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Abstract
We consider space efficient hash tables that can grow and shrink dynamically and are always
highly space efficient, i.e., their space consumption is always close to the lower bound even while
growing and when taking into account storage that is only needed temporarily. None of the
traditionally used hash tables have this property. We show how known approaches like linear
probing and bucket cuckoo hashing can be adapted to this scenario by subdividing them into
many subtables or using virtual memory overcommitting. However, these rather straightfor-
ward solutions suffer from slow amortized insertion times due to frequent reallocation in small
increments.

Our main result is DySECT (Dynamic Space Efficient Cuckoo Table) which avoids these
problems. DySECT consists of many subtables which grow by doubling their size. The resulting
inhomogeneity in subtable sizes is equalized by the flexibility available in bucket cuckoo hashing
where each element can go to several buckets each of which containing several cells. Experiments
indicate that DySECT works well with load factors up to 98%. With up to 2.7 times better
performance than the next best solution.
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1 Introduction

Dictionares represented as hash tables are among the most frequently used data structures
and often play a critical role in achieving high performance. Having several compatible
implementations, which perform well under different conditions and can be interchanged
freely, allows programmers to easily adapt known solutions to new circumstances.

One aspect that has been subject to much investigation is space efficiency [3, 4, 7, 8, 17, 19].
Modern space efficient hash tables work well even when filled to 95% and more. To reach
filling degrees like this, the table has to be initialized with the correct final capacity, thereby,
requiring programmers to know tight bounds on the maximum number of inserted elements.
This is typically not realistic. For example, a frequent application of hash tables aggregates
information about data elements by their key. Whenever the exact number of unique
keys is not known a priori, we have to overestimate the initial capacity to guarantee good
performance. Dynamic space efficient data structures are necessary to guarantee both good
performance and low overhead independent of the circumstances.
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To visualize this, assume the following scenario. During a word count benchmark, we
know an upper bound nmax to the number of unique words. Therefore, we construct a hash
table with at least nmax cells. If an instance only contains 0.7 · nmax unique words, no static
hash table can fill ratios greater than 70%. Thus, dynamic space efficient hash tables are
required to achieve guaranteed near-optimal memory usage. In scenarios where the final
size is not known, the hash table has to grow closely with the actual number of elements.
This cannot be achieved efficiently with any of the current techniques used for hashing and
migration.

Many libraries – even ones that implement space efficient hash tables – offer some kind of
growing mechanism. However, all existing implementations either lose their space efficiency or
suffer from degraded performance once the table grows above its original capacity. Growing
is commonly implemented either by creating additional hash tables – decreasing performance
especially for lookups or by migrating all elements to a new table – losing the space efficiency
by multiplying the original size.

To avoid the memory overhead of full table migrations, during which both the new and
the old table coexist, we propose an in-place growing technique that can be adapted to most
existing hashing schemes. However, frequent migrations with small relative size changes
remain necessary to stay space efficient at all times.

To avoid both of these pitfalls we propose a variant of (multi-way) bucket cuckoo
hashing [7, 8]. A technique where each element can be stored in one of several associated
constant sized buckets. When all of them are full, we move an element into one of its
other buckets to make space. To solve the problem of efficient migration, we split the table
into multiple subtables, each of which can grow independently of all others. Because the
buckets associated with one element are spread over the different subtables, growing one
subtable alleviates pressure from all others by allowing moves from a dense subtable to the
newly-grown subtable.

Doubling the size of one subtable increases the overall size only by a small factor while
moving only a small number of elements. This makes the size changes easy to amortize. The
size and occupancy imbalance between subtables (introduced by one subtable growing) is
alleviated using displacement techniques common to cuckoo hashing. This allows our table
to work efficiently at fill rates exceeding 95%.

We begin our paper by presenting some previous work (Section 2). Then we go into
some notations (Section 3) that are necessary to describe our main contribution DySECT
(Section 4). In Section 5 we show our in-place migration techniques. Afterwards, we test all
Hashtables on multiple benchmarks (Section 6) and draw our conclusion (Section 7)

2 Related Work

The use of hash tables and other hashing based algorithms has a long history in computer
science. The classical methods and results are described in all major algorithm textbooks [14].

Over the last one and a half decades, the field has regained attention, both from theoretical
and the practical point of view. The initial innovation that sparked this attention was the
idea that storing an element in the less filled of two “random” chains leads to incredibly well
balanced loads. This concept is called the power of two choices [16].

It led to the development of cuckoo hashing [19]. Cuckoo hashing extends the power of
two choices by allowing to move elements within the table to create space for new elements
(see Section 3.2 for a more elaborated explanation). Cuckoo hashing revitalized research
into space efficient hash tables. Probabilistic bounds for the maximum fill degree [3, 4] and
expected displacement distances [9, 10] are often highly non-trivial.
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Cuckoo hashing can be naturally generalized into two directions in order to make it more
space efficient: allowing H choices [8] or extending cells in the table to buckets that can store
B elements. We will summarize this under the term bucket cuckoo hashing.

Further adaptations of cuckoo hashing include:multiple concurrent implementations either
powered by bucket locking, transactional memory [15], or fully lock-less [18]; a de-amortization
technique that provides provable worst case guarantees for insertions [1, 13]; and a variant
that minimizes page-loads in a paged memory scenario [6].

Some non-cuckoo space efficient hash tables continue to use linear probing variants. Robin
Hood hashing is a technique that was originally introduced in 1985 [2]. The idea behind Robin
Hood hashing is to move already stored elements during insertions in a way that minimizes
the longest possible search distance. Robin Hood hashing has regained some popularity in
recent years, mainly for its interesting theoretical properties and the possibility to reduce
the inherent variance of linear probing.

All these publications show that there is a clear interest in developing hash tables that
can be more and more densely filled. Dynamic hash tables on the other hand seem to be
considered a solved problem. One paper that takes on the problem of dynamic hash tables
was written by Dietzfelbinger at al. [5]. It predates cuckoo hashing, and much of the attention
for space efficient hashing. All memory bounds presented are given without tight constant
factors. The lack of implementations and theory about dense dynamic hash tables is where
we pick up and offer a fast hash table implementation that supports dynamic growing with
tight space bounds.

3 Preliminaries

A hash table is a data structure for storing key-value-pairs (〈key, data〉) that offers the
following functionality: insert – stores a given key-value pair or returns a reference to it,
if it is already contained; find – given a key returns a reference to said element if it was
stored, and ⊥ otherwise; and erase – removes a previously inserted element (if present).

Throughout this paper n denotes the number of elements and m the number of cells
(m > n) in a hash table. We define the load factor as δ = n/m. Tables can usually only
operate efficiently up to a certain maximum load factor. Above that, operations get slower
or have a possibility to fail. When implementing a hash table one has to decide between
storing elements directly in the hash table – Closed Hashing – or storing pointers to elements
– Open Hashing. This has an immediate impact on the amount of memory required (closed:
m · |element| and open: m · |pointer|+ n · |element|).

For large elements (i.e., much larger then the size of a pointer), one can use a non-space
efficient hash table with open hashing to reduce the relevant memory factor. Therefore, we
restrict ourselves to the common and more interesting case of elements whose size is close to
that of a pointer. For our experiments we use 128bit elements (64bit keys and 64bit values).
In this case, open hashing introduces a significant memory overhead (at least 1.5×). For this
reason, we only consider closed hash tables. Their memory efficiency is directly dependent
on the table’s load. To reach high fill degrees with closed hashing tables, we have to employ
open addressing techniques. This means that elements are not stored in predetermined cells,
but can be stored in one of several possible places (e.g. linear probing, or cuckoo hashing).

3.1 α–Space Efficient Hash Tables
Static. We call a hashing technique α-space efficient when it can work efficiently using at
most α · ncurr · size(element) +O(1) memory. We define working efficiently, for a table with
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load factor δ, as having average insertion times in O( 1
1−δ ). This is a natural estimation for

insertion times, since it is the expected number of fully random probes needed to hit an
empty cell.

In many closed hashing techniques (e.g. linear probing, cuckoo hashing) cells are the
same size as elements. Therefore, being α-space efficient is the same as operating with a
load factor of δ = α−1. Because of this, we will mostly talk about the load factor of a table
instead of its memory usage.

Dynamic. The definition of a space efficient hashing technique given above is specifically
targeted for statically sized hash tables. We call an implementation dynamically α-space
efficient if an instantiated table can grow arbitrarily large over its original capacity while
remaining smaller than α · nmax · size(element) +O(1) at all times.

One problem for many implementations of space efficient hash tables is the migration.
During a normal full table migration, both the original table and the new table are allocated.
This requires mnew +mold cells. Therefore, a normal full table migration is never more than
2-space efficient. The only option for performing a full table migration with less memory is
to increase the memory in-place (see Section 5). Similar to static α-space efficiency, we will
mostly talk about the minimum load factor δmin = 1

α instead of α.

3.2 Cuckoo Hashing
Cuckoo hashing [7, 8, 17, 19] is a technique to resolve hash conflicts in a hash table using open
addressing. Its main draw is that it guarantees constant lookup times even in densely filled
tables. The distinguishing technique of cuckoo hashing is that H hash functions (h1, ..., hH)
are used to compute H independent positions. Each element is stored in one of its positions.
Even if all positions are occupied one can often move elements to create space for the current
element. We call this process displacing elements.

Bucket cuckoo hashing is a variant where the cells of the hash table are grouped into
buckets of size B. Each element assigned to one bucket can be stored in any of the bucket’s
cells. Using buckets one can drastically increase the number of elements that can be displaced
to make room for a new one, thus decreasing the expected length of displacement paths.

Find and erase operations have a guaranteed constant running time. Independent from
the table’s density, there are H buckets – H ·B cells – we have to check to find an element.

During an insert the element is hashed to H buckets. We store the element in the bucket
with the most free space. When all buckets are full we have to move elements within the
table such that a free cell becomes available.

To visualize the problem of displacing elements, one can think of the directed graph
implicitly defined by the hash table. Each bucket corresponds to a node and each element
induces an edge between the bucket it is stored in and its H − 1 alternate buckets. To insert
an element into the hash table we have to find a path from one of its associated buckets to a
bucket that has free capacity. Then we move elements along this path to make room in the
initial bucket. The two common techniques to find such paths are random walks and breadth
first searches.

4 DySECT (Dynamic Space Efficient Cuckoo Table)

A commonly used growing technique is to double the size of a hash table by migrating all its
elements into a table with twice its capacity. This is of course not memory efficient. The
idea behind our dynamic hashing scheme is to double only parts of the overall data structure.
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Figure 1 Schematic Representation of a DySECT Table.

This increases the space in part of our data structure without changing the rest. We then
use cuckoo displacement techniques to make this additional memory reachable from other
parts of the hash table.

4.1 Overview
Our DySECT hash table consists of T subtables (shown in Figure 1) that in turn consist of
buckets, wich can store B elements each. Each element has H associated buckets – similar
to cuckoo hashing – which can be in the same or in different subtables. T , B, and H are
constants, which will not change during the lifetime of the table. Additionally, each table is
initialized with a minimum fill ratio δmin. The table will never exceed δ−1

min · n cells once it
begins to grow over its initial size.

To find a bucket associated with an element e, we compute e’s hash value using the
appropriate hash function hi(e). The hash is then used to compute the subtable and the
bucket within that subtable. To make this efficient we use powers of two for the number
of subtables (T = 2t), as well as for the number of buckets per subtable (subtable size
s = 2x ·B). Since the number of subtables is constant, we can use the first t bits from the
hashed key to find the appropriate subtable. From the remaining bits we compute the bucket
within that subtable using a bitmask (hi(e) & (2x − 1) = hi(e) mod 2x).

4.2 Growing
As soon as the (overall) table contains enough elements such that the memory constraint
can be kept during a subtable migration, we grow one subtable by migrating it into a table
twice its size. We migrate subtables in order from first to last. This ensures that no subtable
can be more than twice as large as any other.

When the data structure contains j large subtables (2s) then there are m = (T + j) · s
cells. When δ−1

min ·n > m+ 2s we can grow the first subtable while obeying the size constraint
(the newly allocated table will have 2s cells). Doubling the size of a subtable increases the
global number of cells from mold = (T + j) · s to mnew = mold + s = (T + j + 1) · s (grow
factor T+j+1

T+j ). Note that all subsequent growing operations migrate one of the smaller tables
until all tables have the same size. Therefore, each grow until then increases the overall
capacity by the same absolute amount (smaller relative to the current size).

The cost of growing a subtable is amortized by all insertions since the last subtable
migration. There are δmin · s = Ω(s) insertions between two migrations. One migration takes
Θ(s) time. Apart from being amortized, the migration is cache efficient since it accesses cells
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in a linear fashion. Even in the target table cells are accessed linearly. We assign elements to
buckets by using bits from their hash value. In the grown table we use exactly one more bit
than before (double the number of buckets). This ensures that all elements from one original
bucket are split between two buckets in the target table. Therefore no bucket can overflow
and no displacements are necessary.

In the implicit graph model of the cuckoo table (Section 3.2), growing a subtable is
equivalent to splitting each node that represents a bucket within that subtable. The resulting
graph becomes more sparse, since the edges (elements) are not doubled, making it easier to
insert subsequent elements.

4.3 Shrinking
If shrinking is necessary it can work similarly to growing. We replace a subtable with a
smaller one by migrating elements from one to the other. During this migration we join
elements from two buckets into one. Therefore it is possible for a bucket to overfill. We
reinsert these elements at the end of the migration. Obviously, this can only affect at most
half the migrated elements.

When automatically triggering the size reduction, one has to make sure that the migration
cost is amortized. Therefore, a grow operation cannot immediately follow a shrink operation.
When shrinking is enabled we propose to shrink one subtable when δ−1

min ·n < m− s′ elements
(s′ size of a large table, mnew = mold − s′/2). Alternatively, one could implement a shrink to
size operation that is explicitly called by the user.

4.4 Difficulties for the Analysis of DySECT
There are two factors specific to DySECT impacting its performance: inhomogeneous table
resolution and element imbalance.

Imbalance through Inhomogeneous Table Resolution. By growing subtables individually
we introduce a size imbalance between subtables. Large subtables contain more buckets but
the number of elements hashed to a large subtable is not generally higher than the number
of elements that are hashed to a small subtable. This makes it difficult to spread elements
evenly among buckets. Imbalanced bucket fill ratios can lead to longer insertion times.

Assume there are n elements in a hash table with T subtables, j of which have size 2s
the others have size s. If elements are spread equally among buckets then all small tables
have around n/(T + j) elements, and the bigger tables have 2n/(T + j) elements. For each
table there are about Hn/T elements that have an associated bucket within that table. This
shows that having more hash functions can lead to a better balance.

For two hash functions (H = 2) and only one grown table (j = 1) this means that
≈ 2n/(T + 1) elements should be stored in the first table to achieve a balanced bucket
distribution. Therefore, nearly all elements associated with a bucket in the first table
(≈ 2n/T ) have to be stored there. This is one reason why H = 2 does not work well in
practice.

Imbalance through Size Changes. In addition to the problem of inhomogeneous tables
there is an inherent balancing problem introduced by resizing subtables. It is clear that a
newly grown table is not filled as densely as other tables. Since we double the table size,
grown tables can only be filled to about 50%.
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Assume the global table is filled close to 100% when the first table grows. Now there
is capacity for s new elements but this capacity is only in the first table, elements that are
not hashed to the first table, automatically trigger displacements leading to slow insertions.
Notice that repeated insert and erase operations help to equalize this imbalance, because
elements are more likely inserted into the sparser areas, and more likely to be deleted from
denser areas.

4.5 Implementation Details
For our experiments (Section 6) we use three hash functions (H = 3) and a bucket size
of (B = 8). These values have consistently outperformed other options both in maximum
load factor and in insert performance. T is set to 256 subtables for all our tests. To find
displacement opportunities we use breadth first search. In our tests it performed better than
random walks, since it better uses the read cache lines from one bucket.

The hash table itself is implemented as a constant sized array of pointers to subtables.
We have to lookup the corresponding pointer whenever a subtable is accessed. This does not
impact performance much since all subtable pointers will be cached – at least if the hash
table is a performance bottleneck.

Reducing the Number of Computed Hash Functions. Evaluating hash functions is ex-
pensive, therefore, reducing the number of hash functions computed per operation can
increase the performance of the table. The hash function we use computes 64bit hash values
(i.e. xxHash1). We split the 64bit hash value into two 32bit values. All common bucket
hash table sizes can be addressed using 32 bits (up to 232 buckets 235 ≈ 34 billion elements
consuming 512GiB memory).

When H > 2 we can use double hashing [11, 12] to further reduce the number of computed
hash functions. Double hashing creates an arbitrary number of hash values using only two
original hash functions h′ and h′′. The additional values are linear combinations computed
from the original two values, hi(key) = h′(key) + i · h′′(key).

Combining both of these techniques, we can reduce the number of computed hash functions
to one 64bit hash function. This is especially important during large displacements where
each encountered element has to be rehashed to find its alternative buckets.

5 (Ab)Using Virtual Memory

In this section we show how one can use virtual memory and memory overcommitting, to
eliminate the indirections from a DySECT hash table. The same technique also allows us to
implement hash tables that can grow using an in-place full table migration. If we grow these
tables in small increments, they can grow while enforcing a strict size constraint.

To explain these techniques, we first have to explain how to use memory overcommitting
and virtual memory to create a piece of memory that can grow in-place. Note that this
technique violates best programming practices and is not fully portable to some systems.

The idea is the following: the operating system will – if configured to do so – allow
memory allocations larger than the machine’s main memory, with the anticipation that not
all allocated memory will actually be used. Only memory pages that are actually used will
be mapped from virtual to physical memory pages. Thus, for the purpose of space efficiency
the memory is not yet used. Initializing parts of this memory is similar to allocating and
initializing new memory.

1 http://xxhash.com
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5.1 Improving DySECT
Accessing a DySECT subtable usually takes one indirection. The pointer to the subtable has
to be read from an array of pointers before accessing the actual subtable. Instead of using
an array of pointers, we can implement the subtables as sections within one large allocation
(size u). We choose u larger than the actual main memory, to allow all possible table sizes.
This has the advantage that the offset for each table can be computed quickly (ti = u

T · i),
without looking it up from a table.

The added advantage is that we can grow subtables in-place. To increase the size of a
subtable, it is enough to initialize a consecutive section of the table (following the original
subtable). Once this is done, we have to redistribute the table’s elements. This allows us to
grow a subtable without the space overhead of reallocation. Therefore, we can grow earlier,
staying closer to the minimum load factor δmin. The in-place growing mechanism is easy in
this case, since the subtable size is doubled.

5.2 Implementing other size constrained tables
Similarly to the technique above, we can implement any hash table using a large allocation,
initializing only as much memory as the table initially needs. The used hash table size can
be increased in-place by initializing more memory. To use this additional memory for the
hash table, we have to perform an in-place migration.

To implement fast in-place migration, we need the correct addressing technique. There are
two natural ways to map a hash value h(e) to a cell in the table (size s). Most programmers
would use a slow modulo operation (h(e) mod s). This is the same as using the least
significant digits when addressing a table whose size is a power of two. A better way is to use
a scale factor (bh(e) · s

max(h)c). This is similar to using the most significant bits to address a
table whose size is a power of two. The second method has two important advantages, it
is faster to compute and it helps to make the migration cache efficient. When we use the
second method the elements in the hash table are close to being sorted by their hash value
(in the absence of collisions they would be sorted).

The main idea of all our in-place migration techniques is the following. If we use a scale
factor for our mapping – in the new table – most elements will be mapped to a position that
is larger than their position in the old table. Therefore, rehashing elements starting from the
back of the original table creates very few conflicts. Elements that are mapped to a position
earlier than their current position are buffered and reinserted at the end of the migration.
When using this technique, both the old and the new table, are accessed linearly in reverse
order (from back to front). Making the migration cache efficient and easy to implement.

For a table that was initialized with a min load factor δmin we trigger growing once the
table is loaded more than δmin+1

2 . We then increase the capacity m to δ−1
min · n. Repeated

migrations with small growing amounts are still inefficient, since each element has to be
moved.

This blueprint can be used, to implement in-place growing variants of most if not all
common hashing techniques. We used these same ideas to implement variants of linear
probing, robin hood hashing, and bucket cuckoo hashing. Although some variants have their
own optimized migration. Robin Hood hashing can be adapted such that the table is truly
sorted by hash value (without much overhead) making the migration faster than repeated
reinsertions. Bucket cuckoo hashing has a somewhat more complicated migration technique –
each element has multiple possible positions and buckets can overflow. Here we first try to
reinsert each element with the hash function (h1, ..., hH) that was previously used to store it.
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6 Experiments

There are many factors that impact hash table performance. To show that our ideas work in
practice we use both micro-benchmarks and practical experiments.

All reported numbers are averaged by running each experiment five times. The experiments
were executed on a server with two Intel Xeon E5-2670 CPUs (2.3GHz base frequency) and
128GB RAM (using gcc 6.2.0 and Ubuntu 14.04).2

To put the performance of our DySECT table into perspective, we implement and test
several other options for space efficient hashing using the method described in Section 5.2.
We use our own implementations, since no hash table found online supports our strict
space-efficiency constraint. With the technique described in Section 5.2, we implement and
test hash tables with linear probing, robin hood hashing, and bucket cuckoo hashing (similar
to DySECT we choose B = 8 and H = 3). For each table, we implemented an individually
tuned cache efficient in-place migration algorithm.

Alternative Implementation Without Virtual Overcommitting (dashed lines). All imple-
mentations described above work with the trick described in Section 5. The usefulness of
this technique is arguable, since abusing the concept of virtual memory in this way is bad
from a software design perspective. It violates best practices, and reduces the portability to
many systems. Therefore, we want to present some additional measurements that do not use
this technique. These measurements are presented using dashed lines.

The only table that can achieve dynamic α-space efficiency without virtual memory over-
committing is our DySECT hash table. It is notable that the variant without overcommitting
is never significantly worse than DySECT with overcommitting.

For each competitor table we implement a variant that uses subtables combined with
subtable migrations. Elements are first hashed to subtables and then hashed within that
subtable. They cannot move between subtables. Even when growing by small steps these
versions can violate their space efficiency. But since subtables are small (≈ n/T ), migrations
will usually not violate the size constraint significantly. There can be larger subtables, since
imbalances between subtables cannot be regulated.

6.1 Influence of Fill Ratio (Static Table Size)

The following test was performed by initializing a table with ≈ 25 000 000 cells (non-growing).
Then elements are inserted until there is a failing insertion. At different stages, we measure
the running time of new insertion (Figure 2), and find (Figure 3) operations (averaged
over 1000 operations). Finds are measured using either randomly selected elements from
within the table (successful), or by searching random elements from the whole key space
(unsuccessful). We omit testing multi table variants of the competitor tables. They are not
suitable for this test since forcing a static size limits the possibility to react to size imbalances
between subtables (in the absence of displacements).

As to be expected, the insertion performance of depends highly on the fill degree of the
table. Therefore, we show it normalized with 1

1−δ which is the expected number of fully
random probes to find a free cell and thus a natural estimate for the running time. We see
that – up to a certain point – the insertion time behaves proportional to 1

1−δ for all tables.

2 Experiments on a desktop machine yielded similar results.
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Figure 2 Insertions into a Static Table. Here we show the influence from the load factor, on the
performance of insertions. To make insertion time more readable, we normalize it with top · (1 − δ).
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Figure 3 Performance of Successful (left) and Unsuccessful (right) Finds. DySECT’s find
performance is independent from the load factor, and the operations success.

Close to the capacity limit of the table, the insertion time increases sharply. DySect has a
smaller capacity limit than cuckoo due inhomogeneous table resolution (see Section 4.4).

Figure 3 shows the performance of find operations. Linear probing performs relatively
well on successful find operations, up to a fill degree of over 95%. The reason for this is
that many elements were inserted into the table when the table was still relatively empty.
They have very short search distances, thus improving find performance. Successful find
performance can still be an issue in applications. An element that is inserted when the table
is already decently filled can have an extremely long search distance. This leads to a high
running time variance on find operations. Unsuccessful finds perform really badly, since all
cells until the next free cell have to be probed. Their performance is much more related
to the filling degree of the hash table. Robin Hood hashing performs somewhat similar to
linear probing. It worsens the successful find performance by moving previously inserted
elements from their original position, in order to achieve better unsuccessful find performance
on highly filled tables. Overall, Robin Hood hashing is objectively worse than both DySECT
and classic cuckoo hashing. Cuckoo hashing and its variants like DySECT have guaranteed
constant running times for all find operations – independent of their success and the table’s
filling degree.
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Figure 4 Insertions into a dynamic growing table enforcing a minimum load factor δmin.

6.2 Influence of Fill Ratio (Dynamic Table Size)
In this test 20 000 000 elements are inserted into an initially empty table. The table is
initialized expecting 50 000 elements, thus growing is necessary to fit all elements. The tables
are configured to guarantee a load factor of at least δmin at all times. Figure 4 shows the
performance in relation to the load factor. Insertion times are computed as average of all
20 000 000 insertions. They are normalized similar to Figure 2 (divided by 1

1−δmin
).

We see that DySECT performs by far the best even with load factors around 85%. Here
we achieve a speedup of 1.6 over the next best solution (299ns vs. linear probing 479ns). On
denser instances with 97.5% load, we can increases thes speedup to 2.7 (1580ns vs Cuckoo
with subtables 4210ns). With growing load, we see the insertion times of our competitors
degrade due to the combination of long insertion times, and frequent growing phases. There
are only few insertions between two growing phases. Making the amortization of each growing
phase challenging since each growing phase has to move all elements. Any growing technique
that uses a less cache efficient migration algorithm, would likely perform significantly worse.
DySECT however remains close to O( 1

1−δmin
) even for fill degrees up to 97.5%. This is

possible, because only very few elements are touched by each subtable migration (≈ n
T ).

We also measured the performance of find operations on the created tables, they are
similar to the performance on the static table in Section 6.1 (see Figure 3), therefore, we
omit displaying them for space reasons.

6.3 Word Count – a Practical use Case
Word count and other aggregation algorithms are some of the most common use cases
for hash tables. Data is aggregated according to its key. This is a common application,
in which static hash tables can never be space efficient, since the final size of the hash
table is usually unknown. Here we use the first block of the CommonCrawl dataset (http:
//commoncrawl.org/the-data/get-started) and compute a word count of the contained
words. The chosen block has 4.2GB and contains around 240 000 000 words, with around
20 000 000 unique words. For the test, we hash each word to a 64 bit key and insert it together
with a counter. Subsequent accesses to the same key increase this counter. Similar to the
growing benchmark, we start with an empty table initialized for 50 000 elements.

The performance results can be seen in Figure 5 (left). We do not use any normalization
since each word is repeated 12 times (on average). This means that most operations will
actually behave more like successful find operations instead of insertions. When using our
DySECT table, the running time seems to be nearly independent from the fill degree. We
experience little to no slowdown until around 97%. The tables using full table migration
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Figure 5 (left) Word Count Benchmark. Behaves like a mix of insert and find operations.
DySECT’s performance is nearly independent form the load factor. (right) Experimental Max Load
Bounds. Dependent on the number of cells (different B/H parametrizations).

however become very inefficient on high load degrees. For high load factors, the performance
closely ressambles that of the insertion benchmark (Figure 4). This indicates that inserts
can dominate performance even in find intensive workloads.

6.4 Experimental Maximum Load Bounds

After some investigation, we are confident that our approach can be analyzed using methods
similar to those used for statically sized tables. Until then we can offer some bounds we
found experimentally. We used T = 4096 subtables (smaller grow steps) and different values
of B and H. To fill the table as much as possible we configured the table, to only grow once
an insertion fails (16384 probing distance). Figure 5 (right) shows the load bound after each
subtable migration. It indicates that the maximum load degree depends on the number of
large subtables. This creates the periodic nature of the plot with maximums whenever the
table has a size close to a power of two. There the table reaches the performance of a classic
cuckoo hash table (displayed as dashed lines).

7 Conclusion

We have shown that dynamically growing hash tables can be implemented to always consume
space close to the lower bound. We find it surprising that even our simple solutions based
on linear probing seem to be new. DySECT is a sophisticated solution that exploits the
flexibility offered by bucket cuckoo hashing to significantly decrease the number of object
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migrations over more straightforward approaches. When very high space efficiency is desired,
it is up to 2.7 times better than simple solutions.

For future work, a theoretical analysis of DySECT looks interesting. After some discussion,
we expect that techniques previously used to analyze bucket cuckoo hashing will be applicable
to the new situations. But the calculations have to take into account all possible ratios of
small versus large subtables. Even for the static case and classical bucket cuckoo hashing,
it is a fascinating open question wether the observed proportionality of insertion time to
1/(1− δ) can be proven. Previous results on insertion time show much more conservative
bounds [8, 9, 10, 7]. On the practical side, DySECT looks interesting for concurrent hashing
[15, 18] since it grows only small parts of the table at a time.
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