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Abstract
We present an algorithm that computes a (1 + ε)-approximation of the diameter of a weighted,
undirected planar graph of n vertices with non-negative edge lengths inO

(
n logn

(
logn+ (1/ε)5))

expected time, improving upon the O
(
n
(
(1/ε)4 log4 n+ 2O(1/ε)))-time algorithm of Weimann

and Yuster [ICALP 2013]. Our algorithm makes two improvements over that result: first and
foremost, it replaces the exponential dependency on 1/ε with a polynomial one, by adapting and
specializing Cabello’s recent abstract-Voronoi-diagram-based technique [SODA 2017] for approx-
imation purposes; second, it shaves off two logarithmic factors by choosing a better sequence of
error parameters during recursion.

Moreover, using similar techniques, we improve the (1 + ε)-approximate distance oracle of
Gu and Xu [ISAAC 2015] by first replacing the exponential dependency on 1/ε on the prepro-
cessing time and space with a polynomial one and second removing a logarithmic factor from the
preprocessing time.
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1 Introduction

In this paper we study the problem of computing the diameter of a weighted, undirected
planar graph of n vertices with non-negative edge lengths1, defined as the longest shortest
path distance between two vertices of the graph. Since Frederickson in 1983 [7] solved the
problem in O

(
n2) time (by determining the all-pairs shortest paths distance matrix and

returning the largest value therein), a natural question arose as to whether the diameter can
be computed in subquadratic time. Poly-logarithmic speedups were given by Chan [5] in
2006 and by Wulff-Nilsen [22] in 2010; the algorithm of the former works for the unweighted
case and requires O

(
n2 log logn/ logn

)
time; the algorithm of the latter requires the same

amount of time for the unweighted case and O
(
n2(log logn)4/ logn

)
time for the weighted.

However, a truly subquadratic algorithm, i.e., an algorithm running in O
(
n2−δ) time for

some constant δ > 0, still eluded researchers for many years.
Thus, not surprisingly, the dearth of truly subquadratic algorithms led to the consid-

eration of approximation algorithms. A c-approximation of the diameter, ∆, of a graph is

1 For the rest of the introduction, we assume, unless otherwise stated, that all the discussed graphs are
weighted, undirected planar graphs with non-negative edge lengths.
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a value ∆̃ such that ∆ ≤ ∆̃ ≤ c∆. Using the linear-time SSSP algorithm of Henzinger et
al. [12] one can trivially compute a 2-approximation. The first non-trivial approximation
result was given by Berman et al. [2] in 2007; their algorithm requires O

(
n3/2) time and

gives a 3/2-approximation. Weimann and Yuster [21] in 2012, in a breakthrough, presented
an algorithm computing a (1+ε)-approximation of the diameter in near-linear time, namely
O
(
n
(
(1/ε)4 log4 n+ 2O(1/ε))). Nevertheless, their solution did not settle the problem com-

pletely because the running time has exponential dependency on 1/ε. Another problem with
their solution is the multiple (four) logarithmic factors.

Unexpectedly, the next result came in the context of exact algorithms. In 2017, Ca-
bello [3] (full paper in [4]) made headway, by giving the first exact truly subquadratic
algorithm, requiring Õ

(
n11/6) expected time. The techniques used by Cabello are as inter-

esting as the result itself, as he used a seemingly alien concept to planar graphs, abstract
Voronoi diagrams, originating from computational geometry.

Cabello’s seminal result bifurcates the study of the diameter problem into two main
avenues. First, one could try to improve its running time. This has been partially treated in
a recent paper by Gawrychowski et al. [8], who presented an algorithm requiring Õ

(
n5/3)

worst-case time. No lower bound is available presently, but Cabello [4] conjectured that the
diameter cannot be computed exactly in time faster than O

(
n1+δ), for some constant δ > 0.

Second, one could try to use some of the techniques in Cabello’s paper to approximate the
diameter.

In this paper we take the second avenue. Namely, we improve the running time of
Weimann and Yuster [21] by eliminating the 2O(1/ε) factor. To do this, we adapt Cabello’s
technique involving abstract Voronoi diagrams. It turns out that a much simplified version
of his technique is sufficient for approximation purposes, and can be combined nicely with
Weimann and Yuster’s algorithm. Our contribution however does not stop here; we also
eliminate two of the four logn factors along the way, by using a better sequence of error
parameters in the recursion from Weimann and Yuster’s algorithm. Our main result is
summarized by the following theorem.

I Theorem 1 (Diameter). Given a weighted, undirected planar graph of n vertices with non-
negative edge lengths, we can compute a (1 + ε)-approximation of its diameter in expected
O
(
n logn

(
logn+ (1/ε)5)) time.

Another important problem in planar graphs is the construction of efficient (1 + ε)-
approximate distance oracles, i.e., data structures that in a query for a pair of vertices u, v
of a planar graph G, return a value d̃ such that dG(u, v) ≤ d̃ ≤ (1+ε)dG(u, v), where dG(u, v)
is the shortest path distance from u to v in G. Thorup [20] presented a (1 + ε)-approximate
distance oracle, requiring O

(
(1/ε)2n log3 n

)
preprocessing time, O ((1/ε)n logn) space, and

O(1/ε) query time, later simplified by Klein [15]. Kawarabayashi et al. [14] improved the
dependency on 1/ε of the space-query time product from 1/ε2 to 1/ε. Gu and Xu [9]
combined the ideas of those results with the techniques of the diameter algorithm of Weimann
and Yuster [21] to obtain the first distance oracle with constant query time (independent
of both n and ε); it requires O

(
n logn

(
(1/ε)2 log3 n+ 2O(1/ε))) preprocessing time and

O
(
n logn

(
(1/ε) logn+ 2O(1/ε))) space.

Using similar techniques as the ones for our diameter result, we can also improve the
(1 + ε)-approximate distance oracle of Gu and Xu [9]; namely, we eliminate the exponential
dependency on 1/ε on the preprocessing time and space and at the same time remove a
logarithmic factor from the preprocessing time.

I Theorem 2 (Distance Oracle). Given a weighted, undirected planar graph of n vertices with
non-negative edge lengths, we can construct a (1 + ε)-approximate distance oracle, requiring
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O(1) query time, O
(
n logn

(
logn

(
logn+ (1/ε)5)+ (1/ε)6)) expected preprocessing time,

and O
(
n logn

(
logn+ (1/ε)6)) space.

Throughout the paper we operate under the standard RAM model of computation. Let
[W ] = {1, . . . ,W}. We assume that all the planar graphs under discussion have a fixed,
combinatorial embedding and are triangulated.

2 A Streamlined Version of Cabello’s Technique

The main purpose of this section is to construct the following farthest neighbor data struc-
ture, which will be crucial in obtaining our diameter result in Section 3:

I Theorem 3 (Farthest neighbor). Let H be a weighted, undirected planar graph of n vertices
with non-negative edge lengths and W be an integer. Let X be a set of b vertices on the
boundary of the outer face of H. Let H+ be the graph obtained by adding to H a vertex z0,
with an edge from z0 to each vertex x ∈ X of unspecified length.

We can preprocess H in O
(
nb3W 2) expected time, such that the following query can be

answered in O(b log b) time: given lengths drawn from [W ] for the b edges z0x (x ∈ X), find
the distance to the farthest neighbor of z0 in H+, i.e., compute maxu∈V (H) dH+(z0, u).

In our application, b = W = O(1/ε), so the preprocessing time would be near linear
in n. Cabello established a similar theorem [4, Theorem 21] for the more general setting
where each edge z0x (x ∈ X) may have a real length, but his preprocessing time bound is
Õ
(
n2b3 + b4

)
. We show that when the length of each edge z0x (x ∈ X) is a small integer,

the preprocessing time can be greatly improved, and at the same time the method becomes
simpler.

To avoid degeneracies we need to ensure uniqueness of the shortest paths. That can be
done by perturbing the lengths of the edges of H with known techniques (e.g., see [11]).
Note that we do not need to perturb the weights of the sites, which remain integers.

2.1 Defining Voronoi diagrams in planar graphs
The general concept of abstract Voronoi diagrams in R2 was defined by Klein [17]. Ca-
bello [4] applied the concept to planar graphs with weighted sites. We reiterate here the
main definitions for the sake of completeness.

Each site s of a Voronoi diagram in a planar graph is a pair (vs, ws), where vs is the
site’s placement, i.e., a vertex of the graph, and ws is its weight. Given a graph G and a
set of sites S, the Voronoi region of a site s ∈ S is defined as VRG(s, S) = {u ∈ V (G) |
dG(vs, u) + ws ≤ dG(vt, u) + wt, ∀ t ∈ S − {s}}, i.e., as the set of all vertices closer to s
than to any other site under the weighted metric; the Voronoi diagram of S is defined as
VDG(S) = R2 \

⋃
s∈S VRG(s, S).

A key concept in Voronoi diagrams is bisectors. The bisector of two sites s and t,
bisG(s, t), is defined as the set of the duals of the edges in EG(s, t) = {uv ∈ E(G) |
dG(u, vs) + ws ≤ dG(u, vt) + wt and dG(v, vt) + wt ≤ dG(v, vs) + ws}, i.e., the bisector
contains the duals of all the edges whose endpoints are not both closer to the same site.
Let {p, q} be a generic (i.e., for each u ∈ V (G) we have dG(u, vp) + wp 6= dG(u, vq) + wq)
and independent (i.e., each Voronoi region is non-empty) set of sites on the boundary of the
outer face of a planar graph G. Then the bisector of p and q is a simple cycle in the dual,
passing through the dual vertex, v∞, of the outer face ([4, Lemma 5]).

As Cabello [4] showed, a Voronoi diagram in a planar graph for b sites on the boundary
of the outer face fulfills Klein’s axioms of abstract Voronoi diagrams [17], so it can be
represented abstractly as a collection of Voronoi vertices and Voronoi edges, forming a

ESA 2017
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planar graph itself of size O(b). A Voronoi edge corresponds to a simple path in the dual
(subpath of a bisector), and a Voronoi vertex corresponds to the meeting point of three
Voronoi edges.

2.2 Computing abstract Voronoi diagrams in planar graphs
Since abstract Voronoi diagrams can be constructed efficiently by an existing algorithm by
Klein et al. [18] based on randomized incremental construction, we have:

I Theorem 4 (Abstract Voronoi diagram construction). We can construct the abstract Voronoi
diagram in a planar graph with b sites on the outer face, using an expected O(b log b) number
of elementary operations. Here, an elementary operation refers to the computation of the
abstract Voronoi diagram of any four sites.

To prove Theorem 3, we need to construct the abstract Voronoi diagram in the graph
H for the b sites at X quickly for any given assignment of weights on X from [W ], after
an initial preprocessing that does not depend on the weights. By Theorem 4, it suffices to
show how to compute the abstract Voronoi diagram of any four such sites.

We start by showing how to compute all different bisectors, given two vertices of X as
placements of sites, whose weights are drawn from [W ], by building upon [4, Lemma 17].
We need O(nW ) total time for constructing the bisectors, whereas Cabello needed O

(
n2)

time for general real weights; we can return a pointer to a bisector in O(1) time instead of
O(logn) time.

I Lemma 5 (Bisectors). Given two vertices vs, vt ⊆ X as placements of sites, the family of
bisectors bisH((vs, ws), (vt, wt)), over all possible weights ws and wt drawn from [W ], has
at most O(W ) different bisectors. We can compute all these bisectors in O(nW ) total time,
such that, given two weights ws, wt ∈ [W ], we can return a pointer to the relevant bisector
in O(1) time.

Proof. Assuming w.l.o.g. that ws ≥ wt, we can write bisH((vs, ws), (vt, wt)) as
bisH((vs, w), (vt, 0)), where w = ws − wt, so we need to consider only bisH((vs, w), (vt, 0)),
where w ∈ [W ]. Hence, there can be at most O(W ) different bisectors for a pair of sites.

Let s = (vs, ws), t = (vt, wt), and S = {s, t}. For each vertex u ∈ V (H) we compute
the value ηu = dH(vt, u) − dH(vs, u), by first running the linear-time SSSP algorithm of
Henzinger et al. [12] from vs and vt and then visiting each vertex; u ∈ V (H) belongs to
VDH(s, {s, t}) when w ≤ ηu and to VDH(t, {s, t}) otherwise. For each w ∈ [W ] we compute
the bisector bisH((vs, w), (vt, 0)), by marking each edge uv ∈ E(G) such that w ≤ ηu and
w > ηv. The bisector is composed of the duals of the marked edges and is a cycle in the dual,
passing through v∞; we represent it as a linked list, LLs,t,w. Finally, we store the linked-list
representation of every different bisector bisH((vs, w), (vt, 0)) in a table, Ts,t, indexed by w.

The total time spent is O(nW ) because we have at most W different bisectors, and
computing each takes O(n) time. Given two sites s and t with weights ws and wt ∈ [W ]
respectively, we can return a pointer to the pertinent bisector in O(1) time by looking up
Ts,t[w], assuming w.l.o.g. that ws ≥ wt. J

Next, we show how to compute all different Voronoi diagrams, given three vertices of X
as placements of sites, whose weights are drawn from [W ], by building upon [4, Lemma 18].
We need O

(
nW 2) time, whereas Cabello had O

(
n2); we can return a pointer to a Voronoi

diagram in O(1) time instead of O(logn). Furthermore, our proof is simpler since it does
not involve line arrangements and amortization.
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I Lemma 6 (Abstract Voronoi diagrams of three sites). Given three vertices vs, vt, vq ⊆ X as
placements of sites, the family of Voronoi diagrams over all possible weights ws, wt, wq ∈ [W ],
has at most O

(
W 2) different Voronoi diagrams. We can compute all these Voronoi diagrams

in O
(
nW 2) total time, such that given weights ws, wt, wq ∈ [W ] we can return a pointer to

the relevant Voronoi diagram in O(1) time.

Proof. We invoke Lemma 5 to compute and store all the different bisectors of each pair
of the three sites in O(nW ) time. We can assume w.l.o.g. that wq = 0, so there are at
most O

(
W 2) different Voronoi diagrams. Let s = (vs, ws), t = (vt, wt), q = (vq, wq), and

S = {s, t, q}. For each vertex u ∈ V (H) we compute the values ηstx = dH(vs, u)− dH(vt, u),
ηqtx = dH(vq, u)− dH(vt, u), and ηsqx = dH(vs, u)− dH(vq, u) by running the SSSP algorithm
of [12]; u belongs to VRH(s, {s, t, q}) if ηstu ≤ wt − ws and ηsqu ≤ −ws; similar statements
can be made for VRH(t, {s, t, q}) and VRH(q, {s, t, q}).

For every ws, wt ∈ [W ], we find in linear time the Voronoi diagram VDH(S) as follows.
Each bisector (i) does not participate at all, (ii) participates wholly, or (iii) only a subpath
of it, passing through v∞, participates in VDH(S) (that is implied by that fact that VDH(S)
has at most one vertex besides v∞; see [4, Lemma 13]). We provide two pointers for each
bisector, which mark the bisector’s part that constitutes a Voronoi edge: one for its first and
one for its last edge participating in VDH(S). Starting from v∞, we scan the edges of each
bisector in clockwise order; the first pointer of bisH(s, t) is created for the first encountered
edge uv such that u is closer to s than to t and to q, and v is closer to t or q than to s
(which can be determined using their η values). The second pointer is created for the last
such edge. If no such edges are encountered, both pointers are set to NULL. We can find
in O(1) time if there exists a Voronoi vertex; to do so, we scan each triple of pointers of
the bisectors to see if the corresponding edges meet at a common dual vertex. If that is the
case, we set that vertex to be a Voronoi vertex.

The representation of VDH(S) for weights ws, wt ∈ [W ] is composed of (i) a linked list
of each bisector participating in it, (ii) the first and last pointers of each such bisector, and
(iii) the one, if any, Voronoi vertex therein, besides v∞. Each different Voronoi diagram is
stored in a two-dimensional table Ts,t,q, indexed by ws and wt. Given weights ws, wt, and
wq, where w.l.o.g ws, wt ≥ qq we can return a pointer to the pertinent Voronoi diagram
in O(1) time by looking up Ts,t,q[ws − wq, wt − wq], assuming w.l.o.g that ws ≥ wq and
wt ≥ wq. J

The final step before using Theorem 4 is to provide a data structure that, given four
vertices ofX as placements of sites, whose weights are drawn from [W ], returns their Voronoi
diagram. The following lemma builds upon [4, Lemma 19]; we refer the reader therein for
the proof. Our preprocessing time is O

(
nb3W 2), whereas Cabello had O

(
n2b3

)
; also our

query time is O(1) instead of O(logn).

I Lemma 7 (Abstract Voronoi diagrams of four sites). We can construct a data structure,
such that (i) its preprocessing time is O

(
nb3W 2), and (ii) for any four vertices of X as

placements of sites that are generic, independent and have weights drawn from [W ], their
abstract Voronoi diagram can be computed in O(1) time.

Now we can use Lemma 7 and Theorem 4 to compute the abstract Voronoi diagram of b
sites, given all the vertices of X as placements of sites, whose weights are drawn from [W ].
Our preprocessing time is O

(
nb3W 2) expected, whereas Cabello had O

(
n2b3

)
; our query

time is O(b log b), while Cabello had multiple logn factors.
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I Theorem 8 (Abstract Voronoi diagrams in planar graphs). Let H,X, n, b, and W be as in
Theorem 3. We can preprocess H in O

(
nb3W 2) time, such that, given the vertices of X as

placements of sites, whose weights are drawn from [W ], we can compute the Voronoi diagram
of the sites in O(b log b) expected time.

Proof. We first construct the data structure of Lemma 7, which after O
(
nb3W 2) prepro-

cessing time can compute the abstract Voronoi diagram of any set of four sites in O(1) time.
Then, using Theorem 4, we compute the abstract Voronoi diagram of the b sites in O(b log b)
time. J

2.3 Constructing the farthest neighbor data structure
As one last ingredient for our farthest neighbor data structure, we need the following lemma,
taken almost verbatim from [4, Corollary 6].

I Lemma 9. Let F be an undirected planar graph of n vertices, each having a cost c(u) > 0,
and let q0 be one of them. Let Π = {π1, . . . , π`} be a family of simple paths in the dual of F
with a total of h edges, counted with multiplicity. After O(n+h) preprocessing time, we can
answer the following query in O(k) time: given a q0-star-shaped cycle γ in the dual, i.e., a
cycle such that (i) q0 is in the interior of γ, and (ii) for every vertex in the interior of γ its
shortest path to q0 is fully contained in γ, described as a concatenation of k subpaths from
Π, return maxu∈U (Vint (γ, F )), where Vint(γ, F ) is the set of vertices of F enclosed by γ.

We can now prove the main theorem of this section.

Proof of Theorem 3. We construct the data structure of Theorem 8 for H, for a set S of b
sites where each one is placed in a different vertex of X and apply Lemma 5 to compute the
bisector of each pair of sites. For each site s ∈ S and each bisector bisH(s, ·), we assign a cost
to every vertex u ∈ V (H), equal to dH(vs, u), and construct the data structure of Lemma 9
(a bisector bisH(s, t) enclosing s is an s-star shaped cycle in the dual), where F = H, Π is
the set of bisectors, ` = bW , h = nbW , and k = b. The preprocessing time is O

(
nb3W 2).

In a query, we compute the abstract Voronoi diagram of H, where for each s ∈ S we
set ws to be equal to the given length of the edge w0vs, by using the data structure of
Theorem 8. For each site s ∈ S, we query the data structure of Lemma 9 for s to find the
vertex of VRH(s, S) with the largest distance from s by walking along its boundary, which
is the concatenation of at most b subpaths of the bisectors bisH(s, ·). From Lemma 9 we
need O(b) time to find maxu∈VRH(s,S){dH(vs, u) + ws}. We return the maximum of those
distances. Thus, the total query time is O(b log b). J

3 Improving Weimann and Yuster’s Diameter Approximation
Algorithm

For approximating the diameter, we employ the recursive scheme of Weimann and Yuster [21],
which is as follows.

Let G be the original graph and N its size. Let d (G1, G2, G3) denote the longest shortest
path distance between a marked vertex of G1 and a marked vertex of G2 in G3. Initially
G = G, n is the size of G, all vertices are marked, and we want to approximate d (G,G,G).
Let ε > 0. The outline of the recursive scheme is as follows.

1. Find a cycle C of G, such that the removal of C’s vertices decomposes G into two disjoint
and connected planar graphs A and B, each having between n/3 and 2n/3 vertices; C
may have up to n vertices. Let Gin = A∪C and Gout = B ∪C and assume w.l.o.g. that
A (resp. B) lies inside (resp. outside) C.



T.M. Chan and D. Skrepetos 25:7

2. Approximate d (Gin, Gout, G) (Sections 2.1 and 2.2 in [21]).
3. Unmark all vertices of C and build graphs G+

in and G+
out such that (i) they are planar,

and connected graphs, (ii) each of G+
in and G+

out has at most roughly 2n/3 vertices, (iii)
together they have at most roughly n vertices, and (iv) d

(
Gin, Gin, G

+
in
)
is a (1 + ε′)-

approximation of d (Gin, Gin, G) for an appropriate choice of parameter ε′. Then recurse
in G+

in to approximate d
(
Gin, Gin, G

+
in
)
and do the same for G+

out (Section 2.3 in [21]).
4. Return max

{
d (Gin, Gout, G) , d

(
Gin, Gin, G

+
in
)
, d
(
Gout, Gout, G

+
out
) }

.

3.1 Decomposing G to Gin and Gout

To decompose the graph G into two subgraphs Gin and Gout, we use a shortest path separa-
tor, similarly to Thorup’s work [20]. We compute the shortest path tree T of an arbitrarily
selected marked vertex z of G in linear time by employing the algorithm of Henzinger et
al. [12]. Let ∆̃ = maxu∈V (G) dG(v, u); we know that ∆̃ ≤ ∆ ≤ 2∆̃. We can find in linear
time (see [19, Lemma 2]) two paths P and Q, both starting at v, such that the removal of
the vertices on V (C), where C = P ∪ Q, from G gives us two disjoint planar subgraphs A
and B, where V (A) (resp. V (B)) contains the vertices of V (G) that are strictly inside (resp.
outside) C and |V (A)|, |V (B)| ≤ 2n/3. The size of C, however, can be as big as n. The
graph Gin (resp. Gout) is the graph induced by A∪C (resp. B∪C). The time to decompose
the graph is O(n).

3.2 Reducing d (Gin, Gout, G) to d (Gin, Gout, Gp)
Before approximating d (Gin, Gout, G) we need to address the following issue. A shortest
path between a marked vertex of Gin and another in Gout has to go through a vertex of
C. However, since C can have as many as n vertices, we cannot consider for each such pair
all the vertices of C; instead, we select only a small subset of vertices of C and construct
a graph Gp that allows us to approximate the distance between every aforementioned pair.
The following lemma can be found in [21, Section 2.1 and Lemma 2.1].

I Lemma 10. We can select a set Y of O(1/ε) vertices (called portals) on C in linear time,
such that if d (Gin, Gout, G) ≥ ∆̃, then maxu∈V (Gin),v∈V (Gout) miny∈Y {dG(u, y) + dG(y, v)}
is a (1 + 2ε)-approximation of d (Gin, Gout, G). Otherwise, it is at most (1 + 2ε)∆̃.

We run an SSSP algorithm from each portal of Y in G; let ` be the largest distance
found. We construct a graph Gp = Gp,in ∪ Gp,out, such that V (Gp,in) = V (A) ∪ Y and
V (Gp,out) = Y ∪ V (B). We create an edge between each vertex of Gp,out and each portal,
whose length is equal to their shortest path distance in G, after rounding it to the closest
multiple of ε` and dividing it by that number. The edges between vertices of Gp,in are the
same as in G, but their lengths are also divided by ε`. The total time for the reduction is
O((1/ε)n).

3.3 Approximating d (Gin, Gout, Gp)
We construct the farthest neighbor data structure of Theorem 3 for H = Gin, X = Y ,
b = O(1/ε), and W = 1/ε. Then, we query it n times, by using each vertex u ∈ V (Gout)
as z0 and setting w(z0, x) = dGout(u, x) for each x ∈ X, to find its farthest neighbor among
the vertices of V (Gin). Finally, we return the maximum of the distances found, multiplied
by ε`. The total time for approximating d (Gin, Gout, Gp) is thus O

(
nb3W 2 + nb log b

)
=

O
(
(1/ε)5n

)
.
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Weimann and Yuster’s paper [21] did not use a farthest neighbor data structure but
instead employed a brute-force search, observing that there are only 2O(1/ε) combinatorially
different vertices in A and B (in terms of their vectors of distances to the portals). This is
where we eliminate the exponential dependency on ε from their algorithm.

3.4 Reducing d (Gin, Gin, G) to d
(
Gin, Gin, G+

in

)
After approximating d (Gin, Gout, G), we need to approximate d (Gin, Gin, G) and
d (Gout, Gout, G); however, we cannot directly recurse in Gin and Gout respectively because
two problems arise (since the treatment is symmetrical for both Gin and Gout, we concern
ourselves only with the former). First, a path realizing d (Gin, Gin, G) could have a subpath
lying in Gout. Second, Gin can have up to O(n) vertices because C, which is part of Gin,
itself could have that many. However, Gin has at most 2n/3 marked vertices, which are the
only ones used for computing d (Gin, Gin, G). Therefore, we need to construct graphs G+

in
and G+

out such that (i) they are planar, and connected graphs, (ii) each of G+
in and G+

out has
at most roughly 2n/3 vertices, (iii) together they have at most roughly n vertices, and (iv)
d
(
Gin, Gin, G

+
in
)
is a (1 + ε′)-approximation of d (Gin, Gin, G) for an appropriate choice of

parameter ε′. The following lemma is from [21, Lemma 2.3].

I Lemma 11. If d (Gin, Gin, G) ≥ ∆̃, then d
(
Gin, Gin, G

+
in
)
is a (1 + 2ε′)-approximation of

d (Gin, Gin, G). Otherwise, d
(
Gin, Gin, G

+
in
)
≤ (1 + 2ε′)∆̃.

As in the algorithm of Weimann and Yuster, to construct G+
in, we start by umarking

all vertices of C and selecting O(1/ε′) vertices therein, called dense portals, similarly to
Section 3.2. Let Bin be the union of the shortest paths between every pair of dense portals
in Gout. We produce a graph B′in, where we keep all the vertices of Bin of degree more than
two and shrink the rest. Since there are O(1/ε′) dense portals, there are O

(
(1/ε′)2) such

shortest paths. Also, any pair of those paths shares at most one subpath since we assume
that shortest paths are unique, so there are at most O

(
(1/ε′)4) vertices of Bin of degree

more than two, i.e., V (B′in) = O
(
(1/ε′)4). It remains to show (i) how to compute B′in and

(ii) how to set ε′. These two points are where we deviate from the approach of Weimann
and Yuster.

First, to construct B′in, we do not construct Bin explicitly, as their algorithm does, which
would require O ((1/ε′)n) time. By using a slightly modified version of the multiple-source
shortest paths data structure of Klein [16] we construct B′in in O

(
n logn+ (1/ε′)4 logn

)
time instead. Second, Weimann and Yuster chose a fixed value for ε′ for every recursive
call. Since the recursion has O(logN) levels and error accumulates, they were forced to
set ε′ = ε/ logN , and so the (1/ε′)4 factors in the running time resulted in four logN
factors. Here, we make ε′ adaptive, i.e., dependent on the current input size n. Specifically,
we set ε′ = ε/n1/8. With this choice of ε′ we show that the approximation factor of our
algorithm remains 1 + O(ε) (Section 3.5) and the final running time has only two logN
factors (Section 3.5).

I Theorem 12. We can build the graph B′in in O
(
n logn+ (1/ε′)4 logn

)
time.

Proof. We apply the multiple-source shortest paths data structure of Klein, which prepro-
cesses a planar graph F of n vertices in O(n logn) time, such that given a vertex u on the
boundary of the outer face and another vertex v, we can query the shortest path tree of u
to find the distance to v in O(logn) time. We need to augment that data structure to also
support the following two queries on the shortest path tree of a vertex on the boundary of
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the outer face: (i) find the lowest common ancestor of any two vertices; and (ii) find the level
ancestor of any vertex and any level. To do that, we just replace the (persistent) dynamic
trees used internally in Klein’s data structure with the (persistent) top-tree structures of
Alstrup et al. [1], so we can support both queries in O(logn) time. We construct the data
structure for F = Gout, after redrawing in linear time such that C lies on the outer face.

We build a list Γ that contains all the vertices of Gout that have degree more than three
in Bin; as argued before, |Γ| = O

(
(1/ε′)4). There are three possibilities for each pair of

shortest paths between dense portals: the paths do not intersect, they intersect only at one
vertex, or they share a common subpath starting on a vertex p1 and ending at another
vertex p2. Our goal is to find for each such pair the vertices p1 and p2 (which may not exist,
may be the same, or may be distinct) and insert them to Γ. We focus on finding p1 since
finding p2 is similar. Suppose that the first shortest path is from a to b and the second from
c to d. What makes the problem nontrivial is that the two paths are not available explicitly.

We find p1 by performing a binary search on the a-to-b shortest path as follows. Let p′
and p′′ be initially set to a and b respectively. Let p be the vertex midway between p′ and p′′
on the a-to-b path, which can be found by a level ancestor query. We want to find whether
p is (i) between p1 and p2 (i.e., on the c-to-d path), (ii) between a and p1, or (iii) between
p2 and b. To do so, we find the lowest common ancestor lca of p and d on the shortest path
tree of c. If lca = p, then we are in case (i). Else, we perform a level ancestor query for p and
d to find the children p̂ and d̂ of lca that lie on the lca-to-p and lca-to-d paths respectively
and compare the order of p̂ and d̂ around lca. We assume w.l.o.g. that c is between a and b
in P . If p̂ is to the left of d̂, then we are in case (ii), else we are in case (iii).2 For case (i)
or (iii) we recurse with p′′ = p; for case (ii) we recurse with p′ = p. We stop when p′ = p′′.

Once we are done with every pair of paths, we shrink every vertex in V (Gout)− Γ, thus
procuring B′in. J

We unmark all vertices of B′in and append it to Gin to create the graph G′in, which is
a planar graph and has |V (Gin)| + O

(
(1/ε′)4) vertices. Then, we have to shrink G′in, such

that it will have at most 2n/3 vertices (remember that |V (Gin)| could be as big as O(n)).
As in [21], we walk down on C and do the following steps. For any consecutive pair yi
and yi+1 of dense portals on C we create an edge between them of weight equal to their
shortest path distance in G. Then we visit all the vertices p1, . . . , pk between yi and yi+1
on C. For each vertex u having an edge to such a vertex, we create an edge between u and
yi of weight equal to minj{`(u, pj) + dG(pj , yi)}. Finally, we delete all vertices p1, . . . , pk
and their incident edges. We call the resulting graph G+

in; it has 2n/3 +O
(
1/(ε′)4) vertices.

G+
out is constructed similarly. The total time spent is O

(
n logn+ (1/ε′)4 logn

)
.

3.5 Analyzing the approximation factor and the running time
I Lemma 13. The approximation factor of our algorithm is 1 +O(ε).

Proof. Let G(µ) be the graph of a node µ of the recursion tree, and G
(µ)
in and G

(µ)
out be

the two graphs created by decomposing it, as in Section 3.1. We (1 + O(ε))-approximate
d
(
G

(µ)
in , G

(µ)
out, G

(µ)
)

for each node µ of the recursion tree, so the approximation factor of

our algorithm is (1 +O(ε)) maxµ
d
(
G

(µ)
in ,G

(µ)
out,G

(µ)
)

d
(
G

(µ)
in ,G

(µ)
out,G

) ≤ (1 +O(ε))
∏
i

(1 + εi) where εi = ε/n
1/8
i ,

2 If the shortest path tree is not unique, we pick the right-most one; see [16] for details.
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for some sequence n1, n2, . . . , nk satisfying ni−1/3+Θ((1/εi)4) ≤ ni ≤ 2ni−1/3+Θ((1/εi)4)
with n1 = N and nk = O

(
(1/ε)4).

Now,
∏
i

(1 + εi) ≤ exp
(∑

i

εi

)
. Since ni decreases at least exponentially, εi grows at

least exponentially; thus the sum
∑
i εi is similar to a geometric series and can be bounded

by the last term, which is O(ε). Therefore, the approximation factor of our algorithm is
(1+O(ε))(1+O(ε)) = 1+O(ε) (which can be refined to 1+ε after adjusting ε by a constant
factor). J

I Lemma 14. The running time of our algorithm is O
(
N logN

(
logN + (1/ε)5)).

Proof. The running time satisfies the following recurrence relation:

T (n) ≤ max
1/3≤α≤2/3

(
T
(
αn+O

(
(1/ε)4√n

))
+ T

(
(1− α)n+O

(
(1/ε)4√n

))
+

O
(
n
(
logn+ (1/ε)5))) .

In the base case n = O
(
(1/ε)4), so we can run a quadratic-time APSP algorithm in O

(
n2)

time. Since we have O
(
ε4N

)
such graphs, the total time for the base case is O

(
(1/ε)4N

)
.

The solution of the recurrence is T (N) = O
(
N logN

(
logN + (1/ε)5)). J

This completes the proof of Theorem 1. It is not difficult to see that in the same amount
of time we can also compute a (1 + ε)-approximation of the radius and of the Wiener index
of the graph and of the eccentricity of each node.

4 Conclusion

Gawrychowski et al. [8] recently improved Cabello’s algorithm [4] for computing the exact
diameter in planar graphs; their algorithm is deterministic instead of randomized and re-
quires Õ(n5/3) time instead of Õ(n11/6). It is worth investigating whether the techniques
therein could be used to make our approximation algorithm deterministic and perhaps shave
off some 1/ε factors. Another possible research direction is generalizing the techniques for
the case of directed graphs.

An interesting consequence of our result is that we can compute the exact diameter of
an unweighted planar graph in O

(
n logn

(
logn+ ∆O(1))) expected time, where ∆ is the

diameter, simply by setting ε near 1/∆. If one wants running time near linear in n, the
best previous result we are aware of was by Eppstein [6] and had exponential dependence
in ∆ (namely, the time bound is O

(
n2∆ log ∆)). Note that our result beats Cabello’s or

Gawrychowski et al.’s algorithm when the diameter is smaller than nδ for some constant δ.
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time. CoRR, abs/1704.02793v1, 2017.

9 Qian-Ping Gu and Gengchun Xu. Constant query time (1 + ε)-approximate distance or-
acle for planar graphs. In Proceedings of the Twenty-sixth International Symposium on
Algorithms and Computation, pages 625–636. Springer, 2015.

10 Dov Harel and Robert Endre Tarjan. Fast algorithms for finding nearest common ancestors.
SIAM Journal on Computing, 13(2):338–355, 1984.

11 David Hartvigsen and Russell Mardon. The all-pairs min cut problem and the minimum
cycle basis problem on planar graphs. SIAM Journal on Discrete Mathematics, 7(3):403–
418, 1994.

12 Monika R. Henzinger, Philip N. Klein, Satish Rao, and Sairam Subramanian. Faster
shortest-path algorithms for planar graphs. Journal of Computer and System Sciences,
55(1):3–23, 1997.

13 Ken-ichi Kawarabayashi, Philip N. Klein, and Christian Sommer. Linear-space approximate
distance oracles for planar, bounded-genus and minor-free graphs. In Proceedings of the
Thirty-eight International Colloquium on Automata, Languages, and Programming, pages
135–146. Springer, 2011.

14 Ken-ichi Kawarabayashi, Christian Sommer, and Mikkel Thorup. More compact oracles
for approximate distances in undirected planar graphs. In Proceedings of the Twenty-fourth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 550–563, 2013.

15 Philip N. Klein. Preprocessing an undirected planar network to enable fast approximate
distance queries. In Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pages 820–827, 2002.

16 Philip N. Klein. Multiple-source shortest paths in planar graphs. In Proceedings of the
Sixteenth Annual Annual ACM-SIAM Symposium on Discrete Algorithms, pages 146–155,
2005.

17 Rolf Klein. Concrete and abstract Voronoi diagrams, volume 400. Springer Science &
Business Media, 1989.

18 Rolf Klein, Kurt Mehlhorn, and Stefan Meiser. Randomized incremental construction of
abstract Voronoi diagrams. In Informatik, pages 283–308. Springer, 1992.

19 Richard J. Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics, 36(2):177–189, 1979.

20 Mikkel Thorup. Compact oracles for reachability and approximate distances in planar
digraphs. Journal of the ACM, 51(6):993–1024, 2004.

21 Oren Weimann and Raphael Yuster. Approximating the diameter of planar graphs in near
linear time. ACM Transactions on Algorithms, 12(1):1–13, 2016.

22 Christian Wulff-Nilsen. Algorithms for planar graphs and graphs in metric spaces. PhD
thesis, PhD thesis, University of Copenhagen, 2010.

ESA 2017



25:12 Faster Approximate Diameter and Distance Oracles in Planar Graphs

A Approximate Distance Oracles

To construct an approximate distance oracle, we build upon the general framework of the
oracles of Thorup, Kawarabayashi et al., and Gu and Xu ([20, 14] and [9] respectively).
Given a weighted, undirected planar graph G with non-negative edge lengths, we will focus
on constructing a distance oracle with additive stretch ε∆ (also called additive distance
oracle), where ∆ is the diameter of G. Such an oracle returns, given two vertices u and v of
G, an approximation d̂ of their distance dG(u, v) in G, such that dG(u, v) ≤ d̂ ≤ dG(u, v)+ε∆.
A known scaling technique (see Kawarabayashi et al. [13] and Section 4 in [9]) can convert
the additive distance oracle to a (1 + ε)-approximate distance oracle.

To construct the additive distance oracle, we recursively decompose the given graph G
as in Sections 3.1 and 3.4, but here we also store the graphs in a tree, called the recursive
decomposition tree. Let N be the size of G. Let µ be an internal node of the recursive
decomposition tree, G(µ) its graph, and n = |V

(
G(µ)) |. In the root ν of the tree, G(ν) = G.

Let C(µ) be the shortest path separator used to decompose G(µ) into two disjoint and
connected planar subgraphs G(µ)

in and G(µ)
out as described in Section 3.1. We find a set Y (µ)

of O(1/ε) vertices on C(µ), called portals, such that we can approximate any shortest path
between any u ∈ V

(
G

(µ)
in

)
and v ∈ V

(
G

(µ)
out

)
by routing it through one of these portals.

Let ∆̃ be a 2-approximation of the diameter of G, computed as in 3.1. To find the portals
we use Lemma 10, slightly changed for the current setting.

I Lemma 15. We can select a set Y (µ) of O(1/ε) vertices, where ε > 0, on C(µ) in linear
time, such that dG(µ)(u, v) ≤ miny∈Y (µ){dG(µ)(u, y) + dG(µ)(y, v)} ≤ dG(µ)(u, v) + 2ε∆̃ for
any u ∈ V

(
G

(µ)
in

)
and v ∈ V

(
G

(µ)
out

)
.

We prove the following theorem (similar to Theorem 3), which is crucial into substituting
the exponential dependency on 1/ε in the space and the preprocessing time of the additive
distance oracle in [9] with a polynomial one, while retaining the constant query time.

I Theorem 16. Let H be a weighted, undirected planar graph of n vertices with non-negative
edge lengths and W be an integer. Let X be a set of b vertices on the boundary of the outer
face of H. Let H+ be the graph obtained by adding to H a vertex z0, with an edge from z0
to each vertex x ∈ X of unspecified length. Let there be O(n) different b-tuples of lengths for
those edges.

We can preprocess H in O
(
nb3W 2 + b4W 2) expected preprocessing time and space, such

that the following query can be answered in O(1) time: given an O(logn)-bit identifier of
one of those tuples and a vertex u ∈ V (H), return dH+(z0, u).

Proof. We create a set S of b sites where each site is placed on a different vertex of X. For
each pair of sites we construct all the different bisectors by using Lemma 5. There are O(W )
bisectors for each pair of sites (Lemma 5), so there are O

(
b2W

)
bisectors in total. For each

bisector and each vertex we store a boolean flag which is set to true if the vertex is enclosed
by the bisector and false otherwise (that can be done by a variant of BFS) in O

(
nb2W

)
time. We find all the O

(
b4W 2) pieces of the graph into which it is decomposed by all the

bisectors in that much time. The boundary of each such piece is the concatenation of at
most b bisectors. For each vertex of H we find in O(b) time the piece that it belongs to and
store a pointer to it in O(nb) total time.

For each tuple of lengths we construct the abstract Voronoi diagram of S in O
(
nb3W 2)

time, by using Lemma 8, find in O
(
b4W 2) time the Voronoi region enclosing each piece of

the previous paragraph, and create a pointer to it. We store the pointer of each piece in
a hash table using the identifier of each tuple, but we do not store any abstract Voronoi
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diagram. The total preprocessing time is O
(
nb3W 2 + b4W 2) expected. The space required

is O
(
n+ b4W 2).

In a query, given a O(logn)-bits identifier representing a tuple of lengths and a vertex
u ∈ V (H), we find the piece containing u, by using u’s pointer, and then query the hash
table of that piece to find the site s, such that vs = arg mint∈S{dH(vt, u) + wt} by using
the given identifier as key. Then, we return dH(vs, u) +ws, which is dH+(z0, u). The query
time is constant. J

We run an SSSP algorithm from the portals of every internal node µ of the recursive
decomposition tree. Let ` be the largest distance found. We construct the data structure of
Theorem 16 for H = G

(µ)
in , after dividing the length of every edge therein by ε`, X = Y (µ),

b = O(1/ε), and W = 1/ε. Each of the n tuples of lengths corresponds to the tuple of
the shortest path distances of a different vertex of G(µ)

out, after rounding each to the closest
multiple of ε` and dividing by that number, to the portals. Each such tuple is provided with
a unique O(logn)-bits identifier.

We create graphs G(µ)+
in and G(µ)+

out , where ε′ = ε/n1/8, in O
(
n logn+ (1/ε′)4 logn

)
time,

as in Section 3.4, assign them to the children of µ, and recurse. We stop when the size of the
graph is O(1/ε). The height of the recursive decomposition tree is O(logn). For each leaf
node of the tree we run a brute-force APSP algorithm and store the distance matrix. We
also preprocess the tree as in [10], such that we can answer lowest common ancestor queries
in O(1) time.

To answer a query, given two vertices u and v, let µu and µv respectively be the nodes
of the recursive decomposition tree containing it. If µu = µv and µu is a leaf, we return the
shortest path distance from u to v by visiting the distance matrix therein. Else, we find in
O(1) time their lowest common ancestor µu,v; supposing w.l.o.g. that u ∈ V

(
G

(µu,v)
in

)
and

v ∈ V
(
G

(µu,v)
out

)
, we properly query the data structure of Theorem 16 of µu,v, and return

the distance found, multiplied with ε`. Similarly to Lemma 13 we have the following lemma.

I Lemma 17. For two vertices u, v ∈ V (G) the additive oracle returns an value d̂ such that
dG(u, v) ≤ d̂ ≤ dG(u, v) +O(ε)∆.

Finally, we bound the query time, the space, and the preprocessing time of our additive
distance oracle.

I Theorem 18. The space occupied by the additive oracle is O
(
N
(
logN + (1/ε)6)) , the

preprocessing time required is O
(
N
(
logN

(
logN + (1/ε)5)+ (1/ε)6)) , and a query can be

answered in O(1) time.

Proof. It takes O(1) time to find the lowest common ancestor of two nodes and to query
the distance of any vertices therein. It also takes O(1) time to query the distance matrix in
a leaf. Therefore, the query time is O(1).

The preprocessing time T (n) and space S(n) satisfy the following recurrence relations:

T (n) ≤ max
1/3≤α≤2/3

(
T
(
αn+O

(
(1/ε)4√n

))
+ T

(
(1− α)n+O

(
(1/ε)4√n

))
+

O
(
n
(
logn+ (1/ε)5)+ (1/ε)6)) ,

S(n) ≤ max
1/3≤α≤2/3

(
S
(
αn+O

(
(1/ε)4√n

))
+ S

(
βn+O

(
(1/ε)4√n

))
+O

(
n+ (1/ε)6)) .

In the base case n = O
(
1/ε4), so we run a quadratic-time APSP algorithm in O

(
n2)

time. Since we have O
(
ε4N

)
such graphs, the total time for the base case is O

(
(1/ε)4N

)
.

The solutions to the recurrences are T (N) = O
(
N
(
logN

(
logN + (1/ε)5)+ (1/ε)6)) and

S(N) = O
(
N
(
logN + (1/ε)6)) . J
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