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Abstract
While long reads produced by third-generation sequencing technology from, e.g, Pacific Bios-
ciences have been shown to increase the quality of draft genomes in repetitive regions, fun-
damental computational challenges remain in overcoming their high error rate and assembling
them efficiently. In this paper we show that the de Bruijn graph built on the long reads can
be efficiently and substantially disentangled using optical mapping data as auxiliary information.
Fundamental to our approach is the use of the positional de Bruijn graph and a succinct data
structure for constructing and traversing this graph. Our experimental results show that over
97.7% of directed cycles have been removed from the resulting positional de Bruijn graph as
compared to its non-positional counterpart. Our results thus indicate that disentangling the de
Bruijn graph using positional information is a promising direction for developing a simple and
efficient assembly algorithm for long reads.
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1 Introduction

Today, high-throughput DNA sequencing technology is central to every major (re)sequencing
and de novo assembly project. Complex and long repetitive regions in genomes are a challenge
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for accurate assembly, especially for short-read sequencing technologies like Illumina, and this
has driven a recent shift toward long-read sequencing technologies like Pacific Biosciences
(PacBio). Long reads have already been successful in disambiguating the repetitive regions,
leading to draft assemblies with fewer mis-assembled regions [25]. To date, however, long
reads have a high error rate, which increases the complexity of assembly. For example,
PacBio produces reads up to 50,000 bp in length, but with an insertion/deletion error rate of
15–20% [15].

Most assemblers targeting short read technologies use the Eulerian approach [13, 24]. In
this assembly paradigm, all distinct k-mers (substrings of length k) are first extracted from
the set of reads. A de Bruijn graph is then constructed with a vertex v for every (k − 1)-mer
present in the set of reads, and an edge (v, v′) for every observed k-mer in the reads with
(k − 1)-mer prefix v and (k − 1)-mer suffix v′. The prefix of string S is any substring of S

that includes its first character, and accordingly the suffix of string S is any substring of it
that includes its last character. A contig corresponds to a non-branching path through this
graph. SPAdes [1], ABySS [29], and Velvet [32] are examples of short read assemblers using
the Eulerian approach. This approach is computationally efficient but does not easily adapt
to reads with a high error rate. Moreover, applying it to long reads seems to discard the
long range information in those reads.

With the above-mentioned caveats in mind, the first assemblers for long reads have
adopted the Overlap-Layout-Consensus (OLC) approach. OLC first calculates the overlap
between all pairs (or a subset of the pairs) of sequence reads and builds an overlap graph
(in which there is an edge between pairs of reads having highest overlap). Similarly to the
Eulerian approach, contigs then correspond to the non-branching paths through this graph.
The computational bottleneck in OLC is the computation of (approximate) suffix-prefix
overlaps between reads, which becomes computationally infeasible when the number of reads
and the error rate grows.

Optical mapping is another technology that has been proposed for solving the repetitive
regions in genomes. A genome-wide optical map contains the approximate genomic location
of each restriction site corresponding to one or more restriction enzymes. Put another way,
the optical map is the sequence of locations corresponding to all the occurrences of a short
nucleotide sequence (typically 5–7bp) in the genome. Optical maps span significantly larger
genomic regions than long reads: the typical region covered by a genome wide optical map is
300 kbp [9], as opposed to the 15 kbp average for long reads. This quality combined with
recent increased commercial availability, have lead to a rise in both data generation and tool
development [31, 18, 16].

In this paper we consider Eulerian assembly applied to long reads in the presence of
optical map data. In particular, we propose to use genome-wide optical maps to disentangle a
de Bruijn graph constructed from long read data. In our approach we first correct sequencing
errors in the long reads and then align the reads to the genome-wide optical map. This
alignment information is then incorporated into the de Bruijn graph by constructing a
positional de Bruijn graph, which is constructed from a set of positional k-mers (k-mer
sequences with approximate positions associated with them) rather than k-mers alone [26].
Since this variant of the de Bruijn graph effectively creates a separate k-mer for each distinct
occurrence of it in the genome, a space-efficient representation is vital for the graph to
be constructed and used. We devise a space-efficient representation of the positional de
Bruijn graph by augmenting a succinct BWT-based de Bruijn graph data structure [3]. We
implement this method in a tool called Koota (Finnish for “assemble”).

More specifically, our contributions are as follows: (1) a new Eulerian approach for
long read assembly that is based on the positional de Bruijn graph; (2) a space-efficient
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representation of the positional de Bruijn graph, and (3) the first long read-optical map
hybrid assembler. Our experimental results demonstrate that the positional information
greatly reduces the complexity of the de Bruijn graph. In this paper, we study this complexity
in terms of the number of cycles in the graph – which, using standard genome assembly
terminology, are referred to as bulges (undirected cycles) and whirls (directed cycles). In our
experiments on E. coli and yeast data all bulges and more than 97% of whirls were removed
from the graph when positional information was introduced.

The results of Koota on E. coli and yeast are compared to those of ABruijn [17] and
Canu [14], two leading long read assemblers. These were selected for comparison since
ABruijn [17] is currently the only other de Bruijn graph long-read assembler, and Canu has
been shown to be the most memory and time efficient long read assembler [14]. Koota
was competitive with respect to both memory and runtime. Further, we show that Koota
achieved the lowest mismatch rate for both yeast and E. coli, and had a competitive genome
fraction. This later statistic demonstrates that the fraction of the genome in the graph is not
reduced by the removal of whirls and complexities within the graph. Thus these results show
that disentangling the de Bruijn graph using positional information is a promising direction
to develop an efficient and simple algorithm for long read assembly. Lastly, we note that
Koota is freely available at https://github.com/baharpan/cosmo/tree/positional.

2 Background and Related Work

Optical Mapping

Optical mapping is a technology that generates ordered, high-resolution, restriction maps of
an entire genome. Optical maps are produced by immobilizing DNA molecules on a plate and
applying a restriction enzyme on the molecules. Restriction enzyme will cleave the molecules
at a specific DNA pattern E. The molecules are then imaged and the length of the fragments
between restriction sites can be measured from the image. An optical map of a sequence
is thus a sequence R = r1, r2, . . . , rn where each ri is the length of the fragment between
consecutive restriction sites. Given a DNA sequence X and an enzyme recognizing the
restriction site pattern E we can create an in silico digested optical map of it by mimicking
how the enzyme cleaves the DNA molecule. Let i1, i2, . . . , ik be the occurrences of E in X.
Then the in silico digested optical map of X is M(X|E) = i2 − i1, i3 − i2, . . . , ik − ik−1. For
example if X =ACGAGACGGTTACGTG and E =ACG then the occurrences of E in X are 1, 6, 12
and M(X|E) = 5, 6.

Since 2015 several methods for alignment of optical mapping data have become available,
including OPTIMA [31], Maligner [18], and OMBlast [16]. Previously optical maps have
been used for genome assembly in SOMA [20]. SOMA is a Eulerian assembler that uses both
sequence data and optical mapping data. It builds the de Bruijn graph from short sequence
reads and uses the optical map to eliminate or promote paths in the de Bruijn graph.

Long-Read Assemblers

Canu [14], HGPA [7] and MHPA [2] are long read assemblers using the OLC approach. Canu
is a fork of Celera assembler [19], which uses tf-idf weighted MinHash and a sparse assembly
graph construction on its overlapping strategy. HGPA uses the Celera assembler [19] for the
assembly and performs self-correction of continuous long reads sequences (CLR). MHPA [2],
uses a probabilistic, locality-sensitive hashing for overlapping long reads that also works along
with Celera assembler [19]. Lin et al. [17] present an Eulerian approach to assembling long
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reads. Their tool, called ABruijn, constructs the A-Bruijn graph from a set of sufficiently
frequent k-mers and uses path extension to derive genomic paths from short-read paths
during traversal of the graph; errors are later corrected using an OLC approach. Lin et al.
[17] demonstrate that in order to correctly assemble long reads, only a small number of the
reads are actually needed. They extract all sufficiently frequent distinct k-mers from long
sequence reads, the rationale being that those with low frequency are erroneous and those
with high frequency originate from repetitive regions. Building the de Bruijn graph with this
smaller set of filtered k-mers removes whirls and bulges in the resulting graph and simplifies
the assembly process. The hybrid assembly using both short and long reads has also been
considered for example by Pendleton et al. [22]. They combine long single-molecule and short
high-throughput sequences to generate a hybrid genome assembly, which they then use to
determine single nucleotide variants and structural variations.

Succinct Representations

Fundamental to our method is the succinct data structure for the positional de Bruijn graph.
Although, there is a significant amount of work in constructing succinct de Bruijn graph
representations – one of the first such approaches was introduced by Simpson et al. [28] as
part of the development of the ABySS assembler – this is the first such representation for
this de Bruijn graph variant.

Minia, by Chikhi and Rizk [6], uses a Bloom filter to store edges. They traverse the
graph by generating all possible outgoing edges at each node and testing their membership
in the Bloom filter. The representation that most closely reflects our work is BOSS graph
representation of Bowe, Onodera, Sadakane and Shibuya [3] which is based on the Burrows-
Wheeler transform [4]. More recently, Chikhi et al. [5] implemented the de Bruijn graph
using an FM-index and minimizers.

3 Methods

In this section we present our method for disentangling the de Bruijn graph using a genome-
wide optical map. We start by describing how the sequencing errors in the reads are corrected
and how the long reads are aligned to the genome-wide optical map. Then we define the
positional de Bruijn graph and describe methods to construct and extract reads from it.

3.1 Error Correction and Alignment of Long Reads
Before we can construct the positional de Bruijn graph, each long read must be localized
on the genome-wide optical map. This involves three subprocesses: error correction, in
silico digestion, and alignment. We first apply two rounds of the LoRMA long-read error
correction method [27] to the long reads: once before, and once after aligning them to the
optical map. LoRMA, which is purely long-read based, proceeds in three phases. First a de
Bruijn graph based approach is used for rough correction. The regions of the reads deemed
to be unrecoverable by the de Bruijn graph based method are then cut out. This process
trims and splits the reads. In the final phase multiple alignments are formed between similar
reads. In this work we used the intermediate reads after de Bruijn graph based correction to
avoid splitting the reads.

After this first round of error correction, we create for each read r an in silico digested
optical map M(r|E) where E is the restriction site pattern(s) recognized by the restriction
enzyme(s) used to build the genome-wide optical map. We then align these in silico digested
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Genome:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S: C A T A T A G C A T A C A T A A G →M(S|’CAT’) = 7, 4

Reads:

1 2 3 4 5 6 7 8 9 10 11 12
r1 : A G C A T A C A T A A G →M(r1|’CAT’) = 4 → pos(r1) = 6

1 2 3 4 5 6 7 8 9 10 11 12 13
r2 : C A T A T T T A G C A T A →M(r2|’CAT’) = 9 → pos(r2) = 1

Positional k-mers:
r1: AGC GCA CAT ATA TAC ACA CAT ATA TAA AAG

r2: CAT ATA TAT ATT TTT TTA TAG AGC GCA CAT ATA

6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11

Positional dBG (∆ = 4): CAT ATA TAT ATT TTT TTA TAG AGC GCA CAT ATA TAC ACA TAA AAG

1 2 3 4 5 6 7 72 82 103 113 10 11 14 15

Positional dBG with
merged k − 1-mers: CAT ATA TAT ATT TTT TTA TAG AGC GCA TAC ACA TAA AAG

1,103 2,113 3 4 5 6 7 72 82 10 11 14 15

Figure 1 Positional de Bruijn graph G4,4 constructed from the reads r1 and r2 and the genome
wide optical map M(S|’CAT’). Top of the figure shows the genome sequence S and the corresponding
genome wide optical map. Note that S is not available to the method but it is shown here for
clarity. Our method then in silico digests the error corrected reads r1 and r2 producing optical maps
M(r1|’CAT’) and M(r2|’CAT’). They are aligned against the genome wide optical map yielding
the positions 6 and 1 for the reads r1 and r2, respectively. The positional (k − 1)-mers obtained
from the reads and their positions are shown in the middle. The positional de Bruijn graph is then
constructed by gluing together (k − 1)-mers whose positions are within ∆ = 4 of each other. The
position of a glued k− 1-mer is the average of the positions of the original k− 1-mers. The positions
of the (k − 1)-mers are shown above the nodes and the multiplicity of the positional (k − 1)-mer is
shown as a subscript if it is greater than one. Note that the positional (k − 1)-mers (AGC, 6) and
(AGC, 8) are correctly glued together as they originate from the same genomic positions but are
derived from different reads. On the other hand we see that although the positional (k − 1)-mers
(CAT, 8), (CAT, 12), and (CAT, 10) do not all originate from the same genomic position, they are all
glued together creating a small whirl in the graph. Bottom of the figure shows the positional de
Bruijn graph where all positional (k − 1)-mers with the same (k − 1)-mer are merged to a single
node with a list of positions and their multiplicities.

reads to the genome-wide optical map using the method by Valouev et al. [30]. Of the
alignments returned by that method, we retain only those for which at least 40% of fragments
align (this threshold was found experimentally, and reduces the number of clearly erroneous
alignments reported by Valouev et al.’s software). A second round of error-correction is then
applied to this subset using LoRMA. We saw superior results with the E. coli data (see
Section 4) when we error corrected a second time, but results were not substantially improved
by a third round of error correction. After these steps we have a set of error corrected reads
and for each of these reads we have an approximate genomic position based on the alignment
to the genome wide optical map. This set of aligned reads and their genomic positions will
then be used to build the positional de Bruijn graph.

3.2 Succinct Positional de Bruijn Graph

After the alignment of the reads to the optical map, the positional k-mers are extracted from
this alignment. The set of positional k-mers from a given read r of length n is the set of all
distinct k-length substrings (k-mers) in r with a list of the positions where the substring
occurred in the optical map. Thus, we can state this more formally using the notation from
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Ronen et al. [26] as follows: n− k + 1 positional k-mers ([r1 . . . rk], i), ([r2 . . . rk+1], i + 1) ,

. . . , ([rn−k+1 . . . rn], i + n− k) can be extracted from r = [r1 . . . rn] when aligned to i of the
optical map. Thus, one k-mer can have many different positions because they can come from
different reads which allows us to disambiguate k-mers at different positions. The multiplicity
of a positional k-mer occurring at position p is defined as the number of the occurrences
of that k-mer at p. We further note that the alignment to the optical map also gives the
orientation of each read and thus also the orientation of each k-mer. Therefore, unlike in a
de Bruijn graph without positional information, there is no need to merge a k-mer and its
reverse complement which simplifies the construction and processing of the graph.

Next, we define the positional de Bruijn graph using an analogous constructive definition
to the one for the de Bruijn graph [23]. Hence, to construct the positional de Bruijn graph
Gk,∆ for a multi-set of positional k-mers and input parameter ∆ a set of directed edges
is constructed, which contains a directed edge ((prefix(sk), p), (suffix(sk), p + 1)) for each
positional k-mer (sk, p), where prefix(sk) and suffix(sk) are the first and last k− 1 characters
of sk, respectively. Therefore after all edges are formed, the graph undergoes a gluing
operation, where positional (k − 1)-mers are glued together as follows. We group together
positional (k− 1)-mers having the same (k− 1)-mer sequence and positions within ∆ of each
other. Such a group of m positional (k − 1)-mers is then replaced with a single positional
(k − 1)-mer having a position equal to the average position of the group. The associated
multiplicity is also stored. The definition, which is conceptually identical to that of Ronen et
al. [26], is included here for completeness. We refer the interested reader to this work for
another usage of this data structure.

Disambiguating identical k-mers (with positional information) should lead to a simpler
graph, but an overall increase in space usage is likely because, for example, the positional de
Bruijn graph will have more nodes than the plain graph, so care must be taken with graph
representation.

We have implemented a space-efficient data structure for storing and traversing the
positional de Bruijn graph that is based on the BOSS de Bruijn graph representation of Bowe,
Onodera, Sadakane, and Shibuya [3]. We begin by briefly defining the BOSS construction
of the de Bruijn graph and then demonstrate how this structure can be extended to allow
positional information to be stored. The first step of constructing this graph G for a given
set of k-mers is to add dummy k-mers (edges) to ensure that there exists an edge k-mer
starting with first k − 1 symbols of another edge’s last k − 1 symbols. These dummy edges
ensure that each edge in G has an incoming node. After this small perturbation of the data,
a list of all edges sorted into right-to-left lexicographic order of their last k − 1 symbols
(with ties broken by the first character) is constructed. We denote this list as F, and refer
to its ordering as co-lexicographic ordering. Next, we define L to be the list of edges sorted
co-lexicographically by their starting nodes with ties broken co-lexicographically by their
ending nodes. Hence, two edges with same label have the same relative order in both lists;
otherwise, their relative order in F is the same as their labels’ lexicographic order. The
sequence of edge labels (k-mers) sorted by their order in list L is called the edge-BWT. Now,
let BF be a bit vector in which every 1 indicates the last incoming edge of each node in L,
and let BL be another bit vector with every 1 showing the position of the last outgoing edge
of each node in L. Given a character c and a node v with co-lexicographic rank rank(c), we
can determine the set of v’s outgoing edges using BL and then search the edge-BWT(G) for
the position of edge e with label c. Using BF we can find the co-lexicographical rank of e’s
outgoing edge.

We augment the BOSS representation with extra information per edge to obtain a
positional de Bruijn graph. In particular, we build and store a vector V of integer vectors
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(containing positions associated with each node). Integers in each vector are stored bit
packed, using the SDSL library [10], which also provides us fast random access to individual
positions. V is indexed by k-mer lexicographic rank, so that V [i] is the set (vector) of
positions where the ith lexicographically ranked k-mer in the input occurs. Rank operations
on edge-BWT allow us to easily map from positions in edge-BWT (edges in the de Bruijn
graph) to associated sets of positions in V . Figure 1 illustrates a small example of the
positional de Bruijn graph representation built for a set of 4-mers and ∆=4.

3.3 Construction of the Positional de Bruijn Graph

In our implementation, we first count the k-mers and calculate their associated positions
(using the positional information of each read that comes from its alignment to the optical
map). After clustering the positional k-mers as described in the previous section, we write the
lexicographically sorted k-mers and the associated positions in separate files (both ordered
by k-mer). Each k-mer is indexed by its lexicographic rank (lexrank). We build and store
a vector of position sets V , in which, V [i] is the set of positions at which the k-mer with
lexrank i occurs in the genome. Then we construct the BOSS representation for the k-mers
such that instead of co-lexicographically sorting k-mers only, we sort (k-mer, lexrank) pairs.

To construct the F table, for each k-mer, (k-mer, lexrank) pairs will be sorted by the
first k − 1 symbols (the source node of the edge). Similarly, to construct the L table, we
also sort each k-mer (without its row number) by the last k − 1 symbols (the next node of
the edge). At this step we calculate F \ L (comparing only the (k − 1)-length prefixes and
suffixes respectively), and L \ F to find the nodes that require incoming dummy edges and
outgoing dummy edges, respectively. We will sort the set of incoming dummy edges by their
first k − 1 symbols. We call this table D. The set of outgoing edges does not require sorting.
Eventually we merge D with F and L \ F. During the merge we push the index of each
resulting edge to a vector. Afterward, while traversing the jth edge (k-mer) in the graph, the
k-mer’s index allows us to map to the jth element of the index vector, providing us access to
the appropriate part of V containing the set of its associated positions of the k-mer. Sorting
the D and F (arrays of k-mers) is the computational bottleneck in construction, and overall
construction of the data structure takes O(k|F| log |F|) time.

3.4 Graph Traversal and Contig Recovery

A contig in the positional de Bruijn graph is a non-branching path and thus to recover the
contigs it is sufficient to enumerate all non-branching paths in the graph. The following
procedure is repeated until all positional k-mers in the graph have been visited. We start
by picking an unvisited positional k-mer (sk, p) and mark it as visited. We then traverse
the graph both forward and backward starting from (sk, p). Let us consider the forward
traversal. In our representation we need to retrieve all out-neighbors of the k-mer sk. We
then filter the position lists of the out-neighbors to find all positional k-mers (s′k, p′) such
that p′ is within ∆ of p. We say that these positional k-mers are consecutive to (sk, p). If
a consecutive positional k-mer is marked visited or if there are no or several consecutive
positional k-mers, we have reached the end of a non-branching path and stop our traversal.
If there is exactly one consecutive positional k-mer, we mark that k-mer visited and continue
the traversal from that k-mer. After the forward traversal finishes, we will traverse backward
from the initial k-mer which proceeds analogously to the forward traversal.
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4 Results

4.1 Datasets
We simulated 92,818 PacBio reads from the reference genome of E. coli K-12 substr. MG
1655 with model-based simulation of PBSIM [21] using the following parameters: mean
accuracy of 85%, average read length of 10,000, and minimum read length of 1,000, and
average coverage of 200x. According to observed distributions of real PacBio read length,
the model-based method simulates PacBio reads with a log-normal length distribution. The
average accuracy over the length of each read is taken from a normal distribution. We
simulated an optical map using the reference genome for E. coli (str. K-12 substr. MG1655)
and the enzymes XhoI, NheI and EagI since there is no publicly available one for this genome.
The simulation was done by finding the locations of each restriction site in the reference
genome and then in silico digesting at those locations.

Our second dataset consists of 220,336 sequence reads from Saccharomyces cerevisiae
str. W303 (yeast) using data generated using PacBio RS II System and P4-C2 chemistry.
The reads are available for public download from PacBio DevNet1. The average read length
is 6,349 bp, with the minimum and maximum read length being 500 bp and 30,164 bp,
respectively. Given there is no publicly available optical map for yeast, one was simulated
using the reference genome of Saccharomyces cerevisiae str. W303 and enzymes XhoI, NheI
and EagI.

4.2 The Effect of Filtering and Error Correction
As previously mentioned, in order to use long reads in the construction of the positional de
Bruijn graph, they need to be aligned to the genome-wide optical map. Error correction was
used to maximize the number of reads that aligned to the optical map and thus, could be
used for assembly. Prior to error correction, only 30% of the simulated E. coli reads aligned
to the optical map, whereas 57% of them aligned to the optical map after error correction.
Of these 57% of reads, 45% of them had an alignment where at least 40% of the fragments
aligned. This increase in the aligned reads reflects the increase in the overall quality of the
reads. The distribution of the frequency of k-mers changed dramatically with both the first
and second error correction. This is illustrated in Figure 2. Prior to the first error correction
a large portion of the reads had either very high frequency or very low frequency. We note
that both of these sets of reads would be filtered by ABruijn. After the first error correction,
alignment, and second error correction, the distribution of the k-mer frequency was much
more uniform, with the majority of the k-mers having frequency between 20 and 90. Thus,
as can be seen, the majority of these k-mers can be more effectively used for the assembly
process by disambiguating them.

4.3 Comparison Between Assemblies
We analyzed the ability of Canu, ABruijn, and Koota to accurately assemble both datasets.
As previously stated, these were selected since Canu has been shown to be more memory and
time efficient than Miniasm[12], FALCON [8], SPAdes [1], and ABruijn – which only compares
against Canu – is the only other de Bruijn graph long-read assembler. All assemblers were

1 https://github.com/P50acificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-
Assembly-Contigs

https://github.com/P50acificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-Assembly-Contigs
https://github.com/P50acificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-Assembly-Contigs
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Figure 2 An illustration of the effect of error correction on number of aligned reads and 19-mer
frequency on the E. coli data. The histogram in yellow illustrates the frequency of all distinct
19-mers in the initial corrected data. The histogram in red illustrates the frequency of all distinct
19-mers that occur in reads that underwent error correction once and aligned to the genome-wide
optical map. Lastly, the histogram in blue illustrates the frequency of all 19-mers that underwent
error correction twice (once prior to alignment and once afterward) and aligned to the genome-wide
optical map.

run with their default parameters, on the filtered, error corrected data and using k = 19.
Koota used ∆ = 500. All statistics were computed by QUAST in default mode [11]. The
results demonstrate that Koota achieves the best E. coli assembly with respect to both
genome fraction and rate of mismatches. Although the Canu and Koota E. coli assembly
had similar genome fractions – 93.25% and 94.23%, respectively – ABruijn had a much
lower genome fraction (62.94%) – and Canu had a significantly higher number of mismatches
than both ABruijn and Koota. Koota’s contigs had a mismatch rate of 0.37 per 100 kbp.
ABruijn and Canu had a mismatch rate of 1.16 and 2.89 per 100 kbp, respectively.

Of the 220,336 reads from yeast, 95,289 (approximately 43%) of them aligned to optical
map, were error corrected a second time, and subsequently used for assembly. All the
assemblies produced by Koota and ABruijn had similar genome fractions – 92% and 93.5%,
respectively; however, ABruijn had a substantially higher mismatch rate (90.47 mismatches
per 100 kbp) than Koota (2.02 mismatches per 100 kbp). The Canu assembly had a
moderately higher genome fraction (95%) in comparison to ABruijn and Koota but also a
higher mismatch rate (22.9 mismatches per 100 kbp) in comparison to Koota.

4.4 Time and Memory Usage

We compared the resource usage of Koota with ABruijn and Canu on the two datasets, in
particular peak memory usage, which was measured as the maximum resident set size, and
run time, measured as the user process time. All experiments were performed on a 2 Intel(R)
Xeon(R) CPU E5-2650 v2 @ 2.60 GHz server with 512GB of RAM, and both resident set size
and user process time were reported by the operating system. Again, Canu, ABruijn, and
Koota were applied to long reads that had undergone error correction and filtering. Table 1
shows the memory and time usage of the three different assemblers on both the E. coli and
yeast datasets. The assembly time of Canu was moderately less than Koota. Canu required
7 minutes and 35 seconds to assemble E. coli and 3 hours and 38 minutes to assemble yeast;
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Table 1 Comparison between the peak memory and time usage required to assemble the (error
corrected and aligned) E. coli reads using Koota, ABruijn, and Canu, and the rate of mismatch in
their assembly. k = 19 was used for all assemblers. The peak memory is given in megabytes (MB)
or gigabytes (GB). The running time is reported in seconds (s), minutes (m), and hours (h). The
mismatch rate (MM) is reported per 100 kbp.

Koota Canu ABruijn
Time Memory MM Time Memory MM Time Memory MM

E.coli 32m
20s

1.18GB 0.37 7m 35s 3.7GB 2.89 3h 46m 2.7GB 1.16

Yeast 12h 4m 4.4GB 2.02 3h 38m 3.8GB 22.9 48h
44m

15.4GB 90.47

Table 2 Comparison between the number of whirls (directed cycles) and bulges (undirected
cycles) in the positional de Bruijn graph (denoted as PDBG) and the de Bruijn graph (denoted as
DBG) for E.coli and yeast.

Number of Whirls Number of Bulges
DBG PDBG DBG PDBG

E.coli 1,940 3 17,200 0
Yeast 13,223 302 59,283 0

whereas, Koota required 32 minutes and 20 seconds to assemble E. coli and 12 hours and 4
minutes to assemble yeast. Both Canu and Koota also used less than 5 GB of memory to
assemble both yeast and E.coli. Lastly, as can be seen in Table 1, ABruijn required more
time and memory to produce assemblies for both E.coli and yeast.

4.5 The Simplicity of the Positional De Bruijn Graph

Lastly, we compared the properties of the positional de Bruijn graph with the de Bruijn
graph on the yeast and E.coli datasets. In particular, we built the positional de Bruijn
graph and the de Bruijn graph using the code base for Koota by considering the graph
construction with positional k-mers and (non-positional) k-mers – the former gives rise to
the positional de Bruijn graph and the latter gives rise to the de Bruijn graph. In each
graph we considered the in-degree, out-degree of each node, the number of bulges, and the
number of whirls. Tables 2 and 3 summarize our findings. As can be seen in the following
tables, taking the positional information into account in the construction of the de Bruijn
graph significantly decreases the complexity of the graph and this reduction in the number of
bulges becomes even more prevalent as the genome size increases. For example, the number
of bulges in the de Bruijn graph for E. coli and yeast was 17,200 and 59,283, respectively;
whereas, there exists zero bulges in the positional de Bruijn graph for these genomes. A
significant reduction in the number of whirls can also be seen in Table 2. There was more
than 300x and 40x more whirls in the de Bruijn graph than the positional counterpart for
E.coli and yeast, respectively. These results mirror the results seen in Table 3.

In each case the number of nodes that have in-degree and out-degree greater than one
decreased by at least two orders of magnitude. We should note that the number of nodes in
the positional de Bruijn graph is guaranteed to be at least the number of nodes in the de
Bruijn graph since we considered only the Koota implementation, which does not contain
any graph simplification step.
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Table 3 Comparison between the percentage of nodes with out-degree and in-degree greater than
one in de Bruijn graph (denoted as DBG) and the positional de Bruijn graph (denoted as PDBG) in
E.coli and yeast.

E.coli Yeast
Out-degree 2 3 4 2 3 4

DBG 0.27 0.0043 0.001 0.71 0.039 0.01
PDBG 0.0079 0.00011 0.000011 0.0051 0.00038 0.00023

In-degree 2 3 4 2 3 4
DBG 0.27 0.004 0.00083 0.68 0.033 0.005
PDBG 0.01 0.00022 0.000022 0.0039 0.00031 0.00015

5 Discussion and Conclusions

Development of a production quality assembler requires sophisticated traversal algorithms,
the implementation of which is well beyond the scope of this paper. Our aim in developing
Koota is to demonstrate that incorporating the approximate positions of the k-mers into
the de Bruijn graph construction can greatly reduce the complexity of the resulting graph.
Furthermore, using space-efficient encodings, the positional information can be added without
a dramatic increase in memory requirements.

Koota required the least space to assemble the simulated E. coli reads; 1.18GB in
comparison to the 3.7GB required by Canu and the 2.7GB required by ABruijn. Koota
also had the highest genome fraction of the methods tested, and a low mismatch rate. Taken
together these statistics show that we have not discarded a significant portion of the genome,
making accurate assembly possible. For completeness we report that Koota’s N50 scores
are currently low (2,301 vs. 126,754 for Canu on the E. coli dataset), however this belies the
absence of a sophisticated traversal algorithm to effectively deal with branches in the graph,
and to resolve the remaining whirls. We reemphasize that our goal was not to compete
with state-of-the-art assemblers, but instead to demonstrate how positional information can
simplify the de Bruijn graph, in the context of long reads.

Indeed, the real influence of the optical map is its ability to disentangle the de Bruijn
graph by assigning approximate positions to each of the long reads (and so the k-mers), and
the addition of positions to the graph greatly reduces the number of whirls and bulges. We
showed in Section 4.5 that in our experiments all bulges and over 97% of whirls disappear
from the de Bruijn graphs when positional information is added to the graph.

Our main contribution has been to demonstrate the effect of adding positional information
to long read assembly and how optical mapping data can assist in the assembly of long reads.
Given the rarity of whirls in the positional de Bruijn graph, we expect that even slightly more
sophisticated traversal algorithms would be capable of constructing 94% or more of the E. coli
genome with only a few contigs that have a small mismatch rate (Koota has 0.37 mismatches
per 100 kbp) without using more than 1.2GB of space. This would bridge the gap between
long-read and short-read assembly since it would enable longer (more complicated genomes)
to be assembled the same accuracy as short reads. A further advantage of integrating the
positional information into the de Bruijn graph is that it allows for a meaningful partitioning
of the graph. Each partition of the graph would contain the k-mers belonging to an interval
of positions. Each of these partitions could be independently processed yielding a natural
way to develop parallel or distributed algorithms for the positional de Bruijn graph.
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A Appendix

Figure 3 illustrates when a whirl can persist in a positional de Bruijn graph. In this example,
(a) and (b) illustrate the de Bruijn graph and the positional de Bruijn graph constructed for
k = 4 and ∆ = 4 and read CTAACTAACG that aligns to position 30 in the genome. Both the
de Bruijn graph and its positional counterpart contain a whirl. The whirl in the positional
de Bruijn graph is created since the occurrences of CTAA and TAAC are clustered together at
positions 32 and 33, respectively, creating positional k-mers that have multiplicity greater
than one. The third graph in Figure 3 shows, more typically, how positional information
resolves the whirls within the graph.
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Figure 3 An illustration showing when a whirl in the positional de Bruijn graph can prevail. (a)
shows a de Bruijn graph constructed for a read CTAACTAACG and k = 4. (b) shows the positional
de Bruijn graph with constructed for a read CTAACTAACG whose alignment starts at position 30 of
the genome, k = 4 and ∆ = 4. The set of positional k-mers before and after clustering with ∆
are illustrated. (c) shows the positional de Bruijn graph with constructed for a read CTAA..CTAACG
whose alignment starts and resumes at position 10 and 30 of the genome respectively. In this last
example, k = 4 and ∆ = 4. As can be seen by these illustrations, whirls will persist in the positional
de Bruijn graph for short genomic repeats when the difference between k and ∆ is reasonably small
since they will create positional k-mers whose multiplicity is greater than one. In (b) CTAA at position
32 and TAAC at position 33 both have multiplicity 2 after clustering.
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