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—— Abstract

We study utility games (Vetta, FOCS 2002) where a set of players join teams to produce social
utility, and receive individual utility in the form of payments in return. These games have many
natural applications in competitive settings such as labor markets, crowdsourcing, etc. The
efficiency of such a game depends on the profit sharing mechanism — the rule that maps utility
produced by the players to their individual payments. We study three natural and widely used
profit sharing mechanisms — egalitarian or equal sharing, marginal gain or value addition when
a player joins, and marginal loss or value depletion when a player leaves. For these settings, we
give tight bounds on the price of anarchy, thereby allowing comparison between these popular
mechanisms from a (worst case) social welfare perspective.

1998 ACM Subject Classification J.4 Social and Behavioral Sciences: Economics
Keywords and phrases Price of anarchy, submodular maximization, coverage functions

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.43

1 Introduction

In utility games (introduced by Vetta [20], see also [14]), individual agents (e.g., employees)
offer their services to entities (e.g., employers) to create social utility, and receive individual
utility in the form of payments in return. It is natural to expect the agents to behave
strategically, i.e., offer their services to the entity giving them the highest payment. This
represents a game where each agent (called a player) selects one of the available entities
(called teamns) to maximize their individual payments (called payoffs), but the overall social
welfare is the total utility cumulatively produced by all the teams. A stable outcome, called
a Nash equilibrium or NE, is achieved when no player can unilaterally change her team
and increase her payoff. The goal of this paper is to study the (in)efficiency of such stable
outcomes — the maximum (worst-case) ratio between the social welfare produced by an
optimal allocation and that in an NE, called the Price of Anarchy or POA of the game. Clearly,
the social welfare produced at equilibrium depends on the profit sharing mechanism in use,
i.e., the payoff of the players as a function of the utility produced by them. We consider
three natural and widely used profit sharing rules:

egalitarian: any unit of utility produced by a team is divided equally among the team

members who helped produce it.

* A full version of this paper is available at http://theory.stanford.edu/~kkollias/profit_sharing.
pdf
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marginal gain: the payoff of a player in a team is the utility that the team gained when

she joined.

marginal loss: the payoff of a player in a team is the utility that the team would lose if

she were to leave.

The main motivation for this work is to compare these popular profit sharing mechanisms in
terms of their impact on (worst case) social utility.

Formally, there is a set of players N and a set of teams T that they can join. The utility
produced by a team is given by a weighted coverage function over the players in the team. To
interpret this, consider a set of tasks S with respective utilities v, for s € S. If each player
i € N can perform a subset of tasks S; C S, then the tasks completed by a team ¢ € T is
given by Sy = U;¢+5;, and the utility produced is Uy = ZSESt vs. This is precisely a weighted
coverage function over the team members; we say that team ¢ covers task s if s € S;.

From a social perspective, the goal is to maximize the total utility produced by all teams,

v=Y U= Y

teT teT s€Sy

We will call U the social welfare or objective value.

Profit Sharing Mechanisms

Each player i is interested in maximizing her own payoff, denoted w;, which depends on the
profit sharing mechanism. We consider the following popular profit sharing mechanisms.

Egalitarian Profit Sharing. For every task that is covered in a team, the utility of the task
is equally shared among the members of the team who perform the task. We may note that
the egalitarian model is an instantiation of the Shapley value utility sharing method [19].
This is defined as the expected contribution of a player to her team’s utility, assuming players
are sequentially added to the team using a uniformly random ordering.

For egalitarian sharing, we exactly determine the POA to be 1.6 by proving matching
upper and lower bounds on the POA. The upper bound employs the smoothness framework
due to Roughgarden [18]. However, unlike the standard approach of applying the smoothness
inequality for every resource, (in our setting, for every team), we apply the smoothness
inequality across all teams and players simultaneously for a single task. The matching lower
bound of 1.6, on the other hand, uses a careful combinatorial construction of the worst case
POA instance, using symmetrization techniques to argue stability of the solution. Both these
results appear in Section 2, thereby proving the following theorem.

» Theorem 1. The POA of egalitarian profit sharing is 1.6.

Marginal Gain Profit Sharing. In this model, players have an order of arrival and each
player’s utility is the value added to the team when that player joins. The marginal gain
method is an instantiation of an ordinal Shapley value, which is a variation on the Shapley
value discussed above where player ordering is not random but predefined.

For marginal gain profit sharing, we show an upper bound of 1.71 and a lower bound of
1.58 on the POA. The lower bound can be established by hardness of approximation results
(see [11]) assuming P # NP. We give an alternative proof of this result based on an explicit
construction that does not rely on complexity theoretic assumptions in our full paper. On the
other hand, our upper bound, which appears in Section 3, is based on a charging argument,
which carefully matches tasks that are not covered in the NE to covered tasks.
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» Theorem 2. The POA of marginal gain profit sharing is at most 1 + % ~ 1.71 and at

least 45 ~ 1.58.

Marginal Loss Profit Sharing. In this model, the utility of a player is the value lost if
she were to leave the team. The marginal loss model is an instantiation of the marginal
contribution method, where each player is rewarded with her marginal contribution to the
utility of her team [19, 10]. One interesting point of difference between the this and the
previous two models is that the sum of individual payoffs in this case may be strictly smaller
than the overall social utility, whereas this sum was exactly equal to the social utility in
the previous cases. This is because the only tasks whose utility is awarded as payoff in this
model are those that are uniquely performed by a single team member.

For marginal loss profit sharing, we prove the POA is exactly 2. An upper bound of
2 follows from the work of Vetta [20]. We show a matching lower bound via an explicit
construction with ideas that are similar to the lower bound construction in Theorem 1. Due
to space constraints, we present this lower bound construction in our full paper, thereby
proving the next theorem.

» Theorem 3. The POA of marginal loss profit sharing is 2.

Existence of NE. Omitting further details, we briefly mention why existence of a NE is
guaranteed in all three profit sharing models. Egalitarian profit sharing induces a congestion
game [17, 15], which implies existence of a NE is guaranteed. In marginal gain profit sharing,
the property follows by equivalence to the process of having players appear online and letting
each player select the team yielding the higher profit at the time of her arrival. In marginal
loss profit sharing, the optimal solution is always a NE since any beneficial deviation by a
player by definition increases the objective value.

Extensions

Submodular Utilities. While we primarily consider utility functions that are weighted
coverage functions of the players in a team, Vetta [20] has originally proposed the utility
game framework for more general submodular utility functions. The marginal gain and

marginal loss profit sharing models naturally extend to this setting with the same definitions.

In both cases, we show that the POA is 2, i.e., that Vetta’s upper bound is tight. For
the marginal loss model, this follows as a corollary of Theorem 3 since weighted coverage
functions are a special case of submodular functions. For the marginal gain mode, however,
this establishes a separation between the POA for general submodular functions and the special
case of weighted coverage functions. Our lower bound construction for general submodular
functions makes use of a knapsack welfare function, and appears in our full paper.

» Theorem 4. The POA of marginal gain and marginal loss profit sharing with submodular
utilities is 2.

One can also extend the egalitarian profit sharing model to the case of general submodular
functions by using the analogy with Shapley profit sharing. In particular, for submodular
functions, the payoff of a player in the egalitarian case is her expected contribution to the
utility of the team, assuming a uniform random order of arrival of players. Determining the
POA in this case is an interesting problem for future work.
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Asymmetric Utilities. We can also consider an asymmetric setting, where the utility
functions of teams are not necessarily identical. This is the case, e.g., if a task produces
different utility to different teams. In this case, even for weighted coverage utility functions
(and therefore, also for submodular utilities), we show that the POA is 2, i.e., Vetta’s upper
bound is tight. For the marginal loss model, this follows from Theorem 3 since symmetric
utilities are a special case, but for the egalitarian and symmetric gain models, we require
new lower bound constructions that are given in our full paper.

» Theorem 5. The POA in the egalitarian, marginal gain, and marginal loss models for
asymmetric teams is 2.

Related Work

Utility games were introduced by Vetta [20] to model strategic agents who produce submodular
social welfare in a team, and seek to maximize their individual utility or payoff in return.
For this general setting, Vetta showed an upper bound of 2 on the POA, subject to some
mild conditions on the agent payoff functions that are satisfied in all our models above. The
profit sharing models that we study in this paper are inspired by standard cost sharing rules
from the economics literature such as Shapley and marginal contribution costs as mentioned
earlier. The POA of these cost sharing models has been studied in several resource selection
problems with negative externalities among players. Specifically, Marden and Wierman [14]
studied utility sharing methods in a general distributed utility maximization model, and
Harks and Miller [9] studied cost sharing methods in networking applications. Bachrach
et al. [1] considered the effect of positive externalities among players working on multiple
projects simultaneously, but restricted by an effort budget. In [13], the authors study a
special case of utility games where the welfare produced by a resource is a function of the
number of players on it, and prove that under certain conditions (such as symmetric players),
the POA drops below 2.

Utility games with coverage utility functions are also related to congestion games [17, 15];
in fact, utility games in the egalitarian profit sharing model are congestion games. The
POA of cost sharing methods in generalizations of congestion games has been extensively
studied [3, 12, 8]. Gairing [7] studied a congestion game with a coverage utility function and
showed how to modify the payoffs of the tasks so that better-response dynamics reaches an
equilibrium with an inefficiency of 1 — é or better in polynomial time.

Finally, we mention known results for the corresponding optimization problem — make an
assignment of players to teams to maximize overall social utility, where the utility on every
team is given by a weighted coverage function. This problem is called submodular welfare
maximization with coverage functions. The best approximation ratio in the general case is
47 ~ 1.58 [2, 5, 6]. Algorithmic results on combinatorial auctions, which are similar to our
setting (teams are bidders and players are items) include a 1 — % approximation algorithm
for submodular valuations [4], a proof of optimality of the greedy algorithm in various online
and offline settings [16], and a (matching) hardness of approximation result [11].

2  Egalitarian Payoffs

In this section, we prove Theorem 1, i.e., show that the POA for the egalitarian profit sharing
model is exactly 1.6. This comprises two parts: a lower bound of 1.6 (in Section 2.1) and a
matching upper bound of 1.6 (in Section 2.2).
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2.1 Lower Bound for Egalitarian Payoffs

» Lemma 6. The POA of egalitarian profit sharing is at least 1.6.

We construct of an instance of the egalitarian model and an assignment of players to
teams that is an NE and whose social welfare is a g fraction of the optimal solution. We
begin with an overview of this construction, and then give details of each step. First, we
create a simple instance parameterized by integers z and y (we will precisely define these
integers later), and an assignment of players to teams with utility inyy
Our assignment in this preliminary game will not be an NE. We then modify the instance
in two stages, where we preserve the ratio 22':%; w.r.t. the optimal solution, while creating
sufficient structure to argue that the final assignment is an NE for appropriate values of x
and y. The worst case among these equilibrium-inducing (z,y) values will yield the PoA

lower bound of 1.6.

Checking whether the final assignment is an NE can be a complicated task in general,

since there will eventually be a large number of players and possible deviations in the game.

Our two-stage transformation will ensure, however, that this task reduces to verifying a single
inequality. This will be achieved by imposing symmetry across players (first transformation)
and symmetry across possible deviations of a player (second transformation). We now present
the four stages of our proof (initialization, imposing player symmetry, imposing deviation
symmetry, and picking the values of z,y) in detail.

Stage 1: Initialization. Our preliminary game uses the parameter k£ = 2x + y. There are k

tasks s1, sa, ..., Sk, and k types of players where a player of type ¢ can only perform task s;.
There are k players for each type, i.e., a total of k? players. The number of teams is also k.

The utility produced by covering any single task in a team is 1.
We will crucially maintain two properties of the assignment. The first property imposes
symmetry over how players are divided among teams.

» Property 7. Note that there are k = 2x+y players who can perform a task. Our assignment
will ensure that every task is covered by 2 players in x teams, by 1 player in y teams, and
remains uncovered in x teams. We will also ensure that every team has k = 2x + y players.
These k players in any team will cover tasks as follows: x tasks will be covered by 2 players,
y tasks will be covered by 1 player, and x tasks will remain uncovered.

Note that the above property ensures that every team only covers z + y tasks out of the
total of k = 2z + y tasks. Similarly, every task is covered in only = + y teams out of the total
of k = 2z 4+ y teams.

The second property relates our assignment to an optimal assignment (call it oPT). To
encode OPT, let us use k colors ¢y, ca, ..., ¢k, where all players assigned to team ¢ by OPT
are said to have color ¢;.

» Property 8. orT will satisfy the property that there is exactly one player with color ¢; who
can perform a specific task s;j, for any i and j. In other words, the k = 2x + y players who
can perform any specific task will be divided among the k = 2x + y teams, thereby ensuring
that all tasks in all teams are covered. Contrast this to our assignment that only covers x + vy
tasks in every team, and x 4y teams cover every task, according to Property 7. Finally, in
our assignment, there will be exactly one player of each color ¢; in every team t. In other
words, the overlap between any team in our assignment and any team in OPT will be exactly
one player.

times the optimal.
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Figure 1 The preliminary assignment for x = Figure 2 The intermediate assignment
y = 1. Teams are rows, tasks are columns. for x = y = 1. The first copy is the ori-
Cell (i,j) corresponds to team 4, task sj. OPT ginal preliminary assignment. In the second
has all white players in team 1, all gray players one, white becomes gray, gray becomes black,
in team 2, and all black players in team 3. The black becomes white. In the third we shift
occupancy is symmetric across rows and columns the colors again. All three together form the
and each color appears once per row and column. intermediate assignment.

T4y
2z+y
the total number of tasks, while Property 8 ensures that the optimal solution covers every

times

As noted above, Property 7 implies that the coverage of our assignment is

task. However, it is not aprioiri clear that these properties can be satisfied by an assignment:
the next lemma asserts this.

» Lemma 9. Given k teams, k tasks, and, for each task, k players who can perform only
that task, there is an assignment of the players to the teams and a coloring that satisfies
Properties 7 and 8.

Proof. (See Fig. 1 for an illustration of the x = y = 1 case.) The first team’s structure
is as follows: tasks si, s2, ..., s, are covered by two players, tasks sy4+1, Sa42, -+ Sty
are covered by one player each, and tasks sy4y+1, Suty42, - -, Sk are left uncovered. For
this first team, we use any coloring that has a different color for each of the k players. The
structure and coloring of the second team is obtained by performing a left circular shift
to the first team’s structure, i.e., sg, s1, So, ..., Sz—1, are covered by 2 players, sz, Szi1,
..., Sg4y—1 are covered by 1 player, and s;1y, Sz4y+1, -- -, Sk—1, are left uncovered. Colors
are also shifted, i.e., the color(s) of the player(s) covering s; in the first team is applied
to the player(s) covering s;,—1 (sg, if i = 1) in the second team. We continue with similar
left circular shifts to define the remaining teams. This assignment and coloring satisfies
Properties 7 and 8. <

We have now completed the first stage; we will call this the preliminary assignment. By

Property 8, the optimal assignment covers all tasks; hence, the ratio of the coverage of this
z+y

2a+y°
players sharing a task have unilateral incentive to deviate to a team where the corresponding
task is not covered. We now proceed to the next stages, which will modify this assignment

to an NE.

preliminary assignment to the optimum is However, this assignment is not an NE, since

Stage 2: Imposing player symmetry. During this stage, we will augment the game by
adding new tasks. In our preliminary assignment, not all players have the same payoff since
some of them share a task with a teammate while others do not. In this stage, we impose
symmetry across players: every player will share exactly 2z tasks with another player and will
cover exactly y tasks by herself. To do this, we create k copies of our preliminary assignment,
and exchange roles between players in the different copies in a way that they all end up
being symmetric. We will call this the intermediate assignment.

The first copy is identical to the preliminary assignment. In the second copy, we take the
preliminary assignment and perform a circular shift on the colors, i.e., we change color ¢; to
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Figure 3 All 6 versions of the intermediate assignment for x = y = 1. The first one is the original

intermediate assignment. The rest are all possible permutations of the team structures (i.e., rows).

All 6 together form the final assignment with 9 players: one white, one gray, and one black player in
each team.

color ¢;11 (color ¢ changes to ¢1). Next, we rename the tasks so that they are distinct from
those in the first copy. We continue this process of doing a circular shift on the colors and
renaming the tasks in each subsequent copy until we have k copies in total. (See Fig. 2 for all
the copies of the z = y = 1 case.) The intermediate assignment is constructed by appending
all k copies (recall that the tasks are distinct in the copies), and merging all players in the
same team with the same color into a single player.

Note that properties 7 and 8 continue to hold; in particular, this implies that the
Tty
2z+y
task in every team. Moreover, since every color assumes the role of every other color in

intermediate assignment covers a fraction of tasks in each team, while OPT covers every
the preliminary assignment in one of the copies, it follows that every player covers 2x tasks
with another player and y tasks by herself in the intermediate assignment. This implies that
the players are symmetric in their coverage and payoff in their current team. However, the
possible deviations of a player to another team are not symmetric, i.e., the payoff of a player
depends on the team that the player moves to. In the next stage, we impose symmetry on
the deviations of players, thereby reducing the equilibrium condition to a single inequality.

Stage 3: Imposing Deviation Symmetry. In this stage, we repeatedly perform an operation
that we call team structure switch. Switching the structure of team ¢ to that of ¢’ involves
taking each player in ¢, stripping her of her existing tasks, and granting her the tasks of the
player in ¢’ with the same color. By Property 8, this player in ¢’ is uniquely defined given a
specific player in t. A team structure permutation is said to be performed when we switch
the structure of every team ¢ to the structure of team m(t), where 7 is a permutation on the
teams T'.

For every possible permutation w, we generate a copy of the intermediate assignment
and perform a team structure permutation based on w. As we did in the previous stage, we
rename tasks so that they are different for each permuted copy and incorporate all k! copies
into our game by merging players in the same team with the same color into a single player
with k- k! tasks. This generates our final assignment. (See Fig. 3 for the copies corresponding
to the six permutations for the x =y = 1 case.)

Again, note that Properties 7 and 8 continue to hold; as a consequence, each team only

9 Ty of the tasks in the final assignment whereas OPT covers every task in every

covers a
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team. Additionally, every deviation of a player to another team now result in exactly the
same utility; therefore, not only are the players symmetric in their current team, but their
deviation to any other team is also symmetric.

» Lemma 10. In the final assignment, the utility of any player i who deviates to a team t'
that is not her assigned team t is given by

r—1 y r y—1 |
[( 3 +2+x)2x+<3+ 5 Jr:c)y}k(k 2)\.

Proof. Consider a player i, and call her assigned team t. Fix some structure for ¢ in an
intermediate assignment, and focus on all versions of the intermediate assignment in which
team ¢ has that structure. There will be (k — 1)! such versions. Consider any task s that is
covered by i and another player in this structure. Our first goal is to determine the coverage
of task s in any other team ¢’ in each of the (k — 1)! versions of the intermediate assignment
that we are considering.

The copies of ¢’ in the (k—1)! versions we are considering can assume one of k — 1 possible
structures, excluding the structure that we have fixed for ¢t. Each one of these k — 1 possible
structures for ¢ appears an equal number of times, i.e., (k— 2)! times. By Property 7, z — 1

of these k — 1 structures have 2 players covering task s. (Note that t itself has 2 players
covering s, hence the number is  — 1 and not z.) Similarly, in y of these structures, s is
covered by a single player, and it is not covered at all in x structures. This implies that the
payoff of 7 due to s, if she deviates to ¢, will be % + % + 2 when we sum across one copy
of each structure of ¢. For the overall payoff of ¢ after deviation to ¢ due to tasks shared
with another player in ¢, we need to multiply this expression by:

2z, which represents the number of different tasks s that are covered by ¢ and another

player in ¢,

(k — 2)!, which represents the number of copies with the same structure of ', given a

fixed structure of ¢, and

k, which is the number of different structures of ¢.
This yields a payoff of:

<x31+g+x)mmmkmL (1)

In a similar manner, we can calculate the payoff that ¢ would get by deviating to ¢’ due
to the tasks she uniquely covers in ¢. This comes out to:

-1
LY ) gk (k—2) 2)
3 2
The total payoff after deviation for player 4 is then given by:
z—1 y z y—1 :
[( 3 +2+x)2x+(3+ 5 +x>y}k (k—=2)!, (3)
which is independent of 4, ¢ and t'. This completes the proof of the lemma. <

Stage 4: Choice of the parameters x and y. Note that the payoff of a player in the final
assignment is (z 4+ y)k!, since the payoff in every copy of the intermediate assignment is x + y
and there are k! copies. Therefore, by Lemma 10, the equilibrium condition is:

[(x;1+g+x)2x+(§+y;1+x>y} k(k —2)! < (z + y)k.
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Since k = 2x + y, this simplifies to:

-1 -1
z+y)2r+y—1)> (%+g+x)2x+(§+y2+x>y.

We can verify that this equilibrium condition holds if we set y = 2;“33, with € > 0 arbitrarily

2z+y
T4y
close to 1.6. This completes the proof of Lemma 6.

small, and let z — co. We then get a lower bound on the POA, which is arbitrarily

2.2 Upper Bound for Egalitarian Payoffs
» Lemma 11. The POA of egalitarian profit sharing is at most 1.6.

We will apply the (A, 1) smoothness framework of Roughgarden [18]. For the purposes

of this proof, we extend the game by introducing a new strategy for each player, which is
1
IT|
call this the fractional strategy. We define the payoff of a |%—l—sized fractional player sharing

to split herself into |T'| fractions of each, and assign each fraction to a different team;

a task s with another n (integral) players in a team as ﬁ . n”—_il

fractional strategy, then we denote the outcome OPT-FR. Let N, be the set of players who
can perform task s. We define the utility of a task s in team ¢ in the outcome OPT-FR
as Vg - min { Ilj;“"ll, 1}.

We prove two important properties of this augmented game. The first property is that

If every player plays her

OPT-FR represents an optimal fractional solution to the optimization problem maximizing
the total utility; therefore, its utility is at least that of OPT, which is the optimal integral
solution to the same problem.

» Property 12. The total utility (social welfare) of OPT-FR is at least that of OPT.

This property allows to compare the utility in any NE with that in OPT-FR instead of OPT in
order to obtain an upper bound on the POA. Since OPT-FR is highly symmetric, this is a
simpler comparison that does not require delving into the structure of OPT.

The second property establishes that any NE in the original game is also an NE in the
augmented game, i.e., no player has an incentive to deviate to her fractional strategy. This
property holds because a deviation to the fractional strategy would produce payoff for the
player that is a convex combination of her current payoff and the payoffs produced by
deviating (integrally) to the other teams. Since none of these integral deviations produces a
higher payoff, neither does the deviation to the fractional strategy.

» Property 13. If NASH is an NE in the original game, then no player has an incentive to
deviate to her fractional strategy.

Let u¢ be the payoff of player i if she unilaterally deviates from her team in NASH to her
fractional strategy. Also, let U be the total utility (social welfare) in NASH and U* be the
total utility in OPT-FR. Our goal will be to identify positive parameters A and p such that
for any equilibrium NAsH,

>l = U - U (4)
i€EN

Using Property 13, we have: U =Y, v u; = > .oy ud > AU* — uU. By rearranging the
terms, we get % < “T“ A POA bound of MTH now follows from Property 12. We will show
Eq. (4) with A = % and p = %, which will then give us the desired upper bound of 1.6.

43:9

ESA 2017



43:10

Profit Sharing and Efficiency in Utility Games

Our task, therefore, is to prove Eq. (4) with A = % and p = % Let us initially focus on
a single task s. Let n be the number of players who can perform task s, k£ be the number
of teams, and h be the total utility produced by task s across all the teams in OPT-FR. To
compare this utility with that in the equilibrium NASH, we use 7 to denote the ratio of
utilities for task s in the two assignment OPT-FR and NASH. In other words, vh denotes the
total utility produced by task s in NASH. We examine two cases: vy < % and v > % (Since
we argue Eq. (4) for each task separately, we assume wlog that vs = 1.)

Case 1: v < % When a player i € N deviates to her fractional strategy unilaterally, her
payoff from task s is the sum of payoffs from the k — «h teams that do not cover task s and
the v, teams that already cover s. This is given by:

1 1 1 1
_ Z E > —(k— Z k-
et kst 17 k(k )+ k o

1
T+

1
% (by convexity). (5)
Summing over the n players who can perform task s gives:
n n_(yh)? (vh)?
—(k—~h)+ —- > (1—7v)h . 6
(k= h) + & n+7h_( 7)+h+7h (6)
The inequality follows by replacing n and k with their smaller or equal number A, since the

left-hand side is increasing as a function of n and k. We can then verify that for our values

of A = % and p = % and for any v < %, the last expression from (6) satisfies,

(vh)?
h+~h

(I—=7h+ > A — pyh. (7)

Case 2: v > % Similar to Case 1, the sum of payoffs for deviating from NASH to the
fractional strategies is at least

DR D (®)

ng 1
ting ;>0 St T

Note that the sum of all ns; values must be equal to n. Also, note that an adversary
minimizing Zt:n,§,t>0 ﬁ sets all n,; values equal and, if it turns out to be non-integral,
then rounds some of them up and some down to keep their sum at n. Now consider the
expression nZt:nsyt>O ﬁ and suppose that the n,; values have been picked by the
adversary as above. Consider increasing n by one. Then the adversary will also increase
exactly one of the n, ; values to restore the property that they sum to n. This will clearly
increase the value of the expression n Zt:n57t>0 ﬁ Hence, we again get a lower bound
on (8) by substituting n and k with their smaller number h, and letting the adversary
pick ns+ values summing to h.

At this point, we know that the sum of n, ; values will be equal to h and that the number
of ng; variables is vh, with v > % Therefore, each n, ; value chosen by the adversary will
be either 1 or 2. Since the average of the n,; values must be equal to %, there is also the
constraint that 28 +1(1— ) = %, where § is the fraction of n, ; variables with value 2. After
solving, we get 8 = % — 1. Then, the inequality corresponding to (7) in Case 1 becomes

1 1 1 1
1— S )b+ (2— = ) Ahs > A —
( v)h + <7 )’yhg +< 7) ’yh2 > Ah — puvh, (9)

which is always true for A = % and p = %

Combining the above two cases, and summing over all tasks s, we can conclude that (4)
holds as desired.
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3 Marginal Gain Payoffs

In this section, we prove our upper bound from Theorem 2, i.e., show that the POA for
marginal gain is at most 1 + % We note that the lower bound of Theorem 2 can be
established by hardness of approximation results (see [11]) assuming P # NP but we also
provide an explicit construction in our full paper.

» Lemma 14. The POA of marginal gain is at most 1 + %

We will assume wlog that all tasks have unit utility, since any task can be decomposed
into multiple unit-utility tasks. We say that player ¢ has a hit on a task that she can perform
if she receives payoff for it, i.e., is the first person in her team to perform the task; if not,
we call it a waste of the task. We will write OPT for the optimal outcome and NASH for
some given NE. Consider some task s € S and denote the number of hits on this task in OPT
(resp., NASH) by h¥ (resp., hs) and the number of wastes by w? (resp., wy). Consider the
quantity w} = ws — w*. For tasks that have wl > 0, we will arbitrarily select w of the
wastes in NASH and label them as the additional wastes of NASH against OPT. Note that
since b + w’ = hs + ws, w is precisely the difference in social utilities of NASH and OPT
due to task s. For ease of exposition we make the following modification to the values of h
and w¥: for tasks with w] < 0, we raise h* (and accordingly lower w*) until w = 0. These
changes improve the situation for OPT, and so an upper bound after the modification also
holds for the original scenario.

In what follows, let k& = |T'| be the number of teams and m = |S| be the number of tasks.
Now focus on any of the additional wastes w, which was a waste of s by player i in team t.

We can charge this waste to k hits as follows:
1. Task s was already covered in team t when i appeared; hence, we can infer that a hit
occurred for task s in team ¢ in a previous arrival. We charge to that hit.
2. For every team t' # t:
a. either has s covered (a hit from a previous arrival),
b. or has some other task s covered, for which ¢ received payoff in ¢ (again a hit from a
previous arrival). If not, player ¢ would have chosen t' over t.
We charge to these hits in teams t' # t.

We now need to bound the maximum number of times that a hit can be charged in the above
scheme. Whenever some hit h for some task s is charged for an additional waste w, one of
the following is true:

Another hit 1/, on the same task s as h, is happening at the same time as w. This is true

for charging arguments of the form (2b).

w is a waste of the same task s that is a hit in h. This is true for charging arguments of

the form (1) and (2a).
Hence, a hit h on task s may be charged in the above scheme only if, at the time of the
charging, there is a hit A’ on the same task s or a waste w of the same task s. We also note
that if a player ¢ incurs multiple wastes in her selected team ¢, then for each team t' # ¢ and
for each of these wastes (that are labeled as additional), we can find a distinct hit to charge
with an argument of the form (2a) or (2b).

It follows that the first hit on s can be charged at most hs — 1+ w] = h¥ — 1 times, the
second hit on s can be charged at most ~} — 2 times, and so on. Recall that the total number
of hits on task s in NASH is hs. Therefore, the total number of times that a hit on s can be
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charged, denoted Y, is upper bounded as

hs

Xs < (B —1)+ (A =2)+ (b —3)+... => (hi—j).

Jj=1

Then, it follows that the total number of times all hits are charged is upper bounded as
follows, with U (resp., U*) denoting the total utility of NASH (resp., OPT).

Zi(hi—j)=zh8hf§—z< hs (hs +1) Zhh*—*th—f

doxs <
seS seS j=1 seS seS seS
1 U
f 2 2 . .
< Z h? Z his — 5 Z hZ — ) (Cauchy-Schwarz inequality)
SES SES SES
1 v: v uv-ur U* U
< - = - == -———. (10)

m2 2 m 2m 2

Eqn. (10) follows from the following facts: (a) the sum of squares of m nonnegative numbers
with a given sum (here the sum of all h, is U and the sum of all k% is U*) is minimized when
they are all equal, and (b) the expression is decreasing as a function of the sum of all ~; and
as a function of the sum of all A%.

We also know that the total number of times a hit is charged is k times the number of
additional wastes. Hence,

S =k wt = kS (w, —wl) =k S (b — hy) = K(U* = U). (11)

seS ses s€S ses
From (10) and (11) we get that:
v-ux U* U

- ——>kU*-U 12
m 2m 2 — ( ) (12)
Now let v = —. Note that upper boundlng gives an upper bound on the POA. Substituting
in (12) and using the fact that U* < mk, we get
k 4k —1
—5’}/2 + —k >0

Since, by definition, 7 € [0, 1], the expression is increasing in v and, hence, for the inequality
to hold, it must be the case that v is greater than or equal to the unique root in [0, 1]. This
gives the following upper bound for the POA:

U;‘< 2k
U~ 4k—1—V8k2—8k+1

This is increasing in k and as k goes to oo, the limit is 1 + % This completes the proof.

4 Price of Stability

Studying the efficiency of the best NE in our setting is an interesting direction. The more
optimistic metric that corresponds to the price of anarchy in this framework is the price
of stability, i.e., the worst case ratio of the efficiency in OPT over the efficiency in the best
NE. We conclude the paper with a brief discussion on the topic. For marginal loss profit
sharing, we observe that any beneficial unilateral deviation also improves the social objective,
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hence, OPT is also a NE and the price of stability is 1. For marginal gain profit sharing, it
is possible to take any given NE, NASH, and modify the instance so that NASH becomes the
unique NE in the modified instance. The modification is performed by means of making a
very large number of copies of each task and introducing new unit tasks for tie-breaking
purposes. Then, we get that the price of stability for marginal loss profit sharing is equal
to the price of anarchy. We omit the exact details of this modification process. In contrast
to the two previous models, determining the price of stability for egalitarian profit sharing
appears to be a challenging question that invites future research.
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