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Abstract
Real-world networks, like social networks or the internet infrastructure, have structural properties
such as large clustering coefficients that can best be described in terms of an underlying geometry.
This is why the focus of the literature on theoretical models for real-world networks shifted from
classic models without geometry, such as Chung-Lu random graphs, to modern geometry-based
models, such as hyperbolic random graphs.

With this paper we contribute to the theoretical analysis of these modern, more realistic
random graph models. Instead of studying directly hyperbolic random graphs, we introduce a
generalization that we call geometric inhomogeneous random graphs (GIRGs). Since we ignore
constant factors in the edge probabilities, GIRGs are technically simpler (specifically, we avoid
hyperbolic cosines), while preserving the qualitative behaviour of hyperbolic random graphs, and
we suggest to replace hyperbolic random graphs by this new model in future theoretical studies.

We prove the following fundamental structural and algorithmic results on GIRGs. (1) As
our main contribution we provide a sampling algorithm that generates a random graph from
our model in expected linear time, improving the best-known sampling algorithm for hyperbolic
random graphs by a substantial factor O(

√
n). (2) We establish that GIRGs have clustering

coefficients in Ω(1), (3) we prove that GIRGs have small separators, i.e., it suffices to delete a
sublinear number of edges to break the giant component into two large pieces, and (4) we show
how to compress GIRGs using an expected linear number of bits.
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1 Introduction

Real-world networks, like social networks or the internet infrastructure, have structural
properties that can best be described using geometry. For instance, in social networks two
people are more likely to know each other if they live in the same region and share hobbies,
both of which can be encoded as spatial information. This geometric structure may be
responsible for some of the key properties of real-world networks, e.g., an underlying geometry
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naturally induces a large number of triangles, or large clustering coefficient: Two of one’s
friends are likely to live in one’s region and have similar hobbies, so they are themselves
similar and thus likely to know each other.

Classic mathematical models of real-world networks are scale-free (i.e., have a power-law
degree distribution) and small worlds (i.e., most pairs of vertices have small graph-theoretic
distance), thus reproducing these two key findings of large real-world networks. But since
they have no underlying geometry their clustering coefficient is as small as n−Ω(1); this holds
in particular for preferential attachment graphs [3] and Chung-Lu random graphs [24, 25, 26]
(and their variants [13, 41]). In order to close this gap between the empirically observed
clustering coefficient and theoretical models, much of the recent work on models for real-world
networks focussed on scale-free random graph models that are equipped with an underlying
geometry, such as hyperbolic random graphs [11, 42], spatial preferred attachment [2], and
many others [13, 14, 15, 35]. The basic properties – scale-freeness, small-world, and large
clustering coefficient – have been rigorously established for most of these models. Beyond
the basics, experiments suggest that these models have some very desirable properties.

In particular, hyperbolic random graphs are a promising model, as Boguñá et al. [11]
computed a (heuristic) maximum likelihood fit of the internet graph into the hyperbolic
random graph model and demonstrated its quality by showing that greedy routing in the
underlying geometry of the fit finds near-optimal shortest paths. Further properties that
have been studied on hyperbolic random graphs, mostly agreeing with empirical findings
on real-world networks, are scale-freeness and clustering coefficient [33, 20], existence of a
giant component [9], diameter [37, 32], average distance [1], separators and treewidth [6],
spectral gap [38], bootstrap percolation [21], and clique number [7]. Algorithmic aspects
include sampling algorithms [47], embedding algorithms [8], and compression schemes [45].

Our goal is to improve algorithmic and structural results on the promising model of
hyperbolic random graphs. However, it turns out to be beneficial to work with a more general
model, that we introduce with this paper: In a geometric inhomogeneous random graph
(GIRG), every vertex v comes with a weight wv (which we assume to follow a power law in
this paper) and picks a uniformly random position xv in the d-dimensional torus Td. Two
vertices u, v then form an edge independently with probability puv, which is proportional to
wuwv and inversely proportional to some power of their distance ‖xu − xv‖, see Section 2 for
details. A major difference between hyperbolic random graphs and our generalisation is that
we ignore constant factors in the edge probabilities puv. This allows to greatly simplify the
edge probability expressions, thus reducing the technical overhead. GIRGs can be interpreted
as a geometric variant of the classic Chung-Lu random graphs. Recently, with scale-free
percolation a closely related model has been introduced [28] where the vertex set is given
by the grid Zd. This model is similar with respect to component structure, clustering, and
small-world properties [29, 34], but none of the algorithmic aspects studied in the present
paper (sampling, compression, also separators) has been regarded thereon.

The basic connectivity properties of GIRGs follow from more general considerations
in [17], where an even more general model of generic augmented Chung-Lu graphs is studied.
In particular, with high probability1 GIRGs have a giant component and polylogarithmic
diameter, and a.a.s. doubly-logarithmic average distance within the giant. However, general
studies such as [17] are limited to properties that do not depend on the specific underlying
geometry. Recently, GIRGs turned out to be accesible for studying processes such as bootstrap
percolation [39] and greedy routing [19].

1 We say that an event holds with high probability (w.h.p.) if it holds with probability 1 − n−ω(1). If it
holds with probability 1 − o(1), we say that it holds asymptotically almost surely (a.a.s.).
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Our contribution. As our main result, we present a sampling algorithm that generates a
random graph from our model in expected linear time. This improves the trivial sampling
algorithm by a factor O(n) and the best-known algorithm for hyperbolic random graphs by
a factor O(

√
n) [47]. We also prove that the underlying geometry indeed causes GIRGs to

have a clustering coefficient in Ω(1). Moreover, we show that GIRGs have small separators of
expected size n1−Ω(1); this is in agreement with empirical findings on real-world networks [5].
We then use the small separators to prove that GIRGs can be efficiently compressed (i.e., they
have low entropy), specifically, we show how to store a GIRG using O(n) bits in expectation.
Finally, we show that hyperbolic random graphs are indeed a special case of GIRGs, so that
all aforementioned results also hold for hyperbolic random graphs.

2 Model and Results

2.1 Definition of the Model
We prove algorithmic and structural results in a new random graph model which we call
geometric inhomogeneous random graphs. In this model, each vertex v comes with a weight
wv and with a random position xv in a geometric space, and the set of edges E is also random.
We start by defining the by-now classical Chung-Lu model and then describe the changes
that yield our variant with underlying geometry.

Chung-Lu random graph. For n ∈ N let w = (w1, . . . ,wn) be a sequence of positive weights.
We call W :=

∑n
v=1 wv the total weight. The Chung-Lu random graph G(n,w) has vertex

set V = [n] = {1, . . . , n}, and two vertices u 6= v are connected by an edge independently
with probability puv = Θ

(
min

{
1, wuwv

W
})

[24, 25]. Note that the term min{1, .} is necessary,
as the product wuwv may be larger than W. Classically, the Θ simply hides a factor 1, but
by introducing the Θ the model also captures similar random graphs, like the Norros-Reittu
model [41], while important properties stay asymptotically invariant.

Geometric inhomogeneous random graph (GIRG). Note that we obtain a circle by iden-
tifying the endpoints of the interval [0, 1]. Then the distance of x, y ∈ [0, 1] along the circle
is |x − y|C := min{|x − y|, 1 − |x − y|}. We fix a dimension d ≥ 1 and use as our ground
space the d-dimensional torus Td = Rd/Zd, which can be described as the d-dimensional cube
[0, 1]d where opposite boundaries are identified. As distance function we use the ∞-norm on
Td, i.e., for x, y ∈ Td we define ‖x− y‖ := max1≤i≤d |xi − yi|C .

As for Chung-Lu graphs, we consider the vertex set V = [n] and a weight sequence w (in
this paper we require the weights to follow a power law with exponent β > 2, see next para-
graph). Additionally, for any vertex v we draw a point xv ∈ Td uniformly and independently
at random. Again we connect vertices u 6= v independently with probability puv = puv(r),
which now depends not only on the weights wu,wv but also on the positions xu, xv, more
precisely, on the distance r = ‖xu − xv‖. We require for some constant α > 1 the following
edge probability condition:

puv = Θ
(

min
{

1
‖xu − xv‖αd

·
(wuwv

W

)α
, 1
})

. (EP1)

We also allow α =∞ and in this case require that

puv =
{

Θ(1) if ‖xu − xv‖ ≤ O
((wuwv

W
)1/d)

0 if ‖xu − xv‖ ≥ Ω
((wuwv

W
)1/d)

,
(EP2)
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where the constants hidden by O and Ω do not have to match, i.e., there can be an interval
[c1( wuwv

W )1/d, c2( wuwv
W )1/d] for ‖xu− xv‖ where the behaviour of puv is arbitrary. This finishes

the definition of GIRGs. The free parameters of the model are α ∈ (1,∞], d ∈ N, the
concrete weights w with power-law exponent β > 2 and average weight W/n, the concrete
function fuv(xu, xv) replacing the Θ in puv, and for α =∞ the constants hidden by O,Ω in
the requirement for puv. We will typically hide the constants α, d, β,W/n by O-notation.

Power-law weights. As is often done for Chung-Lu graphs, we assume throughout this
paper that the weights follow a power law: the fraction of vertices with weight at least w is
proportional to w1−β for some 2 < β < 3 (the power-law exponent of w). More precisely, we
assume that for some w̄ = w̄(n) with nω(1/ log logn) ≤ w̄ ≤ n(1−Ω(1))/(β−1), the sequence w
satisfies the following conditions:
(PL1) the minimum weight is constant, i.e., wmin := min{wv | 1 ≤ v ≤ n} = Ω(1);
(PL2) for all η > 0 there exist constants c1, c2 > 0 such that

c1
n

wβ−1+η ≤ #{1 ≤ v ≤ n | wv ≥ w} ≤ c2
n

wβ−1−η ,

where the first inequality holds for all wmin ≤ w ≤ w̄ and the second for all w ≥ wmin.
We remark that these are standard assumptions for power-law graphs with average degree
Θ(1). In particular, (PL2) implies that the average weight W/n is Θ(1). An example is the
widely used weight function wv := δ · (n/v)1/(β−1) with parameter δ = Θ(1).

Discussion of the model. The choice of the ground space Td is in the spirit of the classic
random geometric graphs [44]. We prefer the torus to the hyper-cube for technical simplicity,
as it yields symmetry. However, one could replace Td by [0, 1]d or other manifolds like the
d-dimensional sphere; our results will still hold verbatim. Moreover, since in fixed dimension
all Lp-norms on Td are equivalent and since the edge probabilities puv have a constant factor
slack, our choice of the L∞-norm is without loss of generality (among all norms).

The model is already motivated since it generalizes the celebrated hyperbolic random
graphs (see Theorem 7). Let us nevertheless discuss why our choice of edge probabilities
is natural: The term min{., 1} is necessary, as in the Chung-Lu model, because puv is a
probability. To obtain a geometric model, where adjacent vertices are likely to have small
distance, puv should decrease with increasing distance ‖xu − xv‖, and an inverse polynomial
relation seems reasonable. The constraint α > 1 is necessary to cancel the growth of the
volume of the ball of radius r proportional to rd, so that we expect most neighbors of a
vertex to lie close to it. Finally, the factor

(wuwv
W
)α ensures that the marginal probability of

vertices u, v with weights wu,wv forming an edge is Pr[u ∼ v] = Θ
(
min

{wuwv
W , 1

})
, as in the

Chung-Lu model, and this probability does not change by more than a constant factor if we
fix either xu or xv. This is why we see our model as a geometric variant of Chung-Lu random
graphs. For a fixed vertex u ∈ V we can sum up Pr[u ∼ v | xu] over all vertices v ∈ V \ {u},
and it follows E[deg(u)] = Θ(wu). The main reason why GIRGs are also technically easy is
that for any vertex u with fixed position xu the incident edges {u, v} are independent.

Finally, after rescaling the parameters (x̃v := n1/dxv, α̃ := dα, τ := 1 + (β− 1)/α, see [46]
for details), the GIRG model is closely related to scale-free percolation [28].

Sampling the weights. In the definition we assume that the weight sequence w is fixed.
However, if we sample the weights independently according to an appropriate power-law
distribution with minimum weight wmin and density f(w) ∼ w−β , then the sampled weight
sequence will follow a power law and fulfils (PL1) and (PL2) with probability 1 − n−Ω(1).
Hence, a model with sampled weights is a.a.s. included in our model.
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2.2 Structural Properties of GIRGs
As discussed in the introduction, reasonable random graph models for real-world networks
should reproduce a power-law degree distribution and small graph-theoretical distances
between nodes. For the GIRG model, these structural properties follow from a more general
class of generic augmented Chung-Lu random graphs that have been studied in [17]. This
framework has weaker assumptions on the underlying geometry than GIRGs. A short
comparison reveals that GIRGs are a special case of this general class of random graph
models. In the following we list the results of [17] transferred to GIRGs. As we are using
power-law weights and E[deg(v)] = Θ(wv) holds for all v ∈ V , it is not surprising that the
degree sequence follows a power-law.

I Theorem 1 (Theorem 2.1 in [17]). W.h.p. the degree sequence of a GIRG follows a power
law with exponent β and average degree Θ(1).

The next result determines basic connectivity properties. Note that for β > 3, they are not
well-behaved, in particular since in this case even threshold hyperbolic random graphs do not
possess a giant component of linear size [10]. This is one reason why we assume 2 < β < 3
throughout the paper. For the following theorem, we require the additional assumption
w̄ = ω(n1/2) in the limit case α =∞.

I Theorem 2 (Theorems 2.2 and 2.3 in [17]). W.h.p. the largest component of a GIRG has
linear size and diameter logO(1) n, while all other components have size logO(1) n. Moreover,
the average distance of vertices in the largest component is (2± o(1)) log logn

| log(β−2)| in expectation
and with probability 1− o(1).

We remark that most results of this paper crucially depend on an underlying geometry, and
thus do not hold in the general model from [17].

2.3 Results
Sampling. Sampling algorithms that generate a random graph from a fixed distribution are
known for Chung-Lu random graphs and others, running in expected linear time [4, 40]. As
our main result, we present such an algorithm for GIRGs. This greatly improves the trivial
O(n2) sampling algorithm (throwing a biased coin for each possible edge), as well as the best
previous algorithm for threshold hyperbolic random graphs with expected time O(n3/2) [47].
It allows to run experiments on much larger graphs than the ones with ≈ 104 vertices in [11].
In addition to our model assumptions, here we assume that the Θ in our requirement on puv
is sufficiently explicit, i.e., we can compute puv exactly and we know a constant c > 0 such
that replacing Θ by c yields an upper bound on puv, see Section 3 for details.

I Theorem 3 (Section 3). Sampling a GIRG can be done in expected time O(n).

Clustering. In social networks, two friends of the same person are likely to also be friends
with each other. This property of having many triangles is captured by the clustering
coefficient, defined as the probability when choosing a random vertex v and two random
neighbors v1 6= v2 of v that v1 and v2 are adjacent (if v does not have two neighbors then
its contribution to the clustering coefficient is 0). While Chung-Lu random graphs have a
very small clustering coefficient of n−Ω(1), it is easy to show that the clustering coefficient of
GIRGs is Θ(1). This is consistent with empirical data of real-world networks [31] and the
constant clustering coefficient of hyperbolic random graphs determined in [20, 33, 45].

ESA 2017
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I Theorem 4. W.h.p. the clustering coefficient of a GIRG is Θ(1).

Proof Outline. We show that the clustering coefficient is dominated by the contribution
of constant-weight vertices v. Let v ∈ V be a vertex of weight wv = Θ(1). Then, with at
least constant probability, (i) deg(v) ≥ 2, and (ii) all neighbors of v are located in a ball
of radius cn−1/d around xv, for a sufficiently small constant c > 0. If the neighborhood of
v has this property, then two random neighbors v1, v2 of v are connected with constant
probability. Therefore, the expected contribution of v to the clustering coefficient is Ω( 1

n ).
As the number of such vertices v is Θ(n), it follows that the expected clustering coefficient is
Θ(1). Proving the w.h.p.-statement requires additional arguments and the application of
Azuma-type concentration inequalities with bad events. The detailed proof is included in
the full version [18]. J

Stability. For real-world networks, a key property to analyze is their stability under attacks.
It has been empirically observed that many real-world networks have small separators of
size nc, c < 1 [5]. In contrast, Chung-Lu random graphs are unrealistically stable, since
any deletion of o(n) nodes or edges reduces the size of the giant component by at most
o(n) [13]. We show that GIRGs agree with the empirical results much better. Specifically, if
we cut the ground space Td into two halves along one of the axes then we roughly split the
giant component into two halves, but the number of edges passing this cut is quite small,
namely n1−Ω(1). Thus, GIRGs are prone to (quite strong) adversarial attacks, just as many
real-world networks. Furthermore, their small separators are useful for many algorithms, e.g.,
the compression scheme of the next paragraph.

I Theorem 5 (Section 4). A.a.s. it suffices to delete O
(
nmax{2−α,3−β,1−1/d}+o(1)) edges of

a GIRG to split its giant component into two parts of linear size each.

Since we assume α > 1, β > 2, and d = Θ(1), the number of deleted edges is indeed n1−Ω(1).
Recently, Bläsius et al. [6] proved a better bound of O(n(3−β)/2) for threshold hyperbolic
random graphs which correspond to GIRGs with parameters d = 1 and α =∞.

Entropy. The internet graph has empirically been shown to be well compressible, using
only 2-3 bits per edge [5, 12]. This is not the case for the Chung-Lu model, as its entropy
is Θ(n logn) [23]. We show that GIRGs have linear entropy, as is known for threshold
hyperbolic random graphs [45].

I Theorem 6 (Section 4). We can store a GIRG using O(n) bits in expectation. The resulting
data structure allows to query the degree of any vertex and its i-th neighbor in time O(1).
The compression algorithm runs in time O(n).

Hyperbolic random graphs. We establish that hyperbolic random graphs are an example
of one-dimensional GIRGs, and that the often studied special case of threshold hyperbolic
graphs is obtained by our limit case α = ∞. Specifically, we obtain hyperbolic random
graphs from GIRGs by setting the dimension d = 1, the weights to a specific power law, and
the Θ in the edge probability puv to a specific, complicated function.

I Theorem 7. For every choice of parameters in the hyperbolic random graph model, there
is a choice of parameters in the GIRG model such that the two resulting distributions of
graphs coincide.
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In particular, all our results on GIRGs hold for hyperbolic random graphs, too. Moreover,
as our proofs are much less technical than typical proofs for hyperbolic random graphs, we
suggest to switch from hyperbolic random graphs to GIRGs in future studies. We prove
Theorem 7 in the full version of this paper [18].

2.4 Preliminaries
We introduce a geometric ordering of the vertices, which we will use both for the sampling
and for the compression algorithm. Consider the ground space Td, split it into 2d equal
cubes, and repeat this process with each created cube; we call the resulting cubes cells.
Cells are cubes of the form C = [x12−`, (x1 + 1)2−`)× . . .× [xd2−`, (xd + 1)2−`) with ` ≥ 0
and 0 ≤ xi < 2`. We represent cell C by the tuple (`, x1, . . . , xd). The volume of C is
vol(C) = 2−`·d. For 0 < x ≤ 1 we let dxe2d be the smallest number larger or equal to
x that is realized as the volume of a cell, or in other words x rounded up to a power of
2d, dxe2d = min{2−`·d | ` ∈ N0 : 2−`·d ≥ x}. Note that the cells of a fixed level ` partition
the ground space. We obtain a geometric ordering of these cells by following the recursive
construction of cells in a breadth-first-search manner. This yields the following lemma.

I Lemma 8 (Geometric ordering). There is an enumeration of the cells C1, . . . , C2`d of level `
such that for every cell C of level `′ < ` the cells of level ` contained in C form a consecutive
block Ci, . . . , Cj in the enumeration.

3 Sampling Algorithm

In this section we show that GIRGs can be sampled in expected time O(n). The running
time depends exponentially on the fixed dimension d. In addition to our model assumptions,
in this section we require that (1) edge probabilities puv can be computed in constant time
(given any vertices u, v and positions xu, xv) and (2) we know an explicit constant c > 0 such
that if α <∞ we have

puv ≤ min
{
c

1
‖xu − xv‖αd

·
(wuwv

W

)α
, 1
}
.

Note that existence of c follows from our model assumptions. In the remainder of this
section we introduce building blocks of our algorithm (Section 3.1) and present our algorithm
(Section 3.2) and its analysis (Section 3.3). Note that in the full version, we also show how
the sampling algorithm can be adapted to the case α =∞.

3.1 Building Blocks
Data structures. We first build a basic data structure on a set of points P that allows to
access the points in a given cell C (of volume at least ν) in constant time.

I Lemma 9. Given a set of points P and 0 < ν ≤ 1, in time O(|P |+ 1/ν) we can construct
a data structure Dν(P ) supporting the following queries in time O(1):

given a cell C of volume at least ν, return |C ∩ P |,
given a cell C of volume at least ν and a number k, return the k-th point in C ∩ P (in a
fixed ordering of C ∩ P depending only on P and ν).

Proof. Let µ = dνe2d = 2−`·d, so that ν ≤ µ ≤ O(ν). Following the recursive construction
of cells, we can determine a geometric ordering of the cells of volume µ as in Lemma 8 in
time O(1/µ) = O(1/ν); say C1, . . . , C1/µ are the cells of volume µ in the geometric ordering.

ESA 2017
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We store this ordering by storing a pointer from each cell Ci = (`, x1, . . . , xd) to its successor
Ci+1 = (`, x′1, . . . , x′d), which allows to scan the cells C1, . . . , C1/µ in linear time. For any
point x ∈ P , using the floor function we can determine in time O(1) the cell (`, x1, . . . , xd)
of volume µ that x belongs to (in our machine model we assume that the floor function can
be computed in constant time). This allows to determine the numbers |Ci ∩ P | for all i in
time O(|P |+ 1/ν). We also compute each prefix sum si :=

∑
j<i |Cj ∩ P | and store it at cell

Ci = (`, x1, . . . , xd). Using an array A[.] of size |P |, we store (a pointer to) the k-th point in
Ci ∩ P at position A[si + k]. This preprocessing can be performed in time O(|P |+ 1/ν).

A given cell C of volume at least ν may consist of several cells of volume µ. By Lemma 8,
these cells form a contiguous subsequence Ci, Ci+1, . . . , Cj−1, Cj of C1, . . . , C1/µ, so that the
points C ∩ P form a contiguous subsequence of A. For constant access time, we store for
each cell C of volume at least ν the indices sC , eC of the first and last point of C ∩ P in A.
Then |C ∩ P | = eC − sC + 1 and the k-th point in C ∩ P is stored at A[sC + k]. Thus, both
queries can be answered in constant time. Note that the ordering A[.] of the points in C ∩ P
is a mix of the geometric ordering of cells of volume µ and the given ordering of P within a
cell of volume µ, in particular this ordering indeed only depends on P and ν. J

Next we construct a partitioning of Td×Td into products of cells Ai×Bi. This partitioning
allows to split the problem of sampling the edges of a GIRG into one problem for each
Ai ×Bi, which is beneficial, since each product Ai ×Bi has one of two easy types. For any
A,B ⊆ Td we denote the distance of A and B by d(A,B) = infa∈A,b∈B ‖a− b‖.

I Lemma 10. Let 0 < ν ≤ 1. In time O(1/ν) we can construct a set
Pν = {(A1, B1), . . . , (As, Bs)} such that
(1) Ai, Bi are cells with vol(Ai) = vol(Bi) ≥ ν,
(2) for all i, either d(Ai, Bi) = 0 and vol(Ai) = dνe2d (type I) or d(Ai, Bi) ≥ vol(Ai)1/d

(type II),
(3) the sets Ai ×Bi partition Td × Td,
(4) s = O(1/ν).

Proof. Note that for cells A,B of equal volume we have d(A,B) = 0 if and only if either
A = B or (the boundaries of) A and B touch. For a cell C of level ` we let par(C) be
its parent, i.e., the unique cell of level ` − 1 that C is contained in. Let µ = dνe2d . We
define Pν as follows. For any pair of cells (A,B) with vol(A) = vol(B) ≥ ν, we add
(A,B) to Pν if either (i) vol(A) = vol(B) = µ and d(A,B) = 0, or (ii) d(A,B) > 0 and
d(par(A), par(B)) = 0.

Property (1) follows by definition. Regarding property (2), the pairs (A,B) added in
case (i) are clearly of type I. Observe that two cells A,B of equal volume that are not equal
or touching have distance at least the sidelength of A, which is vol(A)1/d. Thus, in case (ii)
the lower bound d(A,B) > 0 implies d(A,B) ≥ vol(A)1/d, so that (A,B) is of type II.

For property (3), consider (x, y) ∈ Td × Td and let A,B be the cells of volume µ
containing x, y. Let A(0) := A and A(i) := par(A(i−1)) for any i ≥ 1, until A(k) = Td.
Similarly, define B = B(0) ⊂ . . . ⊂ B(k) = Td and note that vol(A(i)) = vol(B(i)). Observe
that each set A(i)×B(i) contains (x, y). Moreover, any set A′×B′, where A′, B′ are cells with
vol(A′) = vol(B′) and (x, y) ∈ A′ ×B′, is of the form A(i) ×B(i). Thus, to show that Pν
partitions Td×Td we need to show that it contains exactly one of the pairs (A(i), B(i)) (for any
x, y). To show this, we use the monotonicity d(A(i), B(i)) ≥ d(A(i+1), B(i+1)) and consider two
cases. If d(A,B) = 0 then we add (A,B) to Pν in case (i), and we add no further (A(i), B(i)),
since d(A(i), B(i)) = 0 for all i. If d(A,B) > 0 then since d(A(k), B(k)) = d(Td,Td) = 0 there
is a unique index 0 ≤ i < k with d(A(i), B(i)) > 0 and d(A(i+1), B(i+1)) = 0. Then we add
(A(i), B(i)) in case (ii) and no further (A(j), B(j)). This proves property (3).
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Algorithm 1 Sampling algorithm for GIRGs in expected time O(n)
1: E := ∅
2: sample the positions xv, v ∈ V , and determine the weight layers Vi
3: for all 1 ≤ i ≤ L do build data structure Dν(i)({xv | v ∈ Vi}) with ν(i) := wiw0

W

4: for all 1 ≤ i ≤ j ≤ L do
5: construct partitioning Pν(i,j) with ν(i, j) := wiwj

W
6: for all (A,B) ∈ Pν(i,j) of type I do
7: for all u ∈ V Ai and v ∈ V Bj do with probability puv add edge {u, v} to E
8: for all (A,B) ∈ Pν(i,j) of type II do
9: p̄ := min

{
c · 1

d(A,B)αd ·
(wiwj

W
)α
, 1
}

10: r := Geo(p̄)
11: while r ≤ |V Ai | · |V Bj | do
12: determine the r-th pair (u, v) in V Ai × V Bj
13: with probability puv/p̄ add edge {u, v} to E
14: r := r + Geo(p̄)
15: if i = j then remove all edges with u > v sampled in this iteration

Property (4) follows from the running time bound of O(1/ν), which we show in the
following. Note that we can enumerate all 1/µ = O(1/ν) cells of volume µ, and all of the at
most 3d = O(1) touching cells of the same volume, in time O(1/ν), proving the running time
bound for case (i). Moreover, we can enumerate all 2`·d cells C in level `, together with all
of the at most 3d = O(1) touching cells C ′ in the same level. Then we can enumerate all
2d = O(1) cells A that have C as parent as well as all O(1) cells B that have C ′ as parent.
This enumerates (a superset of) all possibilities of case (ii). Summing the running time
O(2`·d) over all levels ` with volume 2−`·d ≥ ν yields a total running time of O(1/ν). J

Weight layers. We set w0 := wmin and wi := 2wi−1 for i ≥ 1. This splits the vertex set
V = [n] into weight layers Vi := {v ∈ V | wi−1 ≤ v < wi} for 1 ≤ i ≤ L with L = O(logn).
We write V Ci for the restriction of weight layer Vi to cell C, V Ci := {v ∈ Vi | xv ∈ C}.

Geometric random variates. For 0 < p ≤ 1 we write Geo(p) for a geometric random
variable, taking value i ≥ 1 with probability p(1− p)i−1. Geo(p) can be sampled in constant
time using the simple formula

⌈ log(R)
log(1−p)

⌉
, where R is chosen uniformly at random in (0, 1),

see [30]. To evaluate this formula exactly in time O(1) we need to assume the RealRAM
model of computation. However, also on a bounded precision machine like the WordRAM
Geo(p) can be sampled in expected time O(1) [16].

3.2 The Algorithm
Given the model parameters, our Algorithm 1 samples the edge set E of a GIRG. To this end,
we first sample all vertex positions xv uniformly at random in Td. Given weights w1, . . . , wn
we can determine the weight layers Vi in linear time (we may use counting sort or bucket sort
since there are only L = O(logn) layers). Then we build the data structure from Lemma 9
for the points in Vi setting ν = ν(i) = wiw0

W , i.e., we build Dν(i)({xv | v ∈ Vi}) for each i. In
the following, for each pair of weight layers Vi, Vj we sample the edges between Vi and Vj .
To this end, we construct the partitioning Pν(i,j) from Lemma 10 with ν(i, j) = wiwj

W . Since
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Pν(i,j) partitions Td × Td, every pair of vertices u ∈ Vi, v ∈ Vj satisfies xu ∈ A, xv ∈ B for
exactly one (A,B) ∈ Pν(i,j). Thus, we can iterate over all (A,B) ∈ Pν(i,j) and sample the
edges between V Ai and V Bj .

If (A,B) is of type I, then we simply iterate over all vertices u ∈ V Ai and v ∈ V Bj and
add the edge {u, v} with probability puv; this is the trivial sampling algorithm. Note that
we can efficiently enumerate V Ai and V Bj using the data structure Dν(i)({xv | v ∈ Vi}) that
we constructed above.

If (A,B) is of type II, then the distance ‖x− y‖ of any two points x ∈ A, y ∈ B satisfies
d(A,B) ≤ ‖x − y‖ ≤ d(A,B) + vol(A)1/d + vol(B)1/d ≤ 3d(A,B), by the definition of
type II. Thus, p̄ = min

{
c· 1
d(A,B)αd ·

(wiwj
W
)α
, 1
}
is an upper bound on the edge probability puv

for any u ∈ V Ai , v ∈ V Bj , and it is a good upper bound since d(A,B) is within a constant
factor of ‖xu − xv‖ and wi, wj are within constant factors of wu,wv. Now we first sample
the set of edges Ē between V Ai and V Bj that we would obtain if all edge probabilities were
equal to p̄, i.e., any (u, v) ∈ V Ai × V Bj is in Ē independently with probability p̄. From this
set Ē, we can then generate the set of edges with respect to the true edge probabilities puv
by throwing a coin for each {u, v} ∈ Ē and letting it survive with probability puv/p̄. Then
in total we choose a pair (u, v) as an edge in E with probability p̄ · (puv/p̄) = puv, proving
that we sample from the correct distribution. Note that here we used puv ≤ p̄. It is left
to show how to sample the “approximate” edge set Ē. First note that the data structure
Dν({xv | v ∈ Vi}) defines an ordering on V Ai , and we can determine the `-th element in this
ordering in constant time, similarly for V Bj . Using the lexicographic ordering, we obtain an
ordering on V Ai × V Bj for which we can again determine the `-th element in constant time.
In this ordering, the first pair (u, v) ∈ V Ai × V Bj that is in Ē is geometrically distributed,
according to Geo(p̄). Since geometric random variates can be generated in constant time, we
can efficiently generate Ē, specifically in time O(1 + |Ē|).

Finally, the case i = j is special. With the algorithm described above, for any u, v ∈ Vi we
sample whether they form an edge twice, once for xu ∈ A, xv ∈ B (for some (A,B) ∈ Pν(i,j))
and once for xv ∈ A′, xu ∈ B′ (for some (A′, B′) ∈ Pν(i,j)). To fix this issue, in the case i = j

we only accept a sampled edge (u, v) ∈ V Ai × V Bj if u < v; then only one way of sampling
edge {u, v} remains. This changes the expected running time only by a constant factor.

3.3 Analysis
Correctness of our algorithm follows immediately from the above explanations. In the
following we show that Algorithm 1 runs in expected linear time. This is clear for lines
1-2. For line 3, since building the data structure from Lemma 9 takes time O(|P |+ 1/ν),
it takes total time

∑L
i=1O

(
|Vi|+ W/(wiw0)

)
. Clearly, the first summand |Vi| sums up to

n. Using w0 = wmin = Ω(1), W = O(n), and that wi grows exponentially with i, implying∑
i 1/wi = O(1), also the second summand sums up to O(n). For line 5, all invocations in total

take time O
(∑

i,j W/(wiwj)
)
, which is O(n), since again W = O(n) and

∑
i 1/wi = O(1).

We claim that for any weight layers Vi, Vj the expected running time we spend on any
(A,B) ∈ Pν(i,j) is O(1 + E[|EA,Bi,j |]), where E

A,B
i,j is the set of edges in V Ai × V Bj . Summing

up the first summand O(1) over all (A,B) ∈ Pν(i,j) sums up to 1/ν(i, j) = W/(wiwj). As
we have seen above, this sums up to O(n) over all i, j. Summing up the second summand
O(E[|EA,Bi,j |]) over all (A,B) ∈ Pν(i,j) and weight layers Vi, Vj yields the total expected
number of edges O(E[|E|]), which is O(n), since the average weight W/n = O(1) and thus
the expected average degree is constant.

It is left to prove the claim that for any weight layers Vi, Vj the expected time spent on
(A,B) ∈ Pν(i,j) is O(1 + E[|EA,Bi,j |]). If (A,B) is of type I, then any pair of vertices (u, v) ∈
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V Ai × V Bj has probability Θ(1) to form an edge: Since the volume of A and B is wiwj/W,
their diameter is (wiwj/W)1/d and we obtain ‖xu − xv‖ ≤ (wiwj/W)1/d = O((wuwv/W)1/d),
which yields puv = Θ

(
min

{( wuwv
‖xu−xv‖dW

)α
, 1
})

= Θ(1). As we spend time O(1) for any
(u, v) ∈ V Ai × V Bj , we stay in the desired running time bound O(E[|EA,Bi,j |]).

If (A,B) is of type II, we first sample edges Ē with respect to the larger edge probability p̄,
and then for each edge e ∈ Ē sample whether it belongs to E. This takes total time O(1+|Ē|).
Note that any edge e ∈ Ē has constant probability puv/p̄ = Θ(1) to survive: It follows
from wu = Θ(wi),wv = Θ(wj), and ‖xu − xv‖ = Θ(d(A,B)) that puv = Θ(p̄). Hence, we
obtain E[|Ē|] = O(E[|EA,Bi,j |]), and the running time O(1 + |Ē|) is in expectation bounded by
O(1 + E[|EA,Bi,j |]). This finishes the proof of the claim.

4 Stability of the Giant, Entropy, and Compression Algorithm

In this section we prove Theorems 5 and 6. More precisely, we show that w.h.p. the graph
(and its giant) has separators of sublinear size, and we make use of these small separators to
devise a compression algorithm that can store the graph using a linear number of bits in
expectation. Note that the compression maintains only the graph up to isomorphism, not the
underlying geometry. The main idea is to enumerate the vertices in an ordering that reflects
the geometry, and then storing for each vertex i the differences i− j for all neighbors j of i.
We start with a technical lemma that gives the number of edges intersecting an axis-parallel,
regular grid. (For γ > 0 with 1/γ ∈ N, the axis-parallel, regular grid with side length γ is
the union of all d− 1-dimensional hyperplanes that are orthogonal to an axis and that are
in distance kγ from the origin for a k ∈ Z.) Both the existence of small separators and the
efficiency of the compression algorithm follow easily from that formula. For detailed proofs
we refer to the full version [18].

I Lemma 11. Let η > 0. Let 1 ≤ µ ≤ n1/d be an integer, and consider an axis-parallel,
regular grid with side length 1/µ on Td. Then in expectation the grid intersects at most
O(n · (n/µd)2−β+η + (n2−αµd(α−1) + n1−1/dµ)(1 + log(n/µd))) edges.

Proof Outline. For u, v ∈ V , let ρuv be the probability that the edge uv exists and cuts the
grid. Let rmax := 1/2 be the diameter of Td. We write

ρuv =
∫ rmax

0
Pr[‖xu − xv‖ = r] · puv(r) · Pr[xu, xv in different cells of µ-grid] dr. (1)

Observe that u and v have distance r with probability density Pr[‖xu − xv‖ = r] = O(rd−1).
For puv(r) we plug in the bound from (EP1) or (EP2), respectively. Finally, using symmetry
of Td we can show that the last probability in (1) is bounded by O(min{µr, 1}). The
remainder of the proof is a straight-forward, yet technical calculation of the integral. J

Compression algorithm. We remark that our Theorem 6 does not directly follow from the
general compression scheme on graphs with small separators in [5], since our graphs only
have small separators in expectation, in particular, small subgraphs of size O(

√
logn) can

form expanders and thus not have small separators. However, our algorithm loosely follows
their algorithm as well as the practical compression scheme of [12], see also [22].

We first enumerate the vertices as follows. Recall the definition of cells from Section 2.4,
and consider all cells of level `0 := blogn/dc. Note that the boundaries of these cells induce
a grid as in Lemma 11. Since each such cell has volume Θ(1/n), the expected number of
vertices in each cell is constant. We fix a geometric ordering of these cells as in Lemma 8,
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Algorithm 2 Finding the s-th neighbor of vertex i
1: b := Select(i, BV ) . starting position of vertex i
2: k := Rank(b, BE) . number of edges and vertices before b
3: b1 := Select(k + s,BE) . starting position of s-th edge of vertex i
4: b2 := Select(k + s+ 1, BE) . bit after ending position of s-th edge of vertex i
5: return B[b1 : b2 − 1] . block that stores s-th edge of vertex i

and we enumerate the vertices in the order of the cells, breaking ties (between vertices in the
same cell) arbitrarily. From now on we assume that the vertices are enumerated in this way,
i.e., we identify V = [n], where i ∈ [n] refers to the vertex with index i.

Having enumerated the vertices, for each vertex i ∈ [n] we store a block of 1 + deg(i)
sub-blocks. The first sub-block consists of a single dummy bit (to avoid empty sequences
arising from isolated vertices). In the other deg(i) sub-blocks we store the differences i− j
using log2 |i− j|+O(1) bits, where j runs through all neighbors of i. We assume that the
information for all vertices is stored in a successive block B in the memory. Moreover, we
create two more blocks BV and BE of the same length. Both BV and BE have a one-bit
whenever the corresponding bit in B is the first bit of the block of a vertex, and BE has also
a one-bit whenever the corresponding bit in B is the first bit of an edge (i.e., the first bit
encoding a difference i− j). All other bits in BV and BE are zero.

It is clear that with the data above the graph is determined. To handle queries efficiently,
we replace BV and BE each with a rank/select data structure. This data structure allows to
handle in constant time queries of the form “Rank(b)”, which returns the number of one-bits
up to position b, and “Select(i)”, which returns the position of the i-th one-bit [36, 27, 43].
Given i, s ∈ N, we can find the index of the s-th neighbor of i in constant time by Algorithm 2.
Note that we can also compute deg(i) in constant time as Rank(bi+1, BE)−Rank(bi, BE)−1,
where bi = Select(i, BV ) and bi+1 = Select(i+ 1, BV ) are the starting positions of vertex
i and i+ 1, respectively. In particular, it is possible for Algorithm 2 to first check whether
s ≤ deg(i).

We need to show that the data structure needs O(n) bits in expectation. There are n
dummy bits, so we must show that we require O(n) bits to store all differences i− j, where
ij runs through all edges of the graph. We need log2 |i− j|+O(1) bits for each edge, and
the O(1) terms sum up to O(|E|), which is O(n) in expectation. Thus, it remains to prove
the following.

I Lemma 12. If V is enumerated geometrically, then E[
∑
ij∈E log(|i− j|)] = O(n).

Proof outline. The geometric ordering puts all the vertices that are in the same cell of a
2−`-grid in a consecutive block, for all 1 ≤ ` ≤ `0. Therefore, if e = ij does not intersect the
2−`-grid then |i− j| ≤ #{vertices in the 2−`-cell of e} ≈ n2−`. Hence, if E`+1 is the number
of edges intersecting the 2−`-grid, but not the 2−`−1-grid, then E[

∑
ij∈E log(|i − j|)] ≈∑`0

`=0 E[E`+1] log(n2−`), and we show that the latter term is O(n) using Lemma 11. J
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