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Abstract
The behavior of the simplex algorithm is a widely studied subject. Specifically, the question of
the existence of a polynomial pivot rule for the simplex algorithm is of major importance. Here,
we give exponential lower bounds for three history-based pivot rules. Those rules decide their
next step based on memory of the past steps. In particular, we study Zadeh’s least entered rule,
Johnson’s least-recently basic rule and Cunningham’s least-recently considered (or round-robin)
rule. We give exponential lower bounds on Acyclic Unique Sink Orientations of the abstract cube,
for all of these pivot rules. For Johnson’s rule our bound is the first superpolynomial one in any
context; for Zadeh’s it is the first one for AUSO. Those two are our main results.
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1 Introduction

The existence of a polynomial time pivot rule for the simplex algorithm is a major open
problem in the theory of optimization. Most known rules have superpolynomial lower bounds
by now. For deterministic rules, in particular, it is the case that many of them admit
exponential lower bounds. Klee and Minty with their seminal paper [16], already in 1972,
gave an exponential lower bound for Dantzig’s original pivot rule. Their construction has
been heavily studied ever since (for example [10],[3]) and inspired many later lower bounds.

In this paper, we are interested in a family of deterministic pivot rules known as history-
based (or having memory). For those, superpolynomial lower bounds seemed to be elusive
until recently. Arguably, the most famous history-based rule is due to Zadeh. Known as the
least entered rule, it was described in 1980 with a technical report that was reprinted in 2009
[26]. This rule keeps a history of how many times each improving direction has been used
and, at every step, chooses one that minimizes this history (a tie-breaking rule takes care of
ties). The least entered rule was specifically designed to attack constructions similar to the
Klee-Minty by using the improving directions in a balanced way (note that in this regard, it
is similar to a random walk). With a letter to Klee in the 80s, Zadeh offered a $1000 prize
to anyone who can prove polynomial upper or superpolynomial lower bounds for the least
entered rule. This prize was claimed in 2011, by Friedmann [6], with a superpolynomial lower
bound on actual Linear Programs (LP). No non-trivial upper bounds are known for this rule.

∗ A full version of the paper is available at https://arxiv.org/abs/1706.09380.
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Another interesting rule was suggested by Cunningham [4], known as the least-recently
considered rule. It fixes an initial ordering on all improving directions and then selects one
in a round-robin fashion, starting from the last direction selected. The history here is to
remember which was the last used improving direction. Furthermore, the least-recently basic
rule, which Cunningham attributes to Johnson, was also first discussed in the same paper [4].
That rule selects the improving direction that left the basis least recently (in other words the
direction whose opposite was selected least recently). For a detailed exposition on those and
many other history-based pivot rules, the interested reader should look at Aoshima et al. [1].

We provide exponential lower bounds, by means of Acyclic Unique Sink Orientations, for
all three aforementioned history-based rules.

Unique Sink Orientations. (USO) is an abstract framework that generalizes LP (and other
problems). It was originally described by Stickney and Watson [23] and later revived by
Szabó and Welzl [24]. Such abstract frameworks have received lots of attention since the
discovery of the Random Facet pivot rule: Kalai [15] and, independently, Matoušek, Sharir
and Welzl [19] proved subexponential upper bounds for this rule on LP. It became evident
that their analysis made use only of combinatorial properties of LP and, thus, it was possible
to extend their upper bounds in a much more abstract setting [8].

The most well-studied such framework is that of USO (e.g. [18],[5],[11] and see also below).
Intuitively, a USO is an orientation of the hypercube graph such that every non-empty face has
a unique sink (vertex with only incoming edges). The computational problem is to discover
the unique global sink by performing vertex evaluations (each one reveals the orientation
of the edges incident to the vertex). Commonly, acyclic USO (AUSO) constructions have
served as lower bounds for pivot algorithms (e.g. [17], [22], [20], [14]) and our lower bounds
are also manifested as AUSO.

Prior work and open questions. Aoshima et al. [1] explore the possibility that there exist
AUSO on which history-based pivot rules take a Hamiltonian path. They prove, with the
help of computers, that Zadeh’s pivot rule admits such Hamiltonian paths up to dimension
9 at least. On the contrary, they show that Johnson’s rule (among others) does not admit
Hamiltonian paths and, so, they ask if it admits exponential paths on AUSO.

Recently, Avis and Friedmann [2] gave the first exponential lower bound for history-based
rules. Namely, they prove an exponential lower bound for Cunningham’s rule on binary parity
games (definitions in [2]). Their constructions translate immediately to linear programs and
also AUSO, for which1 the lower bound is Ω(2n/5). However, they are very complicated and,
thus, the authors ask if it is possible to prove exponential lower bounds for this rule, on
AUSO, in a simpler manner.

Moreover, they compare their construction to the one for Zadeh’s rule [6]. The latter gives
a family of non-binary parity games (which correspond to linear programs), where Zadeh’s
rule takes a subexponential number of steps, of the form 2Ω(

√
n) (where n is the number of

variables of the LP). Although binary parity games correspond directly to AUSO, the same
is not known for non-binary ones. Hence, Avis and Friedmann ask [2] if superpolynomial
lower bounds for Zadeh’s rule exist also on AUSO. In addition, Friedmann’s lower bound [6]
is based on a tie-breaking rule which is artificial in the sense that it always works in favor of

1 The exact translation of binary Parity Games to AUSO is explained in [2]. Roughly, their constructed
binary parity game translates to a cube of dimension 5n′, where the path that the algorithm will take is
of length 2n′

. Thus, for n-dimensional AUSO, that is a lower bound of the form Ω(2n/5).
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the lower bound designer. It is not described in the paper because, as the author writes, it
is “not a natural one”. Thus, he raises the question [6] of whether it is possible to obtain a
lower bound with a natural tie-breaking rule.

Finally, Avis and Friedmann write [2]: “More generally it is of interest to determine
whether all of the history based rules mentioned in [1] have exponential behaviour on AUSO”.

Our results. With Theorem 4, we give an exponential lower bound for Johnson’s rule. This
is the first superpolynomial lower bound for this algorithm. Moreover, we give an exponential
lower bound for Zadeh’s rule, with Theorem 8. This has a number of advantages compared
to the known construction: Firstly, it is exponential, whereas Friedmann’s lower bounds [6]
are subexponential (also not known to translate to AUSO). Secondly, our constructions are
much simpler to describe. Finally, it is based on a tie-breaking rule that is essentially as
simple as possible: a fixed ordered list. These two lower bounds constitute the main results
of this paper. With Theorem 3, we give an exponential lower bound for Cunningham’s rule.
The advantage here is that the construction is significantly simpler; the lower bound also
happens to be slightly improved. Theorem 3 serves as a warm-up to the main results by
introducing the techniques and notation we use for our constructions.

Therefore, we answer to the positive all the questions described in the previous paragraph.
Due to space constraints, many details and some proofs are missing from this extended
abstract; a full version with all the details and a more complete analysis can be found at [25].

Our methods. The constructions in this paper are based on the building tools originally
developed by Schurr and Szabó [21]; we do, however, introduce some novel ideas needed
to deal with history-based pivot rules. Most known inductive lower bound constructions
(e.g. [21],[22],[20],[14]) embed copies of the previous construction into the next one, in such a
way that the algorithm gets trapped in the previous construction twice. For Zadeh’s rule this
does not work: it balances the directions being used and it inevitably escapes the second
trap (at the next inductive step). To overcome this, we build a trap that consists of a small
number of copies, being connected in a careful way which ensures that the algorithm uses the
improving directions in a balanced fashion: it follows the path of the previous construction,
up to making additional “balancing moves” between different copies.

Lower bounds on AUSO. It is not clear if AUSO lower bound constructions (including ours)
can be realized as LP. However, the abstract setting allows for simpler proofs that are easy to
communicate. We, thus, believe that such constructions are relevant for understanding the
behavior of the pivot rules; the ideas could be used for the design of LP-based exponential
lower bounds. For example, the first subexponential lower bounds for Random Facet [17]
(tight to the upper bound; see also [9]) and for Random Edge [20] (at every step chooses one
improving direction at random) were both proved by AUSO constructions. Indeed, for these
two rules, subexponential lower bounds have been later proved on actual LP [7]. The most
recent lower bound on AUSO was by Hansen and Zwick in 2016 [14], where they improve the
subexponential lower bound for Random Edge. Note that for this rule non-trivial exponential
upper bounds are known in the general case [13] and under assumptions [12].

2 Preliminaries

Let [n] = {1, . . . , n} and ±[n] = {−n, . . . ,−1, 1, . . . , n}. Let Q[n] = 2[n] be the set of
vertices of the n-dimensional hypercube over coordinates in [n]. Often we write Qn (the
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superscript indicates the dimension). A vertex of the hypercube v ∈ Qn is denoted by
the set of coordinates it contains. Generally, with C ⊆ [n] we denote a set of coordinates.
Consider two vertices v, u ∈ Qn. With v ⊕ u we denote the symmetric difference of the
two sets. Now, let C ⊆ 2[n] and v ∈ Qn. A face of the hypercube, F (C, v), is defined as
the set of vertices that are reached from v over the coordinates defined by any subset of C,
i.e. F (C, v) = {u ∈ Qn|v⊕ u ⊆ C}. The dimension of the face is |C|. We call edges the faces
of dimension 1, e.g. F ({j}, v). For k ≤ n we call a face of dimension k a k-face.

Let ψ denote an orientation of the edges of the hypercube Qn. Consider two vertices
v, u ∈ Qn and a coordinate j ∈ [n]. The notation v j−→ u (w.r.t ψ) means that F ({j}, v) =
{v, u} and that the corresponding edge is oriented from v to u in ψ. Sometimes we write
v → u, when the coordinate is irrelevant. An edge v j−→ u is forward if j ∈ u and otherwise
we say it is backward. We use v  w to denote (that there is) a directed path from v to w.

We now define the concept of direction; the algorithms that we study here have memory
of the directions that have been used so far. A direction is a signed coordinate. Let c ∈ C be
a coordinate; two different directions correspond to c, +c and −c. At a vertex v the direction
+c corresponds to a forward edge incident to v and −c to a backward edge. We say that a
direction is available at vertex v if the corresponding edge is outgoing. Thus, at each vertex
if a coordinate is incoming then none of the directions is available and if a coordinate is
outgoing then exactly one of the directions is available. Similarly to above, we write v d−→ u,
for some direction d. Note that if we have v +c−−→ v′ (similarly −c) then at v′ neither +c
nor −c can be available. Generally, we denote with D ⊆ ±[n] a set of directions. Given a
set of coordinates C, we say that D is the set of directions that corresponds to C to mean
D = {−c,+c | c ∈ C}. Often, we use d to denote a direction without specifying its sign.

Then, ψ is a Unique Sink Orientation (USO) of Qn when every non-empty face has a
unique sink. USO can be either cyclic or acyclic (for these we write AUSO). n-AUSO means
an AUSO over Qn. For a USO ψ, we define sψ, the outmap function: for every v ∈ Qn,
sψ(v) = {j ∈ [n]|v j−→ (v ⊕ {j})}, that is the set of coordinates on which v has an outgoing
edge. A sink of a face F (C, v) is a vertex u ∈ F (C, v), such that sψ(u) ∩ C = ∅. The whole
cube is a face of itself; thus, there is a unique vertex v, the global sink with s(v) = ∅. In the
rest, we write s(v) to denote the outmap of v (ψ will be clear from the context).

The computational problem associated with a USO is to find the global sink. The
computational model is the vertex oracle model. We have access to an oracle such that when
we give it a vertex v, it replies with the outmap s(v) of v. This is the standard computational
model in USO literature and all the lower and upper bounds are with respect to it.

We are now ready to state the Product and Reorientation lemmas (due to [21]) which are
the building tools for our constructions. The following constitutes an intuitive description of
the Product lemma which is relevant to us: Consider an n-AUSO A (oriented hypercube
graph) and take 2m copies of A. For every vertex v ∈ A, take an m-AUSO Av, the connecting
frame for v. Each copy of A corresponds to a vertex of the frame Av and v in this copy of A
is connected according to that vertex of Av. The result is an (n+m)-AUSO. Formally:

I Lemma 1 (Product [21]). Let C be a set of coordinates, C ′ ⊆ C and C̄ ′ = C \ C ′. Let
s̃ be a USO outmap on QC′ . For each vertex u ∈ QC′ we have a USO outmap su on QC̄′ .
Then, the orientation defined by the outmap s(v) = s̃(v ∩ C ′) ∪ sv∩C′(v ∩ C̄ ′) on QC is a
USO. Furthermore, if s̃ and all su are acyclic so is s.

The Reorientation lemma, which follows, can be intuitively explained this way: if we have
a USO and there is a face, such that all the vertices in this face have the same outmap on
the edges external to the face, then we can reorient this face according to any other USO.
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I Lemma 2 (Reorientation [21]). Let C be a set of coordinates, C ′ ⊆ C and C̄ ′ = C \ C ′.
Let s be a USO on QC and let F = F (C ′, u), for some u ∈ QC , be a face of QC . If, for
any two vertices v, w ∈ F , s(v) ∩ C̄ ′ = s(w) ∩ C̄ ′ and s̃ is a USO on QC′ , then the outmap
s′(v) = s̃(v ∩ C ′) ∪ (s(v) ∩ C̄ ′) for v ∈ F and s′(v) = s(v) otherwise is a USO on QC .

3 A warm-up: Cunningham’s Rule

I Theorem 3. There exists n-AUSO such that Cunningham’s rule, with a suitable starting
vertex and list, takes a path of length at least 2n/4.

We will sketch a proof for the above theorem. But let us start with some general comments
and definitions that will apply to all our constructions. Firstly, they are inductive. Let Ai
be the ith step of the induction. The base case is A0. We call Ci a bundle of coordinates;
that is the set of coordinates that was added at the ith step of induction (and C0 are the
coordinates of the base case). We also define C+

i =
⋃i
k=0 Ck. Then, Di denotes the set of

directions that corresponds to Ci and similarly for D+
i . Let vi0 be the starting vertex for Ai.

Consider that there is a token, which is initially on vi0, and at every step moves according to
the direction that the given algorithm chooses. The path that the token takes from vi0 to the
unique sink, on Ai, is denoted with Pi; its length is denoted with |Pi|.

To construct Ai+1 from Ai, we take 2m copies of Ai and connect their vertices with
m-dimensional connecting frames, for some constant m (Lemma 1). Afterwards, we perform
one reorientation (Lemma 2), to install a simple balancing gadget. The token starts at the
starting vertex vi+1

0 and walks on a path P (in Ai+1) until it reaches a vertex that has all
coordinates from C+

i incoming. This vertex corresponds to the sink of Ai. If we project
the path P to only the directions from D+

i we get exactly Pi. In the balancing gadget the
token will be taken back to the vertex that corresponds to the starting vertex for Ai. The
idea is to prove that if we project the rest of the token’s path to the global sink, to only the
directions from D+

i , we get again Pi. Thus, |Pi+1| > 2|Pi|. Let T (n) denote the length of the
corresponding paths on an n-AUSO. The recursion we get then is T (n+m) > 2T (n). This
gives rise to exponential lower bounds of the form 2n/m. For Cunningham’s and Johnson’s
rules the constant is m = 4 and for Zadeh’s m = 6.

The lower bound. Consider that the algorithm runs on an n-AUSO. It has an ordered list
L that contains all 2n directions; let L[k] indicate the kth direction on the list. There is a
marker µ of which direction was used last: if direction L[k] was used at the last step then
µ = k. At the next step the algorithm will start checking the directions on the list from
L[µ+ 1] in a cyclic order (so if it reaches L[2n] it continues from L[1]) and it chooses the first
available one. Initially, µ = 2n so that the first direction that the algorithm checks is L[1].

We will now give a short sketch of the lower bound. Full details can be found in the full
version [25]. Let A0 be the base case and L0 = (+c10,−c20,+c30,−c10,+c40,−c30,+c20,−c40). To
construct Ai+1 from Ai we take 24 copies of Ai which we connect with three different frames.
The two crucial ones F1 and F2 are given in Figure 1; F3 can be found in [25]. The new set
of coordinates will be Ci+1 = {c1i+1, c

2
i+1, c

3
i+1, c

4
i+1}.

Let us define some notation in reference to Figure 1. An AUSO is given as a collection of
2-faces on the first two coordinates. All coordinates are labeled. Each square represents a
face on coordinates C+

i . All of these faces, except B , are internally oriented according to Ai
(correspond to copies). The numbers are indicating in which order the token will visit them.
We refer to these faces in the text; for example, we write 1 to mean the face: F (C+

i , {c2i+1}).
Given a vertex v, we write v⊥ 1 to mean the vertex v′ ∈ 1 , such that v ∩ C+

i = v′ ∩ C+
i .
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1 2

3 4

H

5

c1i+1

c2i+1

c3i+1

c4i+1

B

1

6

H

5

c1i+1

c2i+1

c3i+1

c4i+1

B

7

89

10

F1 : F2 :

Figure 1 The orientations F1 and F2, used as connecting frames, are given in this figure. The
4-dimensional frames are split in 2-faces of coordinates c1

i+1 and c2
i+1. The arrows on the other

coordinates indicate the orientation of all the edges on this coordinate except when noted differently.
For example, in F2 all edges on coordinate c3

i+1 are oriented from left to right except the edge
9 ← 8 . Each · represents a face on C+

i . This notation is valid also for the next figures.

Moreover, we write 1  5 to mean a path from a vertex in 1 to the corresponding vertex
in 5 , using only directions from Di+1. In this case, the exact vertex will be clear from the
context. The face B is the one that contains the balancing gadget, which is installed by use
of Lemma 2. In this construction and the one of Section 4, H is a hypersink (has all edges
external to the face incoming). In the construction of Section 5 there is no hypersink.

Let us give a short description of the behavior of Cunningham’s rule on Ai+1. Firstly,
the starting vertex v0 = vi+1

0 = {c20, . . . , c2i+1}. Thus, the token is initially placed in 1 .
The list Li+1 = Li · (+1,−2,+3,−1,+4,−3,+2,−4), where · represents concatenation. For
simplicity, we write a number ±k instead of ±cki+1. So, the directions from bundle Dk have
priority over the ones from bundle Dk′ , if k < k′. Let IN = D+

i and OUT = Di+1; that is
the set of directions from the previous inductive steps and the current one respectively.

The connecting frame is F1. The algorithm uses directions from IN and the token moves
in 1 . When these are exhausted the token takes a path 1  5 . The directions from
OUT are, then, exhausted. The algorithm uses a direction from IN , in 5 . At the next
vertex the frame changes2 to F2. When the directions from OUT will be used again (after
the ones from IN) the token will take a path 5  10 → 1 . After one step in 1 , on
a direction from IN , the frame changes to F1. The conclusion is that the token will keep
moving between 1 and 5 until it reaches a vertex vsi

, such that s(vsi
) ∩ C+

i = ∅. This is
not a cycle as the token keeps moving toward vsi

on the IN directions (this was once Pi).

When the token is on si the frame will change to F3. The token will walk to B and the
OUT directions will get exhausted exactly there. Inside B , the algorithm will be forced to
take a path back to vertex v0⊥ B (the sink of B ). The next time the directions from OUT

will be used the token will go in the hypersink H . But there, it will be at vertex v0⊥ H ,
the coordinates from Ci+1 will be incoming from there on and, so, it will stay inside H
where it will perform Pi once again. We can conclude that |Pi+1| > 2|Pi| can be proved for
this construction, which also proves Theorem 3. Details in the full version [25].

2 At this point the change of frame can be understood with an adversary argument. We play against the
algorithm and we choose which frame to reveal at which vertex. This is consistent with Lemma 1.
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F1 : F2 :

1 2

3 4

H

R 5

c1i+1

c2i+1

c3i+1

c4i+1

1

H

R 5

8

c1i+1

c2i+1

c3i+1

c4i+1

6

7

Figure 2 The orientations F1 and F2, used as connecting frames, are given in this figure.

4 Exponential lower bound for Johnson’s rule

I Theorem 4. There exists n-AUSO such that Johnson’s rule, with a suitable starting vertex,
takes a path of length at least 2n/4.

In this section we will prove the above theorem. Let us define Johnson’s least-recently
basic rule. Consider that the algorithm runs on an n-AUSO. It maintains a history function
h which is defined on all 2n directions. Let v be the current vertex. Intuitively, the algorithm
keeps the following history: Say direction d was used at step x and let −d be the opposite of
that direction. Then, at step x we have h(−d) = x; this will stay intact until −d is used.
On the other hand, h(d) will keep increasing to the current step until −d is used. Formally,
for a direction d, h(d) is the last step number when |d| ∈ v if d is positive and the last step
number when |d| /∈ v if d is negative. Here, |d| denotes the coordinate that corresponds to
direction d. Ties are possible and we assume that they are broken lexicographically. The
algorithm chooses from the set of available directions, direction d which minimizes h(d).

The construction. The construction is inductive. Let Ai denote the ith inductive step. The
base case A0 is the 4-dimensional AUSO F1, shown in Figure 2. The initial set of coordinates
is C0 = {c10, c20, c30, c40}. The starting vertex is v0 = ∅, which is at the vertex labeled 1 in
the figure. Then, the algorithm will go over directions (+c10,+c20,+c30,+c40,−c30,−c20) and
will find the sink at {c10, c40}. Let us now describe how to construct AUSO Ai+1 from AUSO
Ai. Every inductive step adds 4 dimensions. As before, C+

j =
⋃j
k=0 Ck. Let the new bundle

of coordinates be Ci+1 = {c1i+1, c
2
i+1, c

3
i+1, c

4
i+1}. We take 16 copies of Ai and connect them

with the 4-AUSO F1 and F2 that appear in Figure 2. In this section, a reset-AUSO (thus,
the R in the figure) will take the role of the balancing gadget.

Let us define what we mean by lexicographic order here: +ckj comes before −ck′

j for any
k and k′; +ckj comes before +ck′

j and −ckj comes before −ck′

j if k < k′. Finally, dkj comes
before dk′

j′ for any k and k′ and positive/negative sign, if j < j′.
The starting vertex will be v0 = ∅ for every inductive step. Then, every positive direction

+c initially has h(+c) = 0 (until +c is used by the algorithm). At step number 1, one of the
positive directions will be used at which point every negative direction −c has h(−c) = 1.

With this construction we want to force the algorithm to the following behavior: It starts
at 1 using all the positive directions in lexicographic order. Then it is in 5 , where it will
use all the negative directions in lexicographic order. This will continue until the sink of Ai
has been reached. It follows that directions from D+

i are only used when the algorithm is in
1 or 5 , before the sink of Ai has been discovered. We will later show that this is the case.

Then, we consider the construction as an adversary argument. Firstly, the starting vertex
of Ai and the sink of Ai both use F1 as the connecting frame. Every time the algorithm is in
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1 and uses a direction from D+
i , we change (or keep) the connecting frame to F1. Similarly,

when the algorithm arrives in 5 and uses a direction from D+
i , we change the connecting

frame to F2. This operation is consistent with Lemma 1: Every vertex is connected with the
corresponding frame. The result of this operation is A′i+1 which is not the final AUSO.

The final step for the construction of Ai+1 is to use Lemma 2 to embed a reset-AUSO to
the face R . For every i > 0, Ri is a 4i-AUSO (whereas Ai is a 4(i + 1)-AUSO). For the
construction of Ai+1 for Ai we embed Ri+1 to the face R . Ri+1 is designed such that it has
its sink at vertex ∅. In addition, it has a path from vertex {c10, c40, . . . , c1i , c4i } to the vertex ∅
such that every vertex on this path has only one outgoing edge and the path goes through
the negative directions in lexicographic order: (−c10,−c40, . . . ,−c4i ,−c4i ).

This reorientation concludes the construction of Ai+1. It does not introduce any cycles
in Ai+1. A formal description of the reset-AUSO and an argument on the acyclicity of Ai
can be found in the full version [25]. Note that in H we still have Ai.

The behavior of Johnson’s rule. The behavior of Johnson’s rule on the AUSO constructed
as above will be described here. We give as much detail as space allows; the rest can be
found in the full version [25]. Firstly, we define the tools that we are going to use for this
analysis.

Similarly to the previous section, consider a token t. That is a token that starts at the
initial vertex v0 and moves according to the directions that the algorithm chooses. With
slight abuse of notation we also use t to refer to the vertex where the token currently lies on.
Moreover, we write tj to mean the set t ∩ C+

j ; that is, the projection of the vertex t to the
set of coordinates C+

j . Since tj ⊆ t, we call tj a subtoken.
We say that a coordinate bundle Cj is active when s(t) ∩ Cj 6= ∅. Otherwise, we say

that Cj is inactive. Note that for both the 4-dimensional frames that we have used, the sink
is at the same vertex. This implies that Cj is inactive if and only if token t is such that
t ∩ Cj = {c1j , c4j}. Moreover, we say that token t is in 1

j
to mean that t ∩ Cj = ∅; t is in

5
j
when t ∩ Cj = Cj and similarly for the rest of the faces · from Figure 2.
For each subtoken tj , we say that it has reached its sink when all bundles in C+

j are
inactive. This means that tj = {c10, c40, . . . , c1j , c4j}. Resetting C+

j is a process that happens
when subtoken tj is at its sink: It takes token t from a vertex where t∩C+

j = {c10, c40, . . . , c1j , c4j}
to a vertex where t ∩ C+

j = ∅. Moreover, we say that C+
j is resettable when:

tj is at its sink.
h(−c1j′) < h(−c4j′) < h(−c2j+1), for every 0 ≤ j′ ≤ j.

The first bullet in the definition above equivalently means that all bundles in C+
j are inactive.

Resetting C+
j is a process that takes place when (and only when) token t is in the reset-AUSO

in R
j+1. For now assume that C+

j will be reset only when it is resettable; we will prove
this later (with Lemma 7). Thus, tj is on its sink when the resetting process starts. The
second bullet of the definition of resettable ensures that token t will not go out of R

j+1
before C+

j has been reset. During the reset of C+
j , token t will go over negative directions

from D+
j in this order: (−c10,−c40, . . . ,−c1j ,−c4j ). This is because of the construction of the

reset-AUSO Rj+1; the algorithm has no other choice. We are ready to state the following
lemma (a formal proof can be found in the full version [25]).

I Lemma 5. Let t ∩ C+
j = ∅. Then, all the positive directions from C+

j will be used in the
lexicographic order: (+c10,+c20,+c30,+c40, . . . ,+c1j ,+c2j ,+c3j ,+c4j ).

The above lemma defines the path that token t will follow until subtoken tj reaches
its sink. For every bundle Cj , the positive directions are used in lexicographic order
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(+c1j ,+c2j ,+c3j ,+c4j) and the token t goes to 5
j
. After this, we have h(−c1j) < h(−c2j) <

h(−c3j) < h(−c4j) < h(d) for any positive d from Dj . Then, some directions from C+
j−1

will be used and the frame for Cj will change to F2. When it is the turn of the negative
directions from Dj to be used they will be used consecutively and in lexicographic order
(−c1j ,−c2j ,−c3j ,−c4j); that is, assuming tj−1 has not reached its sink yet. Otherwise, the
connecting frame for Cj would be F1 and the directions −c1j and −c4j would not be available.

After this, t will be in 1
j
and, moreover, h(+c1j) < h(+c2j) < h(+c3j) < h(+c4j) < h(d)

for any negative d from Dj . There, after some directions from C+
j−1 are used, the connecting

frame for Cj will be F1. When it is the turn of the positive directions from Dj to be used
they will be used consecutively and in in lexicographic order (+c1j ,+c2j ,+c3j ,+c4j) and the
token t will go back to 5

j
. We can conclude that t will keep moving from 1

j
to 5

j
and

reversely until subtoken tj−1 reaches its sink. The next corollary follows from this discussion.

I Corollary 6. Let Cj+1 be active.
1. If t is in 1

j+1, then the positive directions from Dj+1 will be used (when it is their turn)
consecutively and in lexicographic order (+c1j+1,+c2j+1,+c3j+1,+c4j+1).

2. If t is in 5
j+1 and subtoken tj has not reached its sink, then the negative directions from

Dj+1 will, similarly, be used (when it is their turn) consecutively as (−c1j+1,−c2j+1,−c3j+1,

−c4j+1).
It follows that directions from D+

j are only used when t is in 1
j+1 or in 5

j+1.

The next lemma is the last ingredient needed (proof can be found in the full version [25]).

I Lemma 7. Let Cj+1 be active. When tj reaches its sink, C+
j is resettable.

Now consider the path of the token t from v0 to the sink of Ai+1. This AUSO is of
dimension n = 4(i+ 2). By Corollary 6, t will be moving back and forth between 1 and 5
until ti reaches its sink. When that happens, C+

i is resettable (by Lemma 7) and, when t
enters R , C+

i will be reset. Following, t enters H at vertex v0⊥ H .
When the algorithm started at v0 = ∅, all the positive directions from D+

i+1 where used
in lexicographic order. Since it is deterministic, this defines completely the behavior of t.
Consider the path P that t will follow from v0 until ti reaches its sink, but projected on the
coordinates from C+

i . From Lemma 5, we know that when token t is such that t ∩ C+
i = ∅,

all the positive directions from D+
i will be used in the lexicographic order. At this point

Ci+1 is inactive and t is in H . Therein, it will follow the same path P to the global sink.
Let T (n) denote the length of the path that token t will take from v0 until it reaches

the global sink on a n-AUSO. With the above analysis, we have shown that the recursion
T (n+ 4) > 2T (n) holds. This recursion leads to the proof of Theorem 4.

5 Exponential lower bound for Zadeh’s Rule

I Theorem 8. There exists n-AUSO such that Zadeh’s rule, with a suitable starting vertex
and tie-breaking rule, takes a path of length at least 2n/6.

In this section we will prove the above theorem. Firstly, let us define formally Zadeh’s
least entered rule. Consider that the algorithm runs on an n-AUSO. It maintains a history
function h which is defined on all 2n directions. Given a direction d, h(d) is the number of
times the direction d has been used. At the beginning h(d) = 0, for all d. At every step
the algorithm picks one direction from the set of available ones that minimizes the history
function. In addition, there is a tie-breaking rule: this is an ordering of the directions and is
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invoked only in case more than one have the minimum history size. As we already mentioned
in Section 1, our lower bound construction will have the simplest possible tie-breaking rule,
an ordered list which will be given explicitly. This is in contrast to the lower bounds from [6].

Secondly, let us define some tools that we will use for the analysis of the algorithm. We
have a balance function b, which is also defined on all the 2n directions. Let dmax be the
most used direction; then, b(d) = h(dmax)− h(d). This means that direction d has been used
b(d) less times compared to dmax. We say that a direction d is imbalanced when b(d) > 0
and that D is balanced when b(d) = 0, for all d ∈ D. We also define a balance function
on any subset of directions: Given set D we define b(D, d) to be the balance of direction d
w.r.t. the directions from D, i.e. the defining coordinate is now dmax ∈ D.

Furthermore, we define the concept of saturation. This is with regards to history and
the current vertex in the algorithm run. Given a set of directions D ⊆ [±n] and a vertex
v we say that v is D-saturated when for every d ∈ D with b(d) > 0, the direction d is not
available for v. It follows that if at vertex v set D is balanced, then v is D-saturated.

The construction. The construction is inductive. Let Ai denote the ith inductive step.
The base case, A0, is a 6-AUSO. Due to the lack of space we do not define it here, but we
will mention and utilize some of its properties. A complete description of the base case can
be found in the full version [25]. Every inductive step adds 6 new dimensions. As before the
bundle of coordinates Ci is the one added at the ith step of induction (and C0 are the ones of
the base case). Also, with Di we denote the directions that correspond to Ci and, similarly,
for D+

i . Thus, the AUSO Ai is 6(i+ 1)-dimensional and the coordinates that describe it are
in the set C+

i . For each Ai, the starting vertex is vi0 = {c20, . . . , c2i }.
Let us now describe how to construct AUSO Ai+1 from AUSO Ai. Let the new bundle

of coordinates be Ci+1. We call IN the set of directions D+
i and OUT the set of directions

Di+1. At every inductive step the tie-breaking rule will be formed such that the directions
from IN have priority over the ones from OUT . Thus, directions Dk have priority over the
ones from Dk′ , if k < k′. For simplicity, we write number ±k to mean direction ±cki+1.

The starting vertex for Ai+1 is v0 = vi+1
0 = {c20, . . . , c2i+1}. Assume that Pi (the path the

token takes in Ai) is known to us. Similarly to the previous sections, this can be interpreted
as an adversary argument. To construct Ai+1 we take 26 = 64 copies of Ai and use three
different 6-AUSO as connecting frames, utilizing Lemma 1. The crucial frames are given in
Figure 3. For vertices that are not on Pi it does not matter which frame we use. For vertices
that are on the path Pi we choose the connecting frame according to the following rule:
(1) Vertices that are not D+

i -saturated (w.r.t. Pi) we connect with F1.
(2) Vertices that are D+

i -saturated (w.r.t. Pi) we connect with F2.
(3) For the sink si of Ai we use F3.
The latter is a 6-AUSO that has the same path 1  12 as F1, has its sink in 12 (so
the uppermost edge on coordinate c1i+1 is backward) and all other edges are forward (figure
in [25]).

The result of this operation is A′i+1. It remains to perform one reorientation. Namely, the
balance-AUSO will be embedded in the face B , shown in Figure 3. The balance-AUSO is a
uniform 6(i+ 1)-AUSO which has its sink at the vertex vi0 (all edges are oriented towards vi0).
Formally, the outmap of vertex v = v0⊥ B is such that s(v) ∩ C+

i = ∅. This reorientation
will not introduce cycles; a formal proof can be found in the full version [25].

In reference to Figure 3, let us present the intuitive idea: The token will walk (in a
projected way) along Pi once while walking between 1 and 12 . Then, it will go back to
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c1i+1

c2i+1
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c4i+1
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c6i+1

1 2

3 45
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1 23 4
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6

7

8

9

1011

12

Figure 3 Both orientations F1 and F2 are given in this figure. For simplicity, only the orientations
of the backward edges are explicitly drawn; every other edge is forward. The frame F1 includes the
dashed backward edges but not the dotted ones; F2 includes the dotted backward edges but not the
dashed ones. The solid backward edges are included in both frames.

the start of Pi in the balance-AUSO B . Then, it will walk the path Pi once again while
walking between 1 and 12 .

Below, we give two crucial properties that will hold for our construction. The first one is
about the base case A0 (of which a detailed description can be found in the full version [25]).
(i) There is at least one (±[6])-saturated vertex, other than the starting vertex v0

0 , in A0. In
addition, the sink s0 is at least two vertices away from the last vertex on the path P0
that was (±[6])-saturated.

Property (i) will be utilized in the proof of Lemma 9. The second property holds for every
inductive step Ak of the construction 0 ≤ k ≤ i+ 1.
(ii) When the token reaches the sink sk of Ak there are exactly 4(k+ 1) negative coordinates

imbalanced. Let IMk = {−c30,−c40,−c50,−c60, . . . ,−c3k,−c4k,−c5k,−c6k}. For every d ∈ IMk

we have b(d) = 1 and for every other d we have b(d) = 0.
Property (ii) holds for the base case (details in the full version [25]). Then, we will argue
in the step-by-step analysis that it also holds for every inductive step of the construction.
Also note that if the token takes the directions in IMk from the sink sk, it will go to the the
starting vertex vk0 . Such a path is not available in any of the connecting frames; however, a
path which spans exactly those directions is available in the balance-AUSO.

We will now analyze the behavior of Zadeh’s rule on AUSO Ai+1. Firstly, let us define
the tie-breaking ordered list Ti+1:

Ti+1 = Ti · (+1,−2,+3,−1,+4,−3,+5,−4,+6,−5,+2,−6).

As before a number ±k indicates the direction ±ck0 . Secondly, we state two lemmas that will
be used in the analysis that comes below. We include proofs for those in the full version [25].
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I Lemma 9. Let token t be at an IN-saturated vertex v, such that s(v) ∩ C+
i 6= ∅. Then,

∃d ∈ IN such that v d−→ v′ and v′ also has s(v′) ∩C+
i 6= ∅. Moreover, v′ is not IN -saturated.

I Lemma 10. Let the token t be at a vertex v as in the lemma above. Then there is a vertex
v′ that comes after v on Pi+1 and such that v′ is IN -saturated.

Step-by-step analysis. We are ready to give a description for the behavior of the algorithm
on Ai+1, in as much detail as the space allows; a very careful analysis can be found in the
full version [25]. Initially, the token is at the starting vertex v0. Let us denote with dOUTmax

the direction that maximizes history over the OUT directions; similarly, we define dINmax.
Assume that the token is at an IN -saturated vertex and b(dOUTmax ) > 0. Then, the algorithm
will use directions from OUT until it reaches a vertex that is OUT -saturated.

When at 1 , directions from IN will be used, since they have priority in Ti+1. After
some steps, an IN -saturated vertex vs will be reached, by Lemma 10. At vs, we have that
b(dOUTmax ) > 0. The connecting frame will be F2. The directions from OUT will be utilized and
the token will take a path 1  12 , where it will reach vs⊥ 12 . Then, we have b(−6) = 1
and for every other direction d ∈ OUT , b(d) = 0; also, b(dOUTmax ) = 0. Because the frame is F2,
the dashed edge is not available: vs⊥ 12 ← vs⊥ 1 . Thus, vs⊥ 12 is OUT -saturated. One
direction from IN will be used; by Lemma 9 the next vertex is not IN -saturated. The frame
will then be F1, and direction −6 will be used. The token is back to 1 and b(OUT, d) = 0,
for every d ∈ OUT , b(dOUTmax ) = 1 and b(dINmax) = 0. The token will keep moving between 1
and 12 in the way thus described, until it reaches a vertex vsi

, such that s(vsi
) ∩ C+

i = ∅
(vsi

corresponds to the sink of Ai). The latter will be evaluated in 1 , by Lemma 9. Then,
we have that b(d) = 1, for every d ∈ IMi, by Property (ii) (which holds inductively).

The frame for vsi is F3. The token will go over +1 and +3 to B . Therein, it will take a
path vsi⊥ B  v0⊥ B for which it will use exactly the directions from IMi; afterwards, IN
is balanced. The token will take a path v0⊥ B  v0⊥ 8  v0⊥ 12 . All the vertices on this
path are IN -saturated because IN is balanced. The frame will be F2 and, so, the dashed
edge is not available: v0⊥ 12 ← v0⊥ 1 . At this point b(−3) = b(−4) = b(−5) = b(−6) = 1
and for every other d ∈ OUT , b(d) = 0. From now on, all the steps that the token will take
using directions from IN will be consistent with the path Pi. This is because IN is balanced
and the token is at a vertex that corresponds to vi0 (the starting vertex of Ai).

The token will keep moving between 1 and 12 , in a similar way as described
above, until it reaches a vertex vsi

such that s(vsi
)∩C+

i = ∅. The latter will be evaluated in
1 , by Lemma 9. The main difference to the situation of the previous paragraphs is in the
balance vector. After the token reaches an IN -saturated vertex in 1 , the balance vector
will be b(OUT,−4) = b(OUT,−5) = b(OUT,−6) = 1 and b(dOUTmax ) = 1. This is also the case
when vsi

is reached. But then, the connecting frame is F3 and a path vsi
⊥ 1  vsi

⊥ 12
will be taken. The global sink will be exactly at vsi

⊥ 12 . After the sink has been reached,
we have b(dOUTmax ) = 0 and, thus, b(−3) = b(−4) = b(−5) = b(−6) = 1. Thus, Property (ii)
will also be satisfied for the new inductive step.

With the above analysis, we have proved that the path Pi+1 will have length that is
larger than twice the length of path Pi. Therefore, we obtain the recursion T (n+ 6) > 2T (n)
which leads to the proof of Theorem 8.

6 Conclusions

In this paper, we have constructed AUSO on which the three pivot rules of interest can take
exponentially long paths. Several interesting problems remain open: First and foremost
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is settling if Zadeh’s and Johnson’s rules admit exponential lower bounds even on linear
programs. Moreover, it remains open to decide if Zadeh’s rule admits Hamiltonian paths on
AUSO, a direction suggested by the authors of [1]. Finally, we are interested in exponential
lower bounds for all the history-based rules that are discussed in [1]. We believe that our
methods can be used to prove exponential lower bounds on AUSO for all of those rules.
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