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Abstract
Spectral based heuristics belong to well-known commonly used methods which determines prov-
ably minimal graph bisection or outputs “fail” when the optimality cannot be certified. In this
paper we focus on Boppana’s algorithm which belongs to one of the most prominent methods of
this type. It is well known that the algorithm works well in the random planted bisection model
– the standard class of graphs for analysis minimum bisection and relevant problems. In 2001
Feige and Kilian posed the question if Boppana’s algorithm works well in the semirandom model
by Blum and Spencer. In our paper we answer this question affirmatively. We show also that the
algorithm achieves similar performance on graph classes which extend the semirandom model.

Since the behavior of Boppana’s algorithm on the semirandom graphs remained unknown,
Feige and Kilian proposed a new semidefinite programming (SDP) based approach and proved
that it works on this model. The relationship between the performance of the SDP based al-
gorithm and Boppana’s approach was left as an open problem. In this paper we solve the
problem in a complete way by proving that the bisection algorithm of Feige and Kilian provides
exactly the same results as Boppana’s algorithm. As a consequence we get that Boppana’s al-
gorithm achieves the optimal threshold for exact cluster recovery in the stochastic block model.
On the other hand we prove some limitations of Boppana’s approach: we show that if the density
difference on the parameters of the planted bisection model is too small then the algorithm fails
with high probability in the model.
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1 Introduction

The minimum graph bisection problem is one of the classical NP-hard problems [22]: for an
undirected graph G the aim is to partition the set of vertices V = {1, . . . , n} (n even) into
two equal sized sets, such that the number of cut edges, i.e. edges with endpoints in different
bisection sides, is minimized. The bisection width of a graph G, denoted by bw(G), is then the
minimum number of cut edges in a bisection of G. Due to practical significance in VLSI design,
image processing, computer vision and many other applications (see [30, 5, 46, 29, 31, 38])
and its theoretical importance, the problem has been the subject of a considerable amount
of research from different perspectives: approximability [37, 4, 20, 19, 28], average-case
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complexity [10], and parameterized algorithms [33, 44] including the seminal paper in this
field by Cygan et al. [15] showing that the minimum bisection is fixed parameter tractable.

In this paper we consider polynomial-time algorithms that for an input graph either
output the provable minimum-size bisection or “fail” when the optimality cannot be certified.
The methods should work well for all (or almost all, depending on the model) graphs of
particular classes, i.e. provide for them a certified optimum bisection, while for irregular,
worst case instances the output can be “fail”, what is justifiable. We investigate two well-
studied graph models: the planted bisection model and its extension the semirandom model
which are widely used to analyze and benchmark graph partitioning algorithms. We refer
to [10, 16, 9, 6, 14, 18, 11, 34, 8, 12, 32] to cite some of the relevant works. Moreover, we
consider the regular graph model introduced of Bui et al. [10] and a new extension of the
semirandom model. For a (semi)random model we say that some property is satisfied with
high probability (w.h.p.) if the probability that the property holds tends to 1 as the number
of vertices n→∞.

In the planted bisection model, denoted as Gn(p, q) with parameters 1 > p = p(n) ≥
q(n) = q > 0, the vertex set V = {1, . . . , n} is partitioned randomly into two equal sized sets
V1 and V2, called the planted bisection. Then for every pair of vertices do independently:
if both vertices belong to the same part of the bisection (either both belong to V1 or both
belong to V2) then include an edge between them with probability p; If the two vertices
belong to different parts, then connect the vertices by an edge with probability q. In the
semirandom model for graph bisection [18], initially a graph G is chosen at random according
to model Gn(p, q). Then a monotone adversary is allowed to modify G by applying an
arbitrary sequence of the following monotone transformations: (1) The adversary may remove
from the graph any edge crossing a minimum bisection; (2) The adversary may add to the
graph any edge not crossing the bisection. Finally, in the regular random model, denoted as
Rn(r, b), with r = r(n) < n and b = b(n) ≤ (n/2)2, the probability distribution is uniform
on the set of all graphs on V that are r-regular and have bisection width b.

The planted bisection model was first proposed in the sociology literature [27] under the
name stochastic block model to study community detection problems in random graphs. In
this setting, the planted bisection V1, V2 (as described above) models latent communities in
a network and the goal here is to recover the communities from the observed graph. In the
general case, the model allows some errors by recovering, multiple communities, and also
that p(n) < q(n). The community detection problem on the stochastic block model has been
subject of a considerable amount of research in physics, statistics and computer science (see
e.g. [1, 35] for current surveys). In particular, an intensive study has been carried out on
providing lower bounds on |p− q| to ensure recoverability of the planted bisection.

The main focus of our work is the bisection algorithm proposed by Boppana [9]. Though
introduced almost three decades ago, the algorithm belongs still to one of the most important
heuristics in this area. However, several basic questions concerning the algorithm’s perform-
ance remain open. Using a spectral based approach, Boppana constructs an implementable
algorithm which, assuming the density difference

p− q ≥ c
√
p lnn/

√
n for a certain constant c > 0 (1)

bisects Gn(p, q) optimally w.h.p. (certifying the optimality of the solutions). Remarkably, for
a long time this was the largest subclass of graphs Gn(p, q) for which a minimum bisection
could be found. Since under the assumption (1) the planted bisection is minimum w.h.p.,
Boppana’s algorithm solves the recovery problem for the stochastic block model with two
communities. Boppana’s algorithm works well also on the regular graph model Rn(r, b),
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assuming that

r ≥ 6 and b ≤ o(n1−1/b(r/2+1)/2c). (2)

In this paper we investigate the problem if, under assumption (1), Boppana’s algorithm works
well for the semirandom model. This question was posed by Feige and Kilian in [18] and
remained open so far. In our work we answer the question affirmatively. We show also that
Boppana’s algorithm provides the same results as the algorithm proposed currently by Hajek,
Wu, and Xu [25]. As a consequence we get that Boppana’s algorithm achieves the optimal
threshold for exact recovery in the stochastic block model with parameters p = α log(n)/n
and q = β log(n)/n. On the other hand we show some limitations of the algorithm. One of
the main results in this direction is that the density difference (1) is tight: we prove that if
p− q ≤ o(

√
p · lnn/

√
n) then the algorithm fails on Gn(p, q) w.h.p.

Our Results. The motivation of our research was to systematically explore graph properties
which guarantee that Boppana’s algorithm outputs a certified optimum bisection. Due to [9]
we know that random graphs from Gn(p, q) and Rn(r, b) satisfy such properties w.h.p. under
assumptions (1) and (2) on p, q, r, and b as discussed above. But, as we will see later, the
algorithm works well also for instances which deviate significantly from such random graphs.

Our first technical contribution is a modification of the algorithm to cope with graphs of
more than one optimum bisection, like e.g. hypercubes. The algorithm proposed originally
by Boppana does not manage to handle such cases. Our modification is useful to work on
wider classes of graphs.

In this paper we introduce a natural generalization of the semirandom model of Feige and
Kilian [18]. Instead of Gn(p, q), we start with an arbitrary initial graph model Gn, and then
apply a sequence of the transformations by a monotone adversary as in [18]. We denote such
a model by A(Gn). One of our main positive results is that if Boppana’s algorithm outputs
the minimum-size bisection for graphs in Gn w.h.p., then the algorithm finds a minimum
bisection w.h.p. for the adversarial graph model A(Gn), too. As a corollary, we get that
under assumption (1), Boppana’s algorithm works well in the semirandom model, denoted
here as A(Gn(p, q)), and, assuming (2), in A(Rn(r, b)) – the semirandom regular model. This
solves the open problem posed by Feige and Kilian in [18]. To the best of our knowledge,
Boppana’s algorithm is the only method known so far, that finds (w.h.p.) provably optimum
bisections on all of the above random graph classes.

Since the behavior of the algorithm on the (common) semirandom model A(Gn(p, q))
remained unknown so far, Feige and Kilian proposed in [18] a new semidefinite programming
(SDP) based approach which works for semirandom graphs, assuming (1). The relationship
between the performance of the SDP based algorithm and Boppana’s approach was left
in [18] as an open problem. Feige and Kilian conjecture that for every graph G, their
objective function hp(G) to certify the bisection optimality and the lower bound computed in
Boppana’s algorithm give the same value. In our paper we answer this question affirmatively.
To compare the algorithms, we provide a primal SDP formulation for Boppana’s approach
and prove that it is equivalent to the dual SDP of Feige and Kilian. Next we give a dual
program to the primal formulation of Boppana’s algorithm and prove that the optima of the
primal and dual programs are equal to each other. Note that unlike linear programming, for
semidefinite programs there may be a duality gap. Thus, we show that the bisection algorithm
of Feige and Kilian provides exactly the same results as Boppana’s algorithm. However,
an important advantage of the spectral method by Boppana over the SDP based approach
by Feige and Kilian is that the spectral method is practically implementable reducing the
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bisection problem for graphs with n vertices to computing minima of a convex function of n
variables while the algorithm in [18] needs to solve a semidefinite program over n2 variables.

From the result that the method by Feige and Kilian is equivalent to Boppana’s we
get, as a consequence, that Boppana’s algorithm achieves the sharp threshold for exact
cluster recovery in the stochastic block model which has been obtained recently by Abbe
et al. [2] and independently by Mossel et al. [36]. In [2, 36] it is proved that in the (binary)
stochastic block model, with p = α log(n)/n and q = β log(n)/n for fixed constants α 6= β,
if (
√
α−
√
β)2 > 2, the planted clusters can be exactly recovered (up to a permutation of

cluster indices) with probability converging to one; if (
√
α −
√
β)2 < 2, no algorithm can

exactly recover the clusters with probability converging to one. Note, that the choice of p
and q is well justified: Mossel et al. show that if q < p = log(n)/n then the exact recovery is
impossible for these parameters. In [25] Hajek et al. proved that the SDP of Feige and Kilian
achieves the optimal threshold, i.e. if (

√
α−
√
β)2 > 2 the SDP reconstructs communities

w.h.p. From our result we get, that Boppana’s algorithm achieves the threshold, too.
To analyze limitations of the spectral approach we provide structural properties of the

space of feasible solutions searched by the algorithm. This allows us to prove that if an
optimal bisection contains some forbidden subgraphs, then Boppana’s algorithm fails. Using
these tools, we were able to show that if the density difference p− q is asymptotically smaller
than

√
p · lnn/

√
n then Boppana’s algorithm fails to determine a certified optimum bisection

on Gn(p, q) w.h.p. Note that our impossibility result is not a direct consequence of the lower
bound for the exact cluster recovery discussed above. For example, for q = O(1)/n and
p =
√

logn/n from Mossel et al. [36] we know that for these parameters the exact recovery
is impossible but obviously this does not imply that determining of a certified optimum
bisection is impossible either.

Related Works. Spectral partitioning goes back to Fiedler [21], who first proposed to use
eigenvectors to derive partitions. Spielman and Teng e.g. showed, that spectral partitioning
works well on planar graphs [40, 41], although there are also graphs on which purely spectral
algorithms perform poorly, as shown by Guattery and Miller [24].

Also other algorithms have been proven to work on the planted bisection model. Condon
and Karp [14] developed a linear time algorithm for the more general l-partitioning problem.
Their algorithm finds the optimal partition with probability 1− exp(−nΘ(ε)) in the planted
bisection model with parameters satisfying p−q = Ω(1/n1/2−ε). Carson and Impagliazzo [11]
show that a hill-climbing algorithm is able to find the planted bisection w.h.p. for parameters
p− q = Ω((ln3 n)/n1/4). Dyer and Frieze [16] provide a min-cut via degrees heuristic that,
assuming n(p− q) = Ω(n) finds and certifies the minimum bisection w.h.p. Note, that the
density difference (1) assumed by Boppana still outperforms the above ones. Moreover a
disadvantage of the methods against Boppana’s algorithm, except for the last one, is that
they do not certify the optimality of the solutions. In [34] McSherry describes a spectral
based heuristic that applied to G(p, q) finds a minimum bisection w.h.p if p and q satisfy
assumption (1) but it does not certify the optimality. Importantly, the algorithms above,
similarly as Boppana’s method, solve the recovery problem for the stochastic block model
with two communities.

In [12] Coja-Oghlan developed a new spectral-based algorithm which, on the planted
partition model Gn(p, q), enables for a wider range of parameters than (1), certifying the
optimality of its solutions. The algorithm [12] assumes that p− q ≥ Ω(

√
p ln(np)/

√
n). If

the parameters p and q describe non-sparse graphs, this condition is essentially the same as
Boppana’s assumption. For sparse graphs, however, Coja-Oghlan’s constraint allows a larger
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subclass. For example, the algorithm works in Gn(p, q) for q = O(1)/n and p =
√

logn/n.
Due to results presented in our paper we know that Boppana’s algorithm fails w.h.p. for such
graphs. Interestingly, the condition on the density difference by Coja-Oghlan allows graphs
for which the minimum bisection width is strictly smaller than the width of the planted
bisection w.h.p. However, a drawback of Coja-Oghlan’s algorithm is that to work well in
the planted bisection model with unknown parameters p and q, the algorithm has to learn
the parameters since it is based on the knowledge of values p and q. Also the performance
of the algorithm on other families, like e.g. semirandom graphs and the regular random
graphs Rn(r, b), is unknown. Recent research by Coja-Oghlan et al. [13] contributes to a
better understanding of the planted bisection model and average case behavior of a minimum
bisection.

The paper is organized as follows. The next section contains an overview over Boppana’s
algorithm. In Section 3 we define the adversarial graph model and show, that Boppana’s
algorithm works well on this class. In Section 4 we compare the algorithm to the SDP
approach of Feige and Kilian. Next, in Section 5 we propose a modification of the algorithm
to deal with non-unique optimum bisections. Finally, we develop a new analysis of the
algorithm and use it to show some limitations of the method. We conclude the paper with a
discussion. The proofs of most of the propositions presented in Sections 2 through 6 can be
found in the full version [39].

2 Boppana’s Graph Bisection Algorithm

In this section we fix definitions and notations used in our paper and we recall Boppana’s
algorithm and known facts on its performance. We need the details of the algorithm to
describe its extension in the next section. For a given graph G = (V,E), with V = {1, . . . , n},
Boppana defines a function f for all real vectors x, d ∈ Rn as

f(G, d, x) =
∑
{i,j}∈E

1−xixj

2 +
∑

i∈V di(x2
i − 1). (3)

Call by S ⊂ Rn the subspace of all vectors x ∈ Rn, with
∑

i xi = 0. Based on f , the function
g′ is defined as follows

g′(G, d) = min
‖x‖2=n,x∈S

f(G, d, x), (4)

where ‖x‖ denotes the L2 norm of x. Note that g′ is invariant under shifting d, i. e.
g′(G, d+ β(1, . . . , 1)T ) = g′(G, d) for every β ∈ R. Vector x is named a bisection vector if
x ∈ {+1,−1}n and

∑
i xi = 0. Such x determines a bisection of G of the cut width denoted

as cw(x) =
∑
{i,j}∈E

1−xixj

2 . For a bisection vector x the function f takes the value (3)
regardless of d. Minimization over all such x would give the minimum bisection width. Since
g′ uses a relaxated constraint we get g′(G, d) ≤ bw(G) where, recall, bw(G) denotes the
bisection width of G. To improve the bound, Boppana tries to find some d which leads to a
minimal decrease of the function value of g′ compared to the bisection width:

h(G) = max
d∈Rn

g′(G, d). (5)

It is easy to see that for every graph G we have h(G) ≤ bw(G).
In order to compute g′ efficiently, Boppana expresses the function in spectral terms. To

describe this we need some definitions. Let I denote the n-dimensional identity matrix and
let P = I − 1

nJ be the projection matrix which projects a vector x ∈ Rn to the projection
Px of vector x into the subspace S. Here, J denotes an n× n matrix of ones. For a matrix
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B ∈ Rn×n, the matrix BS = PBP projects a vector x ∈ Rn to S, then applies B and
projects the result again into S. Further, for B ∈ Rn×n and d ∈ Rn we denote the sum of
B’s elements as sum(B) =

∑
ij Bij and by diag(d) we denote the n× n diagonal matrix D

with the entries of the vector d on the main diagonal, i. e. Dii = di.
Now assume B ∈ Rn×n is symmetric and let BS = PBP . Denote by Rn

6=c1 the real space
Rn without the subspace spanned by the identity vector 1, i. e. Rn

6=c1 = Rn \ {c1 : c ∈ R}.
We define λ(BS) = maxx∈Rn

6=c1
xT BSx
‖x‖2 . It is easy to see that if λ(BS) ≥ 0 then

λ(BS) = max
x∈Rn

xTBSx

‖x‖2
(6)

i. e. λ(BS) is the largest eigenvalue of the matrix BS . Vectors x that attain the maximum
are exactly the eigenvectors corresponding to the largest eigenvalue λ(BS) of BS .

Let G be an undirected graph with n vertices and adjacency matrix A. Let further d ∈ Rn

be some vector and let B = A+ diag(d), then we define

g(G, d) = sum(B)− nλ(BS)
4 .

In [9] it is shown that function g′ can be expressed as g′(G, d) = g(G,−4d). Since in the
definition of h in (5) we maximize over all d, we can conclude that

h(G) = max
d∈Rn

g(G, d) = max
d∈Rn

sum(A+ diag(d))− nλ((A+ diag(d))S)
4 . (7)

Boppana’s algorithm that finds and certifies an optimal bisection, works as follows:

Algorithm 1: Boppana’s Algorithm
1 Compute h(G): Numerically find a vector dopt which maximizes g(G, d). Let

D = diag(dopt). Use constraint
∑

i d
opt
i = 2|E| to ensure λ((A+D)S) > 0;

2 Construct a bisection: Let x be an eigenvector corresponding to the eigenvalue
λ((A+D)S). Construct a bisection vector x̂ by splitting at the median x̄ of x,
i.e. let x̂i = +1 if xi ≥ x̄ and x̂i = −1 if xi < x̄. If

∑
i x̂i > 0, move (arbitrarily)

1
2
∑

i x̂i vertices i with xi = x̄ to part −1 letting x̂i = −1;
3 Output x̂; If cw(x̂) = h(G) output “optimum bisection” else output “fail”.

One can prove that g is concave and hence, the maximum in Step 1 can be found in
polynomial time with arbitrary precision [23]. To analyze the algorithm’s performance,
Boppana proves the following, for a sufficiently large constant c > 0:

I Theorem 1 (Boppana [9]). Let G be a random graph from Gn(p, q), and let p − q ≥
c(
√
p lnn/

√
n). Then with probability 1−O(1/n), the bisection width of G equals h(G).

From this result one can conclude that the value h(G) computed by the algorithm is,
w.h.p., equal to the optimal bisection width of G. However, to guarantee that the algorithm
works well one needs additionally to show that it also finds an optimal bisection:

I Theorem 2. For random graphs G from Gn(p, q), with p− q ≥ c(
√
p lnn/

√
n), Boppana’s

algorithm certifies the optimality of h(G) revealing w.h.p. bisection vector x̂ of cw(x̂) = h(G).

To prove this theorem one first has to revise carefully the proof of Theorem 1 in [9] and
show that w.h.p. the multiplicity of the largest eigenvalue of the matrix (A+D)S in Step 1
is 1. This was observed already in [7]. Next we need the following property:
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I Lemma 3. Let G be a graph with h(G) = bw(G) and let dopt ∈ Rn s. t. g(G, dopt) = bw(G)
and

∑
i d

opt
i ≥ 4 bw(G)−2|E|. Denote further by Bopt = A+diag(dopt). Then every optimum

bisection vector y is an eigenvector of Bopt
S corresponding to the largest eigenvalue λ(Bopt

S ).

(The proof of Lemma 3, as the proofs of most of the remaining propositions presented in this
paper, can be found in the full version [39].) This completes the proof that the algorithm
works well on random graphs from Gn(p, q).

3 Bisections in Adversarial Models

We introduce the adversarial model, denoted by A(Gn), as a generalization of the semirandom
model in the following way. Let Gn be a graph model, i.e. a class of graphs with distributions
over graphs of n nodes (n even). In the model A(Gn), initially a graph G is chosen at random
according to Gn. Let (Y1, Y2) be a fixed, but arbitrary optimal bisection of G. Then, similarly
as in [18], a monotone adversary is allowed to modify G by applying an arbitrary sequence
of the following monotone transformations: The adversary may
1. remove from the graph any edge {u, v} crossing the bisection (u ∈ Y1 and v ∈ Y2);
2. add to the graph any edge {u, v} not crossing the bisection (u, v ∈ Y1 or u, v ∈ Y2).
For example, A(Gn(p, q)) is the semirandom model as defined in [18].

We will prove that Boppana’s algorithm works well for graphs from adversarial model
A(Gn) if the algorithm works well for Gn. First we show that, if the algorithm is able to find
an optimal bisection size of a graph, we can add edges within the same part of an optimum
bisection and that we can remove cut edges, and the algorithm will still work. This solves
the open question of Feige and Kilian [18].

Note that the result follows alternatively from Corollary 11 (presented in Section 4) that
the SDPs of [18] are equivalent to Boppana’s optimization function and form the property
proved in [18] that the objective function of the dual SDP of Feige and Kilian preserves
minimal bisection regardless of monotone transformations. The aim of this section is to give
a direct proof of this property for Boppana’s algorithm.

I Theorem 4. Let G = (V,E) be a graph with h(G) = bw(G). Consider some optimum
bisection Y1, Y2 of G.
1. Let u and v be two vertices within the same part, i.e. u, v ∈ Y1 or u, v ∈ Y2, and let

G′ = (V,E ∪ {{u, v}}). Then h(G′) = bw(G′).
2. Let u and v be two vertices in different parts, i.e. u ∈ Y1 and v ∈ Y2, with {{u, v}} ∈ E

and let G′ = (V,E \ {{u, v}}). Then h(G′) = bw(G)− 1 = bw(G′).

Sketch of Proof. In order to prove the first part of the theorem, i.e. when we add an
edge {u, v}, let A and A′ denote the adjacency matrices of G and G′, respectively. It holds
A′ = A+A∆ with A∆

uv = A∆
vu = 1 and zero everywhere else. The main idea is now, that we

can derive a new optimal correction vector d′ for G′ based on the optimal correction vector

dopt for G. We set d′ = dopt + d∆ with d∆
i =

{
−1 if i = u or i = v,

0 else.
The known changes in the adjacency matrix as well as the derived correction vector allow

us to compute g(G′, d′) and to show that g(G′, d′) = bw(G′). The proof of the second part of
the theorem works analogously. The complete proof can be found in the full version [39]. J

I Theorem 5. If Boppana’s algorithm finds a minimum bisection for a graph model Gn

w.h.p., then it finds a minimum bisection w.h.p. for the adversarial model A(Gn), too.
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As a direct consequence, we obtain the following corollary regarding the semirandom
graph model considered by Feige and Kilian:

I Corollary 6. Under assumption (1) on p and q, Boppana’s algorithm computes the minimum
bisection in A(Gn(p, q)), i.e. in the semirandom model, w.h.p.

In [9], Boppana also considers random regular graphs Rn(r, b), where a graph is chosen
uniformly over the set of all r-regular graphs with bisection width b. He shows that his
algorithm works w.h.p. on this graph under the assumption that b = o(n1−1/b(r+1)/2c).
We can now define the semirandom regular graph model as adversarial model A(Rn(r, b)).
Applying Theorem 5, we obtain

I Corollary 7. Under assumption (1) on p and q, Boppana’s algorithm computes the minimum
bisection in the semirandom regular model w.h.p.

4 SDP Characterizations of the Graph Bisection Problem

Feige and Kilian express the minimum-size bisection problem for an instance graph G as a
semidefinite programming problem (SDP) with solution hp(G) and prove that the function
hd(G), which is the solution to the dual SDP, reaches bw(G) w.h.p. Since bw(G) ≥ hp(G) ≥
hd(G), they conclude that hp(G) as well reaches bw(G) w.h.p. The proposed algorithm
computes hp(G) and reconstructs the minimum bisection of G from the optimum solution of
the primal SDP. The authors conjecture in [18, Sec. 4.1.] the following: "Possibly, for every
graph G, the function hp(G) and the lower bound h(G) computed in Boppana’s algorithm
give the same value, making the lemma that hp(G) = bw(G) w.h.p. a restatement of the
main theorem of [9]. In this section we answer this question affirmatively.

The semidefinite programming approach for optimization problems was studied by Aliza-
deh [3], who as first provided an equivalent SDP formulation of Boppana’s algorithm. Before
we give an SDP introduced by Feige an Kilian, we recall briefly some basic definitions and
provide an SDP formulation for Boppana’s approach. On the space Rn×m of n×mmatrices, we
denote by A•B an inner product of A and B defined as A•B = tr(AB) =

∑n
i=1
∑m

j=1AijBij ,
where tr(C) is the trace of the (square) matrix C. Let A be an n× n symmetric real matrix,
then A is called symmetric positive semidefinite (SPSD) if A is symmetric, i.e. AT = A, and
for all real vectors v ∈ Rn we have vTAv ≥ 0. This property is denoted by A � 0. Note that
the eigenvalues of a symmetric matrix are real.

For given real vector c ∈ Rn and m+ 1 symmetric matrices F0, . . . , Fm ∈ Rn×n an SDP
over variables x ∈ Rn is defined as

min
x
cTx subject to F0 +

m∑
i=1

xiFi � 0. (8)

The dual program associated with the SDP (for details see e.g. [45]) is the program over the
variable matrix Y = Y T ∈ Rn×n:

max
Y
−F0 • Y subject to ∀i : Fi • Y = ci and Y � 0. (9)

It is known that the optimal value of the maximization dual SDP is never larger than the
optimal value of the minimization primal counterpart. However, unlike linear programming,
for semidefinite programs there may be a duality gap, i.e. the primal and/or dual might not
attain their respective optima.
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To prove that for any graph G Boppana’s function h(G) gives the same value as hp(G)
we formulate the function h as a (primal) SDP. We provide also its dual program and prove
that the optimum solutions of primal and dual are equal in this case. Then we show that the
dual formulation of the Boppana’s optimization is equivalent to the primal SDP defined by
Feige and Kilian [18].

Below, G = (V,E) denotes a graph, A the adjacency matrix of G and for a given vector
d, as usually, let D = diag(d), for short. We provide the SDP for the function h (Eq. (7))
that differ slightly from that one given in [3].

I Proposition 8. For any graph G = (V,E), the objective function

h(G) = max
d∈Rn

sum(A+D)− nλ((A+D)S)
4

maximized by Boppana’s algorithm can be characterized as an SDP as follows: p(G) = min
z∈R,d∈Rn

(nz − 1T d) subject to

zI −A+ JA+AJ
n − sum(A)J

n2 −D + 1dT +d1T

n − sum(D)J
n2 � 0,

(10)

with the relationship h(G) = |E|
2 −

1
4p(G). The dual program to the program (10) can be

expressed as follows:

d(G) = max
Y ∈Rn×n

(
A • Y − 1

n

∑
j deg(j)

∑
i yij − 1

n

∑
i deg(i)

∑
j yij + 1

n2

∑
i,j yij

)
subject to ∑

i yii = n,

∀i yii − 1
n

∑
j yji − 1

n

∑
j yij + 1

n2

∑
k,j ykj = 1,

Y � 0.

(11)

Using these formulations we prove that the primal and dual SDPs attain the same optima.

I Theorem 9. For the semidefinite programs of Proposition 8 the optimal value p∗ of the
primal SDP (10) is equal to the optimal value d∗ of the dual SDP (11). Moreover, there
exists a feasible solution (z, d) achieving the optimal value p∗.

Proof. Consider the primal SDP (10) of Boppana in the form

min
z∈R,d∈Rn

z s.t. zI −M(d) � 0,

with M(d) = P (A+ diag(d))P − 1T d
n I and, recall, P = I − J

n . Note that this formulation is
equivalent to (10), as we have shown in the proof of Proposition 8. We show that this primal
SDP problem is strictly feasible, i.e. that there exists an z′ and an d′ with z′I −M(d′) � 0.
To this aim we choose an arbitrary d′ and then some z′ > λ(M(d′)). From [45, Thm. 3.1], it
follows that the optima of primal and dual obtain the same value.

To prove the second part of the theorem, i.e. there exists a feasible solution achieving the
optimal value p∗, consider the following. The function h(G) maximizes g(G, d) over vectors
d ∈ Rn, while d can be restricted to vectors of mean zero. The function g is convex and
goes to −∞ for vectors d with some component going to ∞. Thus, g reaches its maximum
at some finite dopt. Now we choose d = dopt and z = λ(M(dopt)). Clearly, this solution is
feasible and obtains the optimal value p∗. J
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For a graph G = (V,E), Feige and Kilian express the minimum bisection problem as an
SDP over an n× n matrix Y as follows:

hp(G) = min
Y ∈Rn×n

hY (G) s.t. ∀i yii = 1,
∑
i,j

yij = 0, and Y � 0, (12)

where hY (G) =
∑
{i,j}∈E

i<j

1−yij

2 . For proving that the SDP takes as optimum the bisection

width w.h.p. on Gn(p, q), the authors consider the dual of their SDP:

hd(G) = max
x∈Rn

(
|E|
2 + 1

4
∑

i

xi

)
s.t. M = −A− x0J − diag(x) � 0, (13)

where A is the adjacency matrix of G. They show that the dual takes the value of the
bisection width w.h.p. and bounds the optimum of the primal SDP. Although we know that
their SDP and Boppana’s algorithm both work well on Gn(p, q), it was open so far how they
are related to each other. Below we answer this question showing that the formulations are
equivalent. We start with the following:

I Theorem 10. The primal SDP (12) is equivalent to the dual SDP (11), with the relationship
hp(G) = |E|

2 −
1
4d(G).

From Theorems 9 and 10 we get

I Corollary 11. Let G be an arbitrary graph. Then for the lower bound h(G) of Boppana’s
algorithm and for the objective functions hp(G) of the primal SDP (12), resp. hd(G) of the
dual SDP (12) of Feige and Kilian [18] it is true

h(G) = hp(G) = hd(G).

Thus, the both algorithms provide for any graph G the same objective value. We want
to point out another important fact: the bisection algorithm proposed in [18] use an SDP
formulation, where the variables are a matrix with dimension n × n. Thus, there are n2

variables for a graph with n vertices. In contrast, Boppana’s algorithm uses n variables in
the convex optimization problem. If we consider the dual SDP, we again have only n + 1
variables. However, due to Corollary 11, we can’t be better than Boppana’s algorithm.

Abbe et al. [2] and independently Mossel et al. [36] have shown, that there is a sharp
threshold phenomenon when considering the Gn(p, q) model with p = α log(n)/n and q =
β log(n)/n for fixed constants α, β, α > β. Exact recovery of the planted bisection is possible
if and only if (

√
α−
√
β)2 > 2 (see e.g. [36] for a formal definition of exact cluster recovery

problem). Hajek et al. [25] show, than an SDP equivalent to the one of Feige and Kilian
achieves this bound. Since, due to Corollary 11, we know that the SDP is equivalent to
Boppana’s algorithm, we conclude that also Boppana’s algorithm achieves the optimal
threshold for finding and certifying the optimal bisection in the considered model. We get:

I Theorem 12. Let α and β, α > β, be constants. Consider the graph model Gn(p, q) with
p = α log(n)/n and q = β log(n)/n. Then, as n → ∞, if (

√
α −
√
β)2 > 2, Boppana’s

algorithm recovers the planted bisection w.h.p. If (
√
α−
√
β)2 < 2, no algorithm is able to

recover the planted bisection w.h.p.

Proof. The second part of the theorem is exactly the statement from [2]. The first part,
i.e. that Boppana’s algorithm is able to recover the bisection, follows from [25, Thm. 2].
Hajek et al. show, that for (

√
α−
√
β)2 > 2 the SDP of Feige and Kilian obtain the optimal

solution. Due to Theorem 10, the same holds for Boppana’s algorithm. J
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5 Certifying Non-Unique Optimum Bisections

From Section 2 we know that if the bound h(G) is tight and the bisection of minimum size is
unique, or more precisely the multiplicity of the largest eigenvector of BS is 1, Boppana’s
algorithm is able to certify the optimality of the resulting bisection. We say that a graph G
has a unique optimum bisection if there exists a unique, up to the sign, bisection vector x
such that cw(x) = cw(−x) = bw(G). In this paper we also investigate families of graphs,
different than random graphs Gn(p, q), for which Boppana’s approach works well. To this aim
we show a modification which handles cases such that h(G) = bw(G) but for which no unique
bisection of minimum size exists. As we will see later hypercubes satisfy these two conditions.
We present our algorithm below. Note that if the multiplicity of the largest eigenvalue of Bopt

S

is 1, then the algorithm outputs the same result as in the original algorithm by Boppana.
1. Perform Step 1 of Algorithm 1; Let x be an eigenvector corresponding to the eigenvalue

λ((A+D)S) and let k be the multiplicity of the largest eigenvalue of (A+D)S

2. If k = 1 then construct a bisection vector x̂ by splitting at the median x̄ as in Step 2 of
Algorithm 1; Next output x̂ and if cw(x̂) = h(G) output “optimum bisection” else output
“fail”; If k > 1 then perform the steps below

3. Let M ∈ Rn×k be the matrix with k linear independent eigenvectors corresponding to
this largest eigenvalue; Transform the matrix to the reduced column echelon form, i. e.
there are k rows which form an identity matrix, s.t. M still spans the same subspace

4. Brute force: for every combination of k coefficients from {+1,−1} take the linear
combination of the k vectors of M with the coefficients and verify if the resulting vector
x is a bisection vector, i.e. x ∈ {+1,−1}n with

∑
i xi = 0. If yes and if cw(x) = h(G)

then output x and continue. This needs 2k iterations
5. If in Step 4 no bisection vector x is given then output “fail”.
I Theorem 13. If h(G) = bw(G) then the algorithm above reconstructs all optimal bisections.
Every achieved bisection vector corresponds to an optimal bisection.

The eigenvalues for the family of hypercubes are explicitly known [26]. Hence, we
can verify that the bound h(G) is tight and Boppana’s algorithm with the modification
above works, i.e. finds an optimal bisection. For a hypercube Hn with n vertices we have
h(Hn) = g(Hn, (2− logn)1) = n/2 = bw(Hn). Since the hypercube with n vertices has logn
optimal bisections and the largest eigenspace of BS has multiplicity logn, the brute force
part in our modification of Boppana’s algorithm results in a linear factor of n for the overall
runtime. Thus, the algorithm runs in polynomial time. With the results from Section 3 we
can extend this result and obtain, that Boppana’s algorithm with our modification works on
adversarially modifieded hypercubes as well.

6 The Limitations of the Algorithm

Boppana shows, that his algorithm works well on some classes of random graphs. However,
we do not know which graph properties force the algorithm to fail. For example, for the
considered planted bisection model, we require a small bisection width. On the other hand,
as we have seen in Section 5 Boppana’s algorithm works for the hypercubes and their
semirandom modifications – graphs that have large minimum bisection sizes.

In the following, we present newly discovered structural properties from inside the
algorithm, which provide a framework for a better analysis of the algorithm itself. Let y be
a bisection vector of G. We define

d(y) = −diag(y)Ay. (14)

ESA 2017



66:12 New Abilities and Limitations of Spectral Graph Bisection

. . . u′ u w w′ . . .

. . . u′1 u1 w1 w′1 . . .

. . . u′2 u2 w2 w′2 . . .

Figure 1 Forbidden graph structures as in Corollary 17 (left) and in Corollary 18 (right).

An equivalent but more intuitive characterization of d(y) is the following: d(y)
i is the difference

between the number of adjacent vertices in other partition as vertex i and the number of
adjacent vertices in same partition as i.

I Lemma 14. Let G be a graph with h(G) = bw(G) and assume there is more than
one optimum bisection in G. Then (up to constant translation vectors c1) there exists a
unique vector dopt with g(G, dopt) = bw(G). Additionally, for every bisection vector y of an
arbitrary optimum bisection in G there exists a unique α(y) and the corresponding d(y), with
g(G, d(y) + α(y)y) = bw(G).

Thus, if there are two optimum bisections represented by y and y′ with d(y) 6= d(y′), then
the difference of the d-vectors in component i is only dependent on yi and y′i, since we have
d(y) − d(y′) = β′y′ − βy for some constants β and β′. This structural property allows us to
show the following limitation for the sparse planted partition model Gn(p, q).

I Theorem 15. The algorithm of Boppana fails w.h.p. in the subcritical phase from [12],
defined as n(p− q) =

√
np · γ lnn, for real γ > 0.

In the planted partition model Gn(p, q), if the graphs are dense, e.g. p = 1/nc for a
constant c with 0 < c < 1, the constraints for the density difference p − q assumed in
Boppana’s [9] and Coja-Oghlan’s [12] algorithms are essentially the same. However for sparse
graphs, e.g. such that q = O(1)/n, the situation changes drastically. Now, e.g. p =

√
logn/n

satisfy Coja-Oghlan’s constraint p−q ≥ Ω(
√
p ln(pn)/

√
n) but the condition on the difference

p−q assumed by Boppana is not true any more. Theorem 15 shows that Boppana’s algorithm
indeed fails under this setting. The proof of this theorem relies on the following observation,
which can be derived from our newly discovered structural properties from above.

I Lemma 16. Let G be a graph with h(G) = bw(G) and let (Y1, Y−1) be an arbitrary optimal
bisection. Then, for each pair of vertices vi ∈ Yi, i ∈ {1,−1}, not connected by an edge
({vi, v−i} 6∈ E), we have: If e(vi, Yi) = e(vi, Y−i) for i ∈ {1,−1} (the vertices have balanced
degree), then N(vi) = N(v−i), i.e. both vertices have the same neighbors.

I.e. if we have two balanced vertices in different parts of an optimal bisection, not connected
by an edge, then the two vertices must have the same neighborhood as a necessary criterion
for Boppana’s algorithm to work. In the subcritical phase in Theorem 15, there exist most
likely many of such pairs of vertices, but they are unlikely to have all even the same degree.

We can also provide forbidden substructures, which make Boppana’s algorithm fail. This
is e.g. the case, when the graph contains a path segment located on an optimal bisection:

I Corollary 17. Let G be a graph, as illustrated in Fig. 1 (left), with n ≥ 10 vertices
containing a path segment {u′, u}, {u,w}, {w,w′}, where u and w have no further edges. If
there is an optimal bisection y, s. t. yu = yu′ = +1 and yw = yw′ = −1 (i. e. {u,w} is a cut
edge), then h(G) < bw(G).

To prove this corollary, we use the more general but more technical Lemma 22 (Appendix
of the full version [39]) with parameters C̃+1 = {u} and C̃−1 = {w}. The result can also be
applied for 2× c lattices:
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I Corollary 18. Let G be a graph with n ≥ 10c vertices containing a 2×c lattice with vertices
ui and wi, as illustrated in Fig. 1 (right). (The construction is similar to the corollary above,
but now we have a lattice instead of a single cut edge.) If there is an optimal bisection y, s. t.
yui = yu′

i
= +1 and ywi = yw′

i
= −1, then h(G) < bw(G).

The algorithm fails if there are isolated vertices in both parts of an optimal bisection:

I Theorem 19. Let G be a graph with h(G) = bw(G). Let G′ be the graph G with two
additional isolated vertices, then h(G′) ≤ h(G)− 4 bw(G)

n2 .

7 Discussion and Open Problems

Boppana’s spectral method is a practically implementable heuristic. Computing eigenvalues
and eigenvectors is well-studied and can be done very efficiently. Falkner, Rendl andWolkowicz
[17] show in a numerical study that using spectral techniques for graph partitioning is very
robust and upper and lower bounds for the bisection width can be obtained such that the
relative gap is often just a few percentage points apart. In [43] and [42], Tu, Shieh and Cheng
present numerical experiments including results for Boppana’s algorithm. They verify that
the algorithm indeed has good average case behavior over certain probability distributions
on graphs. We conducted further experiments on the graph model Rn(r, b) which indicated,
that Boppana’s algorithm also works for r = 5, but not for r = 3 and r = 4. An interesting
question arising is, which properties of 3- and 4-regular graphs from the planted bisection
model let the algorithm fail.
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parameterized complexity of computing graph bisections. In Proc. International Workshop
on Graph-Theoretic Concepts in Computer Science (WG), pages 76–87. Springer, 2013.

45 Lieven Vandenberghe and Stephen Boyd. Semidefinite programming. SIAM Review,
38(1):49–95, March 1996. doi:10.1137/1038003.

46 Zhenyu Wu and Richard Leahy. An optimal graph theoretic approach to data clustering:
Theory and its application to image segmentation. IEEE transactions on pattern analysis
and machine intelligence, 15(11):1101–1113, 1993.

ESA 2017

https://arxiv.org/abs/1701.01337
http://dl.acm.org/citation.cfm?id=874062.875505
http://dl.acm.org/citation.cfm?id=874062.875505
http://dx.doi.org/10.1016/j.laa.2006.07.020
http://dx.doi.org/10.1016/j.laa.2006.07.020
http://dx.doi.org/10.1016/S0305-0548(98)00021-5
http://dx.doi.org/10.1016/S0305-0548(98)00021-5
http://dx.doi.org/10.1016/S0377-2217(99)00060-0
http://dx.doi.org/10.1137/1038003

	Introduction
	Boppana's Graph Bisection Algorithm
	Bisections in Adversarial Models
	SDP Characterizations of the Graph Bisection Problem
	Certifying Non-Unique Optimum Bisections
	The Limitations of the Algorithm
	Discussion and Open Problems

