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Abstract
In the adversarial edge arrival model for maximum cardinality matching, edges of an unknown
graph are revealed one-by-one in arbitrary order, and should be irrevocably accepted or rejected.
Here, the goal of an online algorithm is to maximize the number of accepted edges while main-
taining a feasible matching at any point in time. For this model, the standard greedy heuristic
is 1/2-competitive, and on the other hand, no algorithm that outperforms this ratio is currently
known, even for very simple graphs.

We present a clean Min-Index framework for devising a family of randomized algorithms,
and provide a number of positive and negative results in this context. Among these results, we
present a 5/9-competitive algorithm when the underlying graph is a forest, and prove that this
ratio is best possible within the Min-Index framework. In addition, we prove a new general
upper bound of 2

3+1/φ2 ≈ 0.5914 on the competitiveness of any algorithm in the edge arrival
model. Interestingly, this bound holds even for an easier model in which vertices (along with
their adjacent edges) arrive online, and when the underlying graph is a tree of maximum degree
at most 3.
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1 Introduction

Graph matchings are cornerstone problems in combinatorial optimization, that have extens-
ively been studied by the discrete mathematics, computer science, and operations research
communities. In the most fundamental setting, given an undirected graph G = (V,E), our
objective is to identify a maximum cardinality matching, namely, a subset of edges M ⊆ E
without any vertices in common. Motivated by emerging applications in online advertising,
numerous generalizations of this classic problem have been investigated in the last two
decades from the perspective of both offline and online settings.
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In online computation, the seminal work of Karp, Vazirani, and Vazirani [14] studies an
online model of maximum cardinality matching in which the underlying graph is bipartite.
Specifically, the vertices on one side of the partition are known in advance, whereas those
on the other side arrive one-by-one in online fashion. Upon the arrival of a vertex, all its
adjacent edges are revealed simultaneously; the algorithm is then required to irrevocably
decide how to match the newly arrived vertex. For this setting, Karp et al. designed a
randomized (1− 1/e)-competitive algorithm, and showed that the latter factor is best possible.
Due to the breadth and depth of subsequent research on this one-sided arrival model, it
is beyond the scope of this paper to provide a comprehensive literature review. For this
purpose, we refer the reader to a number of selected papers on this topic [12, 3, 18, 1, 6, 7],
as well as to additional work on non-adversarial settings, in which the input sequence is
randomly generated [10, 5, 9, 15, 13, 16], and finally, to the excellent survey of Mehta [17].

Additional online models, most of which are somewhat more difficult in terms of the
achievable competitive ratio, have been proposed in recent years. Wang and Wong [20]
introduced a vertex arrival model, where vertices from either side of the partition arrive
online. Here, whenever a vertex arrives, all edges connecting this vertex to previously arrived
vertices are revealed simultaneously. Wang and Wong demonstrated that this model is strictly
harder than the one-sided vertex arrival model of Karp et al. [14] by proving an upper bound
of 0.6252 < 1 − 1/e. In addition, they presented a fractional matching algorithm with a
competitive ratio of 0.526. An even harder setting is the edge arrival model, where edges
are revealed one-by-one in arbitrary order, and should be irrevocably accepted or rejected.
For this model, the simple greedy heuristic, that deterministically adds an arriving edge to
the current matching whenever possible, is 1/2-competitive. Consequently, the main open
question is whether we can attain competitiveness strictly better than 1/2.

Existing results for relaxed models. As addressing the above question in the edge arrival
model seems particularly challenging, recent efforts have mainly concentrated on various
relaxations. One such relaxation allows for preemption, where the algorithm is allowed to
discard previously accepted edges. For this model, Epstein, Levin, Segev, and Weimann [8]
established an upper bound of 1

1+ln 2 ≈ 0.591 on the competitiveness of any algorithm, even
on bipartite graphs. To our knowledge, this is the best known upper bound for the edge
arrival model without preemption as well. Chiplunkar, Tirodkar, and Vishwanathan [4]
designed a 15/28 ≈ 0.535-competitive algorithm for a special case of the vertex arrival model
on a tree graph. Very recently, Tirodkar and Vishwanathan [19] devised a 33/64 ≈ 0.515-
competitive algorithm for trees in the edge arrival model. As mentioned earlier, these results
are heavily based on preemptions. Guruganesh and Singla [11] studied a different type of
relaxation, in which edges arrive according to a uniformly-picked random permutation, rather
than in an arbitrary adversarial order. Under this assumption, they were able to design
a (1/2 + δ)-competitive algorithm, for some absolute constant δ > 0. Nevertheless, for the
adversarial edge arrival model, no algorithm that outperforms the basic greedy heuristic
is known at present time, even for seemingly-simple network topologies, such as trees or
bounded-degree graphs.

The Min-Index framework. In this paper, we consider the adversarial edge arrival model
for maximum cardinality matching. Here, a randomized algorithm can be thought of as
a procedure that maintains at any given time, explicitly or implicitly, a distribution over
matchings. These are updated whenever a new edge arrives, subject to the respective online
constraints on the allowable updates. However, since maintaining a general distribution of this
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Algorithm 1 Min-Index(k, p1, . . . , pk)
Initialization: Mi ← ∅, for every i = 1, . . . , k.
When edge e arrives:
If e cannot be added to any of the matchingsM1, . . . ,Mk, reject this edge. Otherwise, update
Mi ←Mi ∪ {e}, where i is the minimal index for which Mi ∪ {e} is a feasible matching.
Return Mi with probability pi.

nature may be a difficult task, we propose a simple family of randomized algorithms, which is
referred to as the Min-Index framework. Our generic algorithm maintains a pre-determined
distribution over k matchings, M1, . . . ,Mk, and associates each matching Mi with a fixed
probability pi, such that

∑k
i=1 pi = 1. Whenever a new edge arrives, it is greedily accepted

to the first matching (index-wise) for which this augmentation is possible; when no such
matching exists, the current edge is rejected. As a result, we obtain a clean framework that
directly leads to a randomized online matching algorithm, whose formal statement is given
in Algorithm 1.

1.1 Our results
Our main contribution is to prove tight upper and lower bounds of 5/9 ≈ 0.555 for the
Min-Index framework on forest graphs, as stated in the following theorem.

I Theorem 1. For a forest graph, the generic Min-Index algorithm instantiated with k = 3
and (p1, p2, p3) = (5/9, 3/9, 1/9) is 5/9-competitive for the edge arrival model. Moreover, any
instantiation of Min-Index, with any number of matchings and respective probabilities, is at
most 5/9-competitive for forest graphs.

This result improves on that of Chiplunkar et al. [4], who obtained (in a vertex arrival
model) a competitive ratio of 15/28 ≈ 0.535 on forests, as well as on the results of Tirodkar
and Vishwanathan [19], who obtained (for the edge arrival model) a 33/64 ≈ 0.515-competitive
algorithm. In fact, as mentioned earlier, both of these bounds are in an easier model, allowing
the online algorithm to preempt edges.

As a warmup, we also show that for graphs of maximum degree 2 (i.e., union of paths
and cycles) the Min-Index algorithm with k = 2 matchings, picked with probabilities
(p1, p2) = (2/3, 1/3), is 2/3-competitive. This result is shown to be best possible for any
algorithm in the edge arrival model.

For graphs of maximum degree d, we prove that any instantiation of Min-Index is at
most 1

2 (1 + 1
2d−1 )-competitive, even on bipartite graphs. In spite our best efforts, we could

not match this bound. However, inspired by the general idea behind this framework, we
design a fractional 1

2 (1 + 1
2d−1 )-competitive algorithm on graphs of maximum degree d. In

other words, our online procedure computes a fractional matching whose objective value
with respect to the standard LP-relaxation of maximum cardinality matching (see Figure 1)
is within factor 1

2 (1 + 1
2d−1 ) of optimal.

Our final contribution is to establish a general upper bound for any online algorithm.

I Theorem 2. The competitive ratio of any fractional (or randomized) online algorithm for
maximum matching in the vertex arrival model even for subcubic trees is at most 2

3+1/φ2 ≈
0.5914, where φ = 1+

√
5

2 is the golden ratio.

Interestingly, this result holds even in the vertex arrival model, when the underlying
graph is a tree of maximum degree 3. On the one hand, this bound still leaves some marginal
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(P) maximize
∑
e∈E

ye (D) minimize
∑
v∈V

xv

subject to:
∑
e∈δ(v)

ye ≤ 1 ∀v ∈ V subject to: xu + xv ≥ 1 ∀e ∈ E

ye ≥ 0 ∀e ∈ E xv ≥ 0 ∀v ∈ V

Figure 1 The primal matching problem (P) and its dual the vertex cover problem (D).

room for improvements in comparison to our 5/9 ≈ 0.555-competitive algorithm on forests,
and our fractional 4/7 ≈ 0.571 algorithm for subcubic graphs (note that 1

2 (1 + 1
2d−1 ) = 4/7

for d = 3). On the other hand, 2
3+1/φ2 ≈ 0.5914 improves on the currently best-known upper

bound of 0.6252 for the vertex arrival model, due to Wang and Wong [20]. We note in passing
that, for the more restrictive edge arrival model (even with preemption), a slightly better
upper bound of 1

1+ln 2 ≈ 0.5906 was proven by Epstein et al. [8]. However, their bound holds
for high-degree bipartite graphs, while our bound holds even for trees of maximum degree 3.

Organization. All algorithms are given in Section 2, with corresponding upper bounds on
the Min-Index framework in Section 3. Our general upper bound is established in Section 4.

1.2 Techniques

The main technical ingredient in proving lower bounds on the competitiveness of our
algorithms is based on a primal-dual approach. Specifically, we make use of the standard
fractional matching LP and its dual, the fractional vertex cover LP, both stated in Figure 1.
To analyze the performance of our algorithms on various classes of graphs, we construct in
each setting a feasible fractional vertex cover, that will eventually allow us to bound the
expected cardinality of the resulting matching with respect to the optimal vertex cover,
and in turn, with respect to the optimal matching via weak duality. In some cases, this
construction is performed in an offline fashion, requires complete knowledge of the final input
graph, and hence can be viewed as employing a dual-fitting approach. In other cases, our
construction is fully online, and therefore also yields a monotonically increasing fractional
vertex cover. Such solutions can be rounded online with no loss in optimality on bipartite
graphs [20].

To prove upper bounds for the Min-Index algorithm, we construct adversarial sequences
that allow us to derive linear inequalities on the achievable competitive ratio in terms of
the choice probabilities of the different matchings. These inequalities naturally induce
a linear program whose optimal solution provides an upper bound on the best-possible
competitiveness. An approach in this spirit has recently been employed by Azar, Cohen, and
Roytman [2]. For our general upper bound of 2

3+1/φ2 , the adversarial sequences we consider
are parameterized according to the phase number m upon which they terminate. As a result,
in order to derive an upper bound on the competitiveness of any fractional online algorithm,
we are required to solve a corresponding linear program, parameterized by m as well. Rather
than solving this LP numerically, we obtain an explicit closed-form solution for its optimum,
thereby proposing an analytical proof for the desired upper bound, as the number of phases
m tends to infinity.
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2 Algorithms

In this section, we establish lower bounds on the competitive ratio of the generic Min-Index
framework. Specifically, in Section 2.1, we show that for graphs of maximum degree 2, an
appropriate instantiation of the Min-Index algorithm is 2/3-competitive. In Section 2.2, we
prove the first part of Theorem 1, arguing that the right instantiation of the Min-Index
algorithm is 5/9-competitive on forest graphs. Finally, in Section 2.3, we design a fractional
1
2 (1 + 1

2d−1 )-competitive algorithm for graphs of maximum degree at most d.

2.1 A 2/3-competitive algorithm for graphs of maximum degree 2
As a warm-up, we demonstrate some of our ideas by analyzing how the Min-Index algorithm
performs on graphs of maximum degree 2. Such graphs can be viewed as a union of vertex-
disjoint cycles and paths, whose edges are revealed to the algorithm one-by-one. Due to
space limitations, the proof of Theorem 3 below is omitted. We remark that this proof also
shows that a competitive ratio of 3/2 can be attained for the online fractional vertex cover
problem in graphs of maximum degree 2.

I Theorem 3. On graphs on maximum degree 2, the Min-Index algorithm with k = 2
matchings, picked with probabilities (p1, p2) = (2/3, 1/3), is 2/3-competitive.

2.2 A 5/9-competitive algorithm for forest graphs
In this section, we design a randomized 5/9-competitive algorithm when the underlying graph
is a forest. Specifically, as stated in the next theorem, this competitive ratio is attained by
our Min-Index algorithm.

I Theorem 4. On forests, the Min-Index algorithm with k = 3 matchings, picked with
probabilities (p1, p2, p3) = (5/9, 3/9, 1/9), is 5/9-competitive.

Proof. Clearly, the algorithm returns a feasible matching. Thus, it remains to analyze the
expected cardinality of its output matching, given by p1 · |M1| + p2 · |M2| + p3 · |M3| =
5
9 · |M1| + 3

9 · |M2| + 1
9 · |M3|. To this end, we use once again a primal-dual approach, by

constructing a feasible fractional vertex cover to the dual LP (D), shown in Figure 1. We
then prove that the expected cardinality of the matching produced by the algorithm is at
least 5/9 times the value of this fractional vertex cover.

In the (omitted) proof of Theorem 3, we construct a dual solution step-by-step, resulting
in an algorithm with a similar competitive ratio for the online fractional vertex cover problem.
On the other hand, in this case the (dual) fractional vertex cover is constructed retrospectively,
once the input sequence has ended. As the final graph is guaranteed to be a forest, we
separately define a feasible vertex cover for each tree of the forest. To this end, consider such
a tree, T . We first root T at an arbitrarily-picked vertex r, and orient the edges from the
root down toward the leaves, such that each vertex other than r has one ingoing edge. With
respect to this orientation, for each edge e = (u, v) that was oriented u→ v, we update the
fractional vertex cover according to the 4 possible decisions of our algorithm:
1. When e = u→ v is accepted to M1: xu ← xu + 3/5 and xv ← xv + 2/5.
2. When e = u→ v is accepted to M2 (after being rejected from M1): xu ← xu + 2/5 and

xv ← xv + 1/5.
3. When e = u → v is accepted to M3 (after being rejected from both M1 and M2):

xu ← xu + 1/5 and xv is not updated.
4. When e = u → v is rejected from M1, M2, and M3: The values xu and xv are not

updated.

ESA 2017
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First, we claim that the expected cardinality of the matching produced by our algorithm
is precisely 5

9 times the value of the fractional vertex cover solution we have just constructed.
This claim is straightforward, as whenever an edge e is accepted to one of the matchings Mi,
corresponding to cases 1-3 above, the expected cardinality of the matching increases by pi.
On the other hand, it is easy to verify that, by our construction, the increase in the fractional
vertex cover solution is exactly 9

5pi. In case 4, when an edge e is not accepted to any of the
matchings, the vertex cover solution remains unchanged. Thus, it remains to prove that the
fractional vertex cover is indeed feasible. To this end, we show that xu + xv ≥ 1 for every
edge e = u→ v by inspecting the 4 possible decisions of our algorithm.

Case 1: The edge e = u→ v is accepted to M1. In this case, due to the updates
xu ← xu + 3/5 and xv ← xv + 2/5, we clearly have xu + xv ≥ 1.

Case 2: The edge e = u→ v is accepted to M2. Since e was rejected from M1, there
must be an edge e′ ∈M1 that is adjacent to e. By construction, the vertex cover update due
to the edge e increases xu + xv by 3

5 , whereas that of e
′ contributes at least 2

5 to xu + xv,
meaning that e is fractionally covered.

Case 3: The edge e = u→ v is accepted to M3. Since e was rejected from both M1
and M2, there must be a pair of edges, e1 ∈ M1 and e2 ∈ M2, that are both adjacent to
e. Due to the update rule in this case, the edge e caused xu + xv to increase by 1

5 , and it
remains to show that the combined contribution of e1 and e2 to xu + xv is at least 4

5 . Note
that the orientation of T guarantees that u has at most one ingoing edge. Therefore, at most
one of e1 and e2 is of the form w → u, and we are left with considering the following cases:

When e1 = w → u: Here, e2 is necessarily of the form v → z or u→ z. It follows that e1
contributes 2

5 to xu whereas e2 contributes 2
5 to either xv or xu.

When e2 = w → u: Then, e1 is of the form v → z or u→ z. In this case, e2 contributes
1
5 to xu, and e1 contributes 3

5 to either xv or xu.
When both e1 and e2 are of the form v → z or u→ z: The respective contributions of e1
and e2 to xu + xv are 3

5 and 2
5 .

Case 4: The edge e = u→ v is rejected from M1, M2, and M3. Since e is rejected
from M1, M2, and M3, this edge must be adjacent to some e1 ∈M1, e2 ∈M2, and e3 ∈M3.
We prove that the total contribution of these three edges to xu + xv is at least 1. Similar to
the argument used in case 3, at most one edge out of e1, e2, and e3 is of the form w → u,
and we therefore consider the following cases:

When e1 = w → u: The contribution of e1 to xu is 2
5 . The contribution of e2 to xv or xu

is 2
5 , and the contribution of e3 to xv or xu is 1

5 . Hence, xu + xv ≥ 1.
When e2 = w → u: The contribution of e2 to xu is 1

5 . The contribution of e1 to xv or xu
is 3

5 , and the contribution of e3 to xv or xu is 1
5 . Once again, xu + xv ≥ 1.

When e3 = w → u: Even though e3 does not contribute to xu, the respective contributions
of e1 and e2 to xv + xu are 3

5 and 2
5 , implying that xu + xv ≥ 1.

When e1, e2, and e3 are all of the form v → z or u→ z: The contributions of e1, e2, and
e3 to xv + xu are 3

5 ,
2
5 , and

1
5 , respectively, and we have xu + xv = 6

5 > 1. J

2.3 Fractional 1
2(1 + 1

2d−1)-competitiveness for maximum degree d

In this section, we design a 1
2 (1 + 1

2d−1 )-competitive algorithm for fractional matching and
vertex cover in graphs with maximum degree d, assuming that the value d is known to the
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Algorithm 2 Fractional matching and vertex cover for graphs of maximum degree d:
Initialize y ← 0 and x← 0.
When edge e = (u, v) arrives:
Let 0 ≤ i ≤ d− 1 be the maximal integer for which ψi ≤ 1−max{

∑
e′∈δ(u) ye′ ,

∑
e′∈δ(v) ye′}.

Primal update: Set ye = ψi = 2i

2d−1 .
Dual update: Set xu ← xu + 2i

2d and xv ← xv + 2i

2d .

algorithm in advance. A fractional algorithm should irrevocably assign each arriving edge
e a fraction ye, subject to the constraint that the total sum of fractions assigned to edges
emanating from each vertex v can be at most 1, i.e.,

∑
e∈δ(v) ye ≤ 1. Although the algorithm

proposed here deviates from our general Min-Index framework, it has the same flavor. As
shown is Algorithm 2, each new edge is assigned a certain fraction, out of d possible values,
which is (greedily) chosen as the largest possible such value. In order to simplify subsequent
notation, for i = 0, 1, . . . , d− 1, let ψi = 2i

2d−1 , noting that
∑d−1
i=0 ψi = 1.

At first, it is not clear that our algorithm is well-defined, i.e., that upon the arrival of
(u, v) an integer 0 ≤ i ≤ d− 1 satisfying ψi ≤ 1−max{

∑
e′∈δ(u) ye′ ,

∑
e′∈δ(v) ye′} necessarily

exists. The next claim proves this property, which is useful for our analysis later on.

I Lemma 5. For every vertex u, as long as fewer than d edges adjacent to u have arrived,
we have 1−

∑
e∈δ(u) ye ≥

1
2d−1 .

Proof. Let us focus on a particular point in time, such that at most d− 1 edges adjacent to
u have arrived thus far. For 0 ≤ i ≤ d− 1, let ai be the number of edges e ∈ δ(u) for which
we currently have ye = ψi. With this notation,

∑
e∈δ(u) ye =

∑d−1
i=0 aiψi ≤ 1 and in addition∑d−1

i=0 ai ≤ d− 1.
Given a0, . . . , ad−1, we define a corresponding sequence b0, . . . , bd−1 through the following

iterative procedure. Initially, bi = ai for every i. Then, while there exists an index i with
bi ≥ 2, we decrease bi by 2 and increase bi+1 by 1. Since ψi+1 = 2ψi, this operation keeps the
sum

∑d−1
i=0 biψi unchanged (and always equal to

∑d−1
i=0 aiψi) and strictly decreases

∑d−1
i=0 bi.

It is worth noting that we could never have bd−1 ≥ 2, or otherwise
∑d−1
i=0 aiψi =

∑d−1
i=0 biψi ≥

2ψd−1 = 2 · 2d−1

2d−1 > 1. At the end of this procedure, each of b0, . . . , bd−1 takes a binary value,
and moreover,

∑d−1
i=0 bi ≤

∑d−1
i=0 ai ≤ d− 1. The desired claim now follows by observing that

∑
e∈δ(u)

ye =
d−1∑
i=0

aiψi =
d−1∑
i=0

biψi ≤
d−1∑
i=1

ψi =
d−1∑
i=1

2i

2d − 1 = 1− 1
2d − 1 ,

where the above inequality holds since the binary vector with
∑d−1
i=0 bi ≤ d−1 that maximizes∑d−1

i=0 biψi = 1
2d−1 ·

∑d−1
i=0 bi · 2i is clearly b0 = 0 and b1 = · · · = bd−1 = 1. J

I Theorem 6. On graphs of maximum degree d, Algorithm 2 is 1
2 (1 + 1

2d−1 )-competitive for
online fractional matching and fractional vertex cover.

Proof. First, the fractional matching y returned by the algorithm is feasible, as our choice of
ψi in each step guarantees that the matching constraints are satisfied. In addition, our dual
update rule ensures that the total contribution of the edge (u, v) to the fractional vertex
cover value is ∆xu + ∆xv = 2i

2d−1 = 2d−1
2d−1 · ye = [ 1

2 (1 + 1
2d−1 )]−1 · ye. Thus, the final fractional

matching value is exactly 1
2 (1 + 1

2d−1 ) times the fractional vertex cover produced by the
algorithm. It remains to prove that the latter is indeed feasible.

For this purpose, let e = (u, v) be an edge that has just arrived. We prove that, after its
dual update step, this edge is fractionally covered. For any vertex u, let yu =

∑
e′∈δ(u) ye′ be

ESA 2017
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the total fractions assigned to edges adjacent to u just before the arrival of the edge e. Since
the input graph is guaranteed to be of degree at most d, by Lemma 5, we necessarily assigned
ye with one of the values ψ0, . . . , ψd−1. If ye = ψd−1, then ∆xu = ∆xv = 1

2 , and we have
xu+xv+∆xu+∆xv ≥ 1. In the opposite case, where ye = ψi for some 0 ≤ i ≤ d−2, since the
edge e could not be assigned with the value ψi+1, we must have max{yu, yv} > 1− 2i+1

2d−1 . As
ψ0, . . . , ψd−1 are all integer multiples of 1

2d−1 , it follows that yu and yv are such multiples as
well, meaning that the latter inequality implies max{yu, yv} ≥ 1− 2i+1

2d−1 + 1
2d−1 . In addition,

our primal and dual update rules ensure that xu = 2d−1
2d · yu and hence, max{xu, xv} =

2d−1
2d ·max{yu, yv} ≥ 2d−1

2d · (1− 2i+1−1
2d−1 ). By these observations, after the current update we

have

xu+xv+∆xu+∆xv ≥ max{xu, xv}+∆xu+∆xv ≥
2d − 1

2d ·
(

1− 2i+1 − 1
2d − 1

)
+ 2i+1

2d = 1 .J

3 Upper Bounds for our Framework

In this section, we prove upper bounds on the competitive ratio of the Min-Index algorithm,
as stated in the following theorem.

I Theorem 7. For any number of matchings k ≥ 1 and probabilities p1, . . . , pk, the Min-Index
algorithm is:
1. At most 2/3-competitive on graphs of maximum degree at most 2.
2. At most 5/9-competitive on forest graphs.
3. At most 1

2 (1 + 1
2d−1 )-competitive for bipartite graphs of maximum degree at most d.

3.1 A 2/3 upper bound for graphs of maximum degree at most 2
Proof of Theorem 7, Part (1). Consider any instantiation of the Min-Index algorithm that
makes use of k matchings with probabilities p1, . . . , pk. We define two simple adversarial
sequences of edge arrivals.
Sequence 1: A single edge e = (u, v) arrives.
Sequence 2: First, an edge e = (u, v) arrives. Then, two additional edges e1 = (u, z) and

e2 = (v, w) arrive (in any order).
Clearly, both sequences form graphs of maximum degree at most 2. Let c be the competitive
ratio of the algorithm. In Sequence 1, the optimal matching consists of the single edge
e, whereas Min-Index adds e to M1 and obtains a matching with expected cardinality p1,
meaning that c ≤ p1. In Sequence 2, the optimal matching consists of e1 and e2. However,
Min-Index adds e to M1, and subsequently adds e1 and e2 to M2. As a result, a matching
with expected cardinality p1 + 2p2 is obtained, and therefore c ≤ p1

2 + p2. To derive an upper
bound on the competitive ratio c, it remains to solve the following linear program, where p1
and p2 are treated as probabilities (i.e., required to satisfy p1 + p2 ≤ 1 and p1, p2 ≥ 0):

maximize c

subject to p1 ≥ c
p1

2 + p2 ≥ c

p1 + p2 ≤ 1
p1, p2 ≥ 0

The optimal solution to this LP is p1 = 2
3 , p2 = 1

3 , and c = 2
3 , concluding our proof. J
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M2 M1 M2 M1 M2 M1 M2

M3 M3 M3 M3 M3 M3

Figure 2 An example for Sequence 2.

I Remark. For graphs of maximum degree at most 2, a similar proof actually shows that 2/3

is the best competitive ratio achievable by any algorithm (not necessarily in our framework),
even when the algorithm is allowed to produce a fractional matching.

3.2 A 5/9 upper bound for forests
Proof of Theorem 7, Part (2). The proof follows the same lines as that of Part (1), with
more involved adversarial sequences. Consider an algorithm in our Min-Index framework
that makes use of k matchings with probabilities p1, . . . , pk. Letting N = d1/εe, we define
the following 3 adversarial sequences of edge arrivals, each forming a tree graph.
Sequence 1: A single edge e = (u, v) arrives.
Sequence 2: In this sequence, a path of length 2N + 1 is constructed, one edge after the

other. By first presenting edges located at even positions of the path, and then those in
odd positions, we ensure that the algorithm picks N edges in M1 and N + 1 edges in M2.
Once the entire path is constructed, we add next to each internal vertex u an additional
edge (u, v) connecting it to a distinct vertex v. In total, there are 2N such edges. The
final tree is depicted in Figure 2.

Sequence 3: Figure 3 describes our last sequence. Here, the overall tree is comprised of N
copies of a basic gadget, that consists of a 9-edge path with 3 additional edges emanating
from middle vertices. Two edges are “going up” from the 5-th and 6-th vertex on the
path (marked with bold lines) and another edge is “going down” from the 6-th vertex
(marked with dashed lines). The edge arrival sequence proceeds as follows: First, all
edges marked with M1 over all copies arrive, then those marked with M2, then M3, and
finally M4. Clearly, Min-Index accepts each edge according to its marked matching, since
every edge in Mi is adjacent upon arrival to edges that have already been accepted to
M1, . . . ,Mi−1. Note that all edges marked with bold lines are accepted to M4, except for
a single edge in the first copy.

Let c be the competitive of the algorithm. To obtain bounds on c in terms of the
probabilities p1, . . . , p4, for each arrival sequence we compare between the cardinality of the
optimal matching and the expected cardinality of the matching produced by the algorithm:

In Sequence 1, the optimal matching consists of the single edge e, whereas Min-Index
adds e to M1 and obtains a matching with expected cardinality p1, meaning that c ≤ p1.
In Sequence 2, the optimal matching is composed of all 2N edges in M3, whereas the
expected cardinality of the matching returned by Min-Index is N ·p1 +(N+1) ·p2 +2N ·p3.
Thus, c ≤ 1

2p1 + 1
2p2 + p3 + 1

2N p2 ≤ 1
2p1 + 1

2p2 + p3 + ε, where the last inequality holds
since N = d1/εe.
In Sequence 3, the optimal matching consists of 6N edges, by picking from each gadget
the two edges marked in bold and the 1-st, 3-rd, 7-th, and 9-th edges on the path. It is
easy to verify that this matching is indeed optimal, as its cardinality is equal to the vertex
cover created by picking the 2-nd, 4-th, 5-th, 6-th, 7-th, and 9-th vertices on each path.
On the other hand, copies 2, . . . , N of the gadget have 3 edges in M1, 4 edges in M2, 3
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1
M2 M1 M3 M2

M1

M2 M3 M1 M2

M3

M3

M4

2
M2 M1 M3 M2

M1

M2 M3 M1 M2M3

M4 M4

3
M2 M1 M3 M2

M1

M2 M3 M1 M2M3

M4 M4

Figure 3 An example for Sequence 3.

edges in M3, and 2 edges of M4 each. The first copy has one more edge in M3 and one
less edge in M4. Thus, the expected cardinality of the matching returned by Min-Index is
N ·(3p1 + 4p2 + 3p3 + 2p4)+p3−p4. Therefore, c ≤ 1

2p1 + 2
3p2 + 1

2p3 + 1
3p4 + 1

6N (p3−p4) ≤
1
2p1 + 2

3p2 + 1
2p3 + 1

3p4 + ε, where the last inequality holds since N = d1/εe.
To obtain an upper bound on the competitive ratio c, we now solve the following linear
program, where p1, . . . , p4 are treated as probabilities:

LP(ε) =maximize c

subject to p1 ≥ c
1
2p1 + 1

2p2 + p3 + ε ≥ c

1
2p1 + 2

3p2 + 1
2p3 + 1

3p4 + ε ≥ c

p1 + p2 + p3 + p4 ≤ 1
p1, p2, p3, p4 ≥ 0

It is easy to verify that the optimal solution to LP(ε) has c ≤ 5
9 + ε. To see this, note that

LP(0) ≤ LP(ε) ≤ LP(0) + ε and that the optimal solution to LP(0) is given by p1 = 5
9 ,

p2 = 3
9 , p3 = 1

9 , p4 = 0, and c = 5
9 . We conclude that 5

9 is the best competitive ratio
achievable through the Min-Index framework, even for trees with maximum degree 4. J

3.3 A 1
2(1 + 1

2d−1) upper bound for bipartite graphs
Proof of Theorem 7, Part (3). Consider an algorithm in our Min-Index framework that
makes use of k matchings with probabilities p1, . . . , pk. Given an integer parameter d, we
define the following d adversarial sequences of edge arrivals, each forming a bipartite graph
of maximum degree at most d:
Sequence 1: A single edge e = (u, v) arrives.
Sequences ` = 2, . . . , d: Let G be an (` − 1)-regular bipartite graph, with n vertices on

each side. It is well-known, as an immediate corollary of Hall’s Marriage Theorem, that
the edge set of such graphs can be partitioned into ` − 1 perfect matchings. In the
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e`4 e`3 e`2
e1 er2 er3 er4

ê`1 êr1ê`2 êr2

Figure 4 A sequence terminated at round n = 4.

sequence of edge arrivals, these matchings are presented one after the other, with an
arbitrary order for the edges within each matching. Clearly, Min-Index accepts the first
matching into M1, the second into M2, and so on. Next, we create a new edge emanating
from each of the 2n vertices into a new distinct vertex. As these edges are disjoint and
cannot be accepted to any of the matchings M1, . . . ,M`−1, they are all accepted into M`.

Let c be the competitive of the algorithm. To obtain bounds on c in terms of the
probabilities p1, . . . , pk, for each arrival sequence we compare between the cardinality of the
optimal matching and the expected cardinality of the matching produced by the algorithm:

In Sequence 1, the optimal matching consists of the single edge e, whereas Min-Index
adds e to M1 and obtains a matching with expected cardinality p1, meaning that c ≤ p1.
In Sequence 2 ≤ ` ≤ d, the optimal matching consists of all 2n edges in M`, whereas
the expected cardinality of the matching returned by Min-Index is n ·

∑`−1
t=1 pt + 2n · p`.

Therefore, c ≤ 1
2 ·
∑`−1
t=1 pt + p`.

Multiplying both sides of the upper bound due to Sequence ` by 1
2d−` , and summing the

resulting inequalities over all 1 ≤ ` ≤ d, we get
∑d
`=1 p` ≥ c ·

∑d
`=1

1
2d−` = c · (2− 1

2d−1 ). Since∑d
`=1 p` ≤ 1, it follows that the competitive ratio satisfies c ≤ (2− 1

2d−1 )−1 = 1
2 (1+ 1

2d−1 ). J

4 Upper Bound for any Algorithm

In this section, we present our general upper bound, formally stated in Theorem 2. In
particular, we prove that the competitive ratio of any fractional (or randomized) online
algorithm for maximum matching is at most 2

3+1/φ2 ≈ 0.5914, where φ = 1+
√

5
2 is the golden

ratio. In fact, this result holds even in the vertex arrival model, when the underlying graph
is a tree of maximum degree 3.

We first note that any randomized algorithm induces a marginal expected value of ye
for accepting each edge e. As these marginal values must satisfy the packing constraints of
the standard matching linear program (P), shown in Figure 1, they induce a valid fractional
algorithm. Therefore, proving an upper bound for fractional online algorithms suffices.

Arrival sequence. To understand the upcoming construction, we advise the reader to
consult Figure 4. Consider an adversarial sequence consisting of 2n − 1 edges (and 2n
vertices) that eventually forms a path as follows. In the first round, an edge e1 = (v`1, vr1)
arrives. Then, for i ≥ 2, the i-th round introduces two edges of the form e`i = (v`i , v`i−1) and
eri = (vri−1, v

r
i ), that augment the path on both sides. The adversary may terminate the

sequence once round n ends. Terminating the sequence for any n ≥ 3 is done by introducing
2(n− 2) additional “leaf edges”, adjacent to the inner vertices v`1, . . . , v`n−2 and vr1, . . . , vrn−2.
The leaf edges adjacent to v`i and vri are denoted by ê`i and êri , respectively.

Upper bound as a linear program. Consider any fractional algorithm. For an edge e, let
ye be the fraction given to this edge. In addition, for i ≥ 2, the sum of fractions given to the
edges e`i and eri is denoted by yi = ye`

i
+ yer

i
; it is convenient to denote y1 = ye1 as well.
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First observe that, since the algorithm is required to meet the matching constraints∑
e∈δ(v) ye ≤ 1 at any point in time, as soon as e`2 and er2 arrive we must have ye1 + ye`

2
≤ 1

and ye1 + yer
2
≤ 1. By adding up these inequalities, it follows that

2y1 + y2 ≤ 2 . (1)

Based on precisely the same logic, for i ≥ 2, once e`i+1 and eri+1 arrive we would get
ye`

i
+ ye`

i+1
≤ 1 and yer

i
+ yer

i+1
≤ 1, implying in turn that

yi + yi+1 ≤ 2 . (2)

Now let c be the competitive ratio of the algorithm. After rounds 1 and 2, the optimal
matchings are of cardinality 1 and 2, respectively, and therefore

c ≤ y1 and c ≤ 1
2 (y1 + y2) . (3)

In addition, if the adversarial sequence ends at round n ≥ 3, the matching constraints due to
the inner vertices v`1, . . . , v`n−2 and vr1, . . . , vrn−2 lead to the aggregate inequality

2(n− 2) ≥
n−2∑
i=1

 ∑
e∈δ(v`

i
)

ye +
∑

e∈δ(vr
i

)

ye

 = yn−1 + 2 ·
n−2∑
i=1

yi +
n−2∑
i=1

(
yê`

i
+ yêr

i

)
.

Consequently, it follows that the total fractions assigned by the algorithm to all edges is
n∑
i=1

yi +
n−2∑
i=1

(
yê`

i
+ yêr

i

)
≤

n∑
i=1

yi + 2(n− 2)− yn−1 − 2 ·
n−2∑
i=1

yi = 2(n− 2) + yn −
n−2∑
i=1

yi .

However, the optimal matching consists of 2(n− 1) edges: e`n, ern, ê`1, . . . , ê`n−2, ê
r
1, . . . , ê

r
n−2.

Thus, we get the following upper bound on the competitive ratio c:

c ≤ 1
2(n− 1) ·

(
2(n− 2) + yn −

n−2∑
i=1

yi

)
∀n ≥ 3 (4)

To summarize, the competitive ratio is upper bounded by the supremum value of c that
satisfies Inequalities (1), (2), (3), and (4), noting that the latter actually provides a separate
inequality for each n ≥ 3. Therefore, any finite subset of these inequalities provides a concrete
upper bound on the value c. For every m ≥ 4, let cm be the bound attained by the following
(finite) LP, consisting of a subset of the constraints that are equivalent to truncating the
input sequence after m rounds:

cm =maximize c

subject to c ≤ y1 (5)

c ≤ 1
2 (y1 + y2) (6)

c ≤ 1
2(n− 1) ·

(
2(n− 2) + yn −

n−2∑
i=1

yi

)
∀n = 3, . . . ,m (7)

ym−1 + ym ≤ 2 (8)

I Lemma 8. cm = 2Fm+1−2
3Fm+1+Fm−1−4 , where Fm is the m-th Fibonacci number.

Due to space limitations, we omit the proof. As the competitive ratio of any algorithm
is at most cm for any m ≥ 4, and limm→∞

Fm−1
Fm+1

= 1
φ2 , we conclude the proof by observing

that, limm→∞ cm = limm→∞
2Fm+1−2

3Fm+1+Fm−1−4 = 2
3+1/φ2 ≈ 0.591372.
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