxilliary lemmas.
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I Lemma 10. Let X̄ be a T -solution such that for some i ∈ W , X̄i ∪̇ X̄i,i+1 ∪̇ X̄i+1 does
not satisfy property (i) of Definition 8. Then there exists an R-solution Ȳ of no higher cost,
with Rj ⊆ Tj for all j ∈W , and Ri ( Ti.

Proof. Since i and i+ 1 are the only vertices that do not have degree 2 in X̄i ∪̇ X̄i,i+1 ∪̇ X̄i+1,
the connected component containing i and i+ 1 contains an i-(i+ 1)-path; call it P .

Define Ri = Ti ∩ V (P ), Ri+1 = Ti+1 ∩ V (P ), and Rj = Tj for all other j ∈ W . Note
that Ri ( Ti. We will now construct a R-solution Ȳ as follows. Define Ȳj = X̄j for all
j /∈ {i, i+ 1}, and Ȳj,j+1 = X̄j,j+1 for all j /∈ {i− 1, i, i+ 1}. Now define Ȳi,i+1 = X̄i,i+1 ∩P ,
so it is a perfect matching on Ri 4 Ri+1 with c(Ȳi,i+1) ≤ c(X̄i,i+1). Also let Ȳi = X̄i ∩ P ,
which is a perfect matching on Ri 4 {i}. We have c(Ȳi) = c(X̄i)− c(Q), where Q = X̄i \ P
is a perfect matching on Ti \Ri. To define Ȳi−1,i, first let

Ȳ ′i−1,i = X̄i−1,i 4 (X̄i \ P ).

Notice that the odd degree nodes of Ȳ ′i−1,i are precisely

(Ti−1 4 Ti)4 (Ti \Ri) = Ti−1 4Ri = Ri−1 4Ri.

Now, by discarding any cycles and shortcutting paths, we can choose Ȳi−1,i to be a perfect
matching on Ri−14Ri that costs no more than Ȳ ′i−1,i. So we have c(Ȳi−1,i) ≤ c(X̄i−1,i)+c(Q).

We make precisely the symmetric construction to define Ȳi+1 and Ȳi+1,i+2. We have
obtained the required R-solution Ȳ . J

I Lemma 11. Let X̄ be a T -solution that satisfies Property (i) of Definition 8 but where
Property (ii) fails for some terminal i. Then there exists an R-solution Ȳ of no higher cost,
with Rj ⊆ Tj for all j ∈W , and Ri ( Ti.

Proof. Suppose w.l.o.g. e = {u, v} is an edge in X̄i,i+1 with both u, v ∈ Ti. Because of
Property (i) we know there exists a u-v-path in X̄i−1 ∪̇ X̄i−1,i ∪̇ X̄i, say Q.

Let us define a new solution Ȳ equal to X̄ except for:

Ȳi = (X̄i \ E(Q)) ∪ {e}
Ȳi,i+1 = X̄i,i+1 ∪ (X̄i ∩ E(Q)) \ {e}.

The i-(i+ 1)-path in X̄ is still feasible in Ȳ , and we can get an (i− 1)-i-path Ȳ from
the respective path in X̄, by replacing the subpath Q with the edge e. Thus, Ȳ is a feasible
solution.

Let P be the maximal path in Ȳi that contains e. Since every edge on P is used both on
some (i− 1)-i-path and i-(i+ 1)-path, we can replace P by an edge connecting the endpoints
in Ȳi and retain a feasible solution, with the property that

V (Ȳi) \ {i} ( V (X̄i) \ {i} = Ti,

and V (Ȳj) = V (X̄j) for j 6= i. By Lemma 7 it now follows that we can find an R-solution Z̄

with Ri ⊆ V (Yi) \ {i} ( Ti and Rj ⊆ Tj for j ∈W , as required. J

Proof. Lemma 9 We arrive at our Lemma from the fact that we can alternatingly apply
Lemmas 10 and 11 to a T -solution X̄ until we have a strong R-solution Ȳ . Since every time
we apply Lemma 10,

∑
i∈W |Ti| strictly decreases, this procedure must terminate in a finite

number of steps. J
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3.4 From a T -solution to an optimal embedding
I Observation 12. Suppose X̄ is a strong T -solution with |Ti| = 1 for all i ∈W . Then X̄

is a hubbed solution.

As we will see, as long as we have a strong T -solution that is not a hubbed solution (implying
that |Ti| = α > 1 for some α and all i), we can find an R-solution such that R is strictly
smaller than T .

I Lemma 13. Given a strong T -solution X̄ with |Ti| > 1 for all i, there exists a strong
R-solution Ȳ of no higher cost with Ri ( Ti+1 for all i.

Proof. We claim that we can find a new solution Ȳ with V (Ȳi) = Ti+1 \ {ui+1} ∪ {i} for
some node ui+1 ∈ Ti+1. It then follows by Lemma 7 and Lemma 9 that we can find a strong
R-solution Z̄ with

Ri ⊆ V (Ȳi) \ {i} = Ti+1 \ {ui+1},

which implies the required result.
For each terminal i we define ui ∈ Ti as the node matched to i in X̄i, and wi ∈ Ti+1 as

ui if ui ∈ Ti+1, or the vertex matched to ui in X̄i,i+1 otherwise. Finally let Li denote the
i-ui-wi path in X̄i ∪ X̄i,i+1.

Now take a solution Ȳ equal to X̄ except for

Ȳi = {{i, wi}} ∪ X̄i+1 \ Li+1

and Ȳi,i+1 = X̄i+1,i+2 \ Li+1 \ Li+2.

1

3

2

1

3

2

4

1

3

2

4

X̄ Ȳ Z̄

u1

u3

u2

u4w2

w4

w3

w1

X̄1

X̄1,2

4

We will show that |Ti| > 1 implies that Ȳi ∪ Ȳi,i+1 ∪ Ȳi+1 contains an i-(i+ 1)-path. Note
that:

Ȳi ∪ Ȳi,i+1 ∪ Ȳi+1 = {{i, wi}, {i+ 1, wi+1}} ∪ E(Pi+1,i+2 \ Li+1 \ Li+2).

As wj ∈ Tj+1 for all j, clearly Pi+1,i+2 contains a wi-wi+1-subpath. Since |Tj | > 1 for all j ∈
W , we must have that Li+1 and Li+2 are vertex disjoint, and therefore E(Pi+1,i+2\Li+1\Li+2)
induces a single non-empty connected component.

Now

V (Pi+1,i+2 \ Li+1 \ Li+2) =
{
V (Pi+1,i+2) \ {i+ 1, ui+1, i+ 2} if ui+1 6= wi+1

V (Pi+1,i+2) \ {i+ 1, i+ 2} otherwise
.

But as Li and Li+1 are vertex disjoint, wi 6= ui+1. Therefore Pi+1,i+2 \ Li+1 \ Li+2 contains
a wi-wi+1-path, implying that Ȳi ∪ Ȳi,i+1 ∪ Ȳi+1 contains an i-(i+ 1)-path.
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We conclude that Ȳ is a feasible solution. Finally note that:

V (Ȳi) = V (X̄i+1) \ {i+ 1, ui+1} ∪ {i, wi}
= Ti+1 4 {i+ 1} \ {i+ 1, ui+1} ∪ {i, wi}
= Ti+1 \ {ui+1} ∪ {i},

where in the last equality we have used that wi ∈ Ti+1. This proves our claim and hence the
lemma. J

Recall that |Ti| = |Tj | for all i, j ∈ W in a strong T -solution. By repeatedly apply-
ing Lemma 13, we obtain an optimal T -solution with |Ti| = 1 for all i ∈ W , which by
Observation 12 is a hubbed solution. This completes the proof of Theorem 3.

4 The tree case

We consider the case where H is a bounded-degree tree. Since H is bipartite, we may restrict
ourselves to integral solutions to (2). We first show that there is an optimal solution of a
particular form, which we refer to as a hubbed solution.

I Lemma 14. There exists an optimal solution Y to the tree mVPN problem, such that,
for some choice hij ∈ V for each {i, j} ∈ E(H) (which we call hub vertices), Yi is the edge
set of a Steiner tree with terminals {i} ∪ {hij : {i, j} ∈ E(H)}.

Proof. We prove that we can transform an arbitrary solution Y into a feasible solution Z of
the required form.

Choose an arbitrary terminal and consider H to be rooted at this node. Let C(i) denote
the set of children of terminal i in H. We construct Z as follows.

We initialize Zi = ∅ for all leaf terminals i. Now suppose we have defined Zj for all the
children of a node i. Then define

Z ′i =
⋃

j∈C(i)

{e ∈ Yi ∪ Yj : e ∈ Pij} \ Zj .

Now let Zi be the connected component of (V,Z ′i) that contains i. By working up from the
leaves of H, this clearly defines Z.

Since Zi ⊆
⋃

j∈{i}∪C(i) Yj for all i, and Zi ∩ Zj = ∅ for all j ∈ C(i), Z costs no more in
Y .

To see that Z is indeed feasible and of the required form, note that for any terminal i
and child j ∈ C(i), by definition Z ′i ∪ Zj must contain an i-j-path. If Zj is empty, clearly Zi

must contain an i-j path. We set hij = j and we are done. If not, then there exists a vertex
hij in the single nonempty connected component of Zj such that Z ′i contains a path from i

to hij . But that path must be contained in the connected component of Z ′i that contains i,
which is exactly Zi, as required. J

With this structural lemma in place, Theorem 2 follows easily.

Proof. Theorem 2 We can solve the Steiner tree problem for a fixed number of terminals in
polynomial time [4]. Therefore, for H a tree of bounded degree, finding an optimal solution
reduces to finding the location of the hub vertices. We will show that we can do this efficiently
with dynamic programming.
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Suppose we root H at some terminal r. For each terminal i we let ζ(i, h) denote the
minimum cost of the edge sets bought by all terminals in the subtree rooted at i, over all
hubbed solutions such that the hub between i and its parent is located at h.

Now, define MSt(X) for X ⊆ V as the minimum cost of a Steiner tree on terminal set X.
We can calculate ζ(·, ·) recursively as follows:

ζ(i, h) = min
(hj)j∈C(i)∈V C(i)

MSt({i, h} ∪ {hj : j ∈ C(i)}) +
∑

j∈C(i)

ζ(j, hj).

In other words, we simply try all possible combinations of choices of hj1 , hj2 , . . . for j1, j2, . . . ∈
C(i). As the degree of H is bounded, the number of combinations is polynomially bounded.
Since we can solve the Steiner tree instance in polynomial time as well, the result follows. J

As remarked in the introduction, a constant factor approximation can easily be obtained
when H is an arbitrary tree, again from the structural lemma.

I Theorem 15. The mVPN problem where H is a tree has a 2α-approximation, where α is
the approximation ratio for Steiner tree.

Proof. Root H at an arbitrary terminal. Again, let C(i) denote the set of children of terminal
i. Take any optimal solution Y . Then define a new solution Zi :=

⋃
j∈{i}∪C(i) Yj , which

costs at most 2OPT . Now for each terminal i, Zi contains a Steiner tree on i and its children
C(i).

Let Xi be an α-approximate Steiner tree on i and its children C(i). Then X is a feasible
solution, and c(X) ≤ α · c(Z) ≤ 2α ·OPT . J

At the time of writing the best known approximation for Steiner tree is ln 4 + ε < 1.39 [3],
so the mVPN problem where H is a tree is approximable within 2.78.

5 Conclusion

Our results for H a tree can be extended easily to the capped hose model where the support
(edges with dij > 0) forms a tree. If the support of d is a cycle, but b and d are otherwise
arbitrary, the situation is unclear. There is a natural analog of the embedding algorithm.
First, ensure that the components of b and d are all minimal, i.e., no component can be
decreased without changing the uncertainty set. Then compute the cheapest embedding of
the weighted version of the graph used in Section 3; edges {i, hi} get weight bi, and edges
{i, i+ 1} get weight di,i+1. We leave it as an open question whether this algorithm is always
optimal. More speculatively, we feel that our results suggest that embedding algorithms may
play a deeper role in the subject than is currently apparent.
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