Path-Contractions, Edge Deletions and
Connectivity Preservation*!

Gregory Gutin!, M. S. Ramanujan?, Felix Reidl®, and
Magnus Wahlstrom®

1 Royal Holloway University, University of London, Egham, UK
G.Gutin@rhul.ac.uk

2 Algorithms and Complexity Group, TU Wien, Vienna, Austria
ramanujan@ac.tuwien.ac.at

3 Royal Holloway University, University of London, Egham, UK
felix.reidl@gmail.com

4 Royal Holloway University, University of London, Egham, UK
Magnus.Wahlstrom@rhul.ac.uk

——— Abstract

We study several problems related to graph modification problems under connectivity constraints
from the perspective of parameterized complexity: (Weighted) Biconnectivity Deletion, where we
are tasked with deleting k edges while preserving biconnectivity in an undirected graph, Vertex-
deletion Preserving Strong Connectivity, where we want to maintain strong connectivity of a
digraph while deleting exactly k vertices, and Path-contraction Preserving Strong Connectivity,
in which the operation of path contraction on arcs is used instead. The parameterized tractability
of this last problem was posed in [Bang-Jensen and Yeo, Discrete Applied Math 2008] as an open
question and we answer it here in the negative: both variants of preserving strong connectivity
are W[1]-hard. Preserving biconnectivity, on the other hand, turns out to be fixed parameter
tractable (FPT) and we provide an FPT algorithm that solves Weighted Biconnectivity Dele-
tion. Further, we show that the unweighted case even admits a randomized polynomial kernel.
All our results provide further interesting data points for the systematic study of connectivity-
preservation constraints in the parameterized setting.

1998 ACM Subject Classification G.2.2 Graph algorithms
Keywords and phrases connectivity, strong connectivity, vertex deletion, arc contraction

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.47

1 Introduction

Some of the most well studied classes of network design problems involve starting with a
given network and making modifications to it so that the resulting network satisfies certain
connectivity requirements, for instance a prescribed edge- or vertex-connectivity. This class of
problems has a long and rich history (see e.g. [1, 8]) and has recently started to be examined
through the lens of parameterized complexity. Under this paradigm, we ask whether a (hard)
problem admits an algorithm with a running time f(k)no(l), where n is the size of the input,

* The research of Gregory Gutin was partially supported by Royal Society Wolfson Research Merit Award.
M. S. Ramanujan acknowledges support from Austrian Science Fund (FWF, project P26696). Felix
Reidl and Magnus Wahlstrém were supported by EPSRC grant EP/P007228/1.

t A full version of the paper is available at https://arxiv.org/abs/1704.06622.

© Gregory Gutin, M. S. Ramanujan, Felix Reidl, and Magnus Wahlstrém;
oY licensed under Creative Commons License CC-BY

25th Annual European Symposium on Algorithms (ESA 2017).

Editors: Kirk Pruhs and Christian Sohler; Article No.47; pp.47:1-47:13

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.47
https://arxiv.org/abs/1704.06622
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

47:2

Path-Contractions, Edge Deletions and Connectivity Preservation

k the parameter, and f some computable function. A natural parameter to consider in this
context is the number of editing operations allowed and we can reasonably assume that this
number is small compared to the size of the graph.

To approach this line of research systematically, let us identify the ‘moving parts’ of the
broader question of editing under connectivity constraints: first and foremost, the network
in question might best be modelled as either a directed or undirected graph, potentially
with edge- or vertex-weights. This, in turn, informs the type of connectivity we restrict, e.g.
strong connectivity or fixed value of edge-/vertex-connectivity. Additionally, the connectivity
requirement might be non-uniform, i.e. it might be specified for individual vertex-pairs. The
constraint one operates under might either be to preserve, to augment, or to decrease said
connectivity. Finally, we need to fix a suitable editing operation; besides the obvious vertex-
and edge-removal, more intricate operations like edge contractions are possible.

While not all possible combinations of these factors might result in a problem that
currently has an immediate real-world application, they are nonetheless important data
points in the systematic study of algorithmic tractability. For example, if we fix the editing
operation to be the addition of edges (often called ‘links’ in this context) and our goal is
to increase connectivity, then the resulting class of connectivity augmentation problems has
been thoroughly researched. We refer to the monograph by Frank [8] for further results on
polynomial-time solvable cases and approximation algorithms. Under the parameterized
complexity paradigm, Nagamochi [16] and Guo and Uhlmann [10] studied the problem of
augmenting a 1-edge- connected graph with £ links to a 2-edge-connected graph. Nagamochi
obtained an FPT algorithm for this problem while Guo and Uhlmann showed that this
problem, alongside its vertex-connectivity variant, admits a quadratic kernel. Marx and
Végh [14] studied the more general problem of augmenting the edge-connectivity of an
undirected graph from A — 1 to A, via a minimum set of links that has a total cost of at
most k, and obtained an FPT algorithm as well as a polynomial kernel for this problem.
Basavaraju et al. [3] improved the running time of their algorithm and further showed the
fixed-parameter tractability of a dual parameterization of this problem.

A second large body of work can be found in the antithetical class of problems, where we
ask to delete edges from a network while preserving connectivity. Probably the most studied
member of these connectivity preservation problems is the MINIMUM STRONG SPANNING
SPANNING SUBGRAPH (MSSS) problem: given a strongly connected digraph we are asked
to find a strongly connected subgraph with a minimum number of arcs. The problem is
NP-complete (an easy reduction from the HAMILTONIAN CYCLE problem) and there exist a
number of approximation algorithms for it (see the monograph by Bang-Jensen and Gutin
for details and references [1]). Bang-Jensen and Yeo [2] were the first to study MSSS from
the parameterized complexity perspective. They presented an algorithm that runs in time
20(klogk),O(1) and decides whether a given strongly connected digraph D on n vertices and
m arcs has a strongly connected subgraph with at most m — k arcs provided m > 2n — 2.
Basavaraju et al. [4] extended this result not only to arbitrary number m of arcs but also
to A-arc-strong connectivity for an arbitrary integer A, and they further extended it to
M-edge-connected undirected graphs.

We consider the undirected variant of this problem, however, we aim to preserve the
vertex-connectivity instead of edge-connectivity. As noted by Marx and Végh [14], vertex-
connectivity variants of parameterized connectivity problems seem to be much harder to
approach than their edge-connectivity counterparts.! Moreover, even the complexity of the

! Marx and Végh [14] compare [18] and [7] to [9] and [17] with respect to polynomial-time exact and

G. Gutin, M. S. Ramanujan, F. Reidl, and M. Wahistrom

problem of augmenting the vertex-connectivity of an undirected graph from 2 to 3, via a
minimum set of up to k new links remains open [14]. Our main result in this direction is the
first FPT algorithm for the following problem?:

WEIGHTED BICONNECTIVITY DELETION parametrised by k

Input: A biconnected graph G, k € N, w*™ € Rx¢ and a function w : E(G) — Rxo.
Problem: Is there a set S C E(G) of size at most k such that G — S is biconnected and
w(S) = w*?

» Theorem 1. WEIGHTED BICONNECTIVITY DELETION can be solved in time 20 (k108 k)pO(1)

We further show that this problem has a randomized polynomial kernelization when the
edges are required to have only unit weights. To be precise, all inputs for the unweighted
variant UNWEIGHTED BICONNECTIVITY DELETION (UBD) are of the form (G, k, w*, w),
where w* = k and w(e) = 1 for every e € E(G).

» Theorem 2. UBD has a randomized kernel with O(k°) vertices.

Along with arc-additions and arc-deletions, a third interesting operation on digraphs is
the path-contraction operation which has been used to obtain structural results on paths in
digraphs [1]. To path-contract an arc (z,y) in a digraph D, we remove it from D, identify
x and y and keep the in-arcs of x and the out-arcs of y for the combined vertex. The
resulting digraph is denoted by D // (z,y). It is useful to extend this notation to sequences
of contractions: let S = (a1, aq,...,a,) be a sequence of arcs of a digraph D. Then D J S is
defined as (... ((D J a1) [a2) JJ -..) J ap. Since the resulting digraph does not depend on
the order of the arcs [1], this notation can equivalently be used for arc-sets.

Bang-Jensen and Yeo [2] asked whether the problem of path-contracting at least k arcs
to maintain strong connectivity of a given digraph D is fixed-parameter tractable. Formally,
the problem is stated as follows:

PATH-CONTRACTION PRESERVING STRONG CONNECTIVITY parametrised by k

Input: A strongly connected digraph D and an integer k.

Problem: Is there a sequence S = (ai,...,ax) of arcs of D such that D /S is also strongly
connected?

Our first result is a negative answer to the question of Bang-Jensen and Yeo. That is, we
show that this problem is unlikely to be FPT.

» Theorem 3. PATH-CONTRACTION PRESERVING STRONG CONNECTIVITY is W[1]-hard.

We follow up this result by considering a natural vertex-deletion variant of the problem and
extending our W[1]-hardness result to this problem as well. In this variant, the objective is
to check for the existence of a set of ezactly® k vertices such that on deleting these vertices
from the given digraph, the digraph stays strongly connected.

» Theorem 4. VERTEX-DELETION PRESERVING STRONG CONNECTIVITY is W[1]-hard.

approximation algorithms.

Note that since 1-vertex-connectivity is trivially equivalent to 1l-edge-connectivity, the 1-vertex-
connectivity case was proved to be FPT by Basavaraju et al. [4].

We require ezactly k vertices rather than at least k vertices to be deleted since the one-vertex digraph
is strongly connected [1].

47:3

ESA 2017

47:4

Path-Contractions, Edge Deletions and Connectivity Preservation

Our Methodology. Our algorithm for WEIGHTED BICONNECTIVITY DELETION builds upon
the recent approach introduced by Basavaraju et al. [4] to handle connectivity preservation
problems, in particular the p-A\-EDGE CONNECTED SUBGRAPH (p-A-ECS) problem where
the objective is to delete k edges while keeping the graph A-edge connected. Call an edge
deletable (we refer to it as non-critical in the case of vertex-connectivity) if deleting it keeps
the given (di)graph A-edge connected, undeletable (critical) otherwise, and call an edge
irrelevant if there is a solution disjoint from the edge.

For an even value of A and a A-edge-connected undirected graph G, Basavaraju et al. [4]
proved that unless the total number of deletable edges is bounded by O(M\k?), it is possible in
polynomial time to obtain a set F' of k edges such that G — F' is still A-edge-connected. This
result does not hold for odd values of A\ as can be seen, e.g., when A =1 and G is a cycle.
In this much more involved case, unless the total number of deletable edges is bounded by
O()\K3), it is possible in polynomial time to obtain either a set F of k edges such that G — F
is still A-edge-connected or to identify an irrelevant edge.

WEIGHTED BICONNECTIVITY DELETION is similar to the case of odd A as we find either
a solution or an irrelevant edge. The main difference between our FPT algorithm and the
one presented by Basavaraju et al. is the deep structural analysis necessitated by the shift
from edge-connectivity to vertex-connectivity: While in the former case the failure to find
a solution means that G can be decomposed into a ‘cycle-like’ structure as shown in [4],
in our case no such simple structure arises. Instead, we perform a careful examination of
mixed cuts in the graph, each of which comprises precisely one critical edge e and a vertex w
which we call the partner of e. We show that either a large number of critical edges share a
common partner or there is a large number of critical edges with pairwise distinct partners.
In the former case, we prove the existence of an irrelevant edge while in the latter case we
are able to construct a solution. Our result is based on a non-trivial combination of several
new structural properties of biconnected graphs and critical edges which we believe is of
independent interest and useful in the study of other connectivity-constrained problems.

The kernel stated in Theorem 2 relies on the powerful cut-covering lemma of Kratsch and
Wahlstrom [13] which has been central to the development of several recent kernelization
algorithms [12]. While Basavaraju et al. obtained a randomized compression for the p-A-ECS
problem using sketching techniques from dynamic graph algorithms, we provide an alternative
approach and show that when dealing with biconnectivity it is also possible to obtain a
(randomized) polynomial kernel. We believe that this approach could be applicable for higher
values of vertex- connectivity and for other connectivity deletion problems, as long as one
is able to bound the number of critical or undeletable edges in the given instance by an
appropriate function of the parameter.

Further related work. In the MINIMUM EQUIVALENT DIGRAPH problem, given a digraph
D, the aim is to find a spanning subgraph H of D with minimum number of arcs such that
if there is an x-y directed path in D then there is such a path in H for every pair x,y of
vertices of D. Since it is not hard to solve MINIMUM EQUIVALENT DIGRAPH for acyclic
digraphs, MINIMUM EQUIVALENT DIGRAPH for general digraphs can be reduced to MSSS
in polynomial time. Chapter 12 of the monograph of Bang- Jensen and Gutin [1] surveys
pre-2009 results on MINIMUM EQUIVALENT DIGRAPH. The first exact algorithm for the
MNIMUM EQUIVALENT DIGRAPH problem, running in time 2°0™) was given by Moyles and
Thompson [15] in 1969, where m is the number of arcs in the graph. More recently, Fomin,
Lokshtanov, and Saurabh [6] gave the first vertex-exponential algorithm for this problem, i.e.
an algorithm with a running time of 20(%),

G. Gutin, M. S. Ramanujan, F. Reidl, and M. Wahistrom

Paper organization. This paper is a shortened version of the full paper [11]. Due to the
space limit, we omitted several results, proofs, and other material.

2 Preliminaries

Graphs. For an undirected graph G and vertex set S C V(G), we denote by E(S) the set
of edges of G with both endpoints in S. For a vertex set X C V(G), we denote by Ng(X)
the set of vertices of V/(G) \ X which are adjacent to a vertex in X. A vertex in a connected
undirected graph is a cut-vertex if deleting this vertex disconnects the graph. A biconnected
graph is a connected graph on two or more vertices having no cut-vertices.

» Definition 5. Let G be a graph and z,y € V(G) two vertices. An z-y separator (an x-y
cut) is a set S C V(G) \ {z,y} (respectively S C E(G)) such that there is no x-y path in
G — S. A mized x-y cut is a set S C V(G) U E(G) such that |S N E(G)| = 1 and there is no
z-y path in G — S.

» Definition 6. Let G be a graph and z,y € V(G). Let P be a set of internally vertex-disjoint
a-y paths in G. Then, we call P an z-y flow. The value of this flow is |P|. We say that an
edge e participates in the z-y flow P if e € (Jpp P.

We denote by kg (x,y) the value of the maximum x-y flow in G with the reference to G
dropped when clear from the context.

Let P be a set of paths in G which have an endpoint in Y and intersect only in x. Then,
we refer to P as an z-Y flow, with the value of this flow defined as |P].

Directed graphs. We will refer to edges in a digraph as arcs. For a vertex x in a digraph D
we write N, (z) and N} (z) to denote its in- and out-neighbours, respectively. A sink is a

vertex with no out-neighbours and a source is a vertex with no in-neighbours.

Parameterized Complexity. An instance of a parameterized problem II is a pair (I, k)

where [is the main part and k is the parameter; the latter is usually a non-negative integer.

A parameterized problem is fized-parameter tractable if there exists a computable function f

such that instances (I, k) can be solved in time O(f(k)|I|¢) where |I| denotes the size of I.

The class of all fixed-parameter tractable decision problems is called FPT and algorithms
which run in the time specified above are called FPT algorithms.

To establish that a problem under a specific parameterization is not in FPT (under
common complexity-theoretic assumptions) we provide parameter-preserving reductions from
problems known to lie in intractable classes like W[1] or W[2]. In such a reduction, an
instance (I1, k) is reduced in FPT time to an instance (I3, k2) where ko < f(k1) for some
function f. In the context of this paper we will use that INDEPENDENT SET under its natural
parameterization (the size of the independent set) is W[1]-hard [5].

A reduction rule for a parameterized problem II is an algorithm that given an instance
(I,k) of a problem II returns an instance (I', k') of the same problem. The reduction rule is
said to be sound if it holds that (I, k) € I if and only if (I, k") € II. A kernelization is a
polynomial-time algorithm that given any instance (I, k) returns an instance (I’, k") such

that (I, k) € IT if and only if (I’, k') € II and |I'|+ k' < f(k) for some computable function f.

The function f is called the size of the kernelization, and we have a polynomial kernelization
if f(k) is polynomially bounded in k. A randomized kernelization is an algorithm which is
allowed to err with certain probability. That is, the returned instance will be equivalent to
the input instance only with a certain probability.

47:5

ESA 2017

47:6

Path-Contractions, Edge Deletions and Connectivity Preservation

3 Preserving strong connectivity

In this section, we prove Theorem 3.
» Theorem 3. PATH-CONTRACTION PRESERVING STRONG CONNECTIVITY is W[1]-hard.

Proof. We reduce INDEPENDENT SET to PATH-CONTRACTION PRESERVING STRONG CON-
NECTIVITY.

Construction. Let (G, k) be an instance of INDEPENDENT SET. We now define a digraph D
as follows. We begin with the vertex set of D. For every vertex v € V(G), D has two vertices
v—,vT. For every edge e = (u,v) € E(G), the digraph D has k + 2 vertices é,é1,...,641.
Finally, there are 2k + 4 special vertices x,y,z!,..., 2%t ¢!, ... y*T1. This completes the
definition of V(D). We now define the arc set of D (see Figure 1).

For every v € V(G), we add the arc (v, v") in D

For every i € [k + 1], we add the arcs {(z, 2%), (2%, 2), (v,), (v*,y), (v, 2)}.

For every edge e = (u,v) € E(G) and i € [k + 1], we add the arcs {(é, &), (é;,€), (v, &),

(é,v"), (u=,é),(é,u™)}in D .

For every v € V(G), we add the arc (z,v™) and the arc (v, y).
This completes the construction of the digraph D. Clearly, D is strongly-connected.

For an edge e = (u,v) € E(G), we denote by B, the set of arcs {(v—,é),(é,v"),
(u™,é),(é,u")} and by Fe, the set of arcs

B.u {(é’ él)’ (é“ é)|l € [k + 1}} U {(u_’u+)7 (U_’ U+)7 (.13, U_)7 (’U+’ y)v (x,u_), (u+7 y)v (y,x)}

We refer to the subgraph of D induced by F. as the edge-selection gadget in D corresponding
to e (see Figure 1). The intuition here is that, as we will prove formally, any solution in D
will contain at most one of the two arcs (u™,u™), (v, v™").

Proof of correctness. We now argue that (G, k) is a yes-instance of INDEPENDENT SET
if and only if (D, k) is a yes-instance of PATH-CONTRACTION PRESERVING STRONG CON-
NECTIVITY. In the forward direction, suppose that (G, k) is a yes-instance of INDEPENDENT
SET and let X C V(@) be a solution. Observe that S = {(v—,v") | v € X} is a pairwise
vertex-disjoint set of arcs. We claim that S is a solution for the instance (D, k). That is,
|S| = k and D J/ S is strongly connected. The former is true by definition. We prove the
latter, as the claim below, in the full version of the paper.

» Claim 7. D' = D)/ S is strongly connected.

We now consider the converse direction. Suppose that (D, k) is a yes-instance of PATH-
CONTRACTION PRESERVING STRONG CONNECTIVITY and let S = {a,...,ax} be a solution
for this instance. We require the following claim whose proof can be found in the full version
of the paper.

» Claim 8. For every edge e = (u,v) € E(GQ), [SN{(u",u"),(v",v")}| < 1. Furthermore,
SC{(v,vh)|veV(G)}.

The claim above implies that if X is a solution for the reduced instance of PATH-CONTRACTION
PRESERVING STRONG CONNECTIVITY, then the set S of arcs corresponds independent set in
G. In other words, (G, k) is a yes-instance of INDEPENDENT SET. This proves the correctness
of the reduction and completes the proof of the theorem. <

G. Gutin, M. S. Ramanujan, F. Reidl, and M. Wahistrom

fuj‘ ol
e

—_ \' —

v, v,

Figure 1 An illustration of the arcs in the reduced instance of PATH-CONTRACTION PRESERVING
STRONG CONNECTIVITY. The second figure only contains the arcs of the edge-selection gadget
corresponding to the edge e = (v;,v;) € E(G). Vertices with a padlock have additional k+ 1 pendant
vertices with arcs in both directions.

4 Edge deletion to biconnected graphs

In this section, we consider the WEIGHTED BICONNECTIVITY DELETION problem on undi-
rected graphs. Recall that the problem is defined as follows:

WEIGHTED BICONNECTIVITY DELETION parametrised by k

Input: A biconnected graph G, k € N, w* € Ry and a function w : E(G) — Rxo.
Problem: Is there a set S C E(G) of size at most k such that G — S is biconnected and
w(S) = w*?

We refer to a set S C E(G) such that G — S is biconnected as a biconnectivity deletion
set of G. For an instance (G, k,w*, w) of WEIGHTED BICONNECTIVITY DELETION and a

biconnectivity deletion set S of G, we say that S is a solution if |S| < k and w(S) > w*.
The main result of this section is the following.

» Theorem 1. WEIGHTED BICONNECTIVITY DELETION can be solved in time 20 (k108 k) O(1)

We denote by k(G) the vertex-connectivity of a graph G. Let G be a biconnected graph.
An edge e € E(G) is called critical if k(G — e) < 2. We denote by Criticalg(e) the subset of
E(G) comprising edges which are critical in G — e but not in G. We denote by Criticalg(0)
the set of edges which are already critical in G. In all notations, we ignore the explicit
reference to G when it is clear from the context. We say that e is critical for a pair of
vertices u, v in G if u and v are non-adjacent and e participates in every u-v flow of value
two in G.

4.1 The FPT algorithm for Weighted Biconnectivity Deletion

To prove Theorem 1 we consider a more general version of the WEIGHTED BICONNECTIVITY
DELETION problem where the input also includes a set E*° C E(G) and the objective is to
decide whether there is a solution disjoint from this set. Henceforth, instances of WEIGHTED
BICONNECTIVITY DELETION will be of the form (G, k, w*, w, E*) and any solution S is
required to be disjoint from E>°. We will refer to edges of E(G) \ E* as potential solution
edges. We say that a potential solution edge e is irrelevant if either the instance has no

47:7

ESA 2017

47:8

Path-Contractions, Edge Deletions and Connectivity Preservation

solution, or has a solution that does not contain e. For an instance I = (G, k, w*,w, E>)
and r € N, we denote by Heavy;(r) the heaviest r potential solution edges of G with respect
to the function w. If I is clear from the context, we simply write Heavy(r) when referring to
Heavy; (7).

Observe that no edge from the set Criticalg () can be part of a solution. As a result, we
assume without loss of generality that for any instance (G, k, w*,w, E>), the set Criticalg ()
is contained in £°°. Furthermore, since the edges in F°° can never be part of a solution,
we assume without loss of generality that for every edge e € E*, w(e) = 0. The proof
of Theorem 1 is based on the following lemma which states that either a) the number of
potential solution edges in the instance is already bounded polynomially in &, or b) a ‘small’
set of the heaviest edges in the instance must intersect a solution, or c¢) there is an irrelevant
edge which can be found in polynomial time. For ease of presentation, let use define the
polynomial p(z) := 2023 + 4622 + x for the rest of this section.

» Lemma 9. Let I = (G, k,w*,w, E*°) be an instance of WEIGHTED BICONNECTIVITY
DELETION. If |E(G) \ E*®| > u(k), then the set Heavy(u(k)) contains either a solution edge
or an irrelevant edge which can be computed in polynomial time.

Proof. We give a brief proof sketch for the lemma. Note that the individual claims below do
not map directly to claims in the full paper, but are present to illustrate the important ideas.

The general strategy of our result, following Basavaraju et al. [4], is a greedy algorithm
that iteratively selects a non-critical edge e € Heavy(u(k)) for inclusion into a solution,
computes which other edges become critical by the deletion of e, and either proceeds to select
another edge for inclusion or halt, if either all edges of the remaining graph are critical or if
the solution already contains k edges. Let us first cover the latter case.

» Claim 10. If there exists a biconnectivity deletion set S C Heavy(u(k)) with |S| = k, then
any solution to the instance must intersect Heavy(u(k)).

Recall that this is one of the positive outcomes of Lemma 9. Therefore, we henceforth
assume that there are more than p(k) potential solution edges, but that the greedy algorithm
terminates after fewer than & steps due to all edges of the remaining graph being critical. Let
fi, .-+, fi, t <k be the sequence of edges selected by the greedy algorithm. By a pigeonhole
argument, there must then be some index 7 € [t| such that |Criticalg_(y,,.. 5,3 (fr)] >
20k? + 46k. Let S = {f1,..., fr_1} be the edges deleted until this point, let e = f, = (x,7),
and let G’ = G —S. We proceed to analyse the structure implied by the edges in Criticalg: (e).

» Claim 11. The following hold.

1. The mazimum value of an x-y flow in G’ is 2.

2. For any x-y flow P = {Py, P2} in G', every edge of Criticalg/(e) participates in P.

3. For every edge € € Criticalgs(€), say € € E(Py), there is a mized z-y cut {¢/,w} in
G’ — e, and for every such mized cut we have w € V(Py).

In the latter case, we refer to w as a partner vertex of €', and to the set of all partner
vertices of ¢’ as the partner set of /. The crux of the remainder of the proof lies in analysing
the interaction between different mixed cuts and partner sets in G’. For convenience,
we fix an order on P; and P» where we traverse both paths from z to y. We denote
E = Criticalgr (e) N E(P), and assume without loss of generality that |E| > 10k2 + 23k. The
following is the most important structural observation on which our proof is based. For each
edge e; € E, let V; denote the partner set of e;.

G. Gutin, M. S. Ramanujan, F. Reidl, and M. Wahistrom

» Claim 12. For every pair of edges e;, e; in E, where e; lies before ej on Py, [V;NV;| <1,
and if V; NV, contains such a common vertex w, then w is the last vertex of V; and the first
vertex of V; on Ps.

Our proof now splits into two fundamentally different cases. Either the flow P contains a
long sequence of pairwise essentially non-interacting mixed cuts, or there are many edges of
E with pairwise identical partner sets. We cover the first case now.

» Claim 13. Letey,...,esp41 be a sequence of edges of E, traversed in this order from x to
y, such that for every i € [3k] the edges e; and e;+1 have distinct partner sets. Then the set
F ={ei,eq,...,e30_2} is a biconnectivity deletion set for G.

By Claim 10, this would imply Lemma 9, so it remains to consider the case when Claim 13
fails to apply. In fact, Claim 13 applies whenever there is a sufficiently large number of
distinct partner sets for edges of E; hence we may assume that there is a large number of
distinct edges of E with identical partner sets. Let £ C E be a set of Q(k) edges with
pairwise identical partner sets. Then by Claim 12, there is a single vertex w € V(Pz) such
that for any ¢/ € E’ the partner set of ¢’ is simply {w}. We show that this case implies an
irrelevant edge rule. For simplicity, we illustrate the rule for the case that S = (.

» Claim 14. Assume that G = G’ and |E'| > 2k + 4. Let €’ = argmin,, .z, w(e’). Then for
any biconnectivity deletion set S' of size k in G we have |S' N E'| < 1, and if ¢ € S then
there exists an edge ¢’ € E'\ {e'} such that the set S” = (5" \ {e'})U{e"} is a biconnectivity
deletion set with |S”| =k and w(S"”) > w(S’). Hence €' is an irrelevant edge in G.

By additional arguments omitted from this sketch, a similar result also holds for the
general case of S # (), and under the assumption that |E| > 10k? + 23k we can show that
either Claim 13 or Claim 14 applies. Hence in every case we find either an irrelevant edge or
a large biconnectivity deletion set, and Lemma 9 follows. |

Given Lemma 9, Theorem 1 is proved as follows. Let I = (G, k,w,w*, E°°) be an instance
of WEIGHTED BICONNECTIVITY DELETION. If the number of potential solution edges in
this instance is already bounded by u(k), then we simply enumerate all k-sized subsets of
this set (there are 20(*1°8%) choices) and check in polynomial time whether one of these
subsets is a solution. Otherwise, we invoke Lemma 9 and either correctly conclude that the
set Heavy(u(k)) contains a solution edge, or we compute an irrelevant edge e in polynomial
time. In the first case we branch on the set Heavy(u(k)), reduce the budget k by 1 and the
target weight w* accordingly and recursively solve the resulting instance. In the second case,
we add the edge e to the set E> (thus decreasing the set of potential solution edges) and
repeat.

4.2 A randomized kernel for Unweighted Biconnectivity Deletion

We now present our randomized kernel for the WEIGHTED BICONNECTIVITY DELETION
problem where instances are of the form (G, k,w*, w, E*) where w(e) = 1 for every e €
E(G)\ E*, w(e) = 0 for every e € E*°, and w* = k. This version of the problem will be
referred to as UNWEIGHTED BICONNECTIVITY DELETION and instances of this problem will
henceforth be of the form (G, k, E°°) where a solution is a biconnectivity deletion set of size
k contained in E(G)\ E*. We continue to refer to the set E(G)\ E> as the set of potential
solution edges and assume without loss of generality that at any point, any edge in the set
Criticalg(0) is already part of E*. Finally, recall that a linkage from A to B in a digraph

47:9

ESA 2017

47:10

Path-Contractions, Edge Deletions and Connectivity Preservation

D, where A and B are vertex sets, is a collection of |A| = | B| pairwise vertex-disjoint paths
originating in A and terminating in B.

Our kernelization relies on a result of Kratsch and Wahlstrém [13]. Before we are able to
state it formally, we need the following definitions. Let us define a potentially overlapping
A-B vertex cut in a digraph D to be a set of vertices C C V(D) such that D — C' contains no
directed path from A\ C to B\ C. For any digraph D and set X C V(D), a set Z C V(D)
is called a cut-covering set for (D, X) if for any A, B, R C X, there is a minimum-cardinality
potentially overlapping A-B vertex cut C'in D — R such that C' C Z.

» Lemma 15 (Corollary 3, [13]). Let D be a directed graph and let X C V(D). We can
identify a cut-covering set Z for (D,X) of size O(|X|3) in polynomial time with failure
probability O(2~1V (P,

We first give a randomized kernelization that outputs an instance whose size is bounded
polynomially in the number of the potential solution edges in the input instance.

» Lemma 16. UNWEIGHTED BICONNECTIVITY DELETION has a randomized kernel with
number of vertices bounded by O(|E(G) \ E*|3).

Proof. Let F = E(G) \ E* be the set of potential solution edges. Now, the kernelization
task essentially consists of retaining enough information from the input graph G to verify
for any set S C F, whether S is a biconnectivity deletion set for G. Observe that this is
equivalent to verifying whether there exists an edge e = (u,v) € S, such that the maximum
value of a u-v flow in G — S is less than 2. We show an equivalent formulation of this as a
question about the existence of linkages in an auxiliary digraph, followed by an application
of Lemma 15.

For the formulation, we create a digraph D¢ r from G and F'. We refer to this digraph
as D when G and F are clear from the context. In the first step, subdivide every edge
e € F with a new vertex x.. That is, for an edge e = (u,v) € F, we create a new vertex
Ze, remove the edge e and add edges (u,z.) and (v, z.). Let Gy be the resulting undirected
graph. In the second step, replace every edge (u,v) in E(G1) by a pair of arcs (u,v), (v, u).
Finally, for every vertex v incident to any edge of F' in G, add vertices v™,v~ and add
arcs from v to all vertices in Ng, (v) and from all vertices in Ng, (v) to v~. Let D be
the resulting digraph. Note that N (v™) =) and Ny (vF) = 0. Let Xp = {z. | e € F},
Xy ={vt,v,v|e€ F,e=(u,v)} and X = Xg U Xy. We now relate solutions for the
given instance and linkages in D. The following assertion is proved in the full version of the
paper.

» Claim 17. For any S C F, S is a biconnectivity deletion set for G if and only if for every
edge (u,v) € S there is a linkage from {u™,u} to {v=,v} in D — {z. | e € S}.

Let Z C V(D) be the cut-covering set for (D, X), as computed by the algorithm of Lemma 15.
Having in hand the set Z, we define the set Y = (Z N V(G)) UV (F). Note that Z could
contain vertices from Xy, but we want Y to be a subset of V(G). Therefore, we first add
to Y those vertices in Z which are also vertices in G and then add the vertices of V(F).
Our objective now is to reduce G down to what is commonly known as the torso graph of
G defined by Y (see [13]). We now make this precise in the form of reduction rules. In the
rest of the proof of the lemma, we fix Z to be a set computed using Lemma 15 and let Y
be as defined above. We now state three reduction rules which will be applied on the given
instance in the order in which they are presented.

» Reduction Rule 18. If k = 0, then return an arbitrary yes-instance of constant size.

G. Gutin, M. S. Ramanujan, F. Reidl, and M. Wahistrom

» Reduction Rule 19. Suppose that Reduction Rule 18 has been applied on the given instance.
If there is an edge (u,v) € F such that G contains a u-v path avoiding all edges of F and all
vertices of Y \ {u, v}, then delete (u,v) from G and reduce the budget k by 1. That is, return
the instance (G — {(u,v)},k — 1, E*).

» Reduction Rule 20. Suppose that Reduction Rule 18 and Reduction Rule 19 have been
applied exhaustively on the given instance. For every pair u,v € Y such that (u,v) ¢ E(Q)
and there is a u-v-path in G that is internally vertez-disjoint from Y, we add the edge (u,v).
Finally, return the instance (G, k, E'*®), where G' = G[Y] and E'* = (E* N E(G")) U
(B(G')\ E(G)).

The soundness of Rule 18 is trivial and we move on to prove the soundness of the remaining
two rules.

» Claim 21. Reduction Rules 19 and 20 are sound.

Proof. Let e = (p,q) € F be an edge which is deleted in an application of Reduction Rule 19.

Observe that in order to argue the soundness of this reduction rule, it suffices to argue that
e is part of some solution for the given instance (if there exist any). Let S be an arbitrary
subset of F' containing e such that S\ {e} is a solution. If S itself is a biconnectivity deletion

set then we may correctly conclude that e is part of some solution for the given instance.

Suppose that this is not the case.

Recall that by the previous claim, S is a biconnectivity deletion set for G if and only if
there is a linkage from {u™,u} to {v™,v} in D — {z. | e € S} for every (u,v) € S. Since
we are in the case that S is not a biconnectivity deletion set, there is a (u,v) € S, with
A={ut,u}, B={v",v}, and R = {z. | e € S} such that there is no linkage from A to
B in D — R. Since S\ {e} is a biconnectivity deletion set, we may assume without loss of
generality that u = p and v = ¢ and furthermore, kg_s(p,¢) = 1. In addition, the fact that
Z is a cut-covering set for (D, X) implies that Z contains a vertex w such that C' = {w} is a
minimum-cardinality potentially overlapping A-B vertex cut in D — R. It is straightforward
to see that w & {p,q,p", ¢} since otherwise, there will be at least one path from A to B
which is disjoint from w. Finally, since kg_s(p,q) = 1, it follows that every p-¢ path in
G — S intersects w. If w € Xg then we know that it corresponds to an edge in F. Otherwise,
it corresponds to a vertex in Y. In either case, we obtain a contradiction to the applicability
of Reduction Rule 19 on the edge (p, q), completing the proof of soundness for this rule.

We now argue the soundness of Reduction Rule 20. To do so, we prove that S C F'is a
solution for (G, k, E*°) if and only if it is a solution for (G, k, E’*®). Let D; = D¢, r and let
Dy = DG’,F-

In the forward direction, suppose that S is a solution for (G, k, E*°). By Claim, 17,
it follows that for every edge (u,v) € S, there is a linkage from {u™,u} to {v™,v} in
Dy — {z. | e € S}. Fix such an edge (u,v) and let the paths in the linkage be Py, Py. If

we demonstrate such a linkage in D5, then we are done. This can be achieved as follows.

Let ¢ € {1,2} and consider a pair of vertices x;,y; € V(P;) NY such that the subpath of P,
from x; to y; has all its internal vertices disjoint from Y. Then, we know that the graph
G’ contains the edge (x;,y;) and hence the digraph Ds contains the arc (z;,y;). We replace

the subpath from x; to y; with the arc (z;,y;) and we do this for every such subpath of P;.

It is straightforward to see that what results is indeed a linkage from {u*,u} to {v™,v} in
Dy — {z. | e € S}. Hence, we conclude that S is a solution for (G', k, E'*).

The same argument can be reversed for the converse direction in order to convert, for
any (u,v) € S, a linkage from {u*,u} to {v7,v} in Dy — {z, | e € S} to a a linkage from

47:11

ESA 2017

47:12

Path-Contractions, Edge Deletions and Connectivity Preservation

{u™,u} to {v™,v} in D; —{z, | e € S}. This completes the proof of soundness of Reduction
Rule 20. <

The above claim implies that if (G', k', E(G’) \ F”) is the instance obtained by exhaustively
applying the three reduction rules above, then (G’ k', E(G') \ F’) is indeed equivalent to
(G, k, E*). Furthermore, the size |V (G’)| = O(|F|?) and the randomized polynomial running
time follow from Lemma 15. This completes the proof of the lemma. |

» Theorem 2. UBD has a randomized kernel with O(k°) vertices.

Proof sketch. Let (G, k, E*) be the given instance and let F' = E(G) \ E* be the set of
potential solution edges in this instance. We present reduction rules which reduce F' (while
maintaining equivalence) to size O(k?); the result then follows from Lemma 16.

If |F| = O(k?), we are done. Otherwise, following the approach described in Subsection
4.1 in the full version [11], we greedily construct a biconnectivity deletion set in G, at each
step keeping track of the edges that become critical. That is, we let S = {fi,-- fr} CF
be a set greedily constructed as follows. The edge f; is an arbitrary edge in F and for each

2 < i< r, f; is an arbitrary edge which is not critical in G — {f1,..., fi—1}. As earlier, we
terminate this procedure after k steps if we manage to find edges {f1,..., fx} or earlier if for
some r < k, every remaining edge of F is critical in G — {f1,..., f+}.

If r = k, then we identify the instance as a yes-instance and return an arbitrary yes-
instance of constant size. Otherwise, if there is an ¢ € [r] such that G — {f1,..., fi} is
biconnected and |Criticalg_gy, ... f,_,1(fi)| = 20k2 + 46k, then we execute the case analysis,
as in Subsection 4.1 in the full version [11], and in polynomial time, either find 3k + 1 distinct
partner sets or an irrelevant edge. In the latter case, we simply remove this irrelevant edge
from F' (add it to the set E°°). Finally, if we reach a case with at least 3k + 1 distinct partner
sets, we can find a biconnectivity deletion set S C F with |S| > k in polynomial time (see
the full version), and since we are dealing with the unweighted case, we can simply identify
the instance as a yes-instance and return an arbitrary yes-instance of constant size.

The only remaining case is that this greedy algorithm fails to produce a large enough
solution yet never marks too many edges as critical at once. That is, it terminates in r < k
steps and never marks more than 20k? + 46k edges as critical in step i for any i € [r]. This
implies that |F| < 20k3 + 46k? + k = O(k?), completing the proof of the theorem. <

5 Conclusions

Our results on PATH-CONTRACTION PRESERVING STRONG CONNECTIVITY and WEIGHTED
BICONNECTIVITY DELETION provide additional data points for the algorithmic landscape of
graph editing problems under connectivity constraints and its application in network design.

Since we established that PATH-CONTRACTION PRESERVING STRONG CONNECTIVITY is
W([1]-hard for general digraphs, we ask whether the problem becomes FPT when restricted to
planar digraphs or other structurally sparse classes.

Concerning the parameterized algorithm for WEIGHTED BICONNECTIVITY DELETION,
we ask whether the dependence of 29(F1°2F) can be improved to single-exponential or proven
to be optimal. Naturally, we would further like to know whether we can reach beyond
biconnectivity and extend our algorithm to higher values of vertex-connectivity. Is it possible
to obtain a similar algorithm on digraphs?

Finally, regarding our polynomial kernel for UNWEIGHTED BICONNECTIVITY DELETION,
we ask whether it is possible to obtain a deterministic kernel. It is also left open whether the
weighted case admits a polynomial kernel.

G. Gutin, M. S. Ramanujan, F. Reidl, and M. Wahistrom

The results presented in this paper raise more questions than they answer, a clear

indication that connectivity constraints are far from properly explored under the paradigm
of parameterized complexity. As such, the topic offers exciting but challenging opportunities
for further research.

—— References

1

10

11

12

13

14

15

16

17

18

Jorgen Bang-Jensen and Gregory Z Gutin. Digraphs: theory, algorithms and applications.
Springer Science & Business Media, 2008.

Jorgen Bang-Jensen and Anders Yeo. The minimum spanning strong subdigraph problem
is fixed parameter tractable. Discrete Applied Mathematics, 156(15):2924-2929, 2008.
Manu Basavaraju, Fedor V Fomin, Petr Golovach, Pranabendu Misra, MS Ramanujan,
and Saket Saurabh. Parameterized algorithms to preserve connectivity. In Proceedings of
the 41st International Colloguium on Automata, Languages, and Programming (ICALP),
pages 800-811. Springer, 2014.

Manu Basavaraju, Pranabendu Misra, M. S. Ramanujan, and Saket Saurabh. On finding
highly connected spanning subgraphs. CoRR, abs/1701.02853, 2017.

Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Daniel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient compu-
tation of representative families with applications in parameterized and exact algorithms.
Journal of the ACM (JACM), 63(4):29:1-29:60, September 2016.

Andras Frank. Augmenting graphs to meet edge-connectivity requirements. SIAM J. Dis-
crete Math., 5(1):25-53, 1992.

Andras Frank. Connections in Combinatorial Optimization. Oxford Univ. Press, 2011.
Andrés Frank and Tibor Jordan. Minimal edge-coverings of pairs of sets. J. Comb. Theory,
Ser. B, 65(1):73-110, 1995.

Jiong Guo and Johannes Uhlmann. Kernelization and complexity results for connectivity
augmentation problems. Networks, 56(2):131-142, 2010.

Gregory Gutin, M. S. Ramanujan, Felix Reidl, and Magnus Wahlstrom. Path-contractions,
edge deletions and connectivity preservation. CoRR, abs/1704.06622, 2017. URL: https:
//arxiv.org/abs/1704.06622.

Stefan Kratsch. Recent developments in kernelization: A survey. Bulletin of the EATCS,
113, 2014.

Stefan Kratsch and Magnus Wahlstrom. Representative sets and irrelevant vertices: New
tools for kernelization. In 53rd Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 450-459. IEEE
Computer Society, 2012.

Déniel Marx and Laszl6 A Végh. Fixed-parameter algorithms for minimum-cost edge-
connectivity augmentation. ACM Transactions on Algorithms (TALG), 11(4):27, 2015.
Dennis M Moyles and Gerald L. Thompson. An algorithm for finding a minimum equivalent
graph of a digraph. Journal of the ACM (JACM), 16(3):455-460, 1969.

Hiroshi Nagamochi. An approximation for finding a smallest 2-edge-connected subgraph
containing a specified spanning tree. Discrete Applied Mathematics, 126(1):83-113, 2003.
5th Annual International Computing and combinatorics Conference.

Laszlé A. Végh. Augmenting undirected node-connectivity by one. SIAM J. Discrete Math.,
25(2):695-718, 2011.

T. Watanabe and A. Nakamura. Edge-connectivity augmentation problems. J. Comput.
System Sci., 35:96 — 144, 1987.

47:13

ESA 2017

https://arxiv.org/abs/1704.06622
https://arxiv.org/abs/1704.06622

	Introduction
	Preliminaries
	Preserving strong connectivity
	Edge deletion to biconnected graphs
	The FPT algorithm for Weighted Biconnectivity Deletion
	A randomized kernel for Unweighted Biconnectivity Deletion

	Conclusions

