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Abstract
Social goods are goods that grant value not only to their owners but also to the owners’ sur-
roundings, be it their families, friends or office mates. The benefit a non-owner derives from the
good is affected by many factors, including the type of the good, its availability, and the social
status of the non-owner. Depending on the magnitude of the benefit and on the price of the
good, a potential buyer might stay away from purchasing the good, hoping to free ride on others’
purchases. A revenue-maximizing seller who sells social goods must take these considerations into
account when setting prices for the good. The literature on optimal pricing has advanced consid-
erably over the last decade, but little is known about optimal pricing schemes for selling social
goods. In this paper, we conduct a systematic study of revenue-maximizing pricing schemes for
social goods: we introduce a Bayesian model for this scenario, and devise nearly-optimal pricing
schemes for various types of externalities, both for simultaneous sales and for sequential sales.
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1 Introduction

Many goods exhibit a positive externality not only on their owner, but also on other parties.
For instance, a coffee machine purchased by an employee benefits all of her office mates, and
essentially reduces the probability of another coffee machine to be purchased. Examples of
these kinds of goods are abundant: A high-schooler who has many friends with cars that can
drive him around might be less tempted to buy a new car. A reputable store might draw
large customer traffic and benefit other stores in the shopping mall. Therefore, an aggressive
advertising campaign carried out by such a store might reduce the likelihood of another store
running a campaign in parallel. In all of these scenarios the externalities depend on the type
of good, on the social status of the party with whom the good is shared, and on the set of
parties who own the good. In the coffee machine example, the machine is typically used by
all the individuals sharing the office space. In the shopping mall, some types of stores (e.g.,
fast food restaurants) might benefit from any traffic in the shopping mall, whereas more
specialized stores may benefit from ad campaigns that draw costumers interested in a similar
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35:2 Pricing Social Goods

kind of product (e.g., Staples may attract costumers similar to those interested in Office
Depot products). The benefit of a high school student depends on his social status and on
the set of friends who own a car.

Because of the abundance of goods that exhibit externalities similar to the ones in the
examples above, their study is of great applicability. We term these goods social goods. When
selling social goods, a seller must take into account the types of buyers in the market and
the benefit they derive from other sets of buyers purchasing the good. Our main goal is to
study how to sell goods in a way that approximately maximizes the seller’s revenue in the
presence of externalities.

To study this problem, we consider a setting with a single type of good, of unlimited
supply, and a set of n agents; each agent i ∈ [n] has a non-negative valuation vi for purchasing
the good, drawn independently from a distribution Fi. We denote the product distribution
by F = ×i∈[n]Fi. Unless stated otherwise, we assume the Fi’s are regular.1

If an agent does not purchase the good, but the good is purchased by others, then this
agent derives only a fraction of her value, depending on the set of agents and the type
of externality the good exhibits on the agent. This type of externality is captured in our
model by an externality function xi : 2[n] → [0, 1], where xi(S) denotes the fraction of vi an
agent i derives when the good is purchased by the set of agents S. We assume that xi is
publicly known (as it captures the agent’s externalities), monotonically non-decreasing and
normalized; i.e., xi(∅) = 0, for every T ⊆ S, xi(T ) ≤ xi(S), and xi(S) = 1 whenever i ∈ S.
We consider three structures of the function xi, corresponding to three types of externalities
of social goods.
(a) Full externalities (commonly known as “public goods"): in this scenario all agents derive

their entire value if the good is purchased by any agent. Therefore, xi(S) = 1 if and only
if S 6= ∅. This model captures goods that are non-excludable, such as a coffee machine
in a shared office. A special case of this scenario, where valuations are independently
and identically distributed, has been studied in [10].

(b) Status-based externalities: in this scenario, agent i’s “social status" is captured by some
discount factor wi ∈ [0, 1], which corresponds to the fraction of the value an agent i
derives from a good when purchased by another party. That is,

xi(S) =


1 i ∈ S,
wi i /∈ S and S 6= ∅,
0 otherwise.

(1)

This model captures settings that exhibit asymmetry with respect to the benefit different
agents derive from goods they do not own (e.g., a fast food restaurant or a popular
high-school student in the above examples).

(c) Availability-based externalities: in this scenario, the availability of a good increases as
more agents purchase a good, and therefore, an agent derives a larger fraction of her
value as more agents purchase a good. This is captured by the following externality
function.

xi(S) =
{

1 i ∈ S,
w(|S|) i /∈ S.

(2)

Here, w : {0, . . . , n−1} → [0, 1] is a monotonically non-decreasing function with w(0) = 0.
Examples of such scenarios include objects that are often shared by neighbors (e.g.,
snow blowers, lawn mowers), office supplies, etc.

1 This means that the virtual valuation function φ(v) = v − 1−F (v)
f(v) is non-decreasing.
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Notice that the full externalities scenario is a special case of both the social-status (where
wi = 1 for every i) and the availability (where w(k) = 1 for every k > 0) models.

Our focus is on posted-price mechanisms, which exhibit many desired properties: they are
simple, distributed, straightforward, and strategyproof. Our goal is to maximize the revenue
extracted by the seller. We distinguish between discriminatory and non-discriminatory prices.
Naturally, using discriminatory prices can often lead to higher revenue for the seller [18, 15].
Price discrimination is commonly used in the US [12], but user studies reveal that many
users believe that this practice is illegal, and consider these acts to be an invasion of privacy
[5]. Therefore, offering non-discriminatory prices may be critical for maintaining the seller’s
reputation. We show scenarios in which setting the same price for all users produces (almost)
as much revenue as engaging in price discrimination.

We consider two natural sale models: (a) a simultaneous sale, where the seller simultan-
eously sets take-it-or-leave-it prices for all agents, after which agents play a simultaneous
Bayesian game, and each agent decides whether or not to buy at the price offered to her;
and (b) a sequential sale, in which the agents arrive sequentially, and each one is offered a
take-it-or-leave-it price upon arrival. In this case, the price and the agent’s decision may
depend on the set of agents that purchased the good before the arrival of the current agent.
We distinguish between adaptive and non-adaptive pricing schemes, which differ in whether
the price can depend upon the set of agents who purchased the good prior to the agent’s
arrival.

In both simultaneous and sequential sales, assuming that agent i is offered a take-it-or-
leave-it price pi, and that the good is eventually purchased by a set S ⊆ [n] of agents, the
utility of agent i is:

ui(S, pi) =
{
vi − pi if i ∈ S,
vi · xi(S) if i /∈ S.

(3)

As shown in Section 2, a set of prices induces equilibria of the game (multiple equilibria
in the simultaneous model, and a single one in the sequential model). Every equilibrium is
characterized by a set of threshold strategies for the agents, where an agent buys the good if
and only if her value exceeds the threshold.

1.1 Our contribution
We provide results for the three aforementioned models. In this section, we provide informal
statements of our results. The exact bounds we achieve are summarized in Table 1. Due to
space limitation, some of the formal statements and proofs are deferred to the full version.

(a) Full externalities

Theorem (informal): There exist poly-time algorithms for computing pricing schemes for
settings with full externalities that give a constant factor approximation to the optimal
pricing scheme, for both simultaneous and sequential sales. Moreover, this result can be
achieved using non-discriminatory prices, despite asymmetry among buyers.

To derive this result, we first analyze the equilibria in simultaneous and sequential models.
We show a surprising equivalence between the revenue attainable in the best equilibrium
at simultaneous and sequential sales, albeit induced by different prices. A corollary of this
equivalence is that the optimal attainable revenue at a sequential sale does not depend on
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the order of agents. Furthermore, we observe that in both simultaneous and sequential sales,
the revenue attainable is upper bounded by the optimal revenue from selling a single private
good (i.e., a good that grants value only to their owners)2.

We proceed as follows. For simultaneous sales, we establish a method for transforming
prices for the sale of a single private good in expectation into prices for selling public goods,
which preserve the revenue up to a constant factor in every equilibrium. Since selling a single
good in expectation yields at least as much revenue as selling a single good deterministically,
this implies a near-optimal pricing scheme for simultaneous sales of public goods.

For sequential sales, we use the theory of prophet inequalities. Consider prices that induce
thresholds that are equal to the prices that emerge from the prophet inequalities. We show
that such prices obtain at least half of the revenue obtained from the prophet inequalities
prices in the private good model. We use this connection to obtain a pricing scheme that
gives 4-approximation to the revenue of the optimal sequential sale of public goods.

Finally, we show how to compute nearly-optimal non-discriminatory prices, even for
asymmetric agents, in both the simultaneous and sequential models.

(b) Status-based externalities

Theorem (informal): There exist poly-time algorithms for computing pricing schemes for
settings with status-based externalities that give a constant factor approximation to the
optimal pricing scheme, for both simultaneous and sequential sales.3

For sequential sales, we devise a non-adaptive pricing scheme, while the benchmark is the
optimal adaptive pricing scheme. To obtain this result, we first show that a seller who is
restricted to set only two prices per agent can extract as much revenue as one who can present
exponentially many prices. We then show that the optimal revenue in this simpler case can
be decomposed into two components: a private component (monotonically decreasing in the
agents’ discount factors) and a public component (monotonically increasing in the discount
factors). The private component can be approximated by simulating n private sales, setting
thresholds equal to the monopoly prices. The public component can be approximated by
similar techniques to the ones introduced for public goods. Therefore, the better of the two
mechanisms extracts a constant fraction of the optimal revenue. A similar decomposition
technique is established for the case of simultaneous sales. Our result for the sequential case
is essentially a reduction: given prices that yield a c-approximation for the optimal sequential
sale in the full externalities model, one can find prices that (c+ 2)-approximate the optimal
sequential sale in the status-based externalities model.

(c) Availability-based externalities

Theorem (informal): There exists a poly-time algorithm for computing a pricing scheme
for sequential sales with availability-based externalities, that gives a logarithmic factor
approximation (with regard to the number of buyers) to the optimal pricing scheme.

In this case, both the pricing scheme and the benchmark set a pricing function for each
agent, which depends on the number of agents who have purchased the good before the
arrival of the agent. To obtain this result, we decompose the revenue into n components.

2 A similar argument was used in [10] for the special case of simultaneous sales where valuations are
identically distributed.

3 We note that no non-discriminatory prices can achieve a constant approximation in this model. Indeed,
the case of private digital goods is a special case of this model, with wi = 0 for every i.
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Table 1 Summary of our results. The columns correspond to sale models, whereas the rows
correspond to externality types. The rows are further divided to sales using discriminatory and
non-discriminatory prices. All the unreferenced results appear in the full version.

Simultaneous Sequential
disc. non-disc. disc. non-disc.

Full (Public goods) i.i.d. ≥ 4/e 4 – 4
non i.i.d. 5.83 Thm. 3.5 4e 4 4e

Status-based 6.83 Ω(logn) 6 Cor. 4.4 Ω(logn)
availability-based – – O(logn) –
network-based Ω

(
n1−ε) – Ω

(
n1−ε) –

Component k = 1, . . . , n is upper bounded by the optimal revenue obtainable by selling k
identical private goods, scaled by w(k)− w(k − 1). We then partition the components into
buckets, and compute prices based on the sequential posted pricing scheme developed by
Chawla et al. [8] for selling private goods.

General externalities. Given the near-optimal pricing schemes above, one may be tempted
to infer that every social goods scenario is amenable to a near-optimal pricing scheme. We
complement our positive results with the following hardness result, refuting this hope. We
consider a natural family of social goods proposed by Feldman et al. [10]: network-based
externalities. In this model, externalities are represented by a graph, and an agent derives
her entire value when a neighboring agent buys a good. We show that there is no poly-time
algorithm to compute prices that give a non-trivial approximation to the optimal posted-price
mechanism. This negative result holds for both the simultaneous and sequential models. We
show that even in very restricted cases (i.e., where agents’ valuations are independently and
uniformly distributed on [0, 1] in the simultaneous case, and agents’ valuations are fixed in
the sequential case), it is NP-hard to find prices that approximate the optimal posted-price
mechanism to within a factor of n1−ε. A Θ(n) approximation can be trivially achieved by
offering the good only to the agent maximizing the monopolist revenue. We note that this
negative result rules out other natural externality structures.4

Irregular distributions. Although our results are stated and proved for regular distributions,
some of our results extend to irregular distributions. Namely, we establish near optimal
pricing schemes for sequential and simultaneous sales under full externalities and status-based
externalities. The results of non-discriminatory prices do not extend to irregular distributions
since the anonymous pricing devised in [4] do not perform well for irregular distributions.
(there exist irregular distributions that there is no anonymous price that give constant
approximation.)

Organization. Due to space limitations, some of the results and proofs are deferred to the
full version5. In the extended abstract, we state two of our main results along with their
proof ideas. The provided proofs give the flavor of the techniques that seem to be useful in
studying pricing mechanisms for social goods.

4 Some examples include: (a) for every pair of agents i, j, agent i can borrow the good from agent j
with some probability wij . Thus, xi(S) = 1−

∏
j∈S,j 6=i(1− wij); and (b) for every pair of agents i, j,

xi(S) = maxj∈S,j 6=i wij .
5 The full version appears in https://arxiv.org/abs/1706.10009.
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The extended abstract is organized as follows. In Section 2 we describe the simultaneous
and sequential sale models. In Section 3 we study the case of full externalities: In Section
3.1 we establish useful properties of equilibria, and in Section 3.2 we devise a near-optimal
pricing scheme for simultaneous sales. The following are deferred to the full version:
(a) a near-optimal pricing scheme for sequential sales,
(b) a non-discriminatory pricing scheme, and
(c) lower bounds for simultaneous sales.
In Section 4 we present our near-optimal pricing scheme for sequential sales under status-
based externalities. The near-optimal pricing scheme for simultaneous sales is deferred to
the full version. The case of availability-based externalities is deferred to the full version in
its entirety. The same is true for the hardness results for general externalities, as well as a
discussion about the irregular case.

1.2 Related work

The most famous and well studied instance of social goods is public goods, when all agents
derive their full value whenever a good is purchased. The study of public goods was initiated
by Samuelson [19], who observed that private provisioning of public goods is not necessarily
efficient; see also [17] for an overview.

The closest work to ours is that of Feldman et al. [10]. For their positive results,
they consider a special case of our full externalities model — in their model agents arrive
simultaneously with valuations that are drawn independently and identically from a known
distribution. Our work extends this work in several dimensions. First, we consider more
realistic forms of externalities that go beyond public goods. Second, we consider settings
where agent valuations are drawn from non-identical distributions. Third, we provide results
for settings where agents arrive either sequentially or simultaneously. Finally, some of our
results extend to irregular distributions.

A line of work similar in flavor to ours, yet inherently different, is that of revenue
maximization in the presence of positive externalities [1, 11, 13, 2, 6]. In this line of work,
an agent’s value for the good increases as more agents purchase the goods, but only if the
agent purchased the good as well. Therefore, an agent is more likely to purchase the good
as more agents purchase it. This is in stark contrast to our setting, where agents are less
inclined to buy a good as more agents do.

Finally, there is a rich body of literature on the design of posted price mechanisms for
the sale of private goods (where agents do not derive value from goods they do not own).
See Chapter 4 in [14] for a textbook treatment. A sample of the work can be found in
[8, 4, 16, 9, 7]. An overview of some results that are directly referred to in this work is given
in the full version.

2 Models and preliminaries

Simultaneous sales model. We view a simultaneous sale game as the following two-stage
game. First, the seller posts a price vector p = (p1, . . . , pn) to the agents (agent i is offered
to purchase an item at price pi). Subsequently, the agents play a simultaneous Bayesian
game. In this model, we assume that the probability distribution of every agent is atomless.6

6 Meaning that for every q there exists p for which Fi(p) = q.
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Agents wish to maximize their expected utility. Given a price pi, agent i buys the
good if her expected utility from buying, vi − pi, exceeds the utility from not buying,
vi ·ES 63i[xi(S)] (where ES 63i is shorthand for ES:i 6∈S). Therefore, an agent buys if and only if
vi ≥ pi

1−ES 63i[xi(S)] =: Ti. The strategy of every agent i is therefore defined by a threshold Ti.
Denote by T = (T1, . . . , Tn) a strategy profile, given by a vector of thresholds. A strategy
profile T induces a probability distribution over the set S of agents that purchase the good;
denote this distribution by µT, and the distribution µT conditioned on i not being in the set
of purchasing agents by µ−iT . A Nash equilibrium is characterized by a threshold vector T
such that:

Ti = pi
1− ES∼µ−i

T
[xi(S)] ∀i ∈ [n]. (4)

The following theorem establishes the existence of Nash equilibria via a fixed point
argument.

I Theorem 2.1. In the simultaneous model, for any set of externality functions {xi}i∈[n], for
any set of atomless distributions F , and for any price vector p, there exists an equilibrium T.

One of the challenges in our model stems from the fact that a single price vector may
induce multiple equilibria. Consider the simple setting of a single public good and two agents,
Alice and Bob, where FAlice and FBob are both uniform on [0, 1], and the seller sets a non
discriminatory price of 1/2. Applying the equilibrium condition in Eq. (4), we get that every
tuple (TAlice, TBob) ∈ [0, 1]2 satisfying TAlice · TBob = 1/2 forms an equilibrium strategy.7
Therefore, in this case, there is a continuum of equilibria. It is not hard to see, however,
that a set of thresholds T can be the consequence of only a single price vector, which can be
derived via Eq. (4). This is cast in the following observation:

I Observation 2.2. In the simultaneous model, a given price vector can induce multiple
equilibria, but any given equilibrium T can be induced by a single price vector p.

Let Eq(F ,p) denote the set of equilibria induced by a price vector p, given a product dis-
tribution F . For a given price vector p and an equilibrium T ∈ Eq(F ,p), let Rsim(F ,p,T) =∑
i pi · (1− Fi(Ti)) denote the seller’s expected revenue. Given a price vector p, we define

Rsim(F ,p) = max
T∈Eq(F,p)

Rsim(F ,p,T) and Rsim(F ,p) = min
T∈Eq(F,p)

Rsim(F ,p,T)

to be the revenue obtained in the respective best and worst equilibrium induced by p. We
refer to these revenues as the optimistic and pessimistic revenues, respectively.

The strongest approximation results one can hope for are ones that consider the pessimistic
revenue obtained by our pricing scheme against an optimistic benchmark. This is exactly
the approach we take. In particular, our benchmark is the revenue obtained by the best
pricing, assuming the best equilibrium induced by every pricing. We denote the benchmark
by R∗sim(F) = maxp∗ Rsim(F ,p∗). The performance of a price vector p is measured by the
worst equilibrium induced by p; i.e., Rsim(F ,p). Our goal is to calculate a price vector p
that minimizes the ratio between the former and the latter expressions.

7 For a comprehensive discussion regarding the equilibrium condition in the public goods model, see
Eq.(5) in Section 3.
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Sequential sales model. In the sequential sales model, n agents arrive one by one according
to an order σ : [n]→ [n], where agent i is the σ(i)th agent to arrive. For ease of notation,
we assume that agent i is the ith agent to arrive, unless explicitly stated otherwise. In
sequential sales, the price set by the seller for agent i can depend on the set of agents who
have purchased the good prior to agent i’s arrival. Thus, it can be viewed as a function
pi : 2[i−1] → R+.8 The subgame perfect equilibrium in this auction is unique and can be
found by a (possibly exponential) backward induction. An agent who receives a price buys
if and only if her utility from buying exceeds her expected derived value from not buying
conditioned on the set of agents that purchased the good prior to her arrival. Of course, this
might impose a different threshold for every scenario which might lead to an exponential
strategy space for the agents and an exponential time to compute each threshold in the
strategy of an agent. As we discuss in the following sections, we devise pricing schemes in
which the seller has a simple nearly optimal pricing scheme which leads to a simple strategy
space and a poly-time threshold computation.

3 Pricing goods with full externalities (public goods)

3.1 Equilibrium and revenue equivalence

In this section we focus on the case where all agents derive their entire value from a good if
purchased by any agent. We first characterize the equilibrium condition for a simultaneous
sale. Given an equilibrium T = (T1, . . . , Tn), the expected value agent i derives from other
agents is ES∼µ−i

T
[xi(S)] = 1 ∗ Pr [some agent j 6= i buys] = 1 − Pr [no agent j 6= i buys] =

1 −
∏
j 6=i Fj(Tj). Plugging this expression into Eq. (4) yields the following equilibrium

condition:

Ti = pi∏
j 6=i Fj(Tj)

for all i. (5)

For a given price vector p and an equilibrium T ∈ Eq(F ,p), the expected revenue is

Rsim(F ,p,T) =
∑
i

pi (1− Fi(Ti))
(5)=
∑
i

Ti ·
(∏
j 6=i

Fj(Tj)
)
· (1− Fi(Ti)) . (6)

We turn to describe the equilibrium in the sequential sales model. In this case, whenever
an agent buys an item, no subsequent agent will ever buy an item. Therefore, we can assume
without loss of generality that the seller sets a single price per agent. Let p = (p1, . . . , pn)
denote the vector of offered prices.

We now show how to compute the unique subgame perfect equilibrium of the game.
When the last agent (agent n) is offered a price, her best strategy is to buy if her value
exceeds the price; i.e., Tn = pn. When agent i = n − 1, . . . , 1 is offered a price, she faces
the following tradeoff: if she buys, her utility is vi − pi. If she does not buy, her util-
ity is vi

(
1−

∏
j>i Pr [j does not buy]

)
= vi

(
1−

∏
j>i Fj(Tj)

)
. Consequently, the unique

8 Indeed, there are cases where the seller can gain higher revenue by setting such prices (an explicit
example for availability-based externalities is given in the full version).
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equilibrium T is given by910

Ti = pi∏
j>i Fj(Tj)

∀i ∈ [n]. (7)

Given a product distribution F , a price vector p, and an arrival order σ, let TF (σ,p) be the
function that returns the unique equilibrium. Since every price vector p defines a unique
strategy vector T, the expected revenue from agent i is also uniquely defined, and can be
calculated by∏
j<i

Pr [j does not buy] · pi · (1− Fi(Ti))
(7)=

(∏
j<i

Fj(Tj)
)
· Ti ·

(∏
j>i

Fj(Tj)
)
· (1− Fi(Ti))

= Ti ·
(∏
j 6=i

Fj(Tj)
)
· (1− Fi(Ti)).

Therefore, the expected revenue from all agents can be written as

Rseq(F , σ,p,T = TF (σ,p)) =
∑
i

Ti ·
(∏
j 6=i

Fj(Tj)
)
· (1− Fi(Ti)) . (8)

Given an arrival order σ, let R∗seq(F , σ) = maxpRseq(F , σ,p,T = TF (σ,p)) denote the
highest revenue a seller can obtain. We note that given a threshold vector T and an arrival
order σ, there is also a unique price vector that produces this threshold vector T, which can
be calculated by (7), thus TF (σ, ·) is a bijection. This is cast in the following observation.

I Observation 3.1. Fix an arrival order. An equilibrium strategy vector T is uniquely
determined by a price vector p, and a price vector p is uniquely determined by a strategy
vector T.

Theorem 3.2 establishes revenue equivalence in simultaneous and sequential sales.

I Theorem 3.2. For every product distribution F and for every order of arrival σ in the
sequential model, we have that R∗seq(F , σ) = R∗sim(F).

It immediately follows that the optimal revenue is independent of the arrival order.

I Corollary 3.3. For every two arrival orders σ, σ′, R∗seq(F , σ) = R∗seq(F , σ′).

In the sequel, we use R∗seq(F) to denote the optimal revenue in the sequential model.
We next draw a connection between selling public goods and selling a single private good.

This connection is later used in proving approximation results for mechanisms for the sale
of public goods. Let Myer(F) denotes the optimal revenue a seller can obtain by selling a
single private good to a set of agents drawn from F (i.e., the revenue obtained by Myerson’s
optimal auction). Using similar arguments to ones used in [10], we have the following:

I Lemma 3.4. For every product distribution F , R∗seq(F) ≤ Myer(F)
(
and therefore,

R∗sim(F) ≤Myer(F) by Theorem 3.2
)
.

9 Unlike the simultaneous model, an equilibrium exists for non atomless distributions, whenever tie-
breaking is done consistently by agents. That is, agents always take the same action when their value is
equal to their threshold.

10For n, we let
∏
j>n

Fj(Tj) = 1.
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3.2 Near optimal simultaneous sale

In our construction, we use the ex-ante relaxation (EAR) [3, 4] for selling a private good.
The EAR relaxes the feasibility constraint, so that instead of selling at most one item
ex post, this constraint holds only in expectation. Since the feasible region increases, the
revenue of an optimal mechanism for this case can only be higher than Myerson’s optimal
mechanism. Combined with Lemma 3.4, it suffices to provide a pricing scheme for our setting
that approximates the revenue of the EAR. As it turns out, when agents’ values are drawn
from regular distributions, the optimal mechanism for the ex-ante setting is a posted price
mechanism. These prices can be computed in polynomial time by a convex programming
formulation [14].

We use these prices to determine prices for the sale of public goods. To do so, we partition
the agents into valuable and non-valuable agents, based on their contribution to the revenue
of the EAR. All the revenue obtained in our pricing scheme comes from the valuable agents.
Their prices are set so that if there exists a valuable agent that buys with low probability, the
equilibrium condition guarantees that other agents buy with a sufficiently high probability.

I Theorem 3.5. For social goods with full externalities and for any regular product distribu-
tion F , there exists a poly-time algorithm that computes prices p for which Rsim(F ,p) ≥
R∗sim(F)/5.83.

Proof. Let p̂ = (p̂1, . . . , p̂n) be the posted prices that maximize the revenue in the EAR,
and let R =

∑
i p̂i(1 − Fi(p̂i)) be the optimal revenue of the EAR. As mentioned above,

R ≥Myer(F). Let c1, c2 > 1 be two parameters, to be determined later. We partition the
agents into two groups as follows. Let B = {i ∈ [n] : p̂i ≥ R/c1} and S = [n] \B. For every
agent i we set

pi =
{
p̂i/c2 i ∈ B
∞ i ∈ S

.

The revenue from the agents in S in the optimal EAR mechanism is bounded by
∑
i∈S p̂i ·

Pr [i buys] ≤ Rc1

∑
i∈S(1− Fi(p̂i)) ≤ Rc1

, where the last inequality stems from the fact that
the EAR sells at most 1 item in expectation. Therefore, the revenue extracted from agents
in B in the EAR is

∑
i∈B

p̂i · (1− Fi(p̂i)) ≥ R−
R
c1

= (1− 1/c1)R. (9)

Let T be an equilibrium induced by the price vector p = (p1, . . . , pn). We consider two cases:

Case 1: Ti ≤ p̂i for every i ∈ B. In this case,

Rsim(F ,p,T) =
∑
i

pi · (1− Fi(Ti)) =
∑
i∈B

pi · (1− Fi(Ti))

≥
∑
i∈B

p̂i
c2
· (1− Fi(p̂i))

(9)
≥
(

1− 1/c1

c2

)
R,

where the first inequality follows from case 1 and the monotonicity of Fi.
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Case 2: There exists i ∈ B such that Ti > p̂i. For such an agent i,

p̂i/c2∏
j 6=i Fj(Tj)

= pi∏
j 6=i Fj(Tj)

(5)= Ti > p̂i ⇒
∏
j

Fj(Tj) ≤
∏
j 6=i

Fj(Tj) ≤
1
c2
. (10)

Let pmin = mini pi. The expected revenue in this case is at least

pmin · Pr[at least one agent buys] ≥ R
c1c2

(
1−

∏
j

Fj(Tj)
) (10)
≥
(

1− 1/c2

c1c2

)
R,

where the first inequality follows from the fact that all prices are at least R
c1c2

.
Therefore, we get an approximation factor of min

{(
1−1/c1
c2

)
,
(

1−1/c2
c1c2

)}
. Setting c1 =

√
2

and c2 = 1 + 1√
2 optimizes the approximation ratio and gives revenue of at least a 1

3+2
√

2
fraction of R. Since R ≥Myer(F) ≥ R∗sim(F) (by Lemma 3.4), we get that Rsim(F ,p) ≥
R∗sim(F)
3+2
√

2 ≈
R∗sim(F)

5.83 . J

I Remark. An approximation ratio of 8 is given in [10] for the special case of i.i.d. distributions.
The last theorem improves the approximation ratio to 5.83 even for the more general case
of non-identical distributions. Moreover, in the full version we give a non-discriminatory
pricing that gives 4 approximation for the case of identical distributions. We also show that
no pricing scheme can give better approximation than 4/e, even for identical distributions.

4 Near optimal sequential sale under status-based externalities

Recall that in this setting, every agent is associated with a discount factor wi ∈ [0, 1], Let
w = (w1, . . . , wn). We devise a non-adaptive pricing scheme (i.e., where an agent’s price
does not depend on the previous purchases) that approximates the revenue of the optimal
adaptive pricing scheme.11 In our scheme, every agent is assigned with a single price.

Let p0 and p>0 be the price vectors posted by the seller who uses two price vectors,
where p0

i (resp., p>0
i ) is the price offered to agent i when no agent (resp., at least one agent)

has purchased a good prior to i’s arrival. Let p = (p0,p>0). In the full version, we show
that we it is without loss of generality to restrict attention to two price vectors.

In contrast to the full externalities settings, agent i may have two different thresholds
in the equilibrium — one for the case where no agent bought a good before she arrives,
denoted by T 0

i , and one for the case where at least one agent buys the good, denoted by
T>0
i . For every agent i, if some agent bought the good before she arrived, she faces the

following trade-off — if she buys the good, her utility is vi − p>0
i ; otherwise, her utility is

wi · vi. Therefore, the threshold satisfies the following equation:

T>0
i − p>0

i = wi · T>0
i ⇒ p>0

i = (1− wi) · T>0
i . (11)

If no agent bought the good before before agent i arrived, then12

T 0
i − p0

i = wi · T 0
i · Pr[Agent j > i buys a good] = wi · T 0

i ·
(

1−
∏
j>i

Fj(T 0
j )
)

⇒ p0
i = (1− wi) · T 0

i + wi · T 0
i ·
∏
j>i

Fj(T 0
j ). (12)

11Which sets a price for the current agent depending on the set of agents that purchased the good prior
her arrival.

12For the case of i = n, the RHS product is naturally defined to be 1, and therefore T 0
n = p0

n.
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For every agent i and pricing p = (p0,p>0), let q0
i = q0

i (p) (resp., q>0
i = q>0

i (p)) denote
the probability that no agent (resp., at least one agent) has bought a good before agent i
arrived. The revenue can now be written as

R(p) =
∑
i

(
q0
i · p0

i · (1− Fi(T 0
i )) + q>0

i · p
>0
i · (1− Fi(T

>0
i ))

)
(12)
=

∑
i

q0
i ·
(

(1− wi) · T 0
i + wi · T 0

i ·
∏
j>i

Fj(T 0
j )
)
· (1− Fi(T 0

i ))

+
∑
i

q>0
i · p

>0
i · (1− Fi(T

>0
i ))

(11)
=

∑
i

q0
i · (1− wi) · T 0

i · (1− Fi(T 0
i )) +

∑
i

q0
i · wi · T 0

i ·
(∏
j>i

Fj(T 0
j )
)
· (1− Fi(T 0

i ))

+
∑
i

q>0
i · T

>0
i · (1− wi) · (1− Fi(T>0

i )).

By removing factors smaller than 1 (q0
i , q

>0
i , wi) in the last expression, we get

R(p) ≤
∑
i

(1− wi) · T 0
i · (1− Fi(T 0

i )) +
∑
i

(∏
j<i

Fj(T 0
j )
)
· T 0
i ·
(∏
j>i

Fj(T 0
j )
)
· (1− Fi(T 0

i ))

+
∑
i

T>0
i · (1− wi) · (1− Fi(T>0

i ))

=
∑
i

(1− wi) · T 0
i · (1− Fi(T 0

i )) +
∑
i

(1− wi) · T>0
i · (1− Fi(T>0

i ))

+
∑
i

T 0
i ·
(∏
j 6=i

Fj(T 0
j )
)
· (1− Fi(T 0

i )). (13)

Given a thresholds vector T = (T1, T2, . . . , Tn), we define R1(T,w) =
∑
i(1− wi) · Ti ·

(1− Fi(Ti)) and R2(T) =
∑
i Ti ·

(∏
j 6=i Fj(Tj)

)
· (1− Fi(Ti)). It follows from Eq. (13) that

max
p
R(p) ≤ 2 max

T
R1(T,w) + max

T
R2(T). (14)

That is, the RHS sum in Eq. (14) is an upper bound on the optimal revenue that can be
obtained. R1(T,w) can be viewed as the private component of the revenue, which becomes
more significant as wi’s get smaller, while R2(T) can be viewed as the public component,
which becomes more significant as wi’s grow. Notice that maxTR2(T) is exactly R∗seq(F),
where R∗seq(F) is the optimal posted prices revenue in a sequential sale in the full externalities
model, as defined in Section 3.

The following lemmas (4.1 and 4.2) show that it is possible to find prices that approximate
maxTR1(T,w) and prices that approximate maxTR2(T). In fact, they show a stronger
result, namely that for each of the terms in the sum, there exists a single price vector
p = p0 = p>0 that approximates it.

I Lemma 4.1. There exists a poly-time algorithm for computing prices p such that R(p) ≥
maxTR1(T,w).

The following allows us to reduce the problem of finding “good” prices in the status-based
externalities model to finding “good” prices in the full externalities model.

I Lemma 4.2. Given prices p′, there exist poly-time computable prices p such that R(p) ≥
Rseq(F ,p′).
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We now present the main result of this section:

I Theorem 4.3. Given a c-approximation pricing for sequential sales in the full externalities
model, there exists a poly-time computable pricing that guarantees a (c+ 2)-approximation
for the optimal sequential sales in the model of status-based externalities.

Proof. Since maxTR2(T) = R∗seq(F), if one can find prices that c-approximate the op-
timal prices in the full externalities model, by Lemma 4.2, one can compute prices that
c-approximate maxTR2(T) in the status-based externalities model.

Let p1 and p2 be the sets of prices for which R(p1) ≥ maxTR1(T,w) and c · R(p2) ≥
maxTR2(T), respectively. These prices can be computed in poly time by Lemmas 4.1 and
4.2. We have that

max
p
R(p)

(14)
≤ 2 max

T
R1(T,w) + max

T
R2(T)

≤ 2 · R(p1) + c · R(p2)
≤ (c+ 2) ·max{R(p1),R(p2)}. J

The following corollary follows from Theorem 4.3 and by the existence of a 4-approximation
pricing for sequential sales in the full externalities model, as shown in the full version.

I Corollary 4.4. For goods that exhibit status-based externalities, there exists a poly-time
algorithm for computing prices that give a 6-approximation to the optimal pricing scheme.
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