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Abstract
The state-of-the-art solvers for the graph isomorphism problem can readily solve generic instances
with tens of thousands of vertices. Indeed, experiments show that on inputs without particular
combinatorial structure the algorithms scale almost linearly. In fact, it is non-trivial to create
challenging instances for such solvers and the number of difficult benchmark graphs available is
quite limited.

We describe a construction to efficiently generate small instances for the graph isomorphism
problem that are difficult or even infeasible for said solvers.

Up to this point the only other available instances posing challenges for isomorphism solvers
were certain incidence structures of combinatorial objects (such as projective planes, Hadamard
matrices, Latin squares, etc.). Experiments show that starting from 1500 vertices our new in-
stances are several orders of magnitude more difficult on comparable input sizes. More im-
portantly, our method is generic and efficient in the sense that one can quickly create many
isomorphism instances on a desired number of vertices. In contrast to this, said combinatorial
objects are rare and difficult to generate and with the new construction it is possible to generate
an abundance of instances of arbitrary size.

Our construction hinges on the multipedes of Gurevich and Shelah and the Cai-Fürer-Immerman
gadgets that realize a certain abelian automorphism group and have repeatedly played a role in
the context of graph isomorphism. Exploring limits, we also explain that there are group theoretic
obstructions to generalizing the construction with non-abelian gadgets.
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1 Introduction

The graph isomorphism problem, which asks for structural equivalence of two given input
graphs, has been extensively investigated since the beginning of theoretical computer science,
both from a theoretical and a practical point of view. Designing isomorphism solvers in
practice is a non-trivial task. Nevertheless various efficient algorithms, namely nauty and
traces [15], bliss [9], conauto [11], and saucy [6] are available as software packages. These state-
of-the-art solvers for the graph isomorphism problem (or more generally graph canonization)
can readily solve generic instances with tens of thousands of vertices. Indeed, experiments
show that on inputs without particular combinatorial structure the algorithms scale almost
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linearly. In practice, this sets the isomorphism problem aside from typical NP-complete
problems which usually have an abundance of difficult benchmark instances. The practical
algorithms underlying these solvers differ from the ones employed to obtain theoretical results.
Indeed, there is a big disconnect between theory and practice [2]. One could interpret Babai’s
recent breakthrough, the quasipolynomial time algorithm [1], as a first step of convergence.
The result implies that if graph isomorphism is NP-complete then all problems in NP have
quasi-polynomial time algorithms, which may lead one to also theoretically believe that
graph isomorphism is not NP-complete.

In this paper we are interested in creating difficult benchmark instances for the graph
isomorphism problem. It would be a misconception to think that for unstructured randomly
generated instances graph isomorphism should be hard in practice. Quite the opposite is true.
Instances that encompass sufficient randomness usually turn out to be among the easiest
instances (see [14] for extensive tests on various graphs and [3, 10] for theoretical arguments).
In fact, it is non-trivial to create challenging instances for efficient isomorphism solvers and
so far the number of difficult benchmark graphs available is quite limited.

The prime source for difficult instances are graphs arising from combinatorial structures.
In 1978, Mathon [13] provided a set of benchmark graphs arising from combinatorial objects
such as strongly regular graphs, block designs and coherent configurations. The actual graphs
that are provided, having less than 50 vertices, are small by todays standards. Nowadays,
larger combinatorial objects yielding difficult graphs are known. The most challenging
examples are for instance incidence graphs of projective planes, Hadamard matrices, or Latin
squares (see [14]). It is important to understand that not all such incidence structures yield
difficult graphs. Indeed, typically there is an algebraic version that can readily be generated.
For example to obtain a projective plane it is possible to consider incidences between one-
and two-dimensional subspaces of a three-dimensional vector space over a finite field. If
however one uses such an algebraic construction then the resulting graph automatically has
a large automorphism group. The practical isomorphism solvers are tuned to finding such
automorphisms and to exploit them for search space contraction. On top of that, there are
also theoretical reasons that lead one to believe that graphs with automorphisms make easier
examples for the practical tools (see [22, Theorem 9]). The non-algebraic counterparts of
combinatorial structures often do not have the shortcoming of having a large automorphism
group, but in contrast to the algebraic constructions they are rare and difficult to generate.

The second source of difficult instances is based on modifications of the so called Cai-Fürer-
Immerman construction [5]. This construction is connected to the family of Weisfeiler-Leman
algorithms, which for every integer k contains a k-dimensional version that constitutes a poly-
nomial time algorithm used to distinguish non-isomorphic graphs. The 1-dimensional variant
(usually called color refinement) is a subroutine in all competitive practical isomorphism
solvers. For larger k, however, the k-dimensional variant becomes impractical due to excessive
space consumption. For each k, Cai, Fürer and Immerman construct pairs of non-isomorphic
graphs that are not distinguished by the k-dimensional variant of algorithm. In 1996, the
construction was adapted by Miyazaki to explicitly show that the then current version
of nauty has exponential running time in the worst case [16]. The Cai-Fürer-Immerman
graphs and the Miyazaki graphs constitute families of benchmark graphs that (despite being
specifically designed to fool the Weisfeiler-Leman isomorphism algorithm and the canonical
labeling tool nauty, respectively) are infeasible for ad hoc graph isomorphism algorithms.
Nowadays, however, most state-of-the-art solvers scale reasonably well on these instances.
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Contribution. We describe a construction to efficiently generate instances on any desired
number of vertices for the graph isomorphism problem that are difficult or even infeasible for
all state-of-the-art graph isomorphism solvers.

Experiments show the graphs pose by far the most challenging graphs to date. Already
for 1500 vertices our new instances are by several orders of magnitude more difficult than all
previously available benchmark graphs on comparable input sizes. More importantly, the
algorithm that generates the instances is generic and efficient in that one can quickly create
an abundance of isomorphism instances on a desired number of vertices. We can thereby
generate instances in size ranges for which no other difficult benchmark graphs are available.

Our construction, the resulting graphs of which we call shrunken multipedes, hinges on a
construction of Gurevich and Shelah [8]. For every k, they describe combinatorial structures
that are rigid but cannot be distinguished by the k-dimensional Weisfeiler-Leman algorithm.
Guided by the intuition that rigid graphs (i.e., graphs without non-trivial automorphisms)
constitute harder instances, we alter the construction to a simple efficient algorithm. In
this algorithm we start with a bipartite rigid base graph that is obtained by connecting two
explicit graphs (cycles with added diagonals) randomly. We then apply a suitable adaptation
of the Cai-Fürer-Immerman (CFI) construction. We prove that the resulting graph is rigid
asymptotically almost surely. Our experiments show that even for small sizes the graphs
are already rigid with high probability. The result is a simple randomized algorithm that
efficiently creates challenging instances of the graph isomorphism problem. The algorithm
can be used to create instances for any desired size range. Moreover it is possible to create
many non-isomorphic graphs such that every set of two of them forms a difficult instance.

To create practical benchmark graphs, it is imperative to keep all gadget constructions as
small as possible. We therefore employ two techniques to save vertices without changing the
local automorphism structure of the gadgets. The first technique is based on linear algebra
and reduces the vertices in a manner that maintains the rigidity of the graphs. The second
technique bypasses certain vertices of the gadgets used in the CFI-construction.

The CFI-gadgets have repeatedly played a role in the context of graph isomorphism.
Exploring limits of such constructions, we also explain that there are group theoretic
obstructions to generalizing the construction with non-abelian gadgets.

Finally we show with experimental data that our benchmark instances constitute quite
challenging problems for all state-of-the-art isomorphism solvers. We compare the running
times on the new benchmarks with the combinatorial graphs, the CFI-graphs and the
Miyazaki graphs mentioned above.

Canonical forms vs. Isomorphism testing. The task of computing a canonical form is to
compute a graph isomorphic to a given input graph so that the output only depends on
the isomorphism type of the input and not the actual input (see [15]). Various practical
applications require the computation of canonical forms rather than isomorphism tests.

The isomorphism problem reduces, theoretically and practically, to the task of computing
a canonical form. Indeed, to check two graphs for isomorphism one computes their canonical
forms and then performs a trivial equality check of the results. While computing a canonical
form of a graph could in principle be harder than testing isomorphism, several (but not all)
of the currently fastest isomorphism solvers actually compute a canonical labeling and then
perform the equality check. Our graphs constitute difficult instances both for the task to
compute canonical forms and for graph isomorphism. While for the former single graphs
need to be constructed, for the latter we need pairs of graphs. (See Subsection 3.1.)
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Theoretical bounds. The benchmark graphs described in this paper are explicitly designed
to pose a challenge for practical isomorphism solvers. Since they have bounded degree they
can be solved (theoretically) in polynomial time [12]. We should remark that we expect a
tailored algorithm can be designed that reduces our benchmarks to instances of bounded color
class size and then efficiently performs an isomorphism test. Concerning individualization-
refinement algorithms, which the tools mentioned above are, using a different but related
construction, exponential lower bounds can be proven. We refer to [20].

Obtaining benchmark graphs. Our families of benchmark graphs can be downloaded
at https://www.lii.rwth-aachen.de/research/95-benchmarks.html. While some of
our instances may constitute the most difficult instances yet, in practice, worst-case running
time is not the most important measure. In many applications, the solvers have to sift
through an enormous number of instances, most of which are easy. It is therefore important
to perform extremely well on easy instances, and adequately on difficult instances, not the
other way around. We refer to [14] for a well-rounded library in that regard. Nevertheless,
we hope our benchmark graphs help to improve current and future isomorphism solvers.

2 Preliminaries

Graphs and isomorphism. A graph is a pair G = (V,E) with vertex set V = V (G) and edge
relation E = E(G). In this work all graphs are simple, undirected graphs. The neighborhood
of v ∈ V (G) is denoted N(v). A path is a sequence (v1, . . . , v`) of distinct vertices such that
{vi, vi+1} ∈ E(G) for all i ∈ {1, . . . , `− 1}. If additionally {v1, v`} ∈ E(G) then the sequence
(v1, . . . , v`) is a cycle of G. An isomorphism from a graph G to another graph H is a bijective
mapping ϕ : V (G)→ V (H) which preserves the edge relation, that is {v, w} ∈ E(G) if and
only if {ϕ(v), ϕ(w)} ∈ E(H) for all v, w ∈ V (G). The notation G ∼= H indicates that such
an isomorphism exists. The graph isomorphism problem asks, given two graphs G and
H, whether G ∼= H. An automorphism of a graph G is an isomorphism from G to itself.
By Aut(G) we denote the automorphisms of G. A graph G is rigid (or asymmetric) if its
automorphism group Aut(G) is trivial, that is, the only automorphism of G is the identity.

The Cai-Fürer-Immerman Construction. Our constructions presented in this paper make
use of a construction of Cai, Fürer and Immerman [5]. In terms of the graph-isomorphism
problem, they used the construction to show that for every k there is a pair of graphs not
distinguished by the k-dimensional Weisfeiler-Leman algorithm. The basic building block
for these graphs is the CFI gadget X3. This gadget has 4 inner vertices m1, . . . ,m4 and
3 pairs of outer vertices ai, bi with i ∈ {1, 2, 3}. The edges are a1m3, a1m4, b1m1, b1m2,
a2m2, a2m4, b2m1, b2m3, a3m2, a3m3, b3m1, and b3m4. The crucial property of X3 is that
a bijection of the outer vertices mapping the set {ai, bi} to itself for all i ∈ {1, 2, 3} extends
to an automorphism of X3 if and only if an even number of pairs of outer vertices is swapped.

Now let G be a connected 3-regular graph called the base graph of the construction
and let T ⊆ E(G) be a subset of its edges. Then the CFI construction applied to G

results in the following graph CFI(G,T ). For every vertex v ∈ V (G) with incident edges
ei = (v, wi) ∈ E(G) we add a copy of X3. The inner vertices are denoted by m1(v), . . . ,m4(v).
Each pair {ai, bi} is associated with the edge ei and we denote the vertices by a(v, wi) and
b(v, wi). For every edge e = {v, w} ∈ E(G) with e ∈ T we add edges {a(v, w), b(w, v)} and
{b(v, w), a(w, v)}. If e /∈ T we add edges {a(v, w), a(w, v)} and {b(v, w), b(w, v)}. The edges
e ∈ T are called twisted edges whereas edges e /∈ T are non-twisted.

https://www.lii.rwth-aachen.de/research/95-benchmarks.html
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Using the properties of the gadget X3 described above one can now show that the
isomorphism type of CFI(G,T ) depends only on the parity of |T |. That is CFI(G,T ) ∼=
CFI(G,T ′) if and only if |T | ≡ |T ′| mod 2. We obtain a pair of non-isomorphic graphs
CFI(G) := CFI(G, ∅) and C̃FI(G) := CFI(G, {e}) for some edge e ∈ E(G).

For appropriate base graphs G (i.e., large tree width [7]) these graphs are difficult to
distinguish by the Weisfeiler-Leman algorithms. This makes them candidates for being
difficult instances for isomorphism testing. However, practical isomorphism solvers cope with
CFI graphs reasonably well. The main reason for this is that the underlying algorithms
take advantage of automorphisms of the input graphs to restrict their search space and CFI
graphs typically have many automorphisms. Indeed, let C = (v1, . . . , v`) be a cycle in the
base graph G. Then there is an automorphism of CFI(G) that exactly swaps those a(v, w)
and b(v, w) for which {v, w} is an edge in C and fixes all other a(v, w) and b(v, w) vertices.
Thus, if ` is the dimension of the cycle space of G then CFI(G) has at least 2` automorphisms.
In the next section we address this issue and describe a similar but probabilistic construction
that gives with high probability graphs without non-trivial automorphisms.

3 A Rigid Base Construction

Desirable properties. Before we describe our construction we would like to give some
intuition about the desirable properties that we want the final graph to have and why we
think they are responsible for making the graphs difficult.

(rigidity) There are some arguments that may make us believe that rigid graphs are
more difficult for isomorphism solvers than graphs with automorphisms. Indeed, the
graphs for which we can prove theoretical lower bounds [20] are rigid. Furthermore, it is
possible to obtain upper bounds on the running time in terms of |Γ|/|Aut(G)| where Γ
is a group known to contain all automorphisms (see [22] for a discussion). However,
we can also offer an intuitive explanation. Isomorphism solvers are used in practice in
search algorithms (e.g., SAT-solvers) to exploit symmetry and thereby cut off parts of
the search tree. However, the isomorphism solvers themselves also exploit this strategy in
bootstrapping manner, using symmetries to cut off parts of their own search tree.
(small constants) For our practical purposes it is imperative to keep the graphs small.
We thus need to diverge from the theoretical construction in [20]. As a crucial part of the
construction we devise two methods to reduce the number of vertices while maintaining
the difficulty level of the graph. These reductions are described in the next section.
(simplicity) We strive to have a simple construction that is not only easy to understand
but can also be quickly generated by a simple algorithm. In contrast, for many other
graphs coming from combinatorial constructions it takes far longer to construct the
graphs than to perform isomorphism tests. The simplicity also allows us to construct an
abundance of benchmark graphs.
(difficult for the WL algorithm) TheWeisfeiler-Leman algorithms are a family of theoretical
graph isomorphism algorithms. For a description and intuition as to why one may believe
they can be used as a measure of the difficulty of a graph, we refer to [20].

3.1 The multipede construction
In the following we describe an explicit construction for families of similar, rigid, non-
isomorphic graphs. This construction is based on the multipedes of Gurevich and Shelah [8]
yielding finite rigid structures and uses the construction by Cai, Fürer and Immerman [5].

ESA 2017
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W

V
v1 v2 v3

w1 w2 w3 w4 w5 w6

a(w1) b(w1) a(w2) b(w2) a(w3) b(w3) a(w4) b(w4) a(w5) b(w5) a(w6) b(w6)

Figure 1 The figure depicts a base graph G on the top and the graph R(G) obtained by applying
the multipede construction on the bottom.

Let G = (V,W,E) be a bipartite graph such that every vertex v ∈ V has degree 3. Define
the multipede construction as follows. We replace every w ∈ W by two vertices a(w) and
b(w). For w ∈ W let F (w) = {a(w), b(w)} and for X ⊆ W let F (X) =

⋃
w∈X F (w). We

then replace every v ∈ V by a copy of X3 and identify the vertices ai and bi with a(wi) and
b(wi) where w1, . . . , w3 are the neighbors of v. The resulting graph will be denoted by R(G).
An example of this construction is shown in Figure 1.

I Definition 1. Let G = (V,W,E) be a bipartite graph. We say G is odd if for every
∅ 6= X ⊆W there is a v ∈ V such that |X ∩N(v)| is odd.

For a graph G and a vertex v ∈ V (G) we define the second neighborhood of v to be
N2

G(v) = {u ∈ V (G) | u 6= v ∧ ∃w ∈ V (G) : {v, w}, {w, u} ∈ E(G)}.

I Lemma 2. Let G = (V,W,E) be a bipartite graph, such that
1. |N(v)| = 3 for all v ∈ V ,
2. G is odd,
3. G is rigid, and
4. there are no distinct w1, w2 ∈W , such that N2

G(w1) = N2
G(w2).

Then R(G) is rigid.

We now present a simple randomized algorithm to construct rigid bipartite graphs that
are odd. Let G be a 3-regular graph and let σ : E(G) → E(G) be a random permutation
of the edges of G. We define the bipartite graph B(G, σ) = (VB ,WB , EB) by setting
VB = V (G)× {0, 1}, WB = E(G), and EB = {{(v, 0), e} | v ∈ e} ∪ {{(v, 1), e} | v ∈ σ(e)}.

Thus, the edges of G correspond to the vertices in the partition classWB of B(G, σ). Each
such edge e = {v, w} has an associated edge σ(e) = {v′, w′} and e has exactly four neighbors,
namely (v, 0), (w, 0), (v′, 1) and (w′, 1). Another way of visualizing this construction is to
start with two copies of G, subdivide all edges in each copy and then identify the newly
added vertices in the one copy with the newly added vertices in the other copy using a
randomly chosen matching.

Let Gn be the 2n-cycle with diagonals added. More precisely, Gn := (Vn, En) where
Vn = {1, . . . , 2n} and En = {{i, i+ 1 mod 2n} | 1 ≤ i ≤ 2n} ∪ {{i, i+ n} | 1 ≤ i ≤ n}. We
call the edges of the form {i, i+ n} diagonals.
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In reference to [8] we call the graphs R(B(Gn, σ)) the multipede graphs. Observe that
the multipede graphs can be constructed in linear time1. It can be computed that the
graph R(B(Gn, σ)) has an average degree of 48/11 ≈ 4.363.

We can analyze this construction and show that for the base graphs Gn the resulting
graphs R(B(Gn, σ)) are with high probability rigid. For this, building on Lemma 2, we show
that with high probability the graph B(Gn, σ) is odd, rigid, and has no distinct vertices in
WB with equal second neighborhoods.

I Theorem 3. The probability that R(B(Gn, σ)) is not rigid is in O
(

log2 n
n

)
.

While it is difficult to extract hidden constants in the theorem, our experiments show that
even for small n the probability that R(B(Gn, σ)) is not rigid is close to 0.

Creating pairs. The construction presented up to this point produces a single graph given n
and σ, but instances to the graph isomorphism problem are pairs of graphs. Isomorphic pairs
can of course always be obtained using two random permutations of one graph. For non-
isomorphic pairs, following [5], to obtain the second graph, we twist one of the connections
in one of the gadgets, that is, we switch the neighborhoods of the vertices a(w) and b(w)
within one of the gadgets when creating R(B(Gn, σ)) from B(Gn, σ). Arguments similar to
those for Theorem 3 show that this creates with high probability pairs of non-isomorphic
graphs. (This is not true anymore if the reduction from Subsection 4.1 is applied.)

4 The shrunken multipedes

As we described before we are interested in keeping the number of vertices of our construction
small. In this section we describe two methods to reduce the number of vertices of the
multipede graphs while, according to our experiments, essentially preserving the difficulty.

4.1 A linear algebra reduction
For a bipartite graph G = (V,W,E) let AG ∈ FV×W

2 be the matrix with Av,w = 1 if and
only if vw ∈ E(G) and let rk(A) be the F2-rank of A.

I Lemma 4. A bipartite graph G = (V,W,E) is odd if and only if rk(AG) = |W |.

Proof. For the forward direction suppose x ∈ FW
2 such that AGx = 0. Set X = {w ∈ W |

xw = 1}. Suppose towards a contradiction that X 6= ∅. Since G is odd there is some v ∈ V
such that |N(v) ∩X| is odd. But then (AG)vx = 1 where (AG)v is the v-th row of AG. This
is a contradiction and thus, {x ∈ FW

2 | AGx = 0} = {0}. So rk(AG) = |W |.
Suppose rk(AG) = |W |. Then {x ∈ FW

2 | AGx = 0} = {0}. Let ∅ 6= X ⊆ W and let
x ∈ FW

2 be the vector with xw = 1 if and only if w ∈ X. Since x /∈ {x ∈ FW
2 | AGx = 0}

there is some v ∈ V such that (AG)vx = 1. But this means that |N(v) ∩X| is odd. J

I Corollary 5. Let G = (V,W,E) be an odd bipartite graph. Then there is some V ′ ⊆ V

with |V ′| ≤ |W | such that the induced subgraph G[V ′ ∪W ] is odd.

Using Gaussian elimination, we can compute such a set in polynomial time. Now suppose
B(Gn, σ) is odd. Then we can use the previous corollary to compute an induced subgraph
B∗ := B∗(Gn, σ) of B(Gn, σ) which is odd and has fewer vertices. Applying the rigid base

1 Explicit pseudocode for constructing the multipede graphs is given in the full version [19].

ESA 2017
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construction to B∗ the resulting graph has |V (R(B∗))| = 4 ·3 ·n+ 2 ·3 ·n = 18n vertices. The
average degree has decreased to 4. In comparison, |V (R(B(Gn, σ)))| = 4 ·4 ·n+2 ·3 ·n = 22n.

We want to stress at this point that the twisted and non-twisted version of R(B∗) are
indeed isomorphic. A simple trick to overcome this problem (but not investigated here) is to
retain one more element of V \ V ′ and to twist an edge of the respective additional gadget.

4.2 Bypassing the outer vertices
Consider the CFI-construction applied to a 3-regular base graph on n vertices. An easy
trick is to identify the a and b vertices for each edge of the base graph instead of connecting
them by an edge. More precisely, for each edge e = {v, w} in the base graph, we can identify
a(v, w) with a(w, v) and b(v, w) with b(w, v) in case of a non-twisted connection or identify
a(v, w) with b(w, v) and b(v, w) with a(w, v) in case of a twisted connection. This way the
number of vertices reduces from 10n to 7n. This can further be improved by removing all a
and b vertices altogether and connecting inner vertices mi(v) to mj(w) if both are connected
to either a(v, w) or b(v, w). This way the construction only has 4n vertices.

A similar technique can also be applied to the rigid base construction. For this we bypass
all vertices of degree 8 by directly joining their neighbors and then removing all such vertices.
Given a bipartite base graph G we denote by R∗(G) the graph obtained form R(G) by
bypassing the outer vertices. When reducing the graphs in that fashion one has to be aware
that combinatorial structure of the graph might get lost. In particular it can be the case that
vertices of degree 4 (in G) had the same neighborhood before they were removed, leading to
inhomogeneity in the graph R∗(G). In fact our experiments show that there is wider spread
concerning the difficulty of the graphs R∗(G) than the graphs R(G). In other words, the
rigidity and difficulty of those graphs depends more heavily on the choice of the matching σ
than for the rigid base construction. However, the graphs R∗(G) turn out to be more difficult
than those obtained from the multipede construction.

4.3 Applying both reductions
We can combine the two vertex reduction techniques presented in this section by first applying
Corollary 5 to the base graph and then bypassing the outer vertices. The number of vertices
in the combined reduction decreases to 12n. It is not difficult to see that the graphs have an
average degree of at most 24, but the average degree varies among graphs on equally many
vertices since there may be multiple bypass edges having the same endpoints.

Our experiments show that the combination of the two reductions (Section 6) yields the
most difficult graphs. We call the resulting graphs R∗(B∗(Gn, σ)) the shrunken multipedes.

5 Cai-Fürer-Immerman gadgets for other groups

The constructions described in the previous sections revolve around the CFI-gadget X3. On
the outer vertices, the automorphism group of that gadget induces the set of all permu-
tations that swap an even number of pairs. This corresponds to the subgroup of (Z2)3 of
elements (g1, g2, g3) with g1g2g3 = 1. A natural idea to push the CFI-construction to its
limits is to encode other groups by the use of other gadgets.

Indeed, it is not difficult to see that for every permutation group ∆ acting on a set Ω
there is a graph gadget X∆ with a vertex set containing Ω as Aut(X∆)-invariant subset such
that Aut(X∆) ∼= ∆ and Aut(G)|Ω = ∆. (See [21, Lemma 16] for a construction.) In other
words, every permutation group ∆ can be realized by a graph gadget X∆. As explained
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before, the original CFI-gadget realizes a group that is a subdirect product of Z3
2, which is

in particular an abelian group. In analogy to our previous terminology we call the vertices
in Ω the outer vertices and the vertices in V (X∆) \ Ω the inner vertices. For our purpose of
creating benchmark graphs, we are interested in keeping the number of inner vertices small.

In our constructions, Ω naturally decomposes into sets C1, C2, C3, . . . , Ct of equal size n
as the classes of the outer vertices. We think of the sets as being colored with different colors
and only consider color preserving isomorphisms, i.e., permutations mapping each vertex to
a vertex of the same color. If we insert a gadget X∆ with Ω = C1 ∪ C2 ∪ . . . Ct we obtain a
subgroup of Sym(C1)× Sym(C2)× · · · × Sym(Ct), the direct product of symmetric groups.

For simplicity, we focus on the case t = 3 from now on. Thus we consider colored graph
gadgets X∆ such that C1∪C2∪C3 ⊆ V (X∆) and for which the automorphism group Aut(X∆)
induces on C1 ∪ C2 ∪ C3 a certain subgroup ∆ ≤ Sym(C1)× Sym(C2)× Sym(C3). Once we
have a suitable gadget X∆ we can use it to obtain a generalized CFI-construction (see [19]).

This brings us to the question, what types of gadgets are suitable for our purpose of
creating hard benchmark graphs. Various results in the context of algorithmic group theory
can lead one to believe that small groups and also abelian groups may be algorithmically
easier than large or non-abelian groups ([4, 12, 24]). Thus, one may wonder whether more
difficult benchmark graphs arise when employing graph gadgets inducing more complicated
abelian or even non-abelian automorphism groups. We now explore these thoughts.

5.1 Examples for more general groups

General abelian groups. Let Γ ≤ Sn be an abelian permutation group on n elements.
Then ∆ := {(a, b, c) ∈ Γ3 | abc = 1} is a subgroup of Sn × Sn × Sn. Here Sn denotes the
symmetric group of the set {1, . . . , n}. A description of a gadget realizing this group for the
case in which Γ is transitive is described in the full version [19].

For Γ = Z2 we recover the CFI-gadget. Let us point out that for Γ = Zk these gadgets
were used in [23] to show hardness of graph isomorphism for certain complexity classes.

Applying the gadgets to suitable base graphs, this gives us a generalization of the rigid
base construction to arbitrary abelian groups. However the difficulty of the graphs does not
increase for the algorithms tested here as we will see in Section 6.

Since in various contexts abelian groups are algorithmically easier to handle than non-
abelian groups, we would like to generalize the rigid base construction to non-abelian groups.

Semidirect products. Our next example is that of a semidirect product. Let Γ = N oH ≤
Sn be a semidirect product with an abelian normal subgroup N . For example Γ could be the
dihedral group Dn. Then ∆ := {(ah, bh, ch) ∈ Γ3 | a, b, c ∈ N, h ∈ H, abc = 1} is a subgroup
of Sn × Sn × Sn. Applying the gadget construction to suitable base graphs we obtain a
family of new benchmark graphs that we call the dihedral construction.

Unentwined gadgets. As last example suppose Γ1 = H2 ×H3, Γ2 = H1 ×H3 and Γ3 =
H1 ×H2 with arbitrary finite groups Hi. Then the group ∆ := {((h2, h3), (h1, h3), (h1, h2))}
is a subgroup of Sn × Sn × Sn. We call these gadgets unentwined since they only create a
pairwise interconnection between the classes. In particular, the gadgets are not beneficial for
our cause since they do not force an interplay between all three classes C1, C2 and C3.
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5.2 Group theoretic restrictions on the gadgets
As discussed before, every group ∆ ≤ Sym(C1)×Sym(C2)×Sym(C3) can be realized by such
a gadget X∆. Our intuition is that the isomorphism solvers can locally analyze a bounded
size gadget and thus implicitly determine the automorphism group ∆ = Aut(X∆)|C1∪C2∪C3

of such a gadget. The goal must therefore be to encode the difficulty in the global dependency
across the entire graph rather than in a local gadget.

Note that ∆ ≤ π1(∆)× π2(∆)× π3(∆), where πi is the projection on the i-th component.
We say that ∆ is a subdirect product of π1(∆)× π2(∆)× π3(∆). To understand what kind of
gadgets can be constructed we should therefore investigate subdirect products. We call such
a group ∆ ≤ π1(∆) × π2(∆) × π3(∆) 2-factor injective if each projection onto two of the
factors is injective and 2-factor surjective if each of these projections is surjective.

Intuitively, 2-factor injectivity says that two components determine the third. Thus when
two different gadgets that are not 2-factor injective are attached (via parallel edges say) this
may create local automorphism in the resulting graph, which we are trying to avoid. We are
therefore interested in creating 2-factor injective gadgets. In fact, it is possible to restrict
ourselves to 2-factor injective gadgets altogether, since we can quotient out the elements
responsible for non-injectivity. It turns out however that the abelian example in the previous
subsection are the only 2-factor injective and 2-factor surjective groups.

I Lemma 6 ([18]). Let Γ = Γ1 × Γ2 × Γ3 be a finite group and ∆ a subdirect product of Γ
that is 2-factor surjective and 2-factor injective. Then Γ1, Γ2 and Γ3 are isomorphic abelian
groups and ∆ is isomorphic to the subgroup of Γ3

1 given by {(a, b, c) ∈ (Γ1)3 | abc = 1}, which
in turn is isomorphic to (Γ1)2 as an abstract group.

Thus, if we want to move beyond abelian groups, we cannot require 2-factor surjectivity.
In general, however, it can be shown that every 2-factor injective group ∆ ≤ π1(∆)×π2(∆)×
π3(∆) is obtained by a combination of the three example constructions described in the
previous subsection. Indeed, in [18] it is in particular shown that if one wants an entwined
gadget then it is necessary to use an abelian group of the form described in Lemma 6. One
can then take a finite extension similar to the semidirect product construction described
above. We refer to [18] for more details. Overall we conclude that there are some group
theoretic obstructions to using non-abelian gadgets, and are left with the intuition that the
original construction leads to the most difficult examples.

6 Experimental Results

In the following we discuss experimental results for the constructions presented in this paper.
The experiments were each performed on single node of a compute cluster with 2.00 GHz
Intel Xeon X5675 processors. We always set a time limit of three hours (i.e., 10800 seconds)
and the memory limit to 4 GB. Every single instance was processed once, but multiple
instances were generated for each possible number of vertices with the same construction.
We evaluated the following isomorphism solvers: Bliss version 0.72, Nauty/Traces version
25r9, Saucy version 3.0, and Conauto version 2.03.

All our instances consist of two graphs and the task for the algorithms was to check
for isomorphism. For Bliss and Nauty/Traces this means that both graphs are canonized
and the canonical forms are compared for equality. Conauto directly supports isomorphism
testing and for Saucy, which only supports automorphism group computation, we compute
the automorphism group of the disjoint union to check for isomorphism. In each series we
performed the tests in increasing number of vertices with a time limit, which implied that
once timeouts are reached repeatedly only a handful of further examples are computed.
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Figure 2 Performance of various algorithms on R(B(Gn, σ)) for random permutations σ in linear
(left) and logarithmic scale (right).

We want to stress at this point that while the memory limit is irrelevant for Bliss,
Nauty, Saucy and Conauto, it is significant for Traces. In fact, in many larger instances
Traces reaches the memory limit before the time limit. For the sake of readability we do
not distinguish between the two cases and in our figures runs that reached the memory limit
are displayed as reaching the time limit. See [15] for details on the memory usage of Traces.

While all constructions pose difficult challenges for the solvers, those with more involved
gadgets do not seem to yield more difficult examples. A reason for this effect could lie in
the size of the gadgets. If the gadget is too large, asymptotic difficulty may emerge only for
graphs with a number of vertices drastically larger than what could be tested. In any case,
all of our constructions yield efficient methods to generate difficult isomorphism instances
even with the size of the vertex set in regimes where no other difficult instances are available.

6.1 Shrunken Multipedes
Figure 2 shows the running times of the various isomorphism solvers on the multipede graphs
described in Section 3 without any reductions. We observe that the multipede construction
yields graphs which become infeasible for all solvers already for a few thousand vertices.
Similarly, Figure 3 shows the running times on shrunken multipedes, i.e., the graphs to which
the two node reductions of Section 4 have been applied. In comparison we observe that
similar running times to the unreduced graphs are obtained already on graphs that have
roughly half the number of vertices. While the shrunken version results in more difficult
graphs one can also see that there is a significantly larger fluctuation (presumably depending
on σ) among the graphs on a fixed number of vertices.

6.2 Comparison
We outline the main observations made in comparing our constructions with existing families
of graphs. For a detailed comparison of the presented constructions among each other and
to other families of difficult graphs we refer to the full version [19].

Reduction Techniques and other groups. We performed a series of experiments investigat-
ing the effect of the two reduction techniques from Section 4. Both reductions yield instances
significantly more difficult and combining the two reductions yields the best results.

In experiments for the rigid base construction on other groups, we observe that the
original construction based on Z2 yields the most difficult graphs.
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Figure 3 Performance of various algorithms on shrunken multipedes R∗(B∗(Gn, σ)) (both
reductions applied) for random permutations σ in linear (left) and logarithmic scale (right).

Comparison with other benchmarks. Finally we compared the running times to benchmark
graphs that previously existed. Since the existing benchmark graphs typically do not come
in pairs of graphs we always take two copies, for each of which we randomly permute its
vertices, and then perform an isomorphism test for the two copies.

We compared our graphs to the most difficult graphs from the library at [14]. We performed
experiments for the families of Combinatorial graphs of Gordan Royle (combinatorial),
Projective Planes of order 25 and 27 (pp), non-disjoint unions of tripartite graphs (tnn),
Cai-Fürer-Immerman graphs (cfi), and Miyazaki graphs (mz-aug2). Starting from 1500
vertices our instances are several orders of magnitude more difficult on comparable input
sizes.

7 Discussion

Variance. For each graph we tested each algorithm only once. Not all of the algorithms
are deterministic and even for deterministic algorithms, there is also the question whether
permuting the input graphs has any influence on the running times. We ran permutations of
the same graph several times for each of the algorithms. Only saucy exhibits a non-negligible
variance in some of the runs. However, even that variance is negligible in comparison to the
exponential scaling of the running times on the benchmark graphs in the number of vertices.

Input size. The experiments we present all order the graphs according to the number of
vertices. However, in practice one may be interested in sparse graphs, and the various
algorithms are in particular tuned for this case. While all our graphs are sparse in that
they only have a linear number of edges, average degrees vary. For shrunken multipedes we
provided the coarse bound of 24 for the average degree. The multipedes have average degree
4.363, while the graphs obtained by only applying the linear algebra reduction (R(B∗(Gn, σ)))
have average degree 4. It seems thus that when input size is measured in terms of the number
of edges the graphs R(B∗(Gn, σ)) are the most difficult.

Conclusion. Overall we conclude that the new construction constitutes a simple algorithm
that yields the most difficult benchmark graphs to date and experimentally we observe
exponential behavior in terms of the running times of practical isomorphism solvers.
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