
A Space-Optimal Grammar Compression∗

Yoshimasa Takabatake1, Tomohiro I2, and Hiroshi Sakamoto3

1 Kyushu Institute of Technology, Fukuoka, Japan
takabatake@ai.kyutech.ac.jp

2 Kyushu Institute of Technology, Fukuoka, Japan
tomohiro@ai.kyutech.ac.jp

3 Kyushu Institute of Technology, Fukuoka, Japan
hiroshi@ai.kyutech.ac.jp

Abstract
A grammar compression is a context-free grammar (CFG) deriving a single string deterministic-
ally. For an input string of length N over an alphabet of size σ, the smallest CFG is O(lgN)-
approximable in the offline setting and O(lgN lg∗N)-approximable in the online setting. In
addition, an information-theoretic lower bound for representing a CFG in Chomsky normal form
of n variables is lg(n!/nσ) + n + o(n) bits. Although there is an online grammar compression
algorithm that directly computes the succinct encoding of its output CFG with O(lgN lg∗N)
approximation guarantee, the problem of optimizing its working space has remained open. We
propose a fully-online algorithm that requires the fewest bits of working space asymptotically
equal to the lower bound in O(N lg lgn) compression time. In addition we propose several tech-
niques to boost grammar compression and show their efficiency by computational experiments.

1998 ACM Subject Classification E.4 Coding and Information Theory

Keywords and phrases Grammar compression, fully-online algorithm, succinct data structure

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.67

1 Introduction

1.1 Motivation
Data never ceases to grow. Especially, we have witnessed so-called highly-repetitive text
collections are rapidly increasing. Typical examples are genome sequences collected from
similar species, version controlled documents and source codes in repositories. As such
datasets are highly-compressible in nature, employing the power of data compression is the
right way to process and analyze them. In order to catch up the speed of data increase, there
is a strong demand for fully online and really scalable compression methods.

In this paper, we focus on the framework of grammar compression, in which a string is
compressed into a context-free grammar (CFG) that derives the string deterministically [23].
In the last decade, grammar compression has been extensively studied from both theoretical
and practical points of view: While it is mathematically clean, it can model many practical
compressors such as LZ78 [48], LZW [47], LZD [13], repair [22], sequitor [33], and so on.
Furthermore, there are wide varieties of algorithms working on grammar compressed strings,
e.g., self-indexes [3, 9, 21, 25, 34, 38, 45, 46], pattern matching [10, 17], pattern mining [12, 8],
machine learning [41], edit-distance computation [14, 43], and regularities detection [29, 15].

∗ This work was supported by JST CREST (Grant Number JPMJCR1402), and KAKENHI (Grant
Numbers 17H01791 and 16K16009).

© Yoshimasa Takabatake, Tomohiro I, and Hiroshi Sakamoto;
licensed under Creative Commons License CC-BY

25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 67; pp. 67:1–67:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.67
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

67:2 A Space-Optimal Grammar Compression

Table 1 Improvement of FOLCA: the fully-online grammar compression. Here N is the length
of the input string received so far, σ and n are the numbers of alphabet symbols and generated
variables, respectively, and 1

α
≥ 1 is the load factor of the hash table.2 For any input string, these

algorithms construct the same SLP, which has O(lgN lg∗ N) approximation guarantee.

algorithm compression time working space (bits)
FOLCA ([28]) O(N lgn

α lg lgn) expected (1 + α)n lg(n+ σ) + n(3 + lg(αn)) + o(n)
SOLCA (ours) O(N lg lgn) expected n lg(n+ σ) + o(n lg(n+ σ))

Note that in order to take full advantage of these applications, a text should be compressed
globally, that is, typical workarounds to memory limitation such as setting window-size or
reusing variables (by forgetting previous ones) are prohibitive. This further motivates us to
design really scalable grammar compression methods that can compress huge texts.

The primary goal of grammar compression is to build a small CFG that derives an
input string only. The problem to build the smallest grammar is known to be NP-hard, but
approximable within a reasonable ratio, e.g., O(lgN)-approximable in the offline setting [23]
and O(lgN lg∗N)-approximable1 in the online setting [28], where N is input size and lg∗ is
the iterative logarithms.

On the other hand, to get a scalable grammar compression we have to seriously consider
reducing the working space to fit into RAM. First of all, the algorithm should work in space
comparable to the output CFG size. This has a great impact especially when we deal with
highly-repetitive texts because output CFG size grows much slower than input size. We
are aware of several work (including other compression scheme than grammar compression)
addressing this [28, 13, 7, 20, 36, 35], but very few care about a constant factor hidden in
big-O notation. More extremely and ideally, the output CFG should be encoded succinctly
in an online fashion, and the algorithm should work in “succinct space”, i.e., the encoded
size plus lower order terms. To the best of our knowledge, fully-online LCA (FOLCA) [28]
(and its variants) is the only existing algorithm addressing this problem. Whereas FOLCA
achieved a significant improvement in memory consumption, there is still a gap between the
memory consumption and its theoretical lower bound because FOLCA requires extra space
for a hash table other than the succinct encoding of the CFG. Therefore the problem of
optimizing the working space of FOLCA has been a challenging open problem.

In this paper, we tackle the above mentioned problem, resulting in the first space-optimal
fully-online grammar compression. In doing so, we propose a novel succinct encoding that
allows us to simulate the hash table of FOLCA in a dynamic environment. We further
introduce two techniques to speed up compression. We call this improved algorithm Space-
Optimal FOLCA (SOLCA). See Table 1 for the improved time and space complexities.
Experimental results show that both working space and running time are significantly
improved from original FOLCA. We also compare our algorithm with other state-of-the-arts,
and see that ours outperforms others in memory consumption, while the compression time is
four to seven times slower than the fastest opponent.

1 The authors in [28] only claimed O(lg2 N) approximation, but it can be improved to O(lgN lg∗ N)
adopting edit sensitive parsing (ESP) technique [4], which was pointed out in [40]. Naively the use of
ESP adds lg∗ N factor to computation time, but it can be eliminated by a neat trick of table lookup
(e.g., see Theorem 6 of [8]). In practice, we have observed that the use of ESP does not improve the
compression ratio much (or often even worsens), so our implementation still uses the algorithm with
O(lg2 N) approximation guarantee.

2 In the previous papers, the inverse of the load factor is mistakenly referred to as the load factor. Here
we fix the misuse.

Y. Takabatake, T. I, and H. Sakamoto 67:3

1.2 Our Contribution in More Details
In the framework of grammar compression, an algorithm must refer to two data structures,
the dictionary D (a set of production rules) and the reverse dictionary D−1. Considering
any symbol Zi to be identical to integer i, D is regarded as an array such that D[i] stores
the phrase β if the production rule Zi → β exists. Without loss of generality, we can
assume that G is a straight-line program (SLP) [19] such that any β is a bigram, i.e., a
pair of symbols (each symbol is a variable or an alphabet symbol). It follows that a naive
representation of D occupies 2n lg(n+σ) bits for n variables and σ alphabet symbols. Because
an information-theoretic lower bound of SLP is lg((n+ σ)!/nσ) + 2(n+ σ) + o(n) bits [42],
the naive representation is highly redundant. Fully-online LCA (FOLCA) [28] is the first
fully-online algorithm that directly outputs an encoded e(D) whose size is asymptotically
equal to the size of the optimal one.

On the other hand, given a phrase β, D−1 is required to return Z if Z → β exists. Using
D−1, a grammar compression algorithm can remember the existing name Z associated with
β, i.e., we can avoid generating a useless Z ′ → β for the same β. In previous compression
algorithms [26, 44, 42, 28], the reverse dictionary was simulated by a hash table whose size
is comparable to the size of e(D). This is the reason that the space optimization problem
has remained open.

To solve this problem, we introduce a novel mechanism that allows FOLCA to directly
compute D−1 by e(D) with an auxiliary data structure in a dynamic environment. We
develop a very simple data structure satisfying those requirements, and then we improve
the working space of FOLCA. Note that the new data structure itself is independent from
FOLCA/SOLCA, and applicable to any SLP for which fast access to both D and D−1 is
required. Thus, it can be a new standard of succinct SLP encoding for such purposes.

FOLCA and SOLCA share the same idea to encode the topology of the derivation tree
of the SLP by a succinct indexable dictionary, and heavily use it for simulating several
navigational operations on the tree. As its operation time is the theoretical bottleneck of
FOLCA, appearing as O(lgn/ lg lgn) factor, we show that we can improve it to constant
time. We then propose a practical implementation. Experimental results show that the
improved version runs about 30% faster than original FOLCA.

Finally, we introduce a customized cache structure to grammar compression. The idea
is inspired by the work [27] that proposed a variant of FOLCA working in constant space,
in which only a constant number of frequently used variables are maintained to build SLP.
Although the algorithm of [27] cannot make use of infrequent variables, it runs very fast as
it is quite cache friendly. On the basis of this idea, we introduce a hash table (of size fitting
into L3 cache) to lookup reverse dictionary for self-maintained frequent variables. Unlike [27],
infrequent variables are looked up by the SOLCA’s reverse dictionary. Experimental results
show that this simple cache structure significantly improves the running time of plain SOLCA
with a small overhead in space.

1.3 Related Work
There are compression algorithms with smaller space. For example, Maruyama and Tabei [27]
proposed a variant of FOLCA working in constant space where the reverse dictionary with a
fixed size is reset when the vacancy for a new entry runs out. We can find similar algorithms
in constant space, e.g., repair, gzip, bzip, and etc. On the other hand, restricting the
memory size not only saturates the compression ratio but also interferes with an important
application like self-indexes [3, 9, 21, 25, 34, 38, 45, 46] because the memory is reset according

ESA 2017

67:4 A Space-Optimal Grammar Compression

to the increase of input for the constant memory model. In fact, the SLP produced by
FOLCA/SOLCA can be used for self-indexes [46], and for this application it is important
that the whole text is globally compressed.

2 Framework of Grammar Compression

2.1 Notation
We assume finite sets Σ and V of symbols where Σ ∩ V = ∅. Symbols in Σ and V are called
alphabet symbols and variables, respectively. Σ∗ is the set of all strings over Σ, and Σq the
set of strings of length just q over Σ. The length of a string S is denoted by |S|. The i-th
character of a string S is denoted by S[i] for i ∈ [1, |S|]. For a string S and interval [i, j]
(1 ≤ i ≤ j ≤ |S|), let S[i, j] denote the substring of S that begins at position i and ends at
position j. Throughout this paper, we set σ = |Σ|, n = |V | and N = |S|.

2.2 SLPs
We consider a special type of CFG G = (Σ, V,D,Xs) where V is a finite subset of X , D is a
finite subset of V × (V ∪ Σ)∗, and Xs ∈ V is the start symbol. A grammar compression of
a string S is a CFG that derives only S deterministically, i.e., for any X ∈ V there exists
exactly one production rule in D and there is no loop.

We assume that G is an SLP [19]: any production rule is of the form Xk → XiXj , where
Xi, Xj ∈ Σ ∪ V , and 1 ≤ i, j < k ≤ n + σ. The size of an SLP is the number of variables,
i.e., |V |, and we let n = |V |. For variable Xi ∈ V , val(Xi) denotes the string derived from
Xi. Also for c ∈ Σ, let val(c) = c. For w ∈ (V ∪ Σ)∗, let val(w) = val(w[1]) · · · val(w[|w|]).

The parse tree of G is a rooted ordered binary tree such that (i) the internal nodes are
labeled by variables and (ii) the leaves are labeled by alphabet symbols. In a parse tree, any
internal node Z corresponds to a production rule Z → XY , where X (resp. Y) is the label
of the left (resp. right) child of Z.

The set D of production rules is regarded as the data structure, called the dictionary, for
accessing the phrase XiXj for any Xk, if Xk → XiXj exists. On the other hand, the reverse
dictionary D−1 is the data structure for accessing Xk for XiXj , if Xk → XiXj exists.

2.3 Succinct Data Structures
Here we introduce some succinct data structures, which we will use for encoding an SLP.

A rank/select dictionary for a bit string B [16] is a data structure supporting the following
queries: rankc(B, i) returns the number of occurrences of c ∈ {0, 1} in B[1, i]; selectc(B, i)
returns the position of the i-th occurrence of c ∈ {0, 1} in B; access(B, i) returns the i-th bit
in B. There is a rank/select dictionary for B that uses |B|+o(|B|) bits of space and supports
the queries in O(1) time [37]. In addition, the rank/select dictionary can be constructed
from B in O(|B|) time and |B|+ o(|B|) +O(1) bits of space.

It is natural to generalize the queries for a string T over an alphabet of size > 2. In
particular, we consider the case where the alphabet size is Θ(|T |). Using a data structure
called GMR [11], we obtain rank/select dictionary that occupies |T | lg |T |+ o(|T | lg |T |) bits
of space and supports both rank and access queries in O(lg lg (|T |)) time and select queries
in O(1) time. Here we introduce the ingredients of the GMR for T (we remark that we
use a simplified GMR as we consider only Θ(|T |)-size alphabets), each of which we refer
to as GMRDS1–4. Note that each query uses a distinct subset of them: selectc(T, i) uses
GMRDS1–2; rankc(T, i) uses GMRDS1–3; and access(T, i) uses GMRDS1–2 and GMRDS4.

Y. Takabatake, T. I, and H. Sakamoto 67:5

(i) POSLP.

Σ={a , b }
V={X 1, X 2, X 3, X 4, X 5, X 6}
D={X 1→ba ,

X 2→a X 1,

X 3→bb ,
X 4→ X 2 X 3,

X 5→ X 1 X 1,

X 6→ X 4 X 5}
X S=X 6

b a b b b aa b a

X 1

X 2 X 1

X 1

X 1

X 4 X 1

X 5

X 6

b b b a b aa b a

X 1

X 2 X 3

X 1

X 4

X 1 X 1

X 5

X 6

(ii) Parse tree of the POSLP. (iii) POPPT of the parse tree. (iv) Succinct representation
of the POPPT and hash table
 for the reverse dictionary.

B=00011001100111
L=ababb X 1 X 1¿

H={ba→ X 1,

a X 1→ X 2,

bb→ X 3,

X 2 X 3→ X 4,

X 1 X 1→ X 5,

X 4 X 5→ X 6}a b a

X 1

X 2 X 3

X 1

X 1

X 1

X 5

X 6

b ba b a

X 1

X 2

X 1

X 4 X 5

X 6

X 1

Figure 1 Example of post-order SLP (POSLP), parse tree, post-order partial parse tree (POPPT),
and succinct representation of POPPT.

GMRDS1: A permutation πT of [1, |T |] obtained by stably sorting [1, |T |] according to the
values of T [1, |T |]. It is stored naively, and thus, occupies |T | lg |T | bits of space.

GMRDS2: A unary encoding of T [πT [1]]T [πT [2]] · · ·T [πT [|T |]] to support rank/select opera-
tions on GBT = 0T [πT [1]]10T [πT [2]]−T [πT [1]]1 . . . 0T [πT [|T |]]−T [πT [|T |−1]]1. The space usage
is O(|T |) bits.

GMRDS3: A data structure to support predecessor queries on sub-ranges of πT [1, |T |]. Note
that for any character c appearing in T there is a unique range [ic, jc] s.t. T [πT [k]] = c iff
k ∈ [ic, jc]. Also, the sequence πT [ic], πT [ic + 1], . . . , πT [jc] is non-decreasing. The task
is, given such a range and an integer x, to compute the largest position k ∈ [ic, jc] with
πT [k] < x if such exists. We can employ y-fast trie to support the queries in O(lg lg |T |)
time by adding extra O(|T |) bits on top of πT (note that the search on bottom trees of
y-fast trie can be implemented by simple binary search on a sub-range of πT as we only
consider static GMR).

GMRDS4: A data structure to support fast access to π−1
T [i] for any 1 ≤ i ≤ |T |. We

can use the data structure of [31] to compute π−1
T [i] in O(lg lg |T |) time. It adds extra

O(|T |+ lg |T |/ lg lg |T |) bits on top of πT .

2.4 Online Construction of Succinct SLP
I Definition 1 (POSLP and post-order partial parse tree (POPPT) [39, 26]). A partial parse
tree is a binary tree built by traversing a parse tree in a depth-first manner and pruning
all of the descendants under every node of a previously appearing nonterminal symbol. A
POPPT is a partial parse tree whose internal nodes have post-order variables. A POSLP is
an SLP whose partial parse tree is a POPPT.

Figures 1(i) and (iii) show an example of a POSLP and POPPT, respectively. The
resulting POPPT (iii) has internal nodes consisting of post-order variables. FOLCA [28]
is a fully-online grammar compression for directly computing the succinct POSLP (B,L)
of a given string, where B is the bit string obtained by traversing POPPT in post-order,
and putting ‘0’, if a node is a leaf, and ‘1’, otherwise, and L is the sequence of leaves of
the POPPT. B encodes the topology of POPPT in 2n bits by taking advantage of the fact
that POPPT is a full binary tree (note that for general trees we need 4n bits instead). By
enhancing B with a data structure supporting some primitive operations considered in [32]
(fwdsearch and bwdsearch on the so-called excess array of B), we can support some basic
navigational operations (like move to parent/child) on the tree as well as rank/select queries
on B. Using the dynamic data structure proposed in [32], we can support these operations
as well as dynamic updates on B in O(lgn/ lg lgn) time. In theory, FOLCA uses this result
to get Theorem 2 (though its actual implementation uses a simplified version, which only
has O(lgn)-time guarantee).

ESA 2017

67:6 A Space-Optimal Grammar Compression

I Theorem 2 ([28]). Given a string of length N over an alphabet of size σ, FOLCA computes a
succinct POSLP of the string in O(N lgn

α lg lgn) expected time using (1+α)n lg(n+σ)+n(3+lg(αn))
bits of working space, where 1

α ≥ 1 is the load factor of the hash table.

In Section 3 we improve FOLCA in two ways: First, we improve the running time for
operations on B from both theoretical and practical points of view in Subsection 3.1. Second,
we slash O(αn lg(n+ σ)) bits of working space of FOLCA needed for implementing D−1 by
hash table. In Subsection 3.2, we propose a novel dynamic succinct POSLP to remove the
redundant working space.

3 Improved Algorithm

3.1 Improving and Engineering Operations on B

Recall that FOLCA uses the dynamic tree data structure of [32], for which improving
O(lgn/ lg lgn) operation time is unlikely due to known lower bound. However, in our
problem fully dynamic update operations are not needed as new tree topologies (bits) are
always “appended”. Therefore, in theory it is not difficult to get constant time operations:
While appending bits, we mainly manage to update range min-max trees (RmM-trees in
short) and a weighted level-ancestor data structure. For the former, it is fairly easy to
fill up the min/max values for nodes of RmM-trees incrementally in worst case constant
time per addition. For the latter, we can use the data structure of [1] supporting weighted
level-ancestor queries and updates under adding leaf/root in worst case constant time. As a
result, the running time of FOLCA can be improved to O(N/α) expected time.

Next we present a more practical implementation utilizing the fact that our B is well-
balanced: Because FOLCA produces a well-balanced grammar, the resulting POPPT has
height of at most 2 lgN . In our actual implementation, we allow the following overhead in
space: We use some precomputed tables that occupy 28 bytes each so that some operations
(like rank/select) on a single byte can be performed by a table lookup in constant time.
Such tables are commonly used in modern implementations of succinct data structures (e.g.,
sdsl-lite https://github.com/simongog/sdsl-lite).

Now we briefly review the static data structure of [32]. Let E denote the excess array
of B, i.e., for any 1 ≤ i ≤ n, E[i] is the difference of rank0(B, i) and rank1(B, i). Note
that E is conceptual and we do not have a direct access to E. We consider a primitive
query fwdsearch(E, i, d) that returns the minimum j > i such that E[j] = E[i] + d, where
we assume d ≤ 0 (it is simplified from the original fwdsearch, but enough for our problem).
The data structure consists of three layers. The lowest layer partitions B into equal length
mini-blocks of β = Θ(lgN) bits. If query can be answered in a mini-block, it is processed by
O(β/8) table lookups, otherwise the query is passed to the middle layer. The middle layer
partitions B into equal length block of β′ = Θ(lg3 N) bits. Each block contains O(lg2 N)
mini-blocks and is managed by an RmM-tree. If the answer exists in a block, the RmM-tree
identifies the right mini-block where the answer exists, otherwise the query is passed to the
top layer. The task of the top layer is, given a block and target excess value e (= E[i] +d), to
find the nearest block (to the right for fwdsearch) whose minimum excess value is no greater
than e, which is exactly the block where the answer exists.

Our ideas for a practical implementation are listed below:
Since all excess values are in [0, 2 lgN], each node of RmM-trees can hold absolute excess
value using 1 + lg lgN bits. (Note that in general case we only afford to store relative
values, and thus, we have to retrieve absolute values by traversing from the root of the

https://github.com/simongog/sdsl-lite

Y. Takabatake, T. I, and H. Sakamoto 67:7

tree when needed.) In particular, we can directly access absolute excess values at every
ending position of mini-block by storing them in an array E′[1, dn/βe], which only uses
O(n lg lgN/β) = O(n lg lgN/ lgN) bits.
Since rank0(B, i) = (i−E[i])/2 and rank1(B, i) = (i+E[i])/2, rank queries are answered
by computing E[i], which can be now computed by accessing E′[di/βe] and O(lgN/8)
table lookups.
For select query select0(B, j) whose answer is i, we remark that rank0(B, i) = j =
(i − E[i])/2 holds. Since i = 2j + E[i] and E[i] ∈ [0, 2 lgN], the answer i exists in
[2j, 2j + 2 lgN]. Thus, select0(B, j) can be computed by accessing E′[d2j/βe] and
O(lgN/8) table lookups. Similarly, select1(B, j) can be answered by screening the range
[2j − 2 lgN, 2j].
For the top layer, we can simply remember, for every combination of block and target
excess value, the answer for fwdsearch query. Since the number of possible combinations
is O(n lgN/β′), it takes O(n lg2 N/β′) = O(n/ lgN) bits.

3.2 Improved Dynamic Succinct POSLP
We propose a novel space-efficient representation of POSLP that occupies n lg(n + σ) +
o(n lg(n + σ)) bits of space including the reverse dictionary. The concept of a succinct
representation of POSLP is unchanged, but now we consider integrating the reverse dictionary
into it.

We start with categorizing every production rule into two groups. A production rule
Z → XY ∈ (V ∪ Σ)2 (or variable Z) is said to be outer, if both children of the node
corresponding to Z in the POPPT are leaves, and inner, otherwise. The reverse dictionaries
for inner and outer variables are implemented differently. Particularly, the reverse dictionary
for inner variables can be implemented without having any other data structures than (B,L)
(see Section 3.2.1). Although we do not know which dictionary is to be used when looking
up a phrase, it is sufficient to try them both.

The proposed dynamic succinct POSLP consists of the same (B,L) as the previous
POSLP. The difference is the encoding of L: We partition L into L1, L2, and L3 such that
L2 (resp. L3) consists of every element of L that is a left (resp. right) child of an outer
variable (preserving their original order), and L1 consists of the remaining elements. In
addition, we add functions rank001(B, i) and select001(B, i) to B, which return the number
of occurrences of 001 in B[1, i + 2] and the position of the i-th occurrence of 001 in B,
respectively. Note that each occurrence of 001 corresponds to an occurrence of outer variable,
and rank001/select001 enables us to map any leaf to the corresponding entry distributed to one
of L1, L2 and L3. More precisely, given any position i in B representing a leaf (i.e., B[i] = 0),
the corresponding label is retrieved as follows: return L2[rank001(B, i)], if B[i, i+ 2] = 001;
return L3[rank001(B, i)], if B[i− 1, i+ 1] = 001; and return L1[rank0(B, i)− 2rank001(B, i)],
otherwise. While storing L1 in a standard variable length array that supports pushback of
elements, we store L2 and L3 implicitly in a data structure that provides the functionality of
the reverse dictionary for outer variables.

Let nin and nout be the numbers of inner and outer variables, respectively, i.e., nin = |L1|
and nout = |L2| = |L3|. Each of L2 and L3 is further partitioned into the prefix of length n′out
and the suffix of length nout − n′out for some n′out satisfying nout − n′out <

nout
lg lgnout

, that is, the
suffixes are relatively short. Let π2 be the permutation of [1, n′out] obtained by sorting [1, n′out]
stably according to the values of L2[1, n′out], and let L̂2 = L2[π2[1]]L2[π2[2]] · · ·L2[π2[n′out]]
and L̂3 = L3[π2[1]]L3[π2[2]] · · ·L3[π2[n′out]]. Roughly we consider a two-stage GMR, the
first for L2[1, n′out] and the second for L̂3 (although we only use select/access queries for

ESA 2017

67:8 A Space-Optimal Grammar Compression

(i) Example of the POPPT.

b b a a b a

X1 X2 X6X1 X1 X2

X3 X5 X7X3

X4 X8

X9

(ii) Succinct representation of the POPPT.

B = 00100110100100011111

L = b, b, a, a,X3, X1, X1, X2, b, a

(iii) Decomposition of L: if the parent of L[i] is inner, L[i] ∈ L1, else if L[i] is the left child, L[i] ∈ L2, and
otherwise, L[i] ∈ L3.

L1 = X3, X2

L2 = b, a,X1, b

L3 = b, a,X1, a

(iv) Encode of L: L1 is represented by the integer array. The prefix L2[1, n
′
out] is represented by the bit array GB2

and the permutation π2 in GMR. The remaining short suffix of L2 is represented by the integer array GA2 (iv-1).
In the GMR encoding of L2[1, n

′
out], L2[1, n

′
out] is sorted in lexicographical order and each L3[i] is sorted by the rank

of L2[i] (iv-2). Then, L3 is similarly encoded with n′out dividing them into the suffix and prefix (iv-3). Additionally,
the hash table h returns i (i > n′out) if L2[i] = Xj and L3[i] = Xk for the query XjXk (iv-4).

(iv-1) Data structure for L2 (n
′
out = 2).

GB2 = 101, π2 = 2, 1

GA2 = X1, b

(iv-2) Sort L2[1, n
′
out] and L3[1, n

′
out] to

L̂2[1, n
′
out] and L̂3[1, n

′
out], respectively.

L̂2[1, n
′
out] = a, b

L̂3[1, n
′
out] = a, b

(iv-3) Data structure for L3.

GB3 = 101, π3 = 1, 2

GA3 = X1, a

(iv-4) Hash table for L2[i] and L3[i] (i > n′out).

h = {X1X1 → 3, ba→ 4}

(v) The proposed dynamic succinct POPPT is formed by L1 of (iii), (iv-1), (iv-3), and (iv-4).

Figure 2 Example of the proposed data structure for dynamic succinct POSLP.

L2[1, n′out]). By the data structures, fitting in 2n′out lg(n + σ) + o(n′out lg(n + σ)) bits of
space in total, we can lookup a phrase of outer variables in [1, n′out] in O(lg lgn) time (see
Section 3.2.2).

The reverse dictionary for the remaining outer variables (that are in short suffix) is
implemented by dynamic perfect hashing [5] that occupies O(nout lgnout

lg lgnout
) = o(nout lgnout) bits

of space and supports lookup and addition in O(1) expected time.
Note that we use “static” GMRs for L2[1, n′out] and L̂3. Since most dynamic updates

of POSLP are supported by the hash (adding variables in the short suffix one by one),
we do nothing to GMRs. When the short suffix becomes too long, i.e., nout − n′out reach
nout

lg lgnout
, we increase n′out (i.e., the number of variables managed by GMRs) by nout

lg lgnout
and

just “reconstruct” the static GMRs from scratch (and clear all variables in the hash). Since
the GMR for a string can be constructed in linear time to the length of the string, the total
cost of reconstruction is O(n

lg lgn
∑lg lgn
i=1 i) = O(n lg lgn).

Figure 2 shows an example of our POSLP.

Y. Takabatake, T. I, and H. Sakamoto 67:9

In what follows we show how to implement the reverse dictionaries as well as access to
the production rules of outer variables.

3.2.1 Reverse dictionary for inner variables
If there is an inner variable deriving XY , at least one of the following conditions holds, where
vX (resp. vY) is the corresponding node of X (resp. Y) in the POPPT:
(i) vX is a left child of its parent, and the parent has a right child (regardless of whether

an internal node or leaf) representing Y , and
(ii) vY is a right child of its parent, and the parent has a left child (regardless of whether an

internal node or leaf) representing X.
Therefore, D−1(XY) can be looked up by a constant number of parent/child queries on B
and access to L1. Moreover, the next lemma suggests that we do not need to check both
conditions (i) and (ii); check (ii), if X < Y , and check (i), otherwise.

I Lemma 3. Let Z be an inner variable deriving XY ∈ (V ∪Σ)2, and vZ be the corresponding
node of Z in the POPPT. If X < Y , the right child of vZ is an internal node. Otherwise the
left child of vZ is an internal node.

Proof. X < Y : Assume for the sake of contradiction that the right child of vZ is a leaf (which
represents Y). As Z is inner, the left child of vZ must be the internal node corresponding to
X. Since Y is larger than X and smaller than Z, the internal node corresponding to Y must
be in the subtree rooted at the right child of vZ , which contradicts the assumption.

X ≥ Y : Assume for the sake of contradiction that the left child of vZ is a leaf (which
represents X). As Z is inner, the right child of vZ must be the internal node corresponding
to Y . Since the internal node corresponding to X appears before the left child of vZ , X < Y

holds, a contradiction. J

Due to Lemma 3 and the above discussions, we get the following lemma.

I Lemma 4. We can implement the reverse dictionary for inner variables that supports
lookup in O(1) time.

3.2.2 Reverse dictionary for outer variables
I Lemma 5. We can implement the reverse dictionary for outer variables to support lookup
in O(lg lgn) expected time.

Proof. Recall that for any 1 ≤ i ≤ n′out the pair L2[i]L3[i] is the right-hand side of the i-th
outer production rule (in post-order). Given i, we can compute the post-order number of the
variable deriving L2[i]L3[i] by rank1(B, select001(B, i)) + 1. Hence, the task of our reverse
dictionary is, given XY ∈ (V ∪ Σ)2, to return integer i such that L2[i] = X and L3[i] = Y ,
if such exists. If a phrase is found in the short suffix, the query is answered in O(1) expected
time by using hash table. Thus, in what follows, we focus on the case where the answer is
not found in the short suffix.

By the GMRDS2 GB2 for L2[1,m′], we can compute in constant time, given an in-
teger X, the range [iX , jX] in π2 such that the occurrences of X in L2 is represented
by π2[iX , jX] in increasing order, namely, iX = rank1(GB2, select0(GB2, X)) + 1 and
jX = rank1(GB2, select0(GB2, X + 1)). Note that Y occurs in L̂3[iX , jX] (the occurrence
is unique) iff there is an outer variable deriving XY . In addition, if k ∈ [iX , jX] is the
occurrence of Y , then π2[k] is the post-order number of the variable we seek. Hence, the

ESA 2017

67:10 A Space-Optimal Grammar Compression

Table 2 Detail of memory consumption (MB).

Wikipedia genome
method B L H CRD B L H CRD

FOLCA 17.63 180.06 1342.43 − 141.00 1247.67 9442.64 −
FOLCA+ 17.26 180.06 1342.43 − 138.09 1247.67 9442.64 −
SOLCA 17.26 523.85 − − 138.09 3856.84 − −
SOLCA+CRD 17.26 523.85 − 22.00 138.09 3856.84 − 22.00

problem reduces to computing selectY (L̂3, rankY (L̂3, iX − 1) + 1), which can be performed
in O(lg lgn) time by using the GMR for L̂3. J

3.2.3 Access to the production rules of outer variables
Since L2 and L3 are stored implicitly, here we show how to access the production rules of
outer variables.

I Lemma 6. Given 1 ≤ i ≤ nout, we can access L2[i]L3[i] in O(lg lgn) time.

Proof. If i > n′out, L2[i]L3[i] is in the short suffixes. As we can afford to store L2[i]L3[i] in a
plain array of O(nout lgnout

lg lgnout
) = o(nout lgnout) bits of space, we can access it in O(1) time.

If i ≤ n′out, L2[i]L3[i] is represented by GMRs for L2[1, nout] and L̂3. Using GMRDS4
for L2[1, nout], we can compute j = π−1

2 [i] in O(lg lgn) time. Then, we can obtain L2[i] by
rank0(GB2, select1(GB2, j)) in O(1) time. In addition, L3[i] can be retrieved by accessing
L̂3[j], which is supported in O(lg lgn) time by GMR for L̂3. J

To tell the truth, SOLCA does not access the production rules of outer variables during
compression, and hence, the implementation of SOLCA is further simplified by deleting
GMRDS4 for both L2[1, nout] and L̂3, needed to support access queries on the GMRs.

3.3 SOLCA
Plugging our new succinct representation of POSLP into FOLCA, we get a space-optimal
grammar compression algorithm, SOLCA.

I Theorem 7. Given a string of length N over an alphabet of size σ, SOLCA computes a
succinct POSLP of the string in O(N lg lgn) expected time using n lg(n+ σ) + o(n lg(n+ σ))
bits of working space.

Proof. SOLCA processes the input string online exactly the same as FOLCA does. During
compression, it is required to lookup a phrase by the reverse dictionary and append new
variables to POSLP if the phrase does not exist so far. By Lemmas 4 and 5, this is done
in O(lg lgn) expected time. Our dynamic succinct POSLP including the reverse dictionary
takes only n lg(n+ σ) + o(n lg(n+ σ)) bits of space as described in Section 3.2. J

4 Experiments

We implement FOLCA applying the dynamic succinct tree representation introduced in
Section. 3.1 called FOLCA+ and the SOLCA proposed in Section 3.3.3 Furthermore, as

3 Currently we do not implement the last idea of Section 3.1 for fwdsearch queries. Instead we answer
queries by traversing up a tree (so called 2D-Min-Heap [6]) built on the minimum excess values of

Y. Takabatake, T. I, and H. Sakamoto 67:11

0 1 2 3 4 5
input length 1e9

0

2

4

6

8

10

m
em

or
y

co
ns

um
pt

io
n

(G
B)

1.51
0.54

4.74

10.74

Wikipedia
FOLCA
FOLCA+
SOLCA
SOLCA+CRD
LZD
Re-Pair

0.0 0.5 1.0 1.5 2.0 2.5 3.0

input length 1e9

0

5

10

15

20

m
em

or
y

co
ns

um
pt

io
n

(G
B

)

10.58

3.80

22.38

6.25

genome
FOLCA
FOLCA+
SOLCA
SOLCA+CRD
LZD
Re-Pair

Figure 3 Working space for Wikipedia (left) and genome (right).

0 1 2 3 4 5
input length 1e9

0

5000

10000

15000

20000

25000

30000

co
m

pr
es

sio
n

tim
e

(s
ec

)

6682
4559

9478

1590247

44408(2×1e9)
Wikipedia

FOLCA
FOLCA+
SOLCA
SOLCA+CRD
LZD
Re-Pair

0.0 0.5 1.0 1.5 2.0 2.5 3.0

input length 1e9

0

5000

10000

15000

20000

25000

30000

co
m

pr
es

si
on

 ti
m

e
(s

ec
)

10307

6595

13884

6401

1709

64369(1.0×1e9) genome
FOLCA
FOLCA+
SOLCA
SOLCA+CRD
LZD
Re-Pair

Figure 4 Compression time for Wikipedia (left) and genome (right).

a practical method for the fast computation of SOLCA, we implement the SOLCA with
the constant space reverse dictionary (CRD) storing frequent production rules. We call it
SOLCA+CRD4. The CRD is proposed in [27] and it supports the reverse dictionary query
in constant expected time while keeping a constant space by constant space algorithms
for finding frequent items [18, 24, 30]. The reverse dictionary query of SOLCA+CRD is
performed by two phases: (1) we check if a given XiXj exists in the CRD and (2) if the
XiXj is not found in phase (1), we check the reverse dictionary of SOLCA. Although the
worst case time of the reverse dictionary query of SOLCA+CRD is the same as SOLCA’s
O(lg lg(n+σ)) time, if the query rule exists in the CRD, we can support the query in constant
expected time. Our implementation of CRD is based on [18] and restricts the space to 22MB
that is almost the same cache size of experimental machine. We compare the time/space
consumption of these variants of FOLCA with that of existing three grammar compression
algorithms: FOLCA, LZD 5 [13] and Re-Pair 6 [2]. The Re-Pair is a space-efficient version
of the original algorithm [22]. The experiments perform on Intel Xeon Processor E7-8837

blocks. In the worst case it requires an O(lgN)-long traversal, but it works well enough in practice as
performing such a long traversal is rare.

4 This implementation is downloadable from https://github.com/tkbtkysms/solca. We will show
additional experiments in this web site.

5 The patricia trie space computation (the compress function of the class STree::Tree) in https://github.
com/kg86/lzd

6 https://github.com/nicolaprezza/Re-Pair

ESA 2017

https://github.com/tkbtkysms/solca
https://github.com/kg86/lzd
https://github.com/kg86/lzd
https://github.com/nicolaprezza/Re-Pair

67:12 A Space-Optimal Grammar Compression

Table 3 Statistical information of input strings.

dataset length of string (N) alphabets (σ) compression ratio (%)
SOLCA LZD Re-Pair

Wikipedia 5, 368, 709, 120 210 3.65 3.46 0.629

genome 3, 273, 481, 150 20 41.38 36.34 9.0510

(2.67GHz, 24MB cache, 8 cores) and 1TB RAM. Here, the load factor of the hash table used
in FOLCA is fixed to 1

α = 1.
We use two large-scale datasets: Wikipedia7 (5GB) and genome8 (3GB). The detail is

shown in Table 3 where we note that POSLP by SOLCA is exactly the same as FOLCA’s.
The difference is only their succinct representations.

Figure 3 shows a comparison of the memory consumption of each method for Wikipedia
and genome. The points are displayed for every length of 5× 108. FOLCA and FOLCA+
maintain data structure (B,L,H); B is the skeleton of POSLP T , L is the sequence of the
leaves of T , and H is the reverse dictionary. When α = 1, H occupies almost 2n lg(n+ σ)
bits. Since the size of B and L is n lg(n + σ) bits and 2n bits, respectively, the total
space of FOLCA’s variants is about 3n lg(n + σ) bits. On the other hand, SOLCA and
SOLCA+CRD maintains (B,L′) supporting the reverse dictionary; L′ is the representation
of L in Section 3.2. The size is almost the same as L. Thus, it is expected that the memory
consumption of SOLCA and SOLCA+CRD is about 1

3 of FOLCA’s. The experimental result
confirms this prediction on both datasets. Furthermore, the memory consumption of each
data structure is shown in Table 2. Comparing with other methods, the space of SOLCA
and SOLCA+CRD is significantly small for each string.

Figure 4 shows a comparison of the construction time for the input. Our succinct tree
representation used in FOLCA+ improves the time consumption of FOLCA. The difference
of SOLCA from FOLCA+ comes from the use of L′ (queries to L′ and reconstruction
of L′). SOLCA+CRD is fastest in FOLCA’s and SOLCA’s variants for Wikipedia and
competitive with FOLCA+ for genome. By this result, we can confirm the efficiency of the
fast computation of CRD. SOLCA’s and FOLCA’s variants are faster than Re-pair and
slower than LZD.

5 Conclusion

We have presented SOLCA: a space-optimal version of fully-online LCA (FOLCA) [28]. Since
FOLCA is extended to its self-index in [46], our future work is developing a self-index based
on our SOLCA while preserving the optimal working space.

References
1 Stephen Alstrup and Jacob Holm. Improved algorithms for finding level ancestors in dy-

namic trees. In 27th International Colloquium on Automata, Languages and Programming,
pages 73–84, 2000. doi:10.1007/3-540-45022-X_8.

7 https://dumps.wikimedia.org/enwikinews/20170101/enwikinews-20170101-pages-meta-history.
xml (the first 5GB)

8 http://hgdownload.cse.ucsc.edu/goldenPath/hg38/chromosomes/chr*
9 Up to the length of 2.0 × 109.
10Up to the length of 1.0 × 109.

http://dx.doi.org/10.1007/3-540-45022-X_8
https://dumps.wikimedia.org/enwikinews/20170101/enwikinews-20170101-pages-meta-history.xml
https://dumps.wikimedia.org/enwikinews/20170101/enwikinews-20170101-pages-meta-history.xml
http://hgdownload.cse.ucsc.edu/goldenPath/hg38/chromosomes/chr*

Y. Takabatake, T. I, and H. Sakamoto 67:13

2 Philip Bille, Inge Li Gørtz, and Nicola Prezza. Space-efficient re-pair compression. In Data
Compression Conference, pages 171–180, 2017. doi:10.1109/DCC.2017.24.

3 Francisco Claude and Gonzalo Navarro. Self-indexed grammar-based compression. Fundam.
Inform., 111(3):313–337, 2011. doi:10.3233/FI-2011-565.

4 Graham Cormode and S. Muthukrishnan. The string edit distance matching problem with
moves. ACM Trans. Algorithms, 3(1):2:1–2:19, 2007. doi:10.1145/1219944.1219947.

5 Martin Dietzfelbinger, Anna R. Karlin, Kurt Mehlhorn, Friedhelm Meyer auf der Heide,
Hans Rohnert, and Robert Endre Tarjan. Dynamic perfect hashing: Upper and lower
bounds. SIAM J. Comput., 23(4):738–761, 1994. doi:10.1137/S0097539791194094.

6 Johannes Fischer. Optimal succinctness for range minimum queries. In Theoretical Inform-
atics, 9th Latin American Symposium, LATIN 2010, Oaxaca, Mexico, April 19-23, 2010.
Proceedings, pages 158–169, 2010. doi:10.1007/978-3-642-12200-2_16.

7 Johannes Fischer, Travis Gagie, Pawel Gawrychowski, and Tomasz Kociumaka. Approx-
imating LZ77 via small-space multiple-pattern matching. In 23rd Annual European Sym-
posium on Algorithms, pages 533–544, 2015. doi:10.1007/978-3-662-48350-3_45.

8 Shouhei Fukunaga, Yoshimasa Takabatake, Tomohiro I, and Hiroshi Sakamoto. Online
grammar compression for frequent pattern discovery. In 13th International Conference on
Grammatical Inference, pages 93–104, 2016.

9 Travis Gagie, Pawel Gawrychowski, Juha Kärkkäinen, Yakov Nekrich, and Simon J. Puglisi.
A faster grammar-based self-index. In 6th International Conference Language and Auto-
mata Theory and Applications, pages 240–251, 2012. doi:10.1007/978-3-642-28332-1_
21.

10 Pawel Gawrychowski. Optimal pattern matching in LZW compressed strings. ACM Trans.
Algorithms, 9(3):25:1–25:17, 2013. doi:10.1145/2483699.2483705.

11 Alexander Golynski, J. Ian Munro, and S. Srinivasa Rao. Rank/select operations on large
alphabets: a tool for text indexing. In Seventeenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 368–373, 2006.

12 Keisuke Goto, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda. Fast q-gram mining
on SLP compressed strings. J. Discrete Algorithms, 18:89–99, 2013. doi:10.1016/j.jda.
2012.07.006.

13 Keisuke Goto, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda. LZD factorization:
Simple and practical online grammar compression with variable-to-fixed encoding. In 26th
Annual Symposium on Combinatorial Pattern Matching, pages 219–230, 2015. doi:10.
1007/978-3-319-19929-0_19.

14 Danny Hermelin, Gad M. Landau, Shir Landau, and Oren Weimann. A unified al-
gorithm for accelerating edit-distance computation via text-compression. In 26th Inter-
national Symposium on Theoretical Aspects of Computer Science, pages 529–540, 2009.
doi:10.4230/LIPIcs.STACS.2009.1804.

15 Tomohiro I, Wataru Matsubara, Kouji Shimohira, Shunsuke Inenaga, Hideo Bannai, Masay-
uki Takeda, Kazuyuki Narisawa, and Ayumi Shinohara. Detecting regularities on grammar-
compressed strings. Inf. Comput., 240:74–89, 2015. doi:10.1016/j.ic.2014.09.009.

16 Guy Jacobson. Space-efficient static trees and graphs. In 30th Annual Symposium on
Foundations of Computer Science, pages 549–554, 1989. doi:10.1109/SFCS.1989.63533.

17 Artur Jez. Faster fully compressed pattern matching by recompression. ACM Trans. Al-
gorithms, 11(3):20:1–20:43, 2015. doi:10.1145/2631920.

18 Richard M. Karp, Scott Shenker, and Christos H. Papadimitriou. A simple algorithm for
finding frequent elements in streams and bags. ACM Trans. Database Syst., 28:51–55, 2003.
doi:10.1145/762471.762473.

19 Marek Karpinski, Wojciech Rytter, and Ayumi Shinohara. An efficient pattern-matching
algorithm for strings with short descriptions. Nord. J. Comput., 4(2):172–186, 1997.

ESA 2017

http://dx.doi.org/10.1109/DCC.2017.24
http://dx.doi.org/10.3233/FI-2011-565
http://dx.doi.org/10.1145/1219944.1219947
http://dx.doi.org/10.1137/S0097539791194094
http://dx.doi.org/10.1007/978-3-642-12200-2_16
http://dx.doi.org/10.1007/978-3-662-48350-3_45
http://dx.doi.org/10.1007/978-3-642-28332-1_21
http://dx.doi.org/10.1007/978-3-642-28332-1_21
http://dx.doi.org/10.1145/2483699.2483705
http://dx.doi.org/10.1016/j.jda.2012.07.006
http://dx.doi.org/10.1016/j.jda.2012.07.006
http://dx.doi.org/10.1007/978-3-319-19929-0_19
http://dx.doi.org/10.1007/978-3-319-19929-0_19
http://dx.doi.org/10.4230/LIPIcs.STACS.2009.1804
http://dx.doi.org/10.1016/j.ic.2014.09.009
http://dx.doi.org/10.1109/SFCS.1989.63533
http://dx.doi.org/10.1145/2631920
http://dx.doi.org/10.1145/762471.762473

67:14 A Space-Optimal Grammar Compression

20 Dominik Kempa and Dmitry Kosolobov. Lz-end parsing in compressed space. In Data
Compression Conference, pages 350–359, 2017. doi:10.1109/DCC.2017.73.

21 Sebastian Kreft and Gonzalo Navarro. On compressing and indexing repetitive sequences.
Theor. Comput. Sci., 483:115–133, 2013. doi:10.1016/j.tcs.2012.02.006.

22 N. Jesper Larsson and Alistair Moffat. Offline dictionary-based compression. Proc. IEEE,
88(11):1722–1732, 2000. doi:10.1109/5.892708.

23 Eric Lehman. Approximation algorithms for grammar-based data compression. PhD thesis,
MIT, Cambridge, MA, USA, 2002.

24 Gurmeet Singh Manku and Rajeev Motwani. Approximate frequency counts over data
streams. In 28th International Conference on Very Large Data Bases, pages 346–357, 2002.

25 Shirou Maruyama, Masaya Nakahara, Naoya Kishiue, and Hiroshi Sakamoto. Esp-index:
A compressed index based on edit-sensitive parsing. J. Discrete Algorithms, 18:100–112,
2013. doi:10.1016/j.jda.2012.07.009.

26 Shirou Maruyama, Hiroshi Sakamoto, and Masayuki Takeda. An online algorithm for
lightweight grammar-based compression. Algorithms, 5(2):214–235, 2012. doi:10.3390/
a5020214.

27 Shirou Maruyama and Yasuo Tabei. Fully online grammar compression in constant space.
In Data Compression Conference, pages 173–182, 2014. doi:10.1109/DCC.2014.69.

28 Shirou Maruyama, Yasuo Tabei, Hiroshi Sakamoto, and Kunihiko Sadakane. Fully-online
grammar compression. In 20th International Symposium on String Processing and Inform-
ation Retrieval, pages 218–229, 2013. doi:10.1007/978-3-319-02432-5_25.

29 Wataru Matsubara, Shunsuke Inenaga, Akira Ishino, Ayumi Shinohara, Tomoyuki Na-
kamura, and Kazuo Hashimoto. Efficient algorithms to compute compressed longest com-
mon substrings and compressed palindromes. Theor. Comput. Sci., 410(8-10):900–913,
2009. doi:10.1016/j.tcs.2008.12.016.

30 Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. Efficient computation of fre-
quent and top-k elements in data streams. In 10th International Conference on Database
Theory, pages 398–412, 2005. doi:10.1007/978-3-540-30570-5_27.

31 J. Ian Munro, Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct rep-
resentations of permutations and functions. Theor. Comput. Sci., 438:74–88, 2012. doi:
10.1016/j.tcs.2012.03.005.

32 Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and dynamic succinct
trees. ACM Trans. Algorithms, 10(3):16:1–16:39, 2014. doi:10.1145/2601073.

33 Craig G. Nevill-Manning and Ian H. Witten. Compression and explanation using hierarch-
ical grammars. Comput. J., 40(2/3):103–116, 1997.

34 Takaaki Nishimoto, Tomohiro I, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda.
Dynamic index and LZ factorization in compressed space. In Prague Stringology Conference,
pages 158–170, 2016.

35 Tatsuya Ohno, Yoshimasa Takabatake, Tomohiro I, and Hiroshi Sakamoto. A faster imple-
mentation of online run-length Burrows-Wheeler Transform. In 28th International Work-
shop on Combinatorial Algorithms (to appear), 2017.

36 Alberto Policriti and Nicola Prezza. Computing LZ77 in run-compressed space. In 2016
Data Compression Conference, pages 23–32, 2016. doi:10.1109/DCC.2016.30.

37 Rajeev Raman, Venkatesh Raman, and Srinivasa Rao Satti. Succinct indexable diction-
aries with applications to encoding k-ary trees, prefix sums and multisets. ACM Trans.
Algorithms, 3(4):43, 2007. doi:10.1145/1290672.1290680.

38 Luís M. S. Russo and Arlindo L. Oliveira. A compressed self-index using a Ziv-Lempel
dictionary. Inf. Retr., 11(4):359–388, 2008. doi:10.1007/s10791-008-9050-3.

http://dx.doi.org/10.1109/DCC.2017.73
http://dx.doi.org/10.1016/j.tcs.2012.02.006
http://dx.doi.org/10.1109/5.892708
http://dx.doi.org/10.1016/j.jda.2012.07.009
http://dx.doi.org/10.3390/a5020214
http://dx.doi.org/10.3390/a5020214
http://dx.doi.org/10.1109/DCC.2014.69
http://dx.doi.org/10.1007/978-3-319-02432-5_25
http://dx.doi.org/10.1016/j.tcs.2008.12.016
http://dx.doi.org/10.1007/978-3-540-30570-5_27
http://dx.doi.org/10.1016/j.tcs.2012.03.005
http://dx.doi.org/10.1016/j.tcs.2012.03.005
http://dx.doi.org/10.1145/2601073
http://dx.doi.org/10.1109/DCC.2016.30
http://dx.doi.org/10.1145/1290672.1290680
http://dx.doi.org/10.1007/s10791-008-9050-3

Y. Takabatake, T. I, and H. Sakamoto 67:15

39 Wojciech Rytter. Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci., 302(1-3):211–222, 2003. doi:10.1016/
S0304-3975(02)00777-6.

40 Hiroshi Sakamoto, Shirou Maruyama, Takuya Kida, and Shinichi Shimozono. A space-
saving approximation algorithm for grammar-based compression. IEICE Transactions, 92-
D(2):158–165, 2009. doi:10.1587/transinf.E92.D.158.

41 Yasuo Tabei, Hiroto Saigo, Yoshihiro Yamanishi, and Simon J. Puglisi. Scalable partial
least squares regression on grammar-compressed data matrices. In 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 1875–1884, 2016.
doi:10.1145/2939672.2939864.

42 Yasuo Tabei, Yoshimasa Takabatake, and Hiroshi Sakamoto. A succinct grammar com-
pression. In Combinatorial Pattern Matching, 24th Annual Symposium, CPM 2013,
Bad Herrenalb, Germany, June 17-19, 2013. Proceedings, pages 235–246, 2013. doi:
10.1007/978-3-642-38905-4_23.

43 Yoshimasa Takabatake, Kenta Nakashima, Tetsuji Kuboyama, Yasuo Tabei, and Hiroshi
Sakamoto. siedm: An efficient string index and search algorithm for edit distance with
moves. Algorithms, 9(2):26, 2016. doi:10.3390/a9020026.

44 Yoshimasa Takabatake, Yasuo Tabei, and Hiroshi Sakamoto. Variable-length codes
for space-efficient grammar-based compression. In 19th International Symposium on
String Processing and Information Retrieval, pages 398–410, 2012. doi:10.1007/
978-3-642-34109-0_42.

45 Yoshimasa Takabatake, Yasuo Tabei, and Hiroshi Sakamoto. Improved esp-index: A prac-
tical self-index for highly repetitive texts. In 13th International Symposium on Experimental
Algorithms, pages 338–350, 2014. doi:10.1007/978-3-319-07959-2_29.

46 Yoshimasa Takabatake, Yasuo Tabei, and Hiroshi Sakamoto. Online self-indexed gram-
mar compression. In 22nd International Symposium on String Processing and Information
Retrieval, pages 258–269, 2015. doi:10.1007/978-3-319-23826-5_25.

47 Terry A. Welch. A technique for high-performance data compression. IEEE Computer,
17(6):8–19, 1984. doi:10.1109/MC.1984.1659158.

48 Jacob Ziv and Abraham Lempel. Compression of individual sequences via variable-rate
coding. IEEE Trans. Information Theory, 24(5):530–536, 1978. doi:10.1109/TIT.1978.
1055934.

ESA 2017

http://dx.doi.org/10.1016/S0304-3975(02)00777-6
http://dx.doi.org/10.1016/S0304-3975(02)00777-6
http://dx.doi.org/10.1587/transinf.E92.D.158
http://dx.doi.org/10.1145/2939672.2939864
http://dx.doi.org/10.1007/978-3-642-38905-4_23
http://dx.doi.org/10.1007/978-3-642-38905-4_23
http://dx.doi.org/10.3390/a9020026
http://dx.doi.org/10.1007/978-3-642-34109-0_42
http://dx.doi.org/10.1007/978-3-642-34109-0_42
http://dx.doi.org/10.1007/978-3-319-07959-2_29
http://dx.doi.org/10.1007/978-3-319-23826-5_25
http://dx.doi.org/10.1109/MC.1984.1659158
http://dx.doi.org/10.1109/TIT.1978.1055934
http://dx.doi.org/10.1109/TIT.1978.1055934

	Introduction
	Motivation
	Our Contribution in More Details
	Related Work

	Framework of Grammar Compression
	Notation
	SLPs
	Succinct Data Structures
	Online Construction of Succinct SLP

	Improved Algorithm
	Improving and Engineering Operations on B
	Improved Dynamic Succinct POSLP
	Reverse dictionary for inner variables
	Reverse dictionary for outer variables
	Access to the production rules of outer variables

	SOLCA

	Experiments
	Conclusion

