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Abstract
Given a traveling salesman problem (TSP) tour H in graph G a k-move is an operation which
removes k edges from H, and adds k edges of G so that a new tour H ′ is formed. The popular
k-OPT heuristic for TSP finds a local optimum by starting from an arbitrary tour H and then
improving it by a sequence of k-moves.

Until 2016, the only known algorithm to find an improving k-move for a given tour was the
naive solution in time O(nk). At ICALP’16 de Berg, Buchin, Jansen and Woeginger showed an
O(nb2/3kc+1)-time algorithm.

We show an algorithm which runs in O(n(1/4+εk)k) time, where limk→∞ εk = 0. It improves
over the state of the art for every k ≥ 5. For the most practically relevant case k = 5 we provide
a slightly refined algorithm running in O(n3.4) time. We also show that for the k = 4 case,
improving over the O(n3)-time algorithm of de Berg et al. would be a major breakthrough: an
O(n3−ε)-time algorithm for any ε > 0 would imply an O(n3−δ)-time algorithm for the All Pairs
Shortest Paths problem, for some δ > 0.
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1 Introduction

In the Traveling Salesman Problem (TSP) one is given a complete graph G = (V,E) and
a weight function w : E → N. The goal is to find a Hamiltonian cycle in G (also called
a tour) of minimum weight. This is one of the central problems in computer science and
operation research. It is well known to be NP-hard and has been researched from different
perspectives, most notably using approximation [1, 4, 25], exponential-time algorithms [13, 16]
and heuristics [24, 20, 5].

In practice, TSP is often solved by means of local search heuristics where we begin from
an arbitrary Hamiltonian cycle in G, and then the cycle is modified by means of some local
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changes in a series of steps. After each step the weight of the cycle should improve; when the
algorithm cannot find any improvement it stops. One of the most successful examples of this
approach is the k-opt heuristic, where in each step an improving k-move is performed. Given
a Hamiltonian cycle H in a graph G = (V,E) a k-move is an operation that removes k edges
from H and adds k edges of G so that the resulting set of edges H ′ is a new Hamiltonian
cycle. The k-move is improving if the weight of H ′ is smaller than the weight of H. The
k-opt heuristic has been introduced in 1958 by Croes [5] for k = 2, and then applied for
k = 3 by Lin [21] in 1965. Then in 1972 Lin and Kernighan designed a complicated heuristic
which uses k-moves for unbounded values of k, though restricting the space of k-moves to
search to so-called sequential k-moves. A variant of this heuristic called LKH, implemented
by Helsgaun [14], solves optimally instances up to 85 900 cities. Among other modifications,
the variant searches for non-sequential 4- and 5-moves. From the theory perspective, the
quality of the solutions returned by k-opt, as well as the length of the sequence of k-moves
needed to find a local optimum, was studied, among others, by Johnson, Papadimitriou and
Yannakakis [15], Krentel [18] and Chandra, Karloff and Tovey [3]. More recently, smoothed
analysis of the running time and approximation ratio was investigated by Manthey and
Veenstra [19] and Künnemann and Manthey [22].

In this paper we study the k-opt heuristic but we focus on its basic ingredient, namely
on finding a single improving k-move. The decision problem k-opt Detection is to decide,
given a tour H in an edge weighted complete graph G, if there is an improving k-move.
In its optimization version, called k-opt Optimization, the goal is to find a k-move that
gives the largest weight improvement, if any. Unfortunately, this is a computationally hard
problem. Namely, Marx [23] has shown that k-opt Detection is W [1]-hard, which means
that it is unlikely to be solvable in f(k)nO(1) time, for any function f . Later Guo, Hartung,
Niedermeier and Suchý [12] proved that there is no algorithm running in time no(k/ log k),
unless Exponential Time Hypothesis (ETH) fails. This explains why in practice people use
exhaustive search running in O(nk) time for every fixed k, or faster algorithms which explore
only a very restricted subset of all possible k-moves.

Recently, de Berg, Buchin, Jansen and Woeginger [8] have shown that it is possible to
improve over the naive exhaustive search. For every fixed k ≥ 3 their algorithm runs in time
O(nb2k/3c+1) and uses O(n) space. In particular, it gives O(n3) time for k = 4. Thus, the
algorithm of de Berg et al. is of high practical interest: the complexity of the k = 4 case now
matches the complexity of k = 3 case, and hence it seems that one can use 4-opt in all the
applications where 3-opt was fast enough. De Berg et al. show also that a progress for k = 3
is unlikely, namely k-opt Detection has an O(n3−ε)-time algorithm for some ε > 0 iff All
Pairs Shortest Paths problem can be solved in O(n3−δ)-time algorithm for a δ > 0.

Our Results. In this paper we extend the line of research started in [8]: we show an
algorithm running in time O(n(1/4+εk)k) and using space O(n(1/8+εk)k) for every fixed k,
where lim εk = 0. We are able to compute the values of εk for k ≤ 10. These values show that
our algorithm improves the state of the art for every k = 5, . . . , 10 (see Table 1). A different
adjustment of parameters of our algorithm results in time O(nk/2+3/2) and additional space
of O(

√
n), which improves the state of the art for every k ≥ 8.

We also show a good reason why we could not improve over the O(n3)-time algorithm of
de Berg et al. for 4-opt Optimization: an O(n3−ε)-time algorithm for some ε > 0 would
imply that All Pairs Shortest Paths can be solved in time O(n3−δ) for some δ > 0.
Note that although the family of 4-moves contains all 3-moves, it is still possible that there
is no improving 3-move, but there is an improving 4-move. Thus the previous lower bound
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Table 1 New running times for k = 5, . . . , 10.

k 5 6 7 8 9 10
previous algorithm [8] O(n4) O(n5) O(n5) O(n6) O(n7) O(n7)
our algorithm O(n3.4) O(n4) O(n4.25) O(n4 2

3 ) O(n5) O(n5.2)

of de Berg et al. does not imply our lower bound, though our reduction is essentially an
extension of the one by de Berg et al. [8] with a few additional technical tricks.

We also devote special attention to the k = 5 case of k-opt Optimization problem,
hoping that it can still be of a practical interest. Our generic algorithm works in O(n3.67)
time in this case. However, we show that it can be further refined, obtaining the O(n3.4)
running time. We suppose that similar improvements of order nΩ(1) should be also possible
for larger values of k. In Table 1 we present the running times for k = 5, . . . , 10.

Our Approach. Our algorithm applies dynamic programming on a tree decomposition.
This is a standard method for dealing with some sparse graphs, like series-parallel graphs or
outerplanar graphs. However, in our case we work with complete graphs. The trick is to
work on an implicit structure, called dependence graph D. Graph D has k vertices which
correspond to the k edges of H that are chosen to be removed. A subset of edges of D
corresponds to the pattern of edges to be added (as we will see the number of such patterns
is bounded for every fixed k, and one can iterate over all patterns). The dependence graph
can be thought of as a sketch of the solution, which needs to be embedded in the input graph
G. Graph D is designed so that if it has a separator S, such that D − S falls apart into two
parts A and B, then once we find an optimal embedding of A ∪ S for some fixed embedding
of S, one can forget about the embedding of A. This intuition can be formalized as dynamic
programming on a tree decomposition of D, which is basically a tree of separators in D. The
idea sketched above leads to an algorithm running in time O(n(1/3+εk)k) for every fixed k,
where lim εk = 0. The reason for the exponent in the running time is that D is of maximum
degree 4 and hence it has treewidth at most (1/3 + εk)k, as shown by Fomin et al. [9].

The further improvement to O(n(1/4+εk)k) is obtained by yet another idea. We partition
the n edges of H into n1/4 buckets of size n3/4 and we consider all possible distributions of
the k edges to remove into buckets. If there are many nonempty buckets, then graph D has
fewer edges, because some dependencies are forced by putting the corresponding edges into
different buckets. As a result, the treewidth of D decreases and the dynamic programming
runs faster. The case when there are few nonempty buckets does not give a large speed-up
in the dynamic programming, but the number of such distributions is small.

2 Preliminaries

Throughout the paper let w1, w2, . . . , wn and e1, . . . , en be sequences of respectively sub-
sequent vertices and edges visited by H, so that ei = {wi, wi+1} for i = 1, . . . , n − 1 and
en = {wn, w1}. For i = 1, . . . , n − 1 we call wi the left endpoint of ei and wi+1 the right
endpoint of ei. Also, wn is the left endpoint of en and w1 is its right endpoint.

We work with undirected graphs in this paper. An edge between vertices u and v is
denoted either as {u, v} or shortly as uv.

For a positive integer i we denote [i] = {1, . . . , i}.

ESA 2017
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2.1 Connection patterns and embeddings
Formally, a k-move is a pair of sets (E−, E+), both of cardinality k, where E− ⊆ {e1, . . . , en},
E+ ⊆ E(G), and E(H)\E−∪E+ is a Hamiltonian cycle. This is the most intuitive definition
of a k-move, however it has a drawback, namely it is impossible to specify E+ without
specifying E− first. For this reason instead of listing the edges of E+ explicitly, we will define
a connection pattern, which together with E− expressed as an embedding fully specifies a
k-move.

A k-embedding (or shortly: embedding) is any function f : [k] → [n]. A connection
k-pattern (or shortly: connection pattern)1 is any perfect matching in the complete graph
on the vertex set [2k]. We call a connection pattern valid when one obtains a single k-cycle
from M by identifying vertex 2i with vertex (2i+ 1) mod 2k for every i = 1, . . . , k.

Let us show that every pair (E−, E+) that defines a k-move has a corresponding pair of
an embedding and a connection pattern, consequently giving an intuitive explanation of the
above definition of embeddings and connection patterns. Consider a move Q = (E−, E+).
Let E− = {ei1 , . . . , eik}, where i1 < i2 < · · · < ik. For every j = 1, . . . , k, let v2j−1 and
v2j be the left and right endpoint of eij , respectively. An embedding of the k-move Q is
the function fQ : [k] → [n] defined as fQ(j) = ij for every j = 1, . . . , k. Note that fQ is
increasing. A connection pattern of Q is every perfect matching M in the complete graph
on the vertex set [2k] such that E+ = {{vi, vj} | {i, j} ∈ M}. Note that at least one such
matching always exists, and if E− contains two incident edges then there is more than one
such matching. Note also that M is valid, because otherwise after applying the k-move Q we
do not get a Hamiltonian cycle.

Conversely, consider a pair (f,M), where f is an increasing embedding and M is a
valid connection pattern. We define E−f = {ef(j) | j = 1, . . . , k}. For every j = 1, . . . , k,
let v2j−1 and v2j be the left and right endpoint of ef(j), respectively. Then we also define
E+

(f,M) = {vivj | {i, j} ∈M}. It is easy to see that (E−f , E
+
(f,M)) is a k-move.

Because of the equivalence shown above, in what follows we abuse the notation slightly
and a k-move Q can be described both by a pair of edges to remove and add (E−Q , E

+
Q)

and by an embedding-connection pattern pair (fQ,MQ). The gain of Q is defined as
gain(Q) = w(E−Q) − w(E+

Q). Given a connection pattern M and an embedding f , we can
also define an M -gain of f , denoted by gainM (f) = gain(Q), where Q is the k-move defined
by (f,M). Note that k-opt Optimization asks for a k-move with maximum gain.

2.2 Tree decomposition and nice tree decomposition
To make the paper self-contained, in this section we recall the definitions of tree and path
decompositions and state their basic properties which will be used later in the paper. The
content of this section comes from the textbook of Cygan et al. [6].

A tree decomposition of a graph G is a pair T = (T, {Xt}t∈V (T )), where T is a tree whose
every node t is assigned a vertex subset Xt ⊆ V (G), called a bag, such that the following
three conditions hold:
(T1)

⋃
t∈V (T )Xt = V (G).

(T2) For every uv ∈ E(G), there exists a node t of T such that u, v ∈ Xt.
(T3) For every u ∈ V (G), the set {t ∈ V (T ) | u ∈ Xt} induces a connected subtree of T .

1 We note that the notion of connection pattern of a k-move was essentially introduced by de Berg et
al. [8] under the name of ‘signature’, though they used a permutation instead of a matching, which we
find more natural.
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The width of tree decomposition T = (T, {Xt}t∈V (T )), denoted by w(T ), equals maxt∈V (T ) |Xt|−
1. The treewidth of a graph G, denoted by tw(G), is the minimum possible width of a tree
decomposition of G. When E is a set of edges and V (E) the set of endpoints of all edges in
E, by tw(E) we denote the treewidth of the graph (V (E), E).

A path decomposition is a tree decomposition T = (T, {Xt}t∈V (T )), where T is a path.
Then T is more conveniently represented by a sequence of bags (X1, . . . , X|V (T )|), corres-
ponding to successive vertices of the path. The pathwidth of a graph G, denoted by pw(G),
is the minimum possible width of a path decomposition of G.

In what follows we frequently use the notion of nice tree decomposition, introduced by
Kloks [17]. These tree decompositions are more structured, making it easier to describe
dynamic programming over the decomposition. A tree decomposition T = (T, {Xt}t∈V (T ))
can be rooted by choosing a node r ∈ V (T ), called the root of T , which introduces a natural
parent-child and ancestor-descendant relations in the tree T . A rooted tree decomposition
(T, {Xt}t∈V (T )) is nice if Xr = ∅, X` = ∅ for every leaf ` of T , and every non-leaf node of T
is of one of the following three types:

Introduce node: a node t with exactly one child t′ such that Xt = Xt′ ∪ {v} for some
vertex v /∈ Xt′ .
Forget node: a node t with exactly one child t′ such that Xt = Xt′ \ {w} for some
vertex w ∈ Xt′ .
Join node: a node t with two children t1, t2 such that Xt = Xt1 = Xt2 .

A path decomposition is nice when it is nice as tree decomposition after rooting the path
in one of the endpoints. (Note that it does not contain join nodes.)

I Proposition 1 (see Lemma 7.4 in [6]). Given a tree (resp. path) decomposition T =
(T, {Xt}t∈V (T )) of G of width at most k, one can in time O(k2 ·max(|V (T )|, |V (G)|)) compute
a nice tree (resp. path) decomposition of G of width at most k that has at most O(k|V (G)|)
nodes.

We say that (A,B) is a separation of a graph G if A ∪B = V (G) and there is no edge
between A \B and B \A. Then A ∩B is a separator of this separation.

I Lemma 2 (see Lemma 7.3 in [6]). Let (T, {Xt}t∈V (T )) be a tree decomposition of a graph
G and let ab be an edge of T . The forest T − ab obtained from T by deleting edge ab consists
of two connected components Ta (containing a) and Tb (containing b). Let A =

⋃
t∈V (Ta)Xt

and B =
⋃
t∈V (Tb)Xt. Then (A,B) is a separation of G with separator Xa ∩Xb.

3 The algorithm

In this section we present our algorithms for k-opt Optimization. The brute-force algorithm
verifies all possible k-moves. In other words, it iterates over all possible valid connection
patterns and increasing embeddings. The brilliant observation of Berg et al. [8] is that we
can iterate only over all possible connection patterns, whose number is bounded by (2k)!.
In other words, we fix a valid connection pattern M and from now on, our goal is to find
an increasing embedding f : [k]→ [n] which, together with M , defines a k-move giving the
largest weight improvement over all k-moves with connection pattern M . Instead of doing
this by enumerating all Θ(nk) embeddings, Berg et al. [8] fix carefully selected b2/3kc values
of f in all nb2/3kc possible ways, and then show that the optimal choice of the remaining
values can be found by a simple dynamic programming running in O(nk) time. Our idea is
to find the optimal embedding for a given connection pattern using a more efficient approach.

ESA 2017
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3.1 Basic setup
Informally speaking, instead of guessing some values of f , we guess an approximation of f
defined by appropriate bucketing. For each approximation b, finding an optimal embedding
consistent with b is done by a dynamic programming over a tree decomposition. We stress
that even without bucketing (i.e, by using a single trivial bucket of size n) our algorithm
works in n(1/3+εk)k time. Therefore bucketing is used to further improve the running time,
but it is not essential to perform the dynamic programming on a tree decomposition.

More precisely, we partition the set [n], corresponding to the edges of H, into buckets.
Each bucket is an interval {i, i + 1, . . . , j} ⊆ [n], for some 1 ≤ i ≤ j ≤ n. Let nb be the
number of buckets and let Bj denote the j-th bucket, for j = 1, . . . , nb. A bucket assignment
is any nondecreasing function b : [k]→ [nb].

Unless explicitly modified, we use all buckets of the same size dnαe, for a constant α
which we set later. Then, for j = 1, . . . , b the j-th bucket is the set Bj = {(j − 1) dnαe +
1, . . . , j dnαe} ∩ [n].

Given a bucket assignment b we define the set

Ob = {{i, i+ 1} ⊂ [k] | b(i) = b(i+ 1)}.

I Definition 3 (b-monotone partial embedding). Let f : S → [n] be a partial embedding for
some S ⊆ [k]. We say that f is b-monotone when
(M1) for every i ∈ S we have f(i) ∈ Bb(i), and
(M2) for every {i, i+ 1} ∈ Ob, if {i, i+ 1} ⊆ S, then f(i) < f(i+ 1).

Note that a b-monotone embedding f : [k]→ [n] is always increasing, but a b-monotone
partial embedding does not even need to be non-decreasing (this seemingly artificial design
simplifies some of our proofs). In what follows, we present an efficient dynamic programming
algorithm which, given a valid connection pattern M and a bucket assignment b finds a
b-monotone embedding of maximum M -gain. To this end, we need to introduce the gain of
a partial embedding. Let f : S → [n] be a b-monotone partial embedding, for S ⊆ [k]. For
every j ∈ S, let v2j−1 and v2j be the left and right endpoint of ef(j), respectively. We define

E−f = {ef(i) | i ∈ S}

E+
f = {{vi′ , vj′} | i, j ∈ S, i′ ∈ {2i− 1, 2i}, j′ ∈ {2j − 1, 2j}, {i′, j′} ∈M}.

Then, gainM (f) = w(E−f )− w(E+
f ).

Note that gainM (f) does not necessarily represent the actual cost gain of the choice of
the edges to remove represented by f . Indeed, assume that for some pair i, j ∈ [k] there are
i′ ∈ {2i− 1, 2i} and j′ ∈ {2j − 1, 2j} such that {i′, j′} ∈M . Then we say that i interferes
with j, which means that we plan to add an edge between an endpoint of the i-th deleted
edge and the j-th deleted edge. Note that if i ∈ S (the i-th edge is chosen) and j 6∈ S

(the j-th edge is not chosen yet) this edge to be added is not known yet, and its cost is
not represented in gainM (f). However, the value of f(i) influences this cost. Consider the
following set of interfering pairs:

IM = {{i, j} | i interferes with j}.

Note that IM is obtained from M by identifying vertex 2i− 1 with vertex 2i for every
i = 1, . . . , k (and the new vertex is simply called i). In particular, this implies that every
connected component of the graph ([k], IM ) is a cycle or a single edge.
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3.2 Dynamic programming over tree decomposition
Now we define the graph DM,b, called the dependence graph, where V (DM,b) = [k] and
E(DM,b) = Ob ∪ IM . The vertices of DM,b correspond to the k edges to be removed from
H (i.e., j corresponds to the j-th deleted edge in the sequence e1, . . . , en). The edges of
DM,b correspond to dependencies between the edges to remove (equivalently, elements of the
domain of an embedding). The edges from Ob are order dependencies: edge {i, i+ 1} means
that the (i+ 1)-th deleted edge should appear further on H than the i-th deleted edge. In
Ob there are no edges between the last element of a bucket and the first element of the next
bucket, because the corresponding constraint is forced by the assignment to buckets. The
edges from IM are cost dependencies (resulting from interference explained in Section 3.1).

The goal of this section is a proof of the following theorem.

I Theorem 4. Let M be a valid connection k-pattern and let b : [k] → [n] be a bucket
assignment, where every bucket is of size dnαe. Then, a b-monotone embedding of maximum
M -gain can be found in O(nα(tw(DM,b)+1)k2 + 2k) time.

Let T = (T, {Xt}t∈V (T )) be a nice tree decomposition of DM,b with minimum width.
Such a decomposition can be found in O∗(1.7347k) time by an algorithm of Fomin and
Villanger [11], though for practical purposes a simpler O∗(2k)-time algorithm is advised by
Bodlaender et al. [2]. For every t ∈ V (T ) we denote by Vt the union of all the bags in the
subtree of T rooted in t.

For every node t ∈ V (T ), and for every b-monotone function f : Xt → [n], we will
compute the following value.

Tt[f ] = max
g:Vt→[n]
g|Xt=f

g is b-monotone

gainM (g).

Then, if r is the root of T , and ∅ denotes the unique partial embedding with empty
domain, then Tr[∅] is the required maximum M -gain of a b-monotone embedding. The
embedding itself (and hence the corresponding k-move) can be also found by using standard
DP techniques. The values of Tt[f ] are computed in a bottom-up fashion. Let us now present
the formulas for computing these values, depending on the kind of node in the tree T .

Leaf node. When t is a leaf of T , we know that Xt = Vt = ∅, and we just put Tt[∅] = 0.

Introduce node. Assume Xt = Xt′ ∪ {i}, for some i 6∈ Xt′ where node t′ is the only child
of t. Denote ∆E+

f = E+
f \ E

+
f |X

t′
. Then, we claim that for every b-monotone function

f : Xt → [n],

Tt[f ] = Tt′ [f |Xt′ ] + w(ef(i))−
∑

{u,v}∈∆E+
f

w({u, v}). (1)

We show that (1) holds by showing the two relevant inequalities. Let g be a function
for which the maximum from the definition of Tt[f ] is attained. Let g′ = g|Vt′ . Note that
g′ is b-monotone because g is b-monotone. Hence, gainM (g′) ≤ Tt′ [f |Xt′ ]. It follows that
Tt[f ] = gainM (g) = gainM (g′) + w(ef(i))−

∑
{u,v}∈∆E+

f
w({u, v}) ≤ Tt′ [f |Xt′ ] + w(ef(i))−∑

{u,v}∈∆E+
f
w({u, v}).

Now we proceed to the other inequality. Assume g′ is a function for which the maximum
from the definition of Tt′ [f |Xt′ ] is attained. Let g : Vt → [n] be the function such that

ESA 2017
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g|Vt′ = g′ and g(i) = f(i). Let us show that g is b-monotone. The condition (M1) is
immediate, since g′ and f are b-monotone. For (M2), consider any {j, j + 1} ∈ Ob such
that {j, j + 1} ⊆ Vt. If i 6∈ {j, j + 1} then g(j) < g(j + 1) by b-monotonicity of g′, so
assume i ∈ {j, j + 1}. Then {j, j + 1} ⊆ Xt, for otherwise Xt ∩ Xt′ does not separate j
from j + 1, a contradiction with Lemma 2. For {j, j + 1} ⊆ Xt, we have g(j) < g(j + 1)
since f(j) < f(j + 1). Hence g is b-monotone, which implies Tt[f ] ≥ gainM (g). Then
it suffices to observe that gainM (g) = gainM (g′) + w(ef(i)) −

∑
{u,v}∈∆E+

f
w({u, v}) =

Tt′ [f |Xt′ ] + w(ef(i))−
∑
{u,v}∈∆E+

f
w({u, v}). This finishes the proof that (1) holds.

Forget node. Assume Xt = Xt′ \ {i}, for some i ∈ Xt′ where node t′ is the only child of t.
Then the definition of Tt[f ] implies that

Tt[f ] = max
f ′:Xt′→[n]
f ′|Xt=f

f ′ is b-monotone

Tt′ [f ′]. (2)

Join node. Assume Xt = Xt1 = Xt2 , for some nodes t, t1 and t2, where t1 and t2 are the
only children of t. Then, we claim that for every b-monotone function f : Xt → [n] the
following holds,

Tt[f ] = Tt1 [f ] + Tt2 [f ] +
(
w(E−f )− w(E+

f )
)
, (3)

which we prove by using arguments very similar to the ones used for the introduce nodes, and
hence due to space limitations the proof is omitted and can be found in the full version [7].

Running time. Since |V (T )| = O(k), in order to complete the proof of Theorem 4 it suffices
to prove the following lemma.

I Lemma 5. Let T = (T, {Xt}t∈V (T )) be a nice tree decomposition of D. Let t be a node of
T . For every i ∈ Xt let si be the size of the bucket assigned to i. Then, all the values of Tt
can be found in time O(k

∏
i∈Xt si). In particular, if all buckets are of size dnαe, then t can

be processed in time O(knα|Xt|).

Proof. Obviously, in every leaf node the algorithm uses only O(1) time.
For an introduce node, observe that evaluation of the formula (1) takes O(k) time for

every f , since |∆E+
f | ≤ 2 (the factor O(k) is needed to read off a single value from the table).

By (M1), each value f(i) of a b-monotone function f can be fixed in si ways, so the number
of b-monotone functions f : Xt → [n] is bounded by

∏
i∈Xt si. Hence all the values of Tt are

computed in time O(k
∏
i∈Xt si), which is O(knα|Xt|) when all buckets are of size dnαe.

For a forget node, a direct evaluation of (2) for all b-monotone functions f : Xt → [n]
takes O(k

∏
i∈Xt′

si) time, where t′ is the only child of t.
Finally, for a join node a direct evaluation of (3) takes O(k) time, since |E−f | ≤ k and

|E+
f | ≤ k. Hence all the values of Tt are computed in time O(k

∏
i∈Xt si). J

3.3 An algorithm running in time O(n(1/3+ε)k) for k large enough
We will make use of the following theorem due to Fomin, Gaspers, Saurabh, and Stepanov [9].
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I Theorem 6 (Fomin et al. [9]). For any ε > 0, there exists an integer nε such that for every
graph G with n > nε vertices,

pw(G) ≤ 1
6n3 + 1

3n4 + 13
30n5 + 23

45n6 + n≥7 + εn,

where ni is the number of vertices of degree i in G for any i ∈ {3, . . . , 6} and n≥7 is the
number of vertices of degree at least 7.

We actually use the following corollary, which is rather immediate.

I Corollary 7. For any ε > 0, there exists an integer nε such that for every multigraph G
with n > nε vertices and m edges where for every vertex v ∈ V (G) we have 2 ≤ degG(v) ≤ 4,
the pathwidth of G is at most (m− n)/3 + εn.

Proof. The corollary follows from Theorem 6 by the following chain of equalities.

1
6n3 + 1

3n4 = 1
3

(
1
2n3 + n4

)
= 1

3

(
1
2(2n2 + 3n3 + 4n4)− (n2 + n3 + n4)

)

= 1
3

1
2
∑

v∈V (G)

degG(v)− n

 = 1
3(m− n). (4)

J

Let Pk = {{i, i+ 1} | i ∈ [k − 1]}.

I Lemma 8. For any A ⊆ Pk we have pw(IM ∪A) ≤ |A|/3 + εkk, where limk→∞ εk = 0.

Proof. Although ([k], IM ∪A) may not be of minimum degree 2, we may consider the edge
multiset I ′M of the graph obtained from ([k], IM ) by replacing every single edge component
{u, v} by a 2-cycle uvu. Then I ′M is a cycle cover, so every vertex in multigraph ([k], I ′M ∪A)
has degree between 2 and 4. Hence, by Corollary 7, for some sequence εk with limk→∞ εk = 0
we have that pw(IM ∪A) = pw(I ′M ∪A) ≤ (|I ′M |+ |A| − k)/3 + εkk ≤ |A|/3 + εkk. J

By Lemma 8 it follows that the running time in Theorem 4 is bounded by O(n(α3 +ε)k).
If we do not use the buckets at all, i.e., α = 1 and we have one big bucket of size n, we get
the O(n(1/3+ε)k) bound. By iterating over all at most (2k)! connection patterns we get the
following result, which already improves over the state of the art for large enough k.

I Theorem 9. For every fixed integer k, k-opt Optimization can be solved in time
O(n(1/3+εk)k), where limk→∞ εk = 0.

3.4 An algorithm running in time O(n(1/4+ε)k) for k large enough
LetMk be the set of all valid connection k-patterns.

I Lemma 10. k-opt Optimization can be solved in time 2O(k log k)nc(k), where

c(k) = max
M∈Mk

min
α∈[0,1]

max
A⊆Pk

((1− α)(k − |A|) + α(tw(IM ∪A) + 1)) . (5)

Proof. We perform the algorithm from Theorem 4 for each possible valid connection pattern
M and every bucket assignment b, with all the buckets of size dnαM e, for some αM ∈ [0, 1].
Let us bound the total running time. Let A ⊆ Pk and consider a bucket assignment b such
that Ob = A. There are n(1−αM )(k−|A|) such bucket assignments, and by Theorem 4 for each
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of them the algorithm uses time O(nαM (tw(IM∪A)+1)k2 + 2k). Hence the total running time
is bounded by∑

M∈Mk

∑
A⊆Pk

∑
b:[k]→[dn/dnαM ee]
b nondecreasing

Ob=A

O(nαM (tw(IM∪A)+1)k2 + 2k) =

O(2k)
∑

M∈Mk

∑
A⊆Pk

n(1−αM )(k−|A|) · nαM (tw(IM∪A)+1) (6)

For every M ∈Mk, the optimal value of αM can be found by a simple LP (see Section 3.6).
The claim follows. J

I Theorem 11. For every fixed integer k, k-opt Optimization can be solved in time
O(n(1/4+εk)k), where limk→∞ εk = 0.

Proof. Fix the same value α = 3/4 for every connection pattern M . By Lemma 8 we have
(1− α)(k − |A|) + α(tw(IM ∪A) + 1) ≤ ( 1

4 + 3
4k + 3

4ε
′
k)k. The claim follows by Lemma 10,

after putting εk = 3
4k + 3

4ε
′
k. J

3.5 Saving space
The algorithm from Theorem 11, as described above, uses O(n(1/4+εk)k) space. However,
a closer look reveals that the space can be decreased to O(n(1/8+εk)k). This is done by
exploiting some properties of the specific tree decomposition of graphs of maximum degree 4,
described by Fomin et al. [9], which we used in Theorem 6.

This decomposition is obtained as follows. Let D be a k-vertex graph of maximum degree
4. As long as D contains a vertex v of degree 4, we remove v. As a result we get a set of
removed vertices S and a subgraph D′ = D − S of maximum degree 3. Then we construct a
tree decomposition T ′ of D′, of width at most (1/6 + εk)k, given in the paper of Fomin and
Høie [10]. The tree decomposition T of D is then obtained by adding S to every bag of T ′.
An inductive argument (see [9]) shows that the width of T is at most 1

3k4 + 1
6k3 + εkk.

Assume we are given a partial b-monotone embedding f0 : S → [n], where S is the set of
removed vertices mentioned in the previous paragraph. Consider the dynamic programming
algorithm from Theorem 4, which finds a b-monotone embedding of maximum M -gain, for a
given bucket assignment b and connection pattern M . It is straightforward to modify this
algorithm so that it computes a b-monotone embedding of maximum M -gain that extends f0.
The resulting algorithm runs in time O(nα(tw(D−S)+1)k2) and uses space O(nα(tw(D−S)+1)).
Recalling that α = 3/4 and tw(D−S) ≤ (1/6+εk)k, we get the space bound of O(n(1/8+εk)k).
Repeating this for each of nα|S| embeddings of S takes time O(nα(|S|+tw(D−S)+1)) instead of
O(nα(tw(D)+1)) from Theorem 4. However, as explained above, the bound on tw(D) from
Theorem 6 used in the proof of Theorem 11 is also a bound on |S|+ tw(D − S), so the time
of the whole algorithm is still bounded by O(n(1/4+εk)k).

Another interesting observation is that if we build set S by picking an arbitrary vertex of
every edge in Ob, then D′ := D − S contains no edges of Ob, so it has maximum degree at
most 2. It follows that tw(D′) ≤ 2. Thus, in Lemma 10 we can bound tw(IM ∪A) ≤ |A|+ 2
and for α = 1/2 we get the running time of O(nk/2+3/2). By using the approach of fixing all
embeddings of S described above, we get the space of O(nαtw(D′)) = O(n3/2) which is less
than the Θ(n2) space needed to store all the distances of the TSP instance. The additional
space can be further improved to O(n1/2), details in the full version [7].
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3.6 Small values of k
The value of c(k) in Lemma 10 can be computed using a computer programme for small values
of k, by enumerating all connection patterns and using formula (5) to find optimum α. We
used a C++ implementation (see http://www.mimuw.edu.pl/˜kowalik/localtsp/localtsp.cpp
for the source code) including a simple O(2k) dynamic programming for computing treewidth
described in the work of Bodlaender et al. [2]. For every valid connection pattern M our
program finds the value of minα∈[0,1] maxA⊆Pk ((1− α)(k − |A|) + α(tw(IM ∪A) + 1)) by
solving a simple linear program, as follows.

minimize v

subject to v ≥ (1− α)(k − s) + α max
A⊆Pk
|A|=s

(tw(IM ∪A) + 1), s = 0, . . . , k − 1

α ∈ [0, 1]

We get running times for k = 5, . . . , 10 as described in Table 1, except that for k = 5
the running time is n3 2

3 . Because of the practical relevance we investigated the k = 5 case
by hand. A closer look reveals that the source of hardness of this case is a single (up to
isomorphism) graph ([5], IM ∪A) of treewidth 3. It turns out that using a different bucket
partition design one can decrease the running time to O(n3.4). The full argument proving
the theorem below requires extensive case analysis, and does not fit in the page limit of the
present conference version. It can be found in the full version [7].

I Theorem 12. 5-opt Optimization can be solved in time O(n3.4).

4 Lower bound for k = 4

In this section we show a hardness result for 4-opt Optimization. More precisely, we work
with the decision version, called 4-opt Detection, where the input is the same as in 4-opt
Optimization and the goal is to determine if there is a 4-move which improves the weight
of the given Hamiltonian cycle. To this end, we reduce the Negative Edge-Weighted
Triangle problem, where the input is an undirected, complete graph G, and a weight
function w : E(G)→ Z. The goal is to determine whether G contains a triangle whose total
edge-weight is negative.

I Lemma 13. Every instance I = (G,w) of Negative Edge-Weighted Triangle can
be reduced in O(|V (G)|2) time into an instance I ′ = (G′, w′, C) of 4-opt Detection such
that G contains a triangle of negative weight iff I ′ admits an improving 4-move. Moreover,
|V (G′)| = O(|V (G)|), and the maximum absolute weight in w′ is larger by a constant factor
than the maximum absolute weight in w.

Proof. Let V (G) = {v1, . . . , vn}, Vup = {a1, b1, . . . , an, bn}, Vdown = {a′1, b′1, . . . , a′n, b′n} and
V (G′) = Vup ∪̇ Vdown. Let W be the maximum absolute value of a weight in w. Then let
M1 = 5W + 1 and M2 = 21M1 + 1 and let

w′(u, v) =



0 if (u, v) is of the form (ai, b′i)
w(vi, vj) if (u, v) is of the form (ai, bj) for i < j or (a′i, bj) for j < i

M1 if (u, v) is of the form (ai, bi)
−3M1 if (u, v) is of the form (a′i, b′i)
−M2 if (u, v) is of the form (bi, ai+1) or (b′i, a′i+1) or (a1, a

′
1) or (bn, b′n)

M2 in other case.
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ai
bi

aj bj
ak

bk

b′ka′k

bn

b′n

a1

a′1

M1

M1
M1

−3M1

0

w(vi, vj) w(vj , vk)

w(v
i , v

k )

Figure 1 A simplified view of the instance (G′, w′, C) together with an example of a 4-move. The
added edges are marked as blue (dashed) and the removed edges are marked as red (dotted).

Note that the cases are not overlapping. (Note also that although some weights are negative,
we can get an equivalent instance with nonnegative weights by adding M2 to all the weights.)
The construction is illustrated in Fig. 1

If there is a negative triangle vi, vj , vk for some i < j < k in G then we can improve C by re-
moving edges (ai, bi), (aj , bj), (ak, bk) and (a′k, b′k) and inserting edges (ai, bj), (aj , bk), (ak, b′k)
and (a′k, bi). The total weight of the removed edges is M1 +M1 +M1 + (−3M1) = 0 and the
total weight of the inserted edges is w(vi, vj) + w(vj , vk) + 0 + w(vk, vi) < 0 hence indeed
the cycle is improved.

The proof in the other direction is presented in a shortened form due to space constraints
(see the full version [7] for a more elaborate proof). Let us assume that C can be improved
by removing 4 edges and inserting 4 edges. Note that all the edges of weight −M2 belong to
C and all the edges of weight M2 do not belong to C. By the way the weights M1 and M2
are defined, we treat edges of weights ±M2 as fixed, i.e., they cannot be inserted or removed
from the cycle in any improving 4-move. Note that the edges of C that can be removed are
only the edges of the form (ai, bi) (of weights M1) and (a′i, b′i) (of weights −3M1).

All the edges of weight −3M1 already belong to C, and in the next step we prove that
we cannot remove more than one edge of the weight −3M1 from C. Also, if we do remove
one edge of the weight −3M1 (i.e., of the form (a′i, b′i)) from C we need to remove also three
edges of the weights M1 (i.e., of the form (aj , bj)) in order to compensate the loss of 3M1.

Next, we investigate the possible locations of removed edges in an improving 4-move. We
show, that if any edge is removed, then exactly three edges of the form (ai, bi) and exactly
one edge of the form (a′j , b′j) have to be removed. Note that this implies also that the total
weight of the removed edges has to be equal to zero.

Clearly the move has to remove at least one edge in order to improve the weight of
the cycle. Let us assume that the removed edges are (ai, bi), (aj , bj) and (ak, bk) for some
i < j < k and (a′`, b′`) for some `. We argue that in order to obtain a Hamiltonian cycle one
of the inserted edges has to be the edge (a′`, bi). Also the vertex bj has to be connected with
something but the vertex a′` is already taken and hence it has to be connected with the vertex
ai. Similarly the vertex bk has to be connected with aj because a′` and ai are already taken.
Thus ak has to be connected with b′` and this means that k = `. The total weight change of the
move is negative and therefore the total weight of the added edges has to be negative. Thus
we have w(vi, vj) +w(vj , vk) +w(vk, vi) = w′(ai, bj) +w′(aj , bk) +w′(a′k, bi) +w′(ak, b′k) < 0.
So vi, vj , vk is a negative triangle in (G,w). J
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I Theorem 14. If there is ε > 0 such that 4-opt Detection admits an algorithm in time
O(n3−ε · polylog(M)), then there is δ > 0 such that both Negative Edge-Weighted Tri-
angle and All Pairs Shortest Paths admit an algorithm in time O(n3−δ · polylog(M)),
where in all cases we refer to n-vertex input graphs with integer weights from {−M, . . . ,M}.

Proof. The first part of the claim follows from Lemma 13, while the second part follows from
the reduction of All Pairs Shortest Paths to Negative Edge-Weighted Triangle
by Vassilevska-Williams and Williams (Theorem 1.1 in [26]). J
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