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Abstract
We resolve a number of long-standing open problems in online graph coloring. More specific-
ally, we develop tight lower bounds on the performance of online algorithms for fundamental
graph classes. An important contribution is that our bounds also hold for randomized online
algorithms, for which hardly any results were known. Technically, we construct lower bounds
for chordal graphs. The constructions then allow us to derive results on the performance of
randomized online algorithms for the following further graph classes: trees, planar, bipartite,
inductive, bounded-treewidth and disk graphs. It shows that the best competitive ratio of both
deterministic and randomized online algorithms is Θ(logn), where n is the number of vertices of
a graph. Furthermore, we prove that this guarantee cannot be improved if an online algorithm
has a lookahead of size O(n/ logn) or access to a reordering buffer of size n1−ε, for any 0 < ε ≤ 1.
A consequence of our results is that, for all of the above mentioned graph classes except bipartite
graphs, the natural First Fit coloring algorithm achieves an optimal performance, up to constant
factors, among deterministic and randomized online algorithms.
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1 Introduction

Online graph coloring is a classical problem in graph theory and online computation. It
has applications in job scheduling, dynamic storage allocation and resource management
in wireless networks [19, 23, 24]. A problem instance is defined by an undirected graph
G = (V,E), consisting of a vertex set V and an edge set E. Let |V | = n. The vertices arrive
one by one in a sequence σ = v1, . . . , vn that may be determined by an adversary. Whenever
a new vertex vt arrives, 1 ≤ t ≤ n, its edges to previous vertices vs with s < t are revealed.
An online algorithm A has to immediately assign a feasible color to vt, i.e. a color that is
different from those assigned to the neighbors of vt presented so far. The goal is to minimize
the total number of colors used.

For a graph G, let A(G) be the number of colors used by A. Let χ(G) be the chromatic
number of G, which is the minimum number of colors needed to color G offline. An online
algorithm A is c-competitive if A(G) ≤ c · χ(G) holds for every graph G [25]. If A is a
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7:2 Tight Bounds for Online Coloring of Basic Graph Classes

randomized algorithm, then E[A(G)] is the expected number of colors used by A. The
algorithm is c-competitive against oblivious adversaries if E[A(G)] ≤ c · χ(G) holds for every
G [5]. An oblivious adversary, when determining σ, does not know the outcome of the
random choices made by A. We always evaluate randomized online algorithms against this
type of adversary. When considering specific graph classes, for a deterministic or randomized
algorithm, the competitive factor of c must hold for every graph from the given class.

The framework defined above is the standard online one. It is also interesting to explore
settings where an algorithm is given more power. An online algorithm A has lookahead l if,
upon the arrival of vertex vt, the algorithm also sees the next l vertices vt+1, . . . , vt+l along
with their adjacencies to vertices in {v1, . . . , vt+l}. Alternatively, an algorithm might have a
buffer of size b in which vertices can be stored temporarily. The requirement is that at the
end of step t the algorithm must have colored at least t− b vertices. A buffer is more powerful
than lookahead because it allows the algorithm to partially reorder the input sequence and
delay coloring decisions. The value of a buffer has recently been explored for a variety of
online problems, see e.g. [1, 11] and references therein.

Previous work: For general graphs, the competitive ratios are high compared to the trivial
upper bound of n. Lovasz, Saks and Trotter [22] developed a deterministic online algorithm
that achieves a competitive factor of O(n/ log∗ n). Vishwanathan [26] devised a randomized
algorithm that attains a competitiveness of O(n/

√
logn). This bound was improved to

O(n/ logn) by Halldorsson [16]. Halldorsson and Szegedy [17] proved that the competitive
ratio of any deterministic online algorithm is Ω(n/ log2 n). This lower bound also holds for
randomized algorithms. Moreover, it holds if a randomized algorithm has a lookahead or a
buffer of size O(log2 n) [17].

There has also been considerable research interest in online coloring for various graph
classes. An early and celebrated result proved by Bean [4] in 1976 is that, for trees, every
deterministic online algorithm can be forced to use Ω(logn) colors. The First Fit algorithm
colors every tree with O(logn) colors [15]. The natural strategy First Fit assigns the lowest-
numbered feasible color to each incoming vertex. Since trees have a chromatic number
of 2, the best competitive ratio achievable by deterministic online algorithms is Θ(logn).
For bipartite graphs, there also exists a deterministic online algorithm that uses O(logn)
colors [22], implying that the best competitiveness of deterministic strategies is again Θ(logn).
However, First Fit performs poorly, as there are bipartite graphs for which it requires Ω(n)
colors. Kierstead and Trotter [20] proved that, for interval graphs, the best competitive ratio
of deterministic online algorithms is equal to 3.

A paper directly related to our work is by Irani [18]. She examined d-inductive graphs, also
referred to as d-degenerate graphs. They are defined as the graphs which admit a numbering
of the vertices such that each vertex is adjacent to at most d higher-numbered vertices. Every
planar graph is 5-inductive and every chordal graph G is (χ(G) − 1)-inductive. Irani [18]
proved that First Fit colors every d-inductive graph with O(d · logn) colors. Furthermore,
for every deterministic online algorithm A, there exist graphs such that A uses Ω(d · logn)
colors [18]. Since d-inductive graphs have a chromatic number of at most d + 1, the best
competitive ratio achieved by deterministic online algorithms is Ω(logn). For planar graphs
a tight bound of Θ(logn) holds because trees are planar. However, it was an open problem
if a tight competitiveness of Θ(logn) holds for general chordal graphs. In fact, Irani [18]
raised the question if, for every deterministic online algorithm A and every d, there exists
a chordal graph with chromatic number d such that A uses Ω(d · logn) colors. Finally, for
d-inductive graphs, Irani [18] analyzed deterministic online algorithms with lookahead l and
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showed that the best competitiveness is Θ(min{logn, n/l}). A lower bound of Ω(log logn)
on the competitive ratio of randomized online algorithms for d-inductive graphs was given
by Leonardi and Vitaletti [21].

We address two further graph classes. Downey and McCartin [10] studied online coloring
of bounded treewidth graphs. For an introduction to treewidth see [7]. For any graph of
treewidth d, First Fit uses O(d · logn) colors. This is a consequence of Irani’s work [18]
because a graph of treewidth d is d-inductive [10, 18]. Downey and McCartin [10] showed
that, on graphs of treewidth d, First Fit can be forced to use Ω( d

log(d+1) logn) colors. Last but
not least, a disk graph is the intersection graph of a set of disks in the Euclidean plane. Each
vertex represents a disk; two vertices are adjacent if the two corresponding disks intersect.
Online coloring of disk graphs has received quite some attention because it models frequency
assignment problems in wireless communication networks, see [13] for a survey. The best
competitiveness achieved by a deterministic online algorithm is Θ(min{logn, log ρ}), where
ρ is the ratio of the largest to smallest disk radius [9, 12]. The result relies on the common
assumption that an online algorithm does not use the disk representation, when making
coloring decisions [9, 12, 13]. It has been repeatedly raised as an open problem if the bound
of Θ(min{logn, log ρ}) can be improved using randomization [9, 12, 13].

Recent work on online graph coloring has studied scenarios where an online algorithm can
query oracle information about future input [8, 6]. Moreover, online coloring of hypergraphs
has been explored [2, 3].

Our Contribution: In this paper we settle the performance of online coloring algorithms
for fundamental and widely studied graph classes. More precisely, we prove lower bounds on
the performance of online algorithms. These bounds match the best upper bounds known in
the literature. An important contribution is that our bounds also hold for randomized online
algorithms, for which very few results were known.

First, in Sections 2 and 3 we investigate chordal graphs. They have been studied
extensively, cf. textbook [27]. We remind the reader that a graph is chordal if every induced
cycle with four or more vertices has a chord. For a chordal graph G, the chromatic number
χ(G) is equal to the largest clique size ω(G). Interval graphs are a subfamily of chordal
graphs. Chordal graphs in turn are perfect graphs, for which the offline coloring, maximum
clique and independent set problems can be solved in polynomial time.

In Section 2 we examine deterministic online coloring algorithms. We prove that, for
every deterministic algorithm A and every integer d ≥ 2, there exists a family of chordal
graphs G with χ(G) = d such that A uses Ω(d · logn) colors. This resolves the open problem
raised by Irani [18]. In Section 3 we extend this result to randomized online algorithms. The
statement is identical to the one for deterministic algorithms, except that a randomized
online algorithm uses an expected number of Ω(d · logn) colors. Although the result for
randomized algorithms is more general, we give proofs for both deterministic and randomized
policies. Our lower bound construction for deterministic algorithms exhibits an adversarial
strategy for generating worst-case graphs. Given this strategy, we show how to define a
probability distribution on graphs so that Yao’s principle [28] can be applied. First Fit
colors every chordal graph G with χ(G) = d using O(d · logn) colors. Hence, the optimal
competitiveness of deterministic and randomized online algorithms is Θ(logn).

In Section 4 we derive lower bounds for further graph classes, focusing on randomized
online algorithms. For d = 2, our lower bound construction for chordal graphs generates trees.
It follows that, for any randomized online algorithm A, there exists a family of trees such
that A needs an expected number of Ω(logn) colors. This complements the fundamental and
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early result by Bean [4] for deterministic algorithms. To the best of our knowledge, no lower
bound on the performance of randomized online coloring algorithms for trees was previously
known. Recall that trees have a chromatic number of 2. Vishwanathan [26] gave a lower
bound of Ω(logn) on the expected number of colors used by randomized online algorithms for
graphs of chromatic number 2, i.e. bipartite graphs. However, the graphs in his construction
have cycles. Thus, Vishwanathan’s lower bound does not apply to trees. Obviously, trees
are planar and bipartite. Hence, our result for trees directly implies that every randomized
online algorithm can be forced to use Ω(logn) colors in expectation for graphs of these two
classes. The lower bounds are tight because known deterministic online algorithms color
trees, planar and bipartite graphs with O(logn) colors [15, 18, 22].

Section 4 also addresses inductive and bounded-treewidth graphs. Since every chordal
graph G is (χ(G)− 1)-inductive and has treewidth χ(G)− 1, we derive the following results.
For every randomized online algorithm A and every d ≥ 1, there exists a family of d-inductive
graphs such that A uses Ω(d · logn) colors. The same statement holds for graphs of treewidth
d. We further show that the statement also holds for strongly chordal graphs with chromatic
number d. A chordal graph is strongly chordal if every cycle of even length consisting of at
least six vertices has an odd chord, i.e. an edge connecting two vertices that have an odd
distance from each other in the cycle [14]. First Fit colors any d-inductive graph and any
graph of treewidth d using O(d · logn) colors. We conclude that, for all the graph classes
considered so far, Θ(logn) is the best competitiveness of deterministic and randomized online
algorithms. Finally, in Section 4 we study disk graphs. We prove that, for d = 2, every graph
of the probability distribution defined in Section 3 translates to a disk graph. We then show
that, for every randomized online algorithm A that does not use the disk representation, there
exists a family of disk graphs forcing A to use an expected number of Ω(min{logn, log ρ})
colors, where ρ is again the ratio of the largest to smallest disk radius. Hence randomization
does not improve the asymptotic performance of online coloring algorithms for disk graphs,
cf. [9, 12, 13].

In Section 5 we explore the settings where an online algorithm has lookahead or is
equipped with a reordering buffer. We show that a lookahead of size O(n/ logn) does not
improve the asymptotic performance of randomized online algorithms. We prove the result
for chordal graphs and then derive analogous results for all the other graph classes. Irani [18]
gave a similar result for deterministic algorithms, considering inductive graphs. As a final
result of this paper we demonstrate that a reordering buffer of size n1−ε, for any 0 < ε ≤ 1,
does not yield an improvement in the asymptotic performance guarantees of deterministic
online algorithms. Again, we develop the result for chordal graphs and derive corollaries for
the other graph classes.

Our Proof Technique: We devise a technique for proving lower bounds that is relatively
simple; we view this as a strength of our results. The main idea is to recursively construct
trees of cliques, which in turn form forests. In a recursive step the construction combines
forests by adding or not adding a new clique in a specific way. Our construction resembles
the one by Bean [4] but differs in an important aspect that allows us to obtain lower bounds
for randomized algorithms. The construction by Bean builds a tree Tk, k ∈ N, by joining
trees Tj , for j < k, so that any deterministic online algorithm must use a k-th new color for
some vertex of Tk. This vertex then becomes the root of Tk. An oblivious adversary, playing
against a randomized online algorithm, cannot identify with sufficiently high probability
such vertices exhibiting a new color. Instead, our construction maintains the invariant that
the root vertices of each forest use a large number of colors, given any deterministic online
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algorithm. For randomized algorithms, a corresponding invariant holds with probability of
at least 1/2.

Convention: Unless otherwise stated, logarithms are base 2.

2 Deterministic online algorithms for chordal graphs

We establish a lower bound on the performance of any deterministic online coloring algorithm.

I Theorem 1. Let d ∈ N with d ≥ 2 be arbitrary. For every deterministic online algorithm
A and every n ∈ N with n ≥ 2d2, there exists a n-vertex chordal graph G with chromatic
number χ(G) = d such that A uses Ω(d · logn) colors to color G.

The proof of Theorem 1 relies on Lemma 2, which we prove first.

I Lemma 2. Let d ∈ N with d ≥ 2 be arbitrary. For every deterministic online algorithm A
and every k ∈ N, there exists a chordal graph Gk having chromatic number χ(Gk) = d and
consisting of nk ≤ d2k vertices such that A is forced to use at least ck ≥ (d− 1)k/4 colors to
color Gk.

Proof. We describe how an adversary constructs a chordal graph Gk, k ∈ N. Such a graph is
built up recursively and consists of graphs Gj , where j < k. We assume that d is even. The
construction of Gk can be adapted easily if d is odd; details will be given later. On a high
level Gk is a forest, i.e. a collection of disjoint trees, each having a distinguished root node.
In every tree T of Gk, each tree node represents a clique of size d/2 in Gk. If two tree nodes
uT and vT are connected by a tree edge in T , then any two vertices u ∈ uT and v ∈ vT are
connected by an edge in Gk. Hence uT and vT form a clique of size d in Gk. Since Gk is a
forest, it consists of several connected components. One can add a final vertex and edges in
order to connect the various trees; details will be given at the end of the proof.

We proceed with the concrete construction of Gk, for increasing values of k ∈ N. As
mentioned above, each tree T of Gk has a distinguished root node consisting of d/2 vertices
in Gk. Let r(T ) be the set of these d/2 vertices. Moreover, let r(Gk) be the union of these
sets r(T ), taken over all T of Gk. We refer to the elements of r(Gk) as the root vertices of
Gk. They are important because the online algorithm A will be forced to use a large number
of colors for r(Gk). For any subset V ′ of the vertices of Gk, let CA(V ′) be the set of colors
used by A to color V ′.

The strategy of the adversary to generate a graph Gk is adaptive, i.e. the exact structure
of the graph depends on the coloring decisions of A. Nevertheless, during the bottom-up
construction of Gk, for increasing k ∈ N, the following invariants will be maintained.
(1) Algorithm A uses at least d

4 · k colors for the root vertices of Gk, i.e. |CA (r(Gk))| ≥ d
4 · k.

(2) Gk is a union of connected components, each of which can be represented by a tree
T . Each tree node is a clique of size d/2. Every tree T has a distinguished root node
containing a set r(T ) of d/2 root vertices in Gk.

(3) Gk is chordal.
(4) The maximum clique size is ω(Gk) = d.
(5) The number of vertices satisfies nk ≤ d

2 · (2
k+1 − 1).

Invariants (3) and (4) together imply that χ(Gk) = ω(Gk) = d holds. In invariant (1) and
the following technical exposition integer values are compared to expressions of the form d

4 ·k,
which might not be integer. We remark that the statements, comparisons and calculations
hold without considering the rounded expressions.
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Figure 1 The tree T representing G1.
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Figure 2 The general structure of Gl
k−1 and

Gr
k−1 restricted to the root vertices.

Construction of the base graph G1: G1 is a clique of size d. The adversary may present
the corresponding vertices in an arbitrary order. The set of root vertices r(G1) is an arbitrary
subset R of size d/2 of the vertices of G1. The remaining d/2 vertices form a second tree
node. The resulting tree T is depicted in Figure 1. We can easily verify properties (1–5).
(1) Since R = r(G1) is a clique of size d/2, A uses d/2 colors for it, i.e. |CA(r(G1))| ≥ d

4 .
(2) G1 consists of one connected component which represents a tree, as described above and

shown in Figure 1.
(3) G1 is a clique and thus chordal.
(4) The maximum clique size ω(G1) is exactly d.
(5) There holds n1 = d ≤ 3

2 · d = d
2 · (2

1+1 − 1).

Construction of the graph Gk, k > 1: Assume that the adversary can generate graphs
Gj , for any j < k, satisfying invariants (1–5). The construction of Gk proceeds as follows.
First the adversary recursively generates two independent graphs of type Gk−1, i.e. it twice
executes the strategy for generating a graph Gk−1. Let Glk−1 and Grk−1 be these two graphs.
They are created one after the other. We remark that Glk−1 and Grk−1 need not be identical
because A’s coloring decision in one graph can affect its decisions in the other one.

In the following we focus on the root vertices of Glk−1 and Grk−1. In particular, we
consider the colors used by A. Invariant (1) implies that

∣∣CA(r(Glk−1))
∣∣ ≥ d

4 (k − 1) and∣∣CA(r(Grk−1))
∣∣ ≥ d

4 (k− 1). We distinguish two cases depending on the total number of colors
used, i.e. the cardinality of CA(r(Glk−1) ∪ r(Grk−1)). To this end we introduce some notation.
Assume that Glk−1 consists of s connected components, which we number in an arbitrary way.
Each component/tree T li has a distinguished root containing a set r(T li ) of d/2 root vertices.
We abbreviate Rli = r(T li ), 1 ≤ i ≤ s. Similarly, assume that Grk−1 consists of t connected
components. Set r(T rj ) is the set of root vertices in the component T rj . Let Rlj = r(T rj ),
1 ≤ j ≤ t. There holds r(Glk−1) =

⋃s
i=1 R

l
i and r(Grk−1) =

⋃t
j=1 R

r
j . Figure 2 shows the

general structure of Glk−1 and Grk−1 by focusing on the roots. The left-hand side of the figure
depicts Glk−1 as a union of connected components rooted at Rl1, . . . , Rls, respectively. The
right-hand side shows Grk−1 as a collection of components rooted at Rr1, . . . , Rrs.

Case 1: Assume that
∣∣CA(r(Glk−1) ∪ r(Grk−1))

∣∣ ≥ d
4 · k. In this case the adversary defines

Gk as the union of Glk−1 and Grk−1. No further vertices or edges are added. It is easy to
verify the five invariants because Glk−1 and Grk−1 satisfy them by inductive assumption.
(1) The condition of Case 1 ensures |CA(r(Gk))| =

∣∣CA(r(Glk−1) ∪ r(Grk−1))
∣∣ ≥ d

4 · k.
(2) The invariant is satisfied since Gk is the union of Glk and Grk.
(3) Gk is chordal because Glk and Grk are, and no further vertices or edges have been added.
(4) There holds ω(Gk) = d, as ω(Glk−1) = ω(Grk−1) = d.
(5) Let nlk−1 and nrk−1 be the number of vertices in Glk−1 and Grk−1, respectively. There

holds nk = nlk−1 + nrk−1 ≤ 2 · (d2 · (2
k − 1)) = d

2 · (2
k+1 − 2) ≤ d

2 · (2
k+1 − 1). The first

inequality follows because (5) holds for nlk−1 and nrk−1.
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Figure 3 The graph Gk with the new addition of R.

Case 2: Next assume that
∣∣CA(r(Glk−1) ∪ r(Grk−1))

∣∣ < d
4 · k. In this case the adversary

adds a set R of d/2 vertices that form a clique. Moreover, for every vertex of R there is
an edge to every vertex in Rli, for i = 1, . . . , s. In other words, every vertex of R has edges
to all root vertices of r(Glk−1). The vertices of R together with their adjacent edges may
be presented by the adversary in an arbitrary order. The resulting structure is depicted in
Figure 3. Set R and the connected components of Glk−1 rooted at Rl1, . . . , Rls form a single
component rooted at R. There is a tree edge between R and every Rli, 1 ≤ i ≤ s. The newly
created component forms a tree rooted at R because the components of Glk−1 represent trees
rooted at Rl1, . . . , Rls. Graph Gk is the union of the new component and the components of
Grk−1. The set of root vertices of Gk consists of R and the root vertices of Grk−1. Formally,
r(Gk) = R ∪Rr1 ∪ . . . ,∪Rrt . It remains to verify the five invariants.

(1) We analyze the number of colors that A uses for the root vertices in Gk. In a first
step, among the colors CA(r(Glk−1)) ∪ CA(r(Grk−1)) for the roots of Glk−1 and Grk−1,
we upper bound the number q of colors occurring in CA(r(Grk−1)) only. By assump-
tion

∣∣CA(r(Glk−1)) ∪ CA(r(Grk−1))
∣∣ =

∣∣CA(r(Glk−1) ∪ r(Grk−1))
∣∣ < d

4 · k. There holds
CA(r(Glk−1)) ≥ d

4 (k− 1). We obtain q =
∣∣CA(r(Grk−1)) \ CA(r(Glk−1))

∣∣ =
∣∣CA(r(Grk−1))∪

CA(r(Glk−1))
∣∣−∣∣CA(r(Glk−1))

∣∣ < d
4 . Next consider the vertices in R. We upper bound the

number of colors from CA(r(Grk−1)) that A can use for R. Observe that CA(r(Grk−1)) is the
disjoint union of CA(r(Glk−1))∩CA(r(Grk−1)) and CA(r(Grk−1)) \ CA(r(Glk−1)). Every ver-
tex of R is adjacent to every vertex in r(Glk−1). Hence, A cannot apply a color occurring in
CA(r(Grk−1))∩CA(r(Glk−1)) to a vertex in R. Only a color of CA(r(Grk−1)) \ CA(r(Glk−1))
is feasible, and the latter set has cardinality q < d/4. Since R is a clique of size d/2 al-
gorithm A must use at least d/2−q > d/4 colors not contained in CA(r(Grk−1)) to color the
vertices of R. As r(Gk) = R ∪ r(Grk−1), we conclude |CA(r(Gk))| =

∣∣CA(R ∪ r(Grk−1))
∣∣ =∣∣CA(r(Grk−1))

∣∣+
∣∣CA(R) \ CA(r(Grk−1))

∣∣ ≥ d
4 (k − 1) + d

4 = d
4k.

(2) By construction Gk is a collection of connected components, forming trees rooted at R
and Rr1, . . . , Rrt , respectively.

(3) In Gk consider a simple cycle C with at least four vertices and assume that at least one
vertex is in R. If three or more vertices of C are in R, then there is a chord because R
is a clique. If C contains one or two vertices of R, then C can visit only one connected
component of Glk−1. Suppose that it visits the one rooted at Rli. Cycle C must contain
two vertices of Rli. Each of these two vertices has an edge to every vertex of R in C. Hence
C has a chord. Since Glk−1 and Grk−1, and thus the components rooted at Rl1, . . . , Rls
and Rr1, . . . , Rrt , are chordal, so is Gk.

(4) Set R and each Rli, 1 ≤ i ≤ s, form a clique of size d. The vertices of R are not connected
to any vertices outside Rli, 1 ≤ i ≤ s. Hence no other cliques are formed by the addition
of R. Since ω(Glk−1) = ω(Grk−1) = d it follows ω(Gk) = d.

(5) Again, let nlk−1 and nrk−1 be the number of vertices in Glk−1 and Glk−1. We have
nk = nlk−1 + nrk−1 + d

2 ≤ 2 · (d2 · (2
k − 1)) + d

2 = d
2 · (2

k+1 − 2) + d
2 = d

2 · (2
k+1 − 1).

The construction and analysis of Gk is complete.
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Graph Gk consists of several connected components if k > 1. The adversary can create a
connected graph by adding a final vertex vf that has an edge to exactly one root vertex in
each of the components. The resulting graph remains chordal because there is no simple cycle
containing vf . By the addition of vf the maximum clique size does not change. Including vf
the total number of vertices is upper bounded by d

2 (2k+1 − 1) + 1 ≤ d2k because d ≥ 2. The
lemma follows from invariants (1) and (3–5) because χ(Gk) = ω(Gk) = d.

We finally address the case that d is odd. In this case the adversary executes the graph
construction described above for parameter d − 1, which is even. In the end when Gk is
generated for the desired k, the adversary adds a final vertex to each base graph G1. This
vertex has edges to every other vertex of the corresponding G1. This increases the maximum
clique size from d − 1 to d. The new graph remains chordal. The number of colors used
by algorithm A is at at least d−1

4 k. We observe that the number of base graphs G1 in Gk
is 2k−1. Hence, in the extended graph the total number of vertices is upper bounded by
d−1

2 (2k+1 − 1) + 2k−1 ≤ d
2 (2k+1 − 1). If k > 1, the adversary can add a final vertex to link

the various components. Again the lemma follows. J

Proof of Theorem 1. Given d and n, let k = blog(n/d)c. There holds k ∈ N because
n ≥ 2d2 > 2d. For every deterministic online algorithm, by Lemma 2, there exists a chordal
graph Gk with chromatic number χ(Gk) = d such that A uses at least ck ≥ (d − 1)k/4
colors. Graph Gk has nk ≤ d2k vertices. By the choice of k = blog(n/d)c, we have
nk ≤ n. To Gk we add n − nk vertices, all of which have one edge to an arbitrary vertex
of Gk. The resulting n-vertex graph remains chordal and χ(G) = d. Since d ≥ 2, there
holds ck ≥ dk/8. We have k ≥ logn − log d − 1. Inequality n ≥ 2d2 is equivalent to
d ≤

√
n/2. Thus, k ≥ log(n/2)− 1/2 · log(n/2) = 1/2 · log(n/2). As n ≥ 2d2 ≥ 4, there holds

log(n/2) ≥ 1/2 · logn. Hence, the number of colors used by A is at least ck ≥ d logn/32. J

In Theorem 1 the lower bound on n can be reduced from 2d2 to 2d1+ε, for any 0 < ε < 1.
Then the number of colors used by A is Ω(ε · d · logn).

3 Randomized online algorithms for chordal graphs

We extend the result of Theorem 1 to randomized algorithms against oblivious adversaries.

I Theorem 3. Let d ∈ N with d ≥ 2 be arbitrary. For every randomized online algorithm
A and every n ∈ N with n ≥ 12d2, there exists a n-vertex chordal graph G with chromatic
number χ(G) = d, presented by an oblivious adversary, such that the expected number of
colors used by A to color G is Ω(d · logn).

In order to prove Theorem 3 we resort to Yao’s principle [28] and show the following Lemma 4.

I Lemma 4. Let d ∈ N with d ≥ 2 be arbitrary. For every k ∈ N, there exists a probability
distribution on a set Gk of chordal graphs with the following properties. For every Gk ∈ Gk,
χ(Gk) = d and the number of vertices is at most d · 12k. The expected number of colors used
by any deterministic online algorithm to color a graph drawn according to the distribution is
at least (d− 1)k/8.

Proof. For every k ∈ N we define a set Gk of chordal graphs Gk, each having a chromatic
number of d. Moreover, we specify the order in which the vertices of any Gk ∈ Gk are
presented to a deterministic online algorithm A. The distribution on Gk is the uniform one,
i.e. each Gk ∈ Gk is chosen with the same probability. We assume that d is even. The
definition of Gk can be adapted easily if d is odd; details are given at the end of the proof.



S. Albers and S. Schraink 7:9

The set Gk is built recursively based on Gk−1. The construction of graphs Gk ∈ Gk is a
generalization of the one presented in the proof of Lemma 2. A major difference is that any
Gk ∈ Gk contains twelve graphs of Gk−1, which are grouped into six pairs. For each pair a
clique of size d/2 may or may not be added. As before, every Gk ∈ Gk is a union of connected
components. Each such component can be represented by a tree with a distinguished root
vertex. Every tree vertex is a set of d/2 vertices forming a clique in Gk. We reuse the
notation of the proof of Lemma 2. Given Gk ∈ Gk, for any component/tree T of Gk, r(T ) is
the set of d/2 vertices in the root of T . Set r(Gk) is the union of all r(T ), taken over all T
of Gk. Finally CA(r(Gk)) is the set of colors used by A for the vertices of r(Gk).

During the recursive construction of Gk, for increasing k ∈ N, the following invariants
are maintained. Compared to the proof of Lemma 2, (1) and (5) differ. Invariant (1) states
that, for a randomly chosen Gk, every deterministic online algorithm needs, with probability
greater than 1/2, at least dk/4 colors for the root vertices r(Gk). Invariant (5) gives an
adjusted bound on the size of any Gk.

(1) If Gk is chosen uniformly at random from Gk, then for any deterministic online al-
gorithm A, Pr[|CA (r(Gk))| ≥ dk/4] > 1/2. This holds independently of other connected
components A might have already colored.

(2) Every Gk ∈ Gk is a union of connected components, each of which can be represented by
a tree T . Each tree node is a clique of size d/2. Every tree T has a distinguished root
containing a set r(T ) of d/2 root vertices in Gk.

(3) Every Gk ∈ Gk is chordal.
(4) For every Gk ∈ Gk, the maximum clique size is ω(Gk) = d.
(5) For every Gk ∈ Gk, the number nk of vertices satisfies nk ≤ d(12k − 1).

Graph set G1: The set only contains G1, the base graph used in the proof of Lemma 2,
which is a clique of size d. The vertices of G1 may be presented in any order to a deterministic
online algorithm. Again, the set r(G1) of root vertices is an arbitrary subset of size d/2 of
the vertices of G1. The remaining d/2 vertices form a second tree node. Every deterministic
online algorithm, with probability 1, needs d/2 colors for r(G1), which implies (1). Invariants
(2–4) are obvious. As for (5), there holds n1 = d ≤ d(12− 1).

Graph set Gk, k > 1: Assume that the set Gk−1 satisfying (1–5) has been constructed.
First, in order to build Gk, all possible 12-tuples of graphs of Gk−1 are formed. In assigning
tuple entries, graphs of Gk−1 are selected with replacement. Hence, a total of |Gk−1|12 tuples
are built. For each tuple, 26 graphs are added to Gk in the following way. Let τ be any
fixed tuple. Six graph pairs are formed. For i = 1, . . . , 6, let Gi,lk−1 and Gi,rk−1 be the graphs
in tuple entries 2i− 1 and 2i, respectively. To the i-th pair a clique Ri of size d/2 may or
may not be added. The possible additions, over the six pairs, can be represented by a bit
vector ~b = (b1, . . . , b6). More specifically, given τ and any such bit vector ~b, a graph Gk is
constructed as follows. For i = 1, . . . , 6, a subgraph Gik is generated. If bi = 0, then Gik is the
union of Gi,lk−1 and Gi,rk−1. The set r(Gik) of root vertices is the union of r(Gi,lk ) and r(Gi,rk ).
If bi = 1, then a clique Ri of size d/2 is added to Gi,lk−1 and Gi,rk−1. Every vertex of Ri has
an edge to every vertex of r(Gi,lk−1). Subgraph Gik consists of the newly created component
rooted at Ri and r(Gi,rk−1), i.e. r(Gik−1) = Ri ∪ r(Gi,rk−1). Graph Gk is the union of the Gik
and the set r(Gk) is the union of the r(Gik), 1 ≤ i ≤ 6. When Gk is presented to A, the
subgraphs Gik are revealed one by one, 1 ≤ i ≤ 6. For each Gik the graphs Gi,lk−1 and Gi,rk−1
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are presented recursively. Finally, the vertices of Ri, if they exist, are shown. It remains to
verify the invariants.

(1) Let Gk be a graph drawn uniformly at random from Gk. Consider any subgraph
Gik, 1 ≤ i ≤ 6, containing Gi,lk and Gi,rk . By the construction of Gk, both Gi,lk and Gi,rk
represent graphs drawn uniformly at random from Gk−1. Let A be any deterministic online
algorithm. Invariant (1) for k − 1 implies Pr[|CA(r(Gi,lk−1))| ≥ d(k − 1)/4] > 1/2 and
Pr[|CA(r(Gi,rk−1))| ≥ d(k − 1)/4] > 1/2. Moreover it implies Pr[|CA(r(Gi,lk−1))| ≥ d(k −
1)/4 and |CA(r(Gi,rk−1))| ≥ d(k−1)/4] > 1/4. Let E i be the latter event that |CA(r(Gi,lk−1))| ≥
d(k − 1)/4 and |CA(r(Gi,rk−1))| ≥ d(k − 1)/4 hold.

Assume that E i holds. There are two cases, which correspond to those analyzed in the
proof of Lemma 2. If |CA(r(Gi,lk−1) ∪ r(Gi,lk−1))| ≥ dk/4, then |CA(r(Gik))| ≥ dk/4 if Ri is
not added to Gi,lk and Gi,rk , which happens with probability 1/2. On the other hand, if
|CA(r(Gi,lk−1) ∪ r(Gi,rk−1))| < dk/4, then the addition of Ri ensures that |CA(r(Gik))| ≥ dk/4.
Again, Ri is added with probability 1/2. In either case, given E i, Pr[|CA(r(Gik))| ≥ dk/4] ≥
1/2. We obtain Pr[|CA(r(Gik))| ≥ dk/4] ≥ Pr[|CA(r(Gik))| ≥ dk/4 | E i] · Pr[E i] ≥ 1

2 ·
1
4 = 1

8 .
Equivalently, Pr[|CA(r(Gik))| < dk/4] ≤ 7/8. If |CA(r(Gk))| < dk/4, then |CA(r(Gik))| < dk/4
must hold true for i = 1, . . . , 6. The latter event occurs with probability at most (7/8)6.
We conclude Pr[|CA(r(Gk))| ≥ dk/4] ≥ 1− (7/8)6 > 1/2. This holds independently of A’s
coloring decisions made in other components.

Invariants (2–4) are immediate, based on the arguments given in the proof of Lemma 2.
As for the number of vertices of any Gk ∈ Gk, we observe that it is upper bounded by
12 · d · (12k−1 − 1) + 6 · d/2 < d · (12k − 1).

If d is odd, the above construction of sets Gk, k ≥ 1, is performed for parameter d− 1.
In G1, graph G1 is extended by a single vertex having edges to all other vertices in G1.
Invariant (5) holds because any graph Gk ∈ Gk contains 12k−1 copies of G1.

The lemma follows from (1) and (3–5). In particular, (1) implies that the expected number
of colors used by any deterministic online algorithm is at least 1/2·(d−1)k/4 = (d−1)k/8. J

Proof of Theorem 3. For the given d and n, choose k = blog(n/d)c. In this proof, logarithms
are base 12. There holds k ∈ N, because n ≥ 12d2 > 12d. By Lemma 4, there exists a
probability distribution on a set Gk of chordal graphs with chromatic number d such that
the expected number of colors used by every deterministic online algorithm is at least
(d − 1)k/8. The number of vertices of any graph in Gk is at most d12k. Hence, by the
choice of k, it is upper bounded by n. For every Gk ∈ Gk, we add a suitable number
of vertices so that the total number of vertices is equal to n. Every new vertex has one
edge to an arbitrary vertex in the original graph Gk. Hence, there exists a probability
distribution on a set of n-vertex graphs with chromatic number d such that the expected
number of colors used by any deterministic online algorithm is at least (d− 1)k/8. By Yao’s
principle [28], for every randomized online algorithm, there exists an n-vertex chordal graph
G with χ(G) = d such that the expected number of color is ck ≥ (d− 1)k/8 ≥ dk/16. We
have k ≥ logn− log d− 1 = log(n/12)− log d ≥ 1/2 · log(n/12), because 12d2 ≤ n, and hence
d ≤

√
n/12. Since 12d2 ≤ n, we have log(n/12) ≥ 1/3 · logn and thus ck ∈ Ω(d · logn). J

Again, in Theorem 3 we can reduce the lower bound on n from 12d2 to 12d1+ε, for any
0 < ε < 1. The expected number of colors used by A is Ω(ε · d · logn).
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4 Further graph classes

Given Theorem 3, we can derive lower bounds on the performance of randomized online
coloring algorithms for other important graph classes.

4.1 Trees, planar, bipartite, d-inductive and bounded-treewidth graphs
I Corollary 5. For every randomized online algorithm A and every n ∈ N with n ≥ 48, there
exists a n-vertex tree T , presented by an oblivious adversary, such that the expected number
of colors used by A to color T is Ω(logn).
The proof is given in the full version of the paper. Since trees are planar and bipartite graphs,
we obtain the following two corollaries.
I Corollary 6. For every randomized online algorithm A and every n ∈ N with n ≥ 48, there
exists a n-vertex planar graph G, presented by an oblivious adversary, such that the expected
number of colors used by A to color G is Ω(logn).
I Corollary 7. For every randomized online algorithm A and every n ∈ N with n ≥ 48,
there exists a n-vertex bipartite graph G, presented by an oblivious adversary, such that the
expected number of colors used by A to color G is Ω(logn).
Every chordal graph G is (χ(G)− 1)-inductive and has treewidth ω(G)− 1 = χ(G)− 1 [7].
Hence, Theorem 3 gives the following two results.
I Corollary 8. Let d ∈ N be an arbitrary positive integer. For every randomized online
algorithm A and every n ∈ N with n ≥ 12d2, there exists a n-vertex d-inductive graph G,
presented by an oblivious adversary, such that the expected number of colors used by A to
color G is Ω(d · logn).
I Corollary 9. Let d ∈ N be an arbitrary positive integer. For every randomized online
algorithm A and every n ∈ N with n ≥ 12d2, there exists a n-vertex graph G of treewidth d,
presented by an oblivious adversary, such that the expected number of colors used by A to
color G is Ω(d · logn).
The graphs used in the proof of Theorem 3 are strongly chordal, which yields the following
corollary. The proof can be found in the full version of the paper.
I Corollary 10. Let d ∈ N be an arbitrary positive integer. For every randomized online
algorithm A and every n ∈ N with n ≥ 12d2, there exists a n-vertex strongly chordal graph G
with chromatic number χ(G) = d, presented by an oblivious adversary, such that the expected
number of colors used by A to color G is Ω(d · logn).

4.2 Disk graphs
A disk graph is the intersection graph of disks in the Euclidean plane. Every vertex corresponds
to a disk; two vertices are connected by an edge if the respective disks intersect. The following
theorem implies that it is not possible to improve on the performance of deterministic online
coloring algorithms by using randomization. We use the common assumption that when an
online algorithm makes coloring decisions, it does not use the disk representation [9, 12, 13].
The proof of Theorem 11 is presented in the full version of the paper.
I Theorem 11. Let A be an arbitrary randomized online algorithm. For every n ∈ N and
ρ ∈ R with min{n, ρ} ≥ 25, there exists a n-vertex disk graph G with chromatic number
χ(G) = 2, presented by an oblivious adversary, in which the ratio of the largest to smallest
disk radius is ρ, such that the expected number of colors used by A is Ω(min{logn, log ρ}).

ESA 2017



7:12 Tight Bounds for Online Coloring of Basic Graph Classes

5 Lookahead and buffer reordering

Lookahead: We first assume that a randomized online coloring algorithm A has lookahead l.
Theorem 12 below shows that, for chordal graphs, a lookahead of size O(n/ logn) leads to
no improvement. The proof is given in the full version of the paper.

I Theorem 12. Let d ∈ N and c ∈ R be arbitrary numbers with d ≥ 2 and c ≥ 1. For every
randomized online algorithm A with lookahead l and every n ∈ N with n ≥ max{12d2, d ·122c}
and l ≤ cn/ log(n/d), there exists a n-vertex chordal graph G with chromatic number χ(G) = d,
presented by an oblivious adversary, such that the expected number of colors used by A to
color G is Ω( 1

c · d · logn).

Based on Theorem 12 we can derive analogous results for all the other graph classes
considered in Section 4. Loosely speaking, a lookahead of size O(n/ logn) is of no help. The
next Corollary 13 addresses trees. Exactly the same statement holds for planar and bipartite
graphs, respectively. For brevity, we omit the corresponding corollaries.

I Corollary 13. Let c ≥ 1 be an arbitrary real number. For every randomized online algorithm
A with lookahead l and every n ∈ N with n ≥ max{48, 2 · 122c} and l ≤ cn/ log(n/2), there
exists a n-vertex tree G, presented by an oblivious adversary, such that the expected number
of colors used by A to color G is Ω( 1

c · logn).

For d-inductive graphs, graphs of treewidth d and strongly chordal graphs with chromatic
number d, the formulation of Theorem 12 directly carries over. In fact, the result holds for
all integers d ≥ 1. For disk graphs, Theorems 11 and 12 give the following corollary.

I Corollary 14. Let c ∈ R with c ≥ 1 be arbitrary. For every randomized online algorithm A
with lookahead l, every n ∈ N and ρ ∈ R with min{n, ρ} ≥ 2 ·122c and l ≤ cn/ log(n/2), there
exists a n-vertex disk graph G with chromatic number χ(G) = 2, presented by an oblivious
adversary, in which the ratio of the largest to smallest disk radius is ρ, such that the expected
number of colors used by A to color G is Ω( 1

c · logn).

Buffer reordering: Next we examine the setting in which a deterministic online coloring
algorithm A has a reordering buffer. We prove that a buffer of size n1−ε, for any 0 < ε ≤ 1,
does not improve the asymptotic performance of the algorithms.

I Theorem 15. Let d ∈ N and ε ∈ R be arbitrary numbers with d ≥ 2 and 0 < ε ≤ 1.
For every deterministic online algorithm A having a buffer of size b and every n ∈ N with
b ≤ n1−ε and n ≥ max{2d2, 27/ε}, there exists a n-vertex chordal graph G with chromatic
number χ(G) = d such that the number of colors used by A is Ω(ε · d · logn).

The proof of Theorem 15 is presented in the full version of the paper. Given Theorem 15, we
derive analogous results for the other graph classes. Corollary 16 shows a result for trees.
Identical statements hold for planar and bipartite graphs. Again, for brevity, we omit the
corresponding corollaries.

I Corollary 16. Let ε ∈ R with 0 < ε ≤ 1 be arbitrary. For every deterministic online
algorithm A having a buffer of size b and every n ∈ N with b ≤ n1−ε and n ≥ 27/ε, there
exists a n-vertex tree G such that the number of colors used by A is Ω(ε · logn).

For d-inductive graphs, graphs of treewidth d and strongly chordal graphs with chromatic
number d, the statement of Theorem 15 directly carries over. In this case it holds for any
d ≥ 1. The corollaries are omitted here. Finally, we give a result for disk graphs.
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I Corollary 17. Let A be an arbitrary deterministic online algorithm having a buffer of size
b and let ε ∈ R be an arbitrary real number with 0 < ε ≤ 1. For every n ∈ N and ρ ∈ R
with b ≤ min{n1−ε, ρ1−ε} and min{n, ρ} ≥ 27/ε, there exists a n-vertex disk graph G with
chromatic number χ(G) = 2, in which the ratio of the largest to smallest disk radius is ρ,
such that the number of colors used by A is Ω(ε ·min{logn, log ρ}).
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