
Distance-Preserving Subgraphs of Interval Graphs
Kshitij Gajjar∗1 and Jaikumar Radhakrishnan2

1 Tata Institute of Fundamental Research, Mumbai, India
kshitij.gajjar@tifr.res.in

2 Tata Institute of Fundamental Research, Mumbai, India
jaikumar@tifr.res.in

Abstract
We consider the problem of finding small distance-preserving subgraphs of undirected, unweighted
interval graphs that have k terminal vertices. We show that every interval graph admits a distance-
preserving subgraph withO(k log k) branching vertices. We also prove a matching Ω(k log k) lower
bound by exhibiting an interval graph based on bit-reversal permutation matrices. In addition,
we show that interval graphs admit subgraphs with O(k) branching vertices that approximate
distances up to an additive term of +1.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases interval graphs, shortest path, distance-preserving subgraphs, bit-rever-
sal permutation matrix

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.39

1 Introduction

We consider the following problem. Given an undirected graph G = (V,E) with k vertices
designated as terminals, our goal is to construct a small subgraph H of G. Our notion of
smallness is non-standard: we compare solutions based on the number of vertices of degree
three or more. We have the following definition.

I Definition 1. Given an undirected, unweighted graph G = (V,E) and a set R ⊆ V (the
terminals), we say that a subgraph H(V,E′) of G is distance-preserving for (G,R) if for all
terminals u, v ∈ R, dG(u, v) = dH(u, v), where dG and dH denote the distances in G and H
respectively. Let deg≥3(H) denote the number of vertices in H with degree at least three
(referred to as branching vertices). Let

B(G,R) = min
H

deg≥3(H),

where H ranges over all subgraphs that are distance-preserving for (G,R). For a family of
graphs F (such as planar graphs, trees, interval graphs), let

BF (k) = max
G

B(G,R),

where G ranges over all graphs in F , and R ranges over all subsets of V (G) of size k.

In this work, we obtain essentially tight upper and lower bounds on BI(k), where I is the
class of interval graphs.

∗ Supported by a DAE scholarship.

© Kshitij Gajjar and Jaikumar Radhakrishnan;
licensed under Creative Commons License CC-BY

25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 39; pp. 39:1–39:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.39
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

39:2 Distance-Preserving Subgraphs of Interval Graphs

I Theorem 2 (Main result). Let I denote the class of interval graphs (see Theorem 6).
(a) (Upper bound) BI(k) = O(k log k).
(b) (Lower bound) There exists a constant c such that for each k, a positive power of two,

there exists an interval graph Gint with |R| = k terminals such that B(Gint, R) ≥ c k log k.
This implies that BI(k) = Ω(k log k).

Parts (a) and (b) imply that BI(k) = Θ(k log k).

Remark (i). Part (a) is constructive. Our proof of the upper bound can be turned into an
efficient algorithm that, given an interval graph G with n vertices, produces the required
distance-preserving subgraph H in running time polynomial in n.
Remark (ii). Our interval graphs are unweighted. If we consider the family of interval graphs
with non-negative weights on their edges (Iw), then using [9, Section 5], it is easy to prove
that BIw

(k) = Θ(k4). Details appear in the full version of the paper.

1.1 Motivation and Related Work

The problem of constructing small distance-preserving subgraphs bears close resemblance to
several well-studied problems in graph algorithms: graph compression [5], graph spanners [3,
11], Steiner point removal [7, 8], graph contractions [4], etc.

We emphasize two motivations for studying distance-preserving subgraphs, while basing
the measure of efficiency on the number of branching vertices. First, this problem is
closely related to the notion of distance-preserving minors introduced by Krauthgamer and
Zondiner [10]. Second, although the problem restricted to interval graphs is interesting in its
own right, it can be seen to arise naturally in contexts where intervals represent time periods
for tasks. Let us now elaborate on our first motivation. Later, we elaborate on the second.

I Definition 3. Let G(V,E,w) be an undirected graph with weight function w : E → R≥0

and a set of terminals R ⊆ V . Then, H(V ′, E′, w′) with R ⊆ V ′ ⊆ V and weight function
w′ : E′ → R≥0 is a distance-preserving minor of G if: (i) H is a minor of G, and (ii)
dH(u, v) = dG(u, v)∀u, v ∈ R.

Subsequent work by Krauthgamer, Nguyên and Zondiner [9, 10] implies that BG(k) =
Θ(k4), where G is the family of all undirected graphs. Details appear in the full version of
the paper.

Using a reduction from the set cover problem, we prove that it is NP-hard to determine
if B(G,R) ≤ m, when given a general graph G ∈ G, a set of terminals R ⊆ V (G), and a
positive integer m. Details appear in the full version of the paper.

Following the work of Krauthgamer and Zondiner [10], Cheung et al. [1] introduced the
notion of distance-approximating minors.

I Definition 4. Let G(V,E,w) be an undirected graph with weight function w : E → R≥0

and a set of terminals R ⊆ V . Then, H(V ′, E′, w′) with R ⊆ V ′ ⊆ V and weight function
w′ : E′ → R≥0 is an α-distance-approximating minor (α-DAM) of G if: (i) H is a minor of
G, and (ii) dG(u, v) ≤ dH(u, v) ≤ α · dG(u, v)∀u, v ∈ V .

In analogy with distance-approximating minors one may ask if interval graphs admit distance-
approximating subgraphs with a small number of branching vertices.

K. Gajjar and J. Radhakrishnan 39:3

I Theorem 5. Every interval graph G with k terminals admits a subgraph H with O(k)
branching vertices such that for all terminals u and v of G

dG(u, v) ≤ dH(u, v) ≤ dG(u, v) + 1.

A proof of Theorem 5 will appear in the full version of the paper.
We now elaborate on our second motivation. The following example1 illustrates the

relevance of distance-preserving (-approximating) subgraphs for interval graphs.

1.2 The Shipping Problem
The port of Bandarport is a busy sea port. Apart from ships with routes originating or
terminating at Bandarport, there are many ships that dock at Bandarport en route to their
final destination. Thus, Bandarport can be considered a hub for many ships from all over
the world.

Consider the following shipping problem. A cargo ship starts from some port X, and
has Bandarport somewhere on its route plan. The ship needs to deliver a freight container
to another port Y , which is not on its route plan. The container can be dropped off at
Bandarport and transferred through a series of ships arriving there until it is finally picked
up by a ship that is destined for port Y . Thus, the container is transferred from X to Y via
some “intermediate” ships at Bandarport2.

However, there is a cost associated with transferring a container from one ship to another.
This is because each transfer operation requires considerable manpower and resources. Thus,
the number of ship-to-ship transfers that a container undergoes should be as small as possible.

Furthermore, there is an added cost if an intermediate ship receives containers from
multiple ships, or sends containers to multiple ships. This is mainly because of the bookkeeping
overhead involved in maintaining which container goes to which ship. If a ship is receiving
all its containers from just one ship and sending all those containers to just one other ship,
then the cost associated with this transfer is zero (since a container cannot be directed to a
wrong ship if there is only one option), and this cost increases as the number of to and from
ships increases.

Thus, given the docking times of ships at Bandarport, and a small subset of these ships
that require a transfer of containers between each other, our goal is to devise a transfer
strategy that meets the following objectives.

Minimize the number of transfers for each container.
Minimize the number of ships that have to deal with multiple transfers.

Representing each ship’s visit to the port as an interval on the time line, this problem
can be modelled using distance-preserving (-approximating) subgraphs of interval graphs. In
this setting, a shortest path from an earlier interval to a later interval corresponds to a valid
sequence of transfers across ships that moves forward in time. The first objective corresponds
to minimizing pairwise distances between terminals; the second objective corresponds to
minimizing the number of branching vertices.

1 This is not a real-life problem, though we learnt that minimizing the number of branching vertices in
shipping schedules is logistically desirable.

2 The container cannot be left at the warehouse/storage unit of Bandarport itself beyond a certain limited
period of time.

ESA 2017

39:4 Distance-Preserving Subgraphs of Interval Graphs

Let us now quantify this. Suppose that there are a total of n ships that dock at the port
of Bandarport. Out of these, there are k ships that require a transfer of containers between
each other (typically k � n). Our results for interval graphs imply the following.
1. If we must make no more than the minimum number of transfers required for each

container, then there is a transfer strategy in which the number of ships that have to
deal with multiple transfers is O(k log k).

2. If we are allowed to make one more than the minimum number of transfers required for
each container, then there is a transfer strategy in which the number of ships that have
to deal with multiple transfers is O(k).

3. Neither bound can be improved, i.e. there exist scheduling configurations in which Ω(k)
and Ω(k log k) ships, respectively, have to deal with multiple transfers.

1.3 Our Techniques
The linear upper bound for BI(k) mentioned in Theorem 5 is easy to prove, and appears
in the full version of the paper. However, if we require that distances be preserved exactly,
then the problem becomes non-trivial. We now present a broad overview of the techniques
involved in proving our main result.

The Upper Bound: We may restrict attention to interval graphs that have interval
representations where the terminals are intervals of length 0 (their left and right end points
are the same) and the non-terminals are intervals of length 1 (details appear in the full version
of the paper). It is well-known that shortest paths in interval graphs can be constructed
using a simple greedy algorithm. We build a subgraph consisting of such shortest paths
starting at different terminals and add edges to it so that all inter-terminal shortest paths
become available in the subgraph. We use a divide-and-conquer strategy, repeatedly “cutting”
the graph down the middle into smaller interval graphs. Then we glue the solutions to the
two smaller problems together. For this, we need a key observation (which appears to be
applicable specifically to interval graphs) that allows one shortest path to “hop” onto another.
In this, our upper bound method is significantly different from methods used previously for
other families of graphs.

The Lower Bound: We construct an interval graph and arrange its vertices on a two-
dimensional grid instead of the more natural one-dimensional number line. We then show
that this grid can be thought of as a matrix, in particular, the bit-reversal permutation
matrix (where the ones corresponding to terminals and the zeros to non-terminals). The
bit-reversal permutation matrix has seen many applications, most notably in the celebrated
Cooley-Tukey algorithm for Fast Fourier Transform [2]. Prior to our work too, it has been
used to devise lower bounds (e.g. [6, 12]). Examining the routes available for shortest paths
in our interval graph constructing using the bit-reversal permutation matrix requires (i) an
analysis of common prefixes of binary sequences, and (ii) building a correspondence between
branching vertices and the k log k/2 edges of a (log k)-dimensional Boolean hypercube.

In our formulation, we count the number of branching vertices (vertices with degree ≥ 3).
It is also reasonable to consider the number of edges incident on non-terminal branching
vertices (we refer to such edges as branching edges) as the measure of complexity. Our
Ω(k log k) lower bound is clearly applicable to the number of branching edges as well. In fact,
using a more direct argument, one can show that there are interval graphs with k terminals
that admit distance-preserving subgraphs with O(k) branching vertices, but need Ω(k log k)
branching edges. Details appear in the full version of the paper. However, we do not know if
all interval graphs admit distance-preserving subgraphs with O(k log k) branching edges: the
best upper bound we know for this variant is O(k log2 k).

K. Gajjar and J. Radhakrishnan 39:5

2 Interval Graphs

We work with the following definition of interval graphs.

I Definition 6. An interval graph is an undirected graph G(V,E, left, right) with vertex set
V , edge set E, and real-valued functions left : V → R and right : V → R such that:

left(x) ≤ right(x) ∀x ∈ V ;
(u, v) ∈ E ⇔ [left(u), right(u)] ∩ [left(v), right(v)] 6= ∅.

We order the vertices of the interval graph according to the end points of their corresponding
intervals. For simplicity, we assume that all the end points of the intervals have distinct
values. Define relations “�” and “≺" on the set of vertices V as follows.

u � v ⇔ right(u) ≤ right(v) ∀u, v ∈ V.
u ≺ v ⇔ right(u) < right(v) ∀u, v ∈ V.

Note that if u ≺ v, then u 6= v.

It is well-known that shortest paths in interval graphs can be constructed using a greedy
algorithm which proceeds as follows. Suppose we need to construct a shortest path from
interval u to interval v (assume u ≺ v). The greedy algorithm starts at u. In each step
it chooses the next interval that intersects the current interval and reaches farthest to the
right. It stops as soon as the current interval intersects v. Let P gr

G (u, v) be the shortest path
produced by this greedy algorithm between u and v (u ≺ v).

Given real numbers a, b ∈ R such that a ≤ b, let G[a, b] be the induced subgraph on those
vertices v of G such that [left(v), right(v)] ∩ [a, b] 6= ∅. Similarly, let G[a, b) be the induced
subgraph on those vertices v of G such that [left(v), right(v)] ∩ [a, b) 6= ∅.

3 Proof of the Upper Bound

In this section, we show that any interval graph G with k terminals has a distance-preserving
subgraph with O(k log k) branching vertices, which is simply Theorem 2 (a), restated here
for completeness.

I Theorem 7. If I is the family of all interval graphs, then BI(k) = O(k log k).

Fix an interval graph G on k terminals. Our goal to obtain a distance-preserving subgraph
H of G with O(k log k) branching vertices. Note that the H that we obtain is not necessarily
an interval graph. This is because H need not be an induced subgraph of G. We may assume
(details in the full version of the paper) that all terminals in G are point intervals and all
non-terminals are unit intervals.

Consider the greedy path P gr
G (ti, tk) (i < k), where tk is the rightmost terminal. Our

distance-preserving subgraph includes greedy paths from ti to tk for all 1 ≤ i < k. Let

H0 =
⋃

1≤i<k
P gr
G (i, k). (1)

Now, H0 already provides for shortest paths from each terminal ti to tk. In fact, it can be
viewed as a shortest path tree with root tk, but constructed backwards. Thus, the total
number of branching vertices in H0 is O(k). We still need to arrange for shortest paths
between other pairs of terminals (ti, tj). The path P gr

G (ti, tj) (for i < j < k) is either entirely
contained in P gr

G (ti, tk), or it follows P gr
G (ti, tk) until it reaches a neighbour of tj and then

branches off to connect to tj . We can consider including all paths of the form P gr
G (ti, tj) in

ESA 2017

39:6 Distance-Preserving Subgraphs of Interval Graphs

H0. That is, we need to link each such tj to vertices from H0 so that each path P gr
G (ti, tj)

becomes available. If this is done without additional care, we might end up introducing Ω(k)
additional branching vertices per terminal, and Ω(k2) branching vertices in all, far more than
we claimed.

The crucial idea for overcoming this difficulty is contained in the following lemma.

I Lemma 8. Suppose v ≺ w and d(v, w) = 1. Let (v, v1, v2, . . . , v`) and (w,w1, w2, . . . , w`′)
be greedy shortest paths starting from v and w respectively. Suppose right(v`) < right(w`′).
Then, ` ≤ `′.

Proof. Since d(v, w) = 1, the greedy strategy reaches at least as far in j + 1 steps from
v as it does in j steps from w. Suppose for contradiction that ` > `′ (that is ` ≥ `′ + 1).
Then, we have right(w`′) ≤ right(v`′+1) ≤ right(v`), contradicting our assumption that
right(v`) < right(w`′). J

The above lemma is crucial for the construction of our subgraph H. For example, suppose
ti and tj both need to reach tr via a shortest path. Suppose (wi, tr) is the last edge of
P gr
G (ti, tr) and (wj , tr) is the last edge of P gr

G (tj , tr). We claim that it is sufficient to include
only one of these edges in H. If right(wj) < right(wi), then it is enough to include the edge
(wj , tr) in H; as long as ti has a shortest path to wj , this edge serves for shortest paths to tr
from both ti and tj . In the construction below, we add links to the greedy paths of H0 so
that we need to provide only one such edge per terminal. This idea forms the basis of the
divide-and-conquer strategy which we present below.

Suppose G has 2` terminals. We find a point x so that both Gleft = G[−∞, x] and
Gright = G[x,∞] have ` terminals. By induction, we find distance-preserving subgraphs Hleft
and Hright of Gleft and Gright with at most f(`) branching vertices each. The union of Hleft
and Hright has just 2f(`) branching vertices, but it does not yet guarantee shortest paths
from terminals in Hleft to terminals in Hright. Using Theorem 8 and the discussion above,
we connect each terminal tj in Hright to only one of the greedy shortest paths of terminals
from Hleft, and ensure that shortest paths to tj are preserved from all terminals ti in Hleft.
This creates O(`) additional branching vertices and give us a recurrence of the form

f(2`) ≤ 2f(`) +O(`),

and the desired upper bound of O(k log k). Unfortunately, there are technical difficulties in
implementing the above strategy as stated. It is therefore helpful to augment H0 by adding
all greedy paths P gr

G (ti, tj), where d(i, j) ≤ 4. As a result, for each terminal ti, the first three
vertices on P gr

G (ti, tk) might become branching vertices. In all, this adds a one-time cost of
O(k) branching vertices to our subgraph. We now present the argument formally.

For each (a, b), let f(a, b) be the minimum number of non-terminals in a subgraph H of
G[a, b] such that H0 ∪H preserves all inter-terminal distances in G[a, b]; let

f(`) = max
(a,b)

f(a, b),

where (a, b) ranges over all pairs such that G[a, b] has at most ` terminals. The following
lemma is the basis of our induction.

I Lemma 9.
(i) f(1) = 0;
(ii) f(2`) ≤ 2f(`) +O(`).

K. Gajjar and J. Radhakrishnan 39:7

Proof. Part (i) is trivial. For part (ii), fix a pair (a, b) such that G[a, b] has at most 2`
terminals. If b−a ≤ 1, H0 already preserves distances between every two terminals in G[a, b].
So, we may take H to be empty. Now assume that b − a > 1. Pick x ∈ [a, b] as large as
possible such that (i) b− x ≥ 1, and (ii) G[x, b] has at least ` terminals.

Let Gleft = G[a, x) and Gright = G[x, b]. Since Gright has at least ` terminals, Gleft has at
most ` terminals. So, we obtain (by induction) a subgraph Hleft of G[a, b] with at most f(`)
non-terminals, such that H0 ∪Hleft preserves inter-terminal distances in Gleft. If b− x > 1,
then Gright has exactly ` terminals, and we obtain by induction a subgraph Hright with at
most f(`) non-terminals such that H0∪Hright preserves all inter-terminal distances in G[x, b].
If b− x = 1, then we may take Hright to be empty (for H0 already preserves inter-terminal
distances in G[x, b]).

Our final subgraph H shall be of the form Hleft ∪Hright ∪HA ∪HB , where HA and HB

are defined as follows. First, consider HA. Let Pleft be the set of greedy paths from the
terminals in Hleft to the terminal tk. Let VA be the set of all non-terminal intervals of Pleft
that intersect with the interval [x, x+ 1]. It is easy to see that any path in Pleft contributes
at most 4 non-terminals to VA. So, |VA| ≤ 4`. Let HA be the subgraph of G[a, b] induced by
VA and the terminals in G[x, x+ 1].

Note that H0 ∪Hleft ∪Hright ∪HA preserves all inter-terminal distances in G[a, x+ 1] as
well as all inter-terminal distances in G[x+ 1, b]. It, in fact, does more. For each terminal ti
in G[a, x), let vi be the last vertex on the greedy path P gr

G (ti, tk) that is in VA. Then, the
above graph contains the greedy shortest path from every terminal tj in G[a, x] to vi.

Now, it only remains to ensure that distances between terminals in G[a, x) and terminals
in G[x+ 1, b] are preserved. Let us now define HB . For each terminal tj in G[x+ 1, b], let v
be the earliest interval (with respect to ≺) of Pleft that contains tj . Then, we include the
edge (v, tj) in HB. Thus, HB contains at most one non-terminal per vertex in G[x+ 1, b],
that is, O(`) non-terminals in all. This completes the description of HA and HB . The final
subgraph is H = Hleft ∪Hright ∪HA ∪HB .

I Claim 10. Let ti be a terminal in G[a, x) and tr be a terminal in G[x, b]. Then, H0 ∪H
preserves the distance between terminal ti and tr.

Proof of Claim 10. Let v be the vertex that we attached to tr in HB . If v is on P gr
G (ti, tk),

then it follows that P gr
G (ti, tr) is in H, and we are done. So we assume that v is not on

P gr
G (ti, tk). Then, let j 6= i be such that v ∈ P gr

G (tj , tk). Then, we have paths

PG(ti, tr) = (ti, w1, w2, . . . , wp, wp+1, . . . , w`′ , tr);
PH(ti, tr) = (ti, w1, w2, . . . , wp, vq+1, . . . , v` = v, tr),

where vq+1 is the last vertex on P gr
G (tj , tk) in G[x, x + 1], and wp is the first vertex on

P gr
G (ti, tr) such that (wp, vq+1) ∈ E(G). From the construction of HA, (wp, vq+1) ∈ E(H).

Following vq, (vq+1, . . . , v` = v, tr) are the subsequent vertices on P gr
G (tj , tr). Note that: (i)

vq+1 ≺ wp+1 (otherwise v is on P gr
G (ti, tk)), (ii) d(vq+1, wp+1) = 1 (both intervals contain

right(wp)), and (iii) right(v`) < right(w`′) (since v is the earliest interval of Pleft that contains
tj). By Theorem 8, `− q − 1 ≤ `′ − p− 1. Thus, PH(ti, tr) is no longer than P gr

G (ti, tr). J
J

We can now complete the proof of Theorem 7. By Theorem 9, there is a subgraph H ′ of
G such that H = H0 ∪H ′ preserves all inter-terminal distances in G, H0 has O(k) branching
vertices and H ′ has O(k log k) non-terminals. It follows that H has O(k log k) branching
vertices.

ESA 2017

39:8 Distance-Preserving Subgraphs of Interval Graphs

4 Proof of the Lower Bound

In this section, we show that there exists an interval graph Gint such that any distance-
preserving subgraph of Gint has Ω(k log k) branching vertices, which is simply Theorem 2
(b), restated here for completeness.

I Theorem 11. If I is the family of all interval graphs, then BI(k) = Ω(k log k).

4.1 Preliminaries
We first set up some terminology that we use in this section. Let k = 2γ , where γ is a positive
integer. We identify the numbers in the set {0, 1, . . . , k − 1} with elements of {0, 1}γ using
the γ-bit binary representation. We index the bits of the binary strings from left to right
using integers i = 1, 2, . . . , γ. Thus, x[i] denotes the i-th bit of x (from the left); we use x[i, j]
to denote the string x[i]x[i+ 1] . . . x[j] of length j − i+ 1 (here i, j satisfy 1 ≤ i ≤ j ≤ γ).

For a string of bits a, we use revγ(a) to represent the reverse of a, that is, the binary
string obtained by writing the bits of a in the reverse order (e.g., revγ(00010) = 01000). We
may arrange binary strings in a binary tree. Refer to Figure 1 for an example. The root is the
empty string; the left child of a vertex x is the vertex x 0, and its right child is the vertex x 1.
In particular, the string y is a descendant of the string x if y is obtained by concatenating
x with some (possibly empty) string z, that is, y = x z. Consider the binary tree of depth
γ, whose leaves correspond to elements of {0, 1}γ . For distinct elements x, y ∈ {0, 1}γ , let
lca(x, y) be the lowest common ancestor of x and y defined as follows:

lca(x, y) = x[1, `− 1] = y[1, `− 1], where ` = min {i ∈ [γ] : x[i] 6= y[i]} .

For example, lca(0100111, 0101010) = 010. Let blca(x, y)c be the floor of lca(x, y), and
dlca(x, y)e be the ceiling of lca(x, y) defined as follows:

blca(x, y)c = lca(x, y) 0 1γ−`

dlca(x, y)e = lca(x, y) 1 0γ−`

Since blca(x, y)c, dlca(x, y)e ∈ {0, 1}γ , we may regard blca(x, y)c and dlca(x, y)e as numbers
in the set {0, 1, . . . , k − 1}. Note that blca(x, y)c = dlca(x, y)e − 1, and if x < y, then
blca(x, y)c ∈ [x, y) and dlca(x, y)e ∈ (x, y]3.

Strings in {0, 1}γ can also be viewed as vertices of an γ-dimensional hypercube, with
edge set

Hγ = {(x, x′) : x, x′ ∈ {0, 1}γ and x < x′ and Ham(x, x′) = 1},

where Ham(x, x′) is the Hamming distance between x and x′. Thus, if (x, x′) ∈ Hγ , then x
and x′ differ at a unique location where x has a zero and x′ a one.

I Claim 12. Suppose (x, x′) and (y, y′) are distinct edges of Hγ .
(a) If lca(x, x′) = lca(y, y′), then [revγ(x), revγ(x′)] ∩ [revγ(y), revγ(y′)] = ∅.
(b) If {blca(x, x′)c , blca(y, y′)c} ⊆ [x, x′) ∩ [y, y′), then

[revγ(x), revγ(x′)] ∩ [revγ(y), revγ(y′)] = ∅.

3 [x, y] , {x, x+ 1, x+ 2, . . . , y} and [x, y) , {x, x+ 1, x+ 2, . . . , y − 1}.

K. Gajjar and J. Radhakrishnan 39:9

0 1

0 1 0 1

0 1

0 1 0 1

0 1 0 1 0 1 0 1

blca(x, y)c dlca(x, y)e

x y

lca(x, y)

height=γ

Figure 1 A complete binary tree of height γ having k = 2γ leaves. In this example, γ = 5,
x = 01001 and y = 01101. Thus, Ham(x, y) = 1 and |lca(x, y)| = 2.

Proof. Although part (b) implies part (a), it is easier to show part (a) first, and then derive
part (b) from it. For part (a), let |lca(x, x′)| = |lca(y, y′)| = `− 1. Let a, b ∈ {0, 1}γ−` be
such that

a = x[`+ 1, γ] = x′[`+ 1, γ] 6= y[`+ 1, γ] = y′[`+ 1, γ] = b.

In particular, we have a 6= b (implying revγ−`(a) 6= revγ−`(b)). Note that revγ(a) represents
the γ − ` most significant bits of revγ(x) and revγ(x′); similarly, revγ(b) represents the
γ − ` most significant bits of revγ(y) and revγ(y′).

If revγ−`(a) < revγ−`(b) then revγ(x′) < revγ(y); and if revγ−`(b) < revγ−`(a) then
revγ(y′) < revγ(x). In either case, [revγ(x), revγ(x′)] and [revγ(y), revγ(y′)] are disjoint,
proving part (a).

Next, consider part (b). Suppose blca(x, x)c , blca(y, y′)c ∈ [x, x′) ∩ [y, y′). Since every
p ∈ [x, x′) is a descendant of lca(x, x′), we conclude that lca(y, y′) is a descendant of
lca(x, x′). Similarly, lca(x, x′) is a descendant of lca(y, y′). But then lca(x, x′) = lca(y, y′),
and part (b) follows from part (a). J

4.2 Manhattan Graphs
In this section, we describe a directed grid graph Gbit

k (which we refer to as the Manhattan
graph) with 3k terminals. We show that any distance-preserving subgraph of Gbit

k has
Ω(k log k) branching vertices. The graph has k2 + 2k vertices arranged in a square grid. The
vertices and edges of Gbit

k are defined as follows. (Figure 2 makes this definition easier to
understand.)
1. V (Gbit

k) = {0, 1, 2, . . . , k − 1} × {−1, 0, 1, . . . , k}.
2. There are three kinds of edges: horizontal, upward and downward; the edge set is given

by E(Gbit
k) = Ehor ∪ Eup ∪ Edown, where

Ehor = {((i, j), (i, j + 1)) : i = 0, 1, . . . , k − 1 and j = −1, 0, . . . , k − 1};
Eup = {((i1, j), (i2, j)) : 0 ≤ i2 < i1 ≤ k − 1 and j = −1, 0, . . . , k};

Edown = {((i1, j), (i2, j)) : 0 ≤ i1 < i2 ≤ k − 1 and j = −1, 0, . . . , k}.

ESA 2017

39:10 Distance-Preserving Subgraphs of Interval Graphs

0000

0000

1000

1000

0100

0100

1100

1100

0010

0010

1010
1010

0110

0110
1110

1110

0001

0001

1001

1001

0101

0101

1101

1101

0011

0011

1011

1011

0111

0111

1111

1111

Figure 2 The bit-reversal permutation matrix for k = 16. Each cell represents a vertex: the
blue cells represent the terminal vertices of Tmid; all the other vertices are non-terminals. Edges are
named horizontal, upward and downward in the natural way.

3. The edge weights are given by the function w : E(Gbit
k) → {0, 1}, defined as follows:

w(e) = 1 if e ∈ Ehor ∪ Eup, and w(e) = 0 if e ∈ Edown.
The set of terminals are of the form T = Tleft ∪ Tmid ∪ Tright, where

Tleft = {0, 1, . . . , k − 1} × {−1},
Tright = {0, 1, . . . , k − 1} × {k};
Tmid = {(revγ(i), i) : i = 0, 1, . . . , k − 1}.

This completes the definition of Gbit
k .

Fix an optimal distance-preserving subgraph Hbit
k of Gbit

k . We shall show that Hbit
k has

Ω(k log k) vertices of degree at least 3.

I Lemma 13. V (Hbit
k) = V (Gbit

k) and Ehor ⊆ E(Hbit
k).

Proof. Note that the unique shortest path between the terminals (i,−1) and (i, k) is precisely
((i,−1), (i, 0), . . . , (i, k)). Thus, all vertices and all horizontal edges in the i-th row of Gbit

k

must be part of Hbit
k . J

It follows from Theorem 13 that every non-terminal vertex in Hbit
k has degree at least two,

namely the two horizontal edges incident on it.
Special edges: From now on, we rely solely on the fact that Hbit

k is distance-preserving
for every pair of terminals in Tmid, i.e. we prove the stronger statement that just preserving
terminal distances in Tmid requires Ω(k log k) branching vertices.

Order the vertices in Tmid as t0, t1, . . . , tk−1, where ti = (revγ(i), i). Note that these
terminals appear in different rows and columns. Consider the following pairs of terminals.

Ttwins = {(ti, tj) : (i, j) ∈ Hγ}.

For each twin (ti, tj), fix P (i, j), a path of minimum distance between ti and tj in Hbit
k . We

are now set to formally define special edges.

K. Gajjar and J. Radhakrishnan 39:11

I Definition 14. Let spcl(i, j) = ((rij , blca(i, j)c), (rij , dlca(i, j)e)) be an edge of P (i, j),
where revγ(i) ≤ rij ≤ revγ(j). (By Theorem 15, such an edge exists.) Let spcl =
{spcl(i, j) : (ti, tj) ∈ Ttwins}.

I Lemma 15. Let (ti, tj) ∈ Ttwins; let ` = blca(i, j)c. Then, there is an rij ∈
[revγ(i), revγ(j)] such that P (i, j) contains the edge ((rij , `), (rij , `+ 1)).

Proof. We have i < j, ti = (revγ(i), i) and tj = (revγ(j), j). Also note that since (i, j) ∈ Hγ ,
revγ(i) < revγ(j). Thus, d(i, j) = j − i, and the shortest path P (ti, tj) goes from column i
to column j and never skips a column. Since ` ∈ [i, j), there must be an edge in P (i, j) of
the form ((rij , `), (rij , `+ 1)) (say, the edge of P (i, j) that leaves column ` for the last time).
We claim that rij ∈ [revγ(i), revγ(j)]. For otherwise, P (i, j) would contain an edge in Eup.
Then, apart from the j − i edges from Ehor, P (i, j) would contain an additional edge from
Eup of weight 1; that is, the length of P (i, j) would be at least j − i+ 1—contradicting the
fact that d(i, j) = j − i. J

I Lemma 16 (Key lemma). Suppose (tx, tx′) and (ty, ty′) are distinct pairs in Ttwins such
that their special edges are in the same row r, that is,

spcl(x, x′) = ((r, α), (r, α+ 1))
spcl(y, y′) = ((r, β), (r, β + 1)),

where α = blca(x, x′)c and β = blca(y, y′)c.
(a) Then, α 6= β. In particular, spcl(x, x′) 6= spcl(y, y′).
(b) Suppose α < β. Then, there exists an ` ∈ [α+ 1, β] such that (r, `) is either a branching

vertex or a terminal in Hbit
k .

Proof. Part (a) follows from Claim 12 (a). Consider part (b). By our definition of spe-
cial edge, r ∈ [revγ(x), revγ(x′)] and r ∈ [revγ(y), revγ(y′)]. So, [revγ(x), revγ(x′)] ∩
[revγ(y), revγ(y′)] 6= ∅, and by Claim 12 (b) (in the contrapositive) either α /∈ [y, y′) or
β /∈ [x, x′). If α /∈ [y, y′), spcl(x, x′) is not on P (y, y′). The first vertex in row r that is
part of P (y, y′) is in a column ` ∈ [α+ 1, β]. Then, (r, `) is either a branching vertex or the
terminal ty. On the other hand, if β /∈ [x, x′), then the last vertex of P (tx, tx′) in row r lies
in a column ` ∈ [α+ 1, β], so (r, `) is either a branching vertex or the terminal tx′ . J

I Corollary 17.
(a) |spcl| = |Ttwins| = k log k/2 (since |Ttwins| = |Hγ | = k log k/2).
(b) If two edges in spcl fall in the same row, then there is a branching vertex or a terminal

separating them.

I Theorem 18. Hbit
k has Ω(k log k) branching vertices.

Proof. For each i ∈ {0, 1, . . . , k − 1}, let δi be the number of distinct edges in spcl in row i.
Then, by Theorem 17 (a), we have

k−1∑
i=0

δi = |spcl| =
(
k log k

2

)
.

Furthermore, Theorem 17 (b) implies that there are at least δi − 2 many branching vertices
of the form (i, x) in Hbit

k , where 0 ≤ x ≤ k− 1. Thus, the total number of branching vertices
in Hbit

k is at least

(δ0 − 2) + (δ1 − 2) + · · ·+ (δk−1 − 2) =
(
k−1∑
i=0

δi

)
− 2k =

(
k log k

2

)
− 2k.

Since this quantity is Ω(k log k), this completes the proof. J

ESA 2017

39:12 Distance-Preserving Subgraphs of Interval Graphs

4.3 Translating the Lower Bound to Interval Graphs
In this section, we present an interval graph Gint with O(k) terminals, for which every
distance-preserving subgraph has Ω(k log k) branching vertices. Our lower bound relies on
the lower bound for the Manhattan graph shown in the previous section. Let us describe the
interval graph. Let J be the set of intervals.

J = {[x, x+ 1] : x = −1,−1 + 1/k, . . . ,−1/k, 0, . . . , k, k + 1/k, . . . , k + 1− 1/k}.

Thus, we have unit intervals starting at all integral multiples of 1/k in the range [−1, k +
1− 1/k]; in all we have k(k + 2) intervals in J . These intervals naturally define an interval
graph. Furthermore, the edges of Gint are directed as follows. Orient the edges of Gint from
an earlier interval to a later interval, i.e. ([x, x+ 1], [y, y+ 1]) is a directed edge from [x, x+ 1]
to [y, y + 1] if and only if x < y ≤ x+ 1. Note that this orientation does not affect shortest
paths. Any shortest path from [i, i+ 1] to [j, j + 1] (where i < j) in the undirected interval
graph is also a valid directed shortest path in Gint. Also, Gint has k2 + 2k vertices, which
(surprisingly?) is the number of vertices in the Manhattan graph of the previous section. In
fact, the connection is deeper. Let us arrange the intervals in a two-dimensional array

A = 〈ai,j : i = 0, . . . , k − 1 and j = −1, 0, . . . , k〉,

where aij corresponds to the interval [j + (k − 1 − i)/k, j + 1 + (k − 1 − i)/k]. Thus, the
first k intervals of J occupy the left most column of the array A (from bottom to top); the
next k intervals occupy the next column (again from bottom to top), and so on. It is easy to
check that, after this arrangement, the directed edges of Gint are of three types: horizontal,
upward and slanting.

Ehor(Gint) = {(ai,j , ai,j+1) : 0 ≤ i ≤ k − 1 and − 1 ≤ j ≤ k − 1};
Eup(Gint) = {(ai,j , ai′,j) : 1 ≤ i ≤ k − 1 and 0 ≤ i′ < i and − 1 ≤ j ≤ k };

Eslant(Gint) = {(ai,j , ai′,j+1) : 0 ≤ i ≤ k − 2 and i < i′ ≤ k − 1 and − 1 ≤ j ≤ k − 1}.

Thus, E(Gint) = Ehor(Gint) ∪ Eup(Gint) ∪ Eslant(Gint). All edges in E(Gint) have weight 1.
This 2d array can be viewed as a k × (k + 2) grid, and we place terminals in this graph at
the same 3k locations as in the Manhattan graph. This completes the description of Gint.
Using the lower bound shown for Manhattan graphs in the previous section (Theorem 18),
we complete the proof of Theorem 11. (Details appear in the full version of the paper.)

Acknowledgments. We are grateful to Nithin Varma and Rakesh Venkat for introducing
us to the problem and helping with the initial analysis of shortest paths in interval graphs,
and for their comments at various stages of this work. We would also like to thank the
anonymous reviewers of this paper for their helpful suggestions and comments.

References
1 Yun Kuen Cheung, Gramoz Goranci, and Monika Henzinger. Graph Minors for Preserving

Terminal Distances Approximately - Lower and Upper Bounds. In 43rd International Col-
loquium on Automata, Languages, and Programming (ICALP 2016), volume 55 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 131:1–131:14, Dagstuhl, Germany,
2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ICALP.
2016.131.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.131
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.131

K. Gajjar and J. Radhakrishnan 39:13

2 James W Cooley and John W Tukey. An algorithm for the machine calculation of complex
fourier series. Mathematics of computation, 19(90):297–301, 1965.

3 Don Coppersmith and Michael Elkin. Sparse sourcewise and pairwise distance preservers.
SIAM Journal on Discrete Mathematics, 20(2):463–501, 2006.

4 Karl Däubel, Yann Disser, Max Klimm, Torsten Mütze, and Frieder Smolny. Distance-
preserving graph contractions. CoRR, abs/1705.04544, 2017. URL: http://arxiv.org/
abs/1705.04544.

5 Tomás Feder and Rajeev Motwani. Clique partitions, graph compression and speeding-up
algorithms. J. Comput. System Sci., 51(2):261–272, 1995. doi:10.1006/jcss.1995.1065.

6 Greg N Frederickson and Nancy A Lynch. Electing a leader in a synchronous ring. Journal
of the ACM (JACM), 34(1):98–115, 1987.

7 Anupam Gupta. Steiner points in tree metrics don’t (really) help. In Proceedings of the
twelfth annual ACM-SIAM symposium on Discrete algorithms, pages 220–227. Society for
Industrial and Applied Mathematics, 2001.

8 Lior Kamma, Robert Krauthgamer, and Huy L Nguyên. Cutting corners cheaply, or how
to remove steiner points. SIAM Journal on Computing, 44(4):975–995, 2015.

9 Robert Krauthgamer, Huy Nguyên, and Tamar Zondiner. Preserving terminal distances
using minors. SIAM Journal on Discrete Mathematics, 28(1):127–141, 2014. doi:10.1137/
120888843.

10 Robert Krauthgamer and Tamar Zondiner. Preserving terminal distances using minors. In
Automata, Languages, and Programming, volume 7391 of Lecture Notes in Computer Sci-
ence, pages 594–605. Springer Berlin Heidelberg, 2012. doi:10.1007/978-3-642-31594-7_
50.

11 David Peleg and Alejandro A. Schäffer. Graph spanners. Journal of Graph Theory, 13(1):99–
116, 1989. doi:10.1002/jgt.3190130114.

12 Mihai Pǎtraşcu and Erik D Demaine. Logarithmic lower bounds in the cell-probe model.
SIAM Journal on Computing, 35(4):932–963, 2006.

ESA 2017

http://arxiv.org/abs/1705.04544
http://arxiv.org/abs/1705.04544
http://dx.doi.org/10.1006/jcss.1995.1065
http://dx.doi.org/10.1137/120888843
http://dx.doi.org/10.1137/120888843
http://dx.doi.org/10.1007/978-3-642-31594-7_50
http://dx.doi.org/10.1007/978-3-642-31594-7_50
http://dx.doi.org/10.1002/jgt.3190130114

	Introduction
	Motivation and Related Work
	The Shipping Problem
	Our Techniques

	Interval Graphs
	Proof of the Upper Bound
	Proof of the Lower Bound
	Preliminaries
	Manhattan Graphs
	Translating the Lower Bound to Interval Graphs

