
Vaquita: Fast and Accurate Identification of
Structural Variation Using Combined Evidence
Jongkyu Kim1 and Knut Reinert2

1 Department of Mathematics and Computer Science, Freie Universität Berlin,
Berlin, Germany; and
Max Planck Institute for Molecular Genetics, Berlin, Germany
j.kim@fu-berlin.de

2 Department of Mathematics and Computer Science, Freie Universität Berlin,
Berlin, Germany; and
Max Planck Institute for Molecular Genetics, Berlin, Germany
knut.reinert@fu-berlin.de

Abstract
Motivation: Comprehensive identification of structural variations (SVs) is a crucial task for
studying genetic diversity and diseases. However, it remains challenging. There is only a marginal
consensus between different methods, and our understanding of SVs is substantially limited. In
general, integration of multiple pieces of evidence including split-read, read-pair, soft-clip, and
read-depth yields the best result regarding accuracy. However, doing this step by step is usually
cumbersome and computationally expensive.
Result: We present Vaquita, an accurate and fast tool for the identification of structural vari-
ations, which leverages all four types of evidence in a single program. After merging SVs from
split-reads and discordant read-pairs, Vaquita realigns the soft-clipped reads to the selected re-
gions using a fast bit-vector algorithm. Furthermore, it also considers the discrepancy of depth
distribution around breakpoints using Kullback-Leibler divergence. Finally, Vaquita provides an
additional metric for candidate selection based on voting, and also provides robust prioritization
based on rank aggregation. We show that Vaquita is robust in terms of sequencing coverage, in-
sertion size of the library, and read length, and is comparable or even better for the identification
of deletions, inversions, duplications, and translocations than state-of-the-art tools, using both
simulated and real datasets. In addition, Vaquita is more than eight times faster than any other
tools in comparison.
Availability: Vaquita is implemented in C++ using the SeqAn library. The source code is dis-
tributed under the BSD license and can be downloaded at http://github.com/seqan/vaquita.

1998 ACM Subject Classification J.3 Life and Medical Sciences

Keywords and phrases Structural variation

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.13

1 Introduction

Next generation sequencing (NGS) provides us remarkable opportunity to find genetic
variants that are directly linked to diseases such as cancer [13] and rare genetic disorders
[2]. Therefore, there has been a growing attention in identifying such variants. The size of
genetic variations ranges from a single base pair to megabases [15]. Among them, structural
variations (SVs), i.e. variations that are usually larger than 50 nucleotides in size, play a
major role in many phenotypic differences. In contrast to single-nucleotide polymorphisms

© Jongkyu Kim and Knut Reinert;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 13; pp. 13:1–13:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://github.com/seqan/vaquita
http://dx.doi.org/10.4230/LIPIcs.WABI.2017.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 Vaquita: Identification of Structural Variation Using Combined Evidence

(SNPs) or small indels, SVs are much more diverse in type and size and are often harder to
find confidently [1]. Consequently, it is not surprising that there is only a marginal consensus
between different variant callers [1]. It is fair to say that the current understanding of
SVs is substantially limited and large-scale studies often rely on multiple variant callers
that use different methods to obtain the most comprehensive list of SVs. However, the
integration of multiple outputs is often cumbersome due to the required prior knowledge
of different algorithms and their parameters and also suffers from limited computational
resources. Therefore, there is an urgent need for a better method that can detect SVs more
accurately and efficiently.

The algorithms for SV identification can be categorized into four types [1]. First, we can
use split-read evidence. The reads spanning a breakpoint have to be split to be able to map
multiple loci. For example, Pindel [24] splits discordant reads and tries to find breakpoints
by mapping them to different positions. However, it is difficult to find SVs in some part of a
genome such as repeat-rich regions using just the spilt-read information.

Additionally, read-pair information can be used to identify SVs. With the prior knowledge
of the proper orientations and distribution of insertion sizes in paired-end sequencing libraries,
read-pairs with improper orientation and/or insertion size can be identified and used to detect
SVs. However, read-pair information alone does not provide base-pair resolution accuracy.
Accordingly, a variant caller like Delly [19] considers read-pair information together with
split-read information.

Many recently-developed short-read mappers [12, 10] provide local alignments. These
mappers produce soft-clipped reads, meaning that only a part of a sequence is mappable to
the reference genome. The unmapped sequences are relatively short and erroneous, which
make them difficult to map to a unique position. To resolve this issue, CREST [23] assembles
contigs around potential breakpoints and map them to a reference genome using Blat [9].

Lastly, read-depth information is also useful in finding copy number variations. However,
the depth of coverage of sequencing data is usually non-uniform [14]. Thus, a significance
testing such as event-wise testing [25] is required to distinguish the true signals from
background noise. Moreover, read-depth information alone cannot provide base-pair resolution
accuracy.

Often, integrating results from multiple approaches yield better performance regarding
accuracy. In this aspect, LUMPY [11] uses a probabilistic framework to combine split-read
and read-pair information by default, and MetaSV [16] focuses on connecting multiple
external tools.

Our method, Vaquita, integrates split-read, read-pair, soft-clipped, and read-depth
information in a single program to achieve maximum accuracy while also maintaining speed.
Vaquita utilize all four types of information without contributions from external tools. The
overall workflow of Vaquita is depicted in Figure 1.

2 Methods

2.1 Breakpoint and structural variation identification
The overall workflow of Vaquita is depicted in Figure 1(a). We define a breakpoint using
the coordinate information of two genomic segments (intervals) and their orientation with
respect to each other. We call the two intervals left and right intervals according to their
genomic coordinates. We also define three types of orientation as shown in Figure 1(b),
namely, normal, inverted and swapped. Reads and read-pairs with inverted and swapped
orientations are considered to be discordant, and suggesting a breakpoint. These discordant

J. Kim and K. Reinert 13:3

.BAM

SE + PE

Evidence extraction

SE + PE + CE

SE + PE + CE + RE

Split-read
evidence (SE)

Read-pair
evidence (PE)

.VCF

Soft-clipped
evidence (CE)

Depth
information

Merging SE and PE

Realignment of CE

Calculate Read-depth evidence (RE)

Filtering &
Prioritization

(a) (b)

Structural variation Found SV(interval) from SE or PE

Normal orientation Inverted orientation

Split-read Discordant read-pairGenomic segment

Deletion Inversion

Duplication Translocation

>> >>

>
>

>>

. . .
v w z

>
>

>>

>> <<

Imprecise (PE)

Exact
(SE)

wv

>
>

<
<

>> <<

Imprecise (PE)

Exact (SE)

v w

Swapped orientation

zv w

>
>

>>>>

>>
>
>

>>

. . .

Figure 1 (a) The overall process of Vaquita. (b) The four types of structural variations. The
dotted rectangles colored with gray denote the modification of the reference genome. The deletion
and inversion in the figures show structural variations from v to w. The duplication and translocation
in the figures illustrate copied or moved segments from v to w, and z is the target position.

reads also constitute of split-read evidence (SE) and read-pair evidence (PE), which are the
number of reads and read-pairs that support a breakpoint, respectively. For read-pairs with
normal orientation, we estimate m and s which denote the median and median absolute
deviation of insertion size distribution in a sequencing dataset. Then we apply a cutoff that
is m+ s× 9 by default. The adjustment of this cutoff affects the accuracy of the result. A
weak cutoff yields a sensitive result, but at the cost of specificity. The value 9 is empirically
decided after testing values from 5 to 10 (data not shown). Note that this default value is
the same as Delly2 and was used in large scale studies such as 1000 Genome Project [21].
We define four SV types, namely deletion, inversion, duplication, and translocation that
are illustrated in Figure 1(b). We identify deletions and inversions from breakpoints with
normal and inverted orientation, respectively. The two types of breakpoints are required to
find duplications and translocations. The definition is based on previous studies [22, 19].
Nevertheless, there are alternative definitions of SVs which are not always mutually exclusive.
Other types of SVs can be identified by the user from the reported breakpoints.

2.2 Candidate merging: SE + PE
Two breakpoints with the same orientation can be merged if both the left and right intervals
are adjacent or overlapping. A distance of 50 bases is set by default in assessing adjacency.
When two breakpoints are merged, the minimum and maximum positions of each left and
right intervals are selected to define the merged breakpoint. The original positions are kept
in a list, and the median positions are reported as final positions in the last step. We merge
all the breakpoints identified by SE or PE according to this principle. For efficiency, the
reference genome is divided into equally sized regions that are 1000 bp by default. The left
and right intervals of SVs belong to one or more regions according to their size and genomic
coordinates. The entire merging process can be efficiently done by identifying breakpoints in

WABI 2017

13:4 Vaquita: Identification of Structural Variation Using Combined Evidence

0.0
0.2
0.4
0.6
0.8
1.0

Relatvie
Number of calls

Precision

Chromosome 22, 5x

SE (n=305)
PE (n=667)
CE (n=73)>> <<

>>>>

>>

>>

>>

>>

>>

Genomic
segment

Structural
variations Found SV

NGS twilight zoneCandidate region
by SE

Candidate region
by PE

Clipped sequence
cluster

Representative
sequence Realignment

2nd trial

1st trial

3rd trial

(a) (b)

0.0
0.2
0.4
0.6
0.8
1.0

Relatvie
Number of calls

Precision

Chromosome 22, 30x

SE (n=1,721)
PE (n=3,602)
CE (n=433)

Figure 2 (a) The realignment process for soft-clipped evidence (CE). (b) The relative number of
structural variation calls and precision of each evidence types in simulation datasets.

the same region. In the worst case, all the SVs are distinct and fall into the same region. In
this scenario, the comparison step takes O(n2) where n is the number of SVs. However, in
practice, the distribution of SVs are sparse, and only a small number of SVs are expected to
co-exist in a single region. If all the SVs exist in unique regions, the time complexity is O(n)
since only one hashing is required. This process is conducted in parallel while decompressing
a .bam file, which is usually an I/O bound process.

2.3 Realignment of soft-clipped reads: SE + PE + CE

Mapping the clipped part of sequences is challenging because they are short and erroneous.
One can assemble longer contigs to map them correctly and uniquely. However, the entire
process is computationally expensive. Instead, Vaquita selects a representative sequence
without assembly and reduces the search space by surveying only the pre-selected regions.
Initially, Vaquita identifies clusters of soft-clipped sequences according to the genomic
coordinates of their mapped parts. Subsequently, it locates the longest unmapped sequence
in a cluster and uses it as a representative sequence. Then, it tries to map those representative
sequences to candidate regions identified by SE or PE using a fast bit-vector algorithm
for approximate string matching [17], using lenient criteria. The time complexity of the
algorithm is O(nr/k) where n and r are the sizes of the read and the reference, and k is the
word size of the machine which is 64 in modern hardwares including ours. Often, relatively
small deletions are difficult to find using read-pair information because the sizes of SVs fall
within the variance of the insertion size. This region has been defined as the NGS twilight
zone [22]. To address this, Vaquita also examines the genomic sequences around the clipped
position for queries that failed the mapping. The size of the additional searching region
is set to m + s × 9 by default, where m and s are median and median absolute deviation
of the insertion size distribution. The default value is based on criterion for identifying
discordant read-pairs in Section 2.1. Only soft-clipped parts that are equal to or longer than

J. Kim and K. Reinert 13:5

Se
qu

en
cin

g
de

pt
h

Genomic coordinates

𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑙𝑒𝑓𝑡𝐻𝑖𝑔ℎ) 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑙𝑒𝑓𝑡𝐿𝑜𝑤) 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑟𝑖𝑔ℎ𝑡𝐿𝑜𝑤) 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑟𝑖𝑔ℎ𝑡𝐻𝑖𝑔ℎ)

Left depth discrepancy (L) :
𝐾𝐿𝐷(𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑙𝑒𝑓𝑡𝐻𝑖𝑔ℎ), 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑙𝑒𝑓𝑡𝐿𝑜𝑤))

Right depth discrepancy (R) :
𝐾𝐿𝐷(𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑟𝑖𝑔ℎ𝑡𝐻𝑖𝑔ℎ), 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑟𝑖𝑔ℎ𝑡𝐿𝑜𝑤))

Read-depth evidence (RE) : max(L,R)

(a) (b)

0.0

1.0

2.0

3.0

4.0

5.0

Random
(n=10,000)

ALL
(n=264)

DEL
(n=74)

INV
(n=63)

DUP
(n=61)

TRA
(n=66)

M
ea

n
de

pt
h

di
sc

re
pa

nc
y

𝑃 = 2.2 × 10−227

𝑃 = 3.2 × 10−66

𝑃 = 1.2 × 10−56

𝑃 = 6.4 × 10−55

𝑃 = 2.9 × 10−59

Figure 3 (a)The read-depth evidence. (b) The depth discrepancy distribution of random positions
and four types of structural variations in the simulation dataset (Chromosome 22 and 30x coverage).
P indicates p-values obtained by two-tailed Kolmogorov-Smirnov test using a random sample. The
red line shows the third quartile plus the interquartile range of the random sample.

20 nucleotides undergo realignment, allowing edit distance of 10% of the sequence size by
default. The overall process is described in Figure 3(a). In the two simulation datasets, the
quantity of CE was more than 20% of SE, and 10% of PE. Furthermore, the precision of
CE is about the same as SE and PE, as shown in Figure 2(b). Note that Mason [6] we used
in the simulation selects random positions to introduce variations. This limitation usually
makes simulation tests less challenging since SVs are not randomly distributed. For example,
many of the SVs are found in repeat-rich regions in real datasets. The higher precisions
reported in Figure 2(b) reflect this limitation.

2.4 Calculation of depth discrepancy
The depth distribution of a sequencing sample has been previously reported to be non-uniform.
Hence, the distributions around two randomly picked positions that are not adjacent to each
other are likely to be different. We use this observation to discriminate true breakpoints from
false positives, especially for unbalanced structural variations. For two genomic intervals i1
and i2, we calculate λ1 and λ2 that are the mean depth of each interval. We then assume
that the local distributions follow a Poisson distribution and calculate the Kullback-Leibler
divergence (KLD) from Poisson(λ1) to Poisson(λ2) as follows:

KLDλ1,λ2 = λ1 − λ2 + λ1 log λ2

λ1
. (1)

We use this as a metric of depth discrepancy between i1 and i2 and calculate the read-depth
evidence (RE) for each breakpoint as described in Figure 3(a). As a rule, we always calculate
the divergence from the higher depth region to the lower depth region and select the larger
value between the discrepancies of the left and right side of the breakpoint. We use the
window size of 20 bases for calculating local coverages. To efficiently calculate RE for all

WABI 2017

13:6 Vaquita: Identification of Structural Variation Using Combined Evidence

(a) (b)

0.0

0.2

0.4

0.6

0.8

1.0

5x 10x 30x 50x
Sequencing depth

(SE+PE+CE) ≥ 4 or VT = 3

(SE+PE+CE) ≥ 4

(SE+PE) ≥ 4

SE ≥ 2

Recall Precision F1

0.80

0.85

0.90

0.95

1.00

≥ Q1 ≥ Q2 ≥ Q3 All

Pr
ec

isi
on

Threshold

Vaquita (Rank aggregation)
Vaquita
Lumpy
Delly

Figure 4 (a) The impact of evidence integration on breakpoint identification. The criterion
VT=3 rescues SVs that are supported by all three evidence types as described in Section 2.5.2.
(b) Prioritization performance of deletion calling in the 30x simulation dataset. Q1-Q3 indicates the
first to the third quartile.

breakpoints, we maintain a lookup table regarding various λ1 and λ2. In the simulation
datasets, the depth discrepancy distributions were significantly different from random samples
as shown in Figure 3(b). As expected, RE is more effective in discriminating unbalanced
structural variations like deletions and duplications than balanced structural variations such
as inversions. By default, we do not use RE for inversions. However, one can turn on this
option.

2.5 Combined evidence

2.5.1 SE + PE + CE
We assessed the impact of evidence integration in breakpoint identification starting from the
SE only case. The result is shown in Figure 4(a). We combined the number of split-reads and
read-pairs that supported a breakpoint or an SV and used it as a cutoff. We applied a cutoff
of 4 as we explained the reason in Section 3.2. However, we had to apply a cutoff of 2 for SE
only case since it was too stringent when using a single evidence type in low-coverage samples.
Our experiment showed that more accurate results were achieved when additional types of
information were considered. The impact is more dramatic in datasets with low-coverage. In
the 5x dataset, we obtained the F1 score of 0.62 using the evidence from SE+PE+CE and
only 0.43 using SE only. The effect is less pronounced in high-coverage datasets. For the 50x
dataset we obtained 0.97 and 0.93, respectively.

2.5.2 Voting based metric for candidate selection
Often, variant callers such as Delly2 and LumpyExpress apply basic filtration using a sum of
split-reads and read-pairs that support SVs. Instead of using a simple sum of signals from

J. Kim and K. Reinert 13:7

different types of evidence, Vaquita provides an additional metric for candidate selection
based on voting. In this scheme, each type of evidence for a breakpoint is checked by a
relatively lenient cutoff, and then we calculate the number of evidence types that pass the
criteria that we denote as VT. For example, a structural variation with V T = 3 is supported
by three evidence types. By default, we used ≥ 1 for SE and PE since this is the most
lenient condition. For RE, we used ≥ (Q3 + IQR× 1.0) where Q3 and IQR denote the third
quartile and the interquartile range of depth discrepancy score from random positions. The
red line in Figure 3(b) shows this default RE cutoff in a simulation dataset. Note that we
add CE to SE to treat them as a single evidence type. In Figure 4(a), we applied V T = 3
as an additional criterion to rescue SV candidates in low-coverage samples and obtained
better recalls without reducing precision. Therefore, we used this option by default for later
analyses. One can also use this metric to filter out false positives at repeat-rich regions,
instead of excluding those regions from the analysis.

2.5.3 Prioritization by rank aggregation
In practice, prioritization of SVs is an important task for downstream analysis. We formulate
this problem to find an aggregated rank from the ranks based on multiple evidence types.
At first, we define the goodness of a rank based on Spearman’s footrule distance [3]. It is
given as follows:

F (φ) =
Φ∑
e

S∑
s

|φe(s)− φ(s)| (2)

where φx(i) is the rank of the element i by the evidence type x, Φ = {SE,PE,RE}, and S
is the set of all structural variation candidates. In this scheme, the optimal rank φ∗ is the
one that minimize F . We also define the median rank φM that is defined as follows:

φM (s) = median(φSE(s), φPE(s), φRE(s)) . (3)

The cost of calculating φM is O(|Φ| · |S| log |S|) using a quick sort. Hence, it is applicable to
large datasets. Furthermore, φM = φ∗ if there is no tie [4] and, in the presence of ties, φM
is still a 3-approximate solution of φ∗ [5]. Hence, we calculated φM instead of φ∗ for rank
aggregation. To prevent arbitrary breaking up of ties, we obtain the φ using two different
criteria. At first, we order the candidates according to the strength of the evidence, for
example, the number of split-reads for SE. Secondly, we use the depth around the breakpoints
as a tie breaker. In this scheme, the candidate that is in the lower covered region receives the
higher rank. The impact of rank aggregation is shown in Figure 4(b). All the parameters
including the cutoff value was same as described in Section 3.2. In the figure, the top 50%
(≥ Q2) of the structural variations detected by Vaquita turned out to be true positives after
prioritization.

3 Result

3.1 Preliminaries
3.1.1 Datasets and variant callers
We generated a diploid that contains SVs based on chr22 of hg19/GRCh37 using Mason [6].
We set the size range from 30 to 5000 and used simulated rates of 4.0× 10−6 for indel and
2.0 × 10−6 for inversion, duplication, and translocation, respectively. We also introduced

WABI 2017

13:8 Vaquita: Identification of Structural Variation Using Combined Evidence

SNPs and small indels with simulated rates of 2.0 × 10−4 and 4.0 × 10−5 to mimic the
natural variation, but these were not the focus of the evaluation. From the SVs introduced
in chr22, we generated a simulation dataset using ART [7]. We selected Mason since it
can simulate the types of SVs that are defined previously, and ART because it provides
simulation profiles for the platforms such as Illumina HiSeq-2500. We simulated Illumina
paired-end sequencing data with the HS25 option. The depth, read-length, the mean and
standard deviation of insertion sizes are shown in Figure 5. We used the 50x sequencing
samples of a trio from the Illumina Platinum Genome, NA12878, NA12891 and NA12892,
the accession numbers being ERR194147, ERR194160, and ERR194161, respectively. We
also used the validation set from the Genome In A Bottle (GIAB) consortium that was
constructed using multiple sequencing platforms, including a long-read technology [18]. We
compared the performance of Vaquita with five variant callers relying on different sets of
evidence types. Delly2 [19], LumpyExpress [11] and Pindel [24] use split-read and read-pair
information. We also considered CREST [23] that uses read-depth and soft-clipped reads
information, and GASVPro [20] that uses paired-end and read-depth information. All the
reads were aligned to hg19/GRCh37 using BWA-MEM [12] with default parameters. We
also used BLAT for CREST and SAMBLASTER for LumpyExpress.

3.1.2 Validation process
We only considered breakpoints and SVs that are ≥ 50 nucleotides in size. The identified
breakpoints were considered as true positive if we could find a match in the validation set
that had more than 80% of reciprocal overlap. For variant callers that report intervals rather
than exact positions like GASVPro, we considered the identified variations as valid if there
was a match in the validation set that had both ends within the identified intervals. We used
in-house scripts to interpret each of .vcf files from different variant callers according to our
definition of SVs in Figure 1(b). We also used default parameters for each variant callers and
noted for when otherwise.

3.2 Performance comparison using simulation data
The comparison with other variant callers using the simulation datasets is shown in Figure 5.
We combined the number of split-reads with read-pairs and applied 4 as the minimum
cutoff for all variant callers. We used this single cutoff throughout all the comparison in the
manuscript to see the performance in overall and noted for when otherwise. Note that there
can be best parameters for each variant callers for each test condition, and sometimes 4 is
not always the default value. For example, Lumpy uses 4 while Delly2 uses 3 by default.
We also applied a mapping quality cutoff of 20 for when a variant caller supported such
functionality. Vaquita included voting based candidates with the default parameters explained
in the method section. All the variant callers yielded better accuracy as the depth increases.
Notably, Vaquita, LumpyExpress, and Delly2 constantly ranked as the top three. Vaquita
clearly outperformed the top three in the 5x and 10x datasets, mainly because of voting
based rescue. However, the difference in performance decreased for the 30x and 50x datasets.
Although we could not observe significant differences in high-coverage samples, the result of
Figure 4(b) suggests that the prioritization performance of Vaquita is better than the others.
Note that Delly2 showed the highest precision when using Q3 as the threshold in Figure 4(b),
However, the difference between Q1 and Q3 cases was only 0.05. This result can be explained
by the limitation of simulation based testing that we mentioned in Section 2.3. However,
this pattern is not observed when using real datasets as shown in Figure 6(a). We could

J. Kim and K. Reinert 13:9

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

5x 10x 30x 50x
Sequencing depth(D)

(M=300, S=30, L=100)

Br
ea

kp
oi

t
De

le
tio

n
In

ve
rs

io
n

Du
pl

ica
tio

n
Tr

an
slo

ca
tio

n

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

200,20 300,30 600,60 1000,100

Insertion size(M,S)
(D=30, L=100)

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

50bp 75bp 100bp 150bp
Read length(L)

(D=30, M=300, S=30)

Vaquita LumpyExpress Delly2 CREST Pindel GASVPro Recall Precision F1

Figure 5 The assessment of accuracy using simulated datasets. M and S indicate the mean and
standard deviation of the insertion size.

not observe notable differences from Vaquita, LumpyExpress, Delly2 and CREST from the
insert size variations. However, Pindel and GASVPro’s accuracy were dramatically reduced
in larger insert size samples. Vaquita, LumpyExpress, and Delly2 showed robust accuracy
across the read length. However, CREST and Pindel that undergo split-read alignments
internally showed poor performance in the samples with read lengths of 50bp. GASVPro was
unable to find duplications and translocations (defined according to our criteria), reported
alternative SV types, and was unable to run on smaller insert size (200bp) or longer read
length (150bp) samples.

From such results, we selected Vaquita, LumpyExpress, and Delly2 as the top three
variant callers and their performance was further analyzed using real datasets.

3.3 Performance comparison using real datasets

3.3.1 Overlap between variant callers
The matched fraction of deletions calls compared to GIAB were 0.55, 0.57, and 0.48 for
Vaquita, LumpyExpress, and Delly2, respectively. We also investigated the prioritization
performance by selecting top 25%, 50%, and 75% of SVs using the rank aggregation for
Vaquita, and the evidence summation for LumpyExpress and Delly2 in Figure 6(a). The
difference between the overall matching fraction and that of top 25% (≥ Q1) were 0.30, 0.26
and 0.19 for Vaquita, LumpyExpress, and Delly2, respectively. This result suggests that the
rank aggregation based on multiple evidence types is still effective in this relatively high-
coverage samples. In Figure 6(b), Vaquita and Delly2 contain about 28% and 25% of unique
breakpoints, while LumpyExpress only has 10%. However, the total number of breakpoints
calls were 6,681 and 6,658 for Vaquita and Delly2, while only 5,420 for LumpyExpress. This
result suggests that the cutoff used in the comparison are more stringent for LumpyExpress.
Notably, LumpyExpress only identified 154 inversions while Vaquita and Delly2 identified
816 and 602 inversions, respectively. One possible explanation is that Vaquita and Delly2

WABI 2017

13:10 Vaquita: Identification of Structural Variation Using Combined Evidence

1867

1627527

609516

688
3869

770

1436283

111281

444
2897

325

10478

43311

18
47

180

6951

810

10
34

0.40

0.50

0.60

0.70

0.80

0.90

1.00

≥ Q1 ≥ Q2 ≥ Q3 All

M
at

ch
ed

 fr
ac

tio
n

Threshold

Comparison with GIAB deletions

Vaquita
LumpyExpress
Delly2

(a) (b)
Breakpoint Deletion

Inversion Duplication /
Translocation

Figure 6 The comparion between variant callers using the NA12878 dataset. (a) Comparison
with deletion calls from Genome in a Bottle consortium. (b) The result overlaps between tools.

have an internal realignment process while LumpyExpress is not. However, this explanation
is not rigorously tested.

3.3.2 Trio analysis
In Figure 7, the Mendelian errors of breakpoints were 0.23, 0.11, and 0.18 for Vaquita,
LumpyExpress, and Delly2, respectively. The error count of LumpyExpress being the lowest
can be explained by the high fraction of structural variations that were overlapping in
both parents. For LumpyExpress, these fractions were substantially higher than the others,
especially in deletions. We additionally investigated the rate of overlaps between two parents
and found that LumpyExpress had 0.42 of overlaps in breakpoints while Vaquita and Delly
had 0.37 and 0.38, respectively. Note that a recent study using hydatidiform moles and
long-reads sequencing technology suggested that 32% of overlaps in deletions and insertions
between two genetically unrelated individuals [8]. Therefore, 42% of overlaps between two
parents were higher than expected although the reason is not clear. The main difference of
the Mendelian errors between Vaquita and Delly2 were due to inverisons. For inverisons,
the Mendelian errors were 0.30 for Vaquita, and 0.13 for Delly2. This much of difference is
not consistent with the previous analysis using simulation datasets. Therefore, we suspect
that several types of inversion couldn’t be simulated by Mason properly. However, Vaquita
obtained the Mendelian errors of 0.19 and 0.46 for deletions and duplications while Delly2
obtained 0.20 and 0.48, respectively.

3.4 Runtime performance
We compared the CPU time reported by the time command in Debian Linux. In the
comparison, Vaquita was significantly faster than the other tools for analyzing the human
WGS sample with 50x coverage (NA12878). We found that Vaquita is 8.2 times faster
than LumpyExpress and 9.6 times faster than Delly2 which only finds one variant type in

J. Kim and K. Reinert 13:11

0.00

0.20

0.40

0.60

0.80

1.00

Both parent Single parent Child only

M
at

ch
ed

 fr
ac

tio
n

Breakpoint
Vaquita (n: 7287)
LumpyExpress (n: 5871)
Delly2 (n: 7354)

0.00

0.20

0.40

0.60

0.80

1.00

Both parent Single parent Child onlyM
at

ch
ed

 fr
ac

tio
n

Deletion
Vaquita (n: 4177)
LumpyExpress (n: 4097)
Delly2 (n: 5037)

0.00

0.20

0.40

0.60

0.80

1.00

Both parent Single parent Child only

M
at

ch
ed

 fr
ac

tio
n

Inversion
Vaquita (n: 1134)
LumpyExpress (n: 173)
Delly2 (n: 947)

0.00

0.20

0.40

0.60

0.80

1.00

Both parent Single parent Child only
M

at
ch

ed
 fr

ac
tio

n

Duplication / Translocation
Vaquita (n: 291)

LumpyExpress (n: 107)

Delly2 (n: 127)

Figure 7 The SVs identified from the child dataset(NA12878) were compared to the SVs from
the parent’s datasets (NA12891 and NA12892).

a single run. Vaquita only required less than 40 minutes in our test environment. We can
explain this speed-up based on three observations. First, the merging step of Vaquita that
we explained in Section 2.2 is very fast in practice since structural variations are sparsely
distributed across the human genome. Second, the realignment step is also very fast and
took less than 5 minutes in total for the test case. Third, the .bam file processing of SeqAn
library is also faster than other implementation since it internally separates several threads
for decompression of bgzf stream. Regarding the last reason, we modified the original source
code of the library so that the library was fixed to a single thread for the decompression
process. Although it is still a separated thread, we used CPU time for the comparison. Note
that LumpyExpress calls an external tool for .bam file parsing, and Delly2 should be ran
multiple times to find all variant types. Therefore, we concluded that the comparison is not
specifically biased to Vaquita. The peak memory consumption were 12.5G for Vaquita, 6.4G
for LumpyExpress, and 320M for Delly2. This relatively large memory consumption was due
to inefficient implementation for storing positions and can be improved in the future version.

All the tests were done on a Debian GNU/Linux 8 machine with two Intel Xeon E5-
2667V2 Octa core CPUs at 3.3GHz, 387GB of RAM, and 2TB of SATA SSDs on RAID5
configuration. We did not attempt to use multi-threading for each variant caller.

4 Discussion and conclusion

Vaquita was developed to integrate split-read, read-pair, soft-clipped, and read-depth in-
formation and provides effective evidence combination strategy based on voting and rank
aggregation. In the benchmark using the simulation datasets, Vaquita showed relatively
robust performance across different sequencing depths, insert sizes and read lengths. In the
comparison with GIAB deletions, about 55% of deletions found by Vaquita were matched
and showed better prioritization results compared to LumpyExpress and Delly2. Vaquita also
identified more breakpoints than the others and about 28 percent of them were unique. In

WABI 2017

13:12 Vaquita: Identification of Structural Variation Using Combined Evidence

the trio analysis, Vaquita showed similar number of Mendelian errors compared to Delly2 and
higher number of errors compared to LumpyExpress. The difference between these errors can
be explained by the prevalence of overlapping variations in both parents (LumpyExpress),
or by errors in inversions (Delly2). The runtime of Vaquita was significantly faster than
those of LumpyExpress and Delly2 by a factor of more than 8 times. As a future goal, we
will provide an improved functionality to confidently integrate other orthogonal datasets,
including long-read datasets.

Acknowledgements. The authors thank Dr. Birte Kehr for her suggestions regarding
validation process and many valuable comments on the manuscript. The authors also thank
Dr. Bernhard Renard and Kathrin Trappe for their helpful discussion. J.K was supported
by the International Max Planck Research School for Computational Biology and Scientific
Computing and the Efficient Algorithms for Omics Data group at the MPI for Molecular
Genetics.

References
1 Can Alkan, Bradley P. Coe, and Evan E. Eichler. Genome structural variation discovery

and genotyping. Nature reviews. Genetics, 12(5):363–376, 2011. arXiv:NIHMS150003, doi:
10.1038/nrg2958.

2 Kym M. Boycott, Megan R. Vanstone, Dennis E. Bulman, and Alex E. MacKenzie. Rare-
disease genetics in the era of next-generation sequencing: discovery to translation. Nature
reviews. Genetics, 14(10):681–91, 2013. doi:10.1038/nrg3555.

3 Persi Diaconis. Group representations in probability and statistics. Lecture Notes-
Monograph Series, 11:i–192, 1988.

4 Cynthia Dwork, Ravi Kumar, Moni Naor, and D Sivakumar. Rank aggregation methods
for the Web. Proceedings of the 10th international conference on World Wide Web, pages
613–622, 2001. doi:10.1145/371920.372165.

5 Ronald Fagin, Ravi Kumar, Mohammad Mahdian, D. Sivakumar, and Erik Vee. Comparing
and aggregating rankings with ties. In Proceedings of the twenty-third ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 47–58, 2004. doi:
10.1145/1055558.1055568.

6 Manuel Holtgrewe. Mason – A Read Simulator for Second Generation Sequencing Data.
Technical report, Freie Universität Berlin, 2010.

7 Weichun Huang, Leping Li, Jason R. Myers, and Gabor T. Marth. ART: A next-
generation sequencing read simulator. Bioinformatics, 28(4):593–594, 2012. doi:10.1093/
bioinformatics/btr708.

8 John Huddleston, Mark Jp Chaisson, Karyn Meltz Steinberg, Wes Warren, Kendra
Hoekzema, David S Gordon, Tina A Graves-Lindsay, Katherine M Munson, Zev N Kron-
enberg, Laura Vives, Paul Peluso, Matthew Boitano, Chen-Shin Chin, Jonas Korlach,
Richard K Wilson, and Evan E Eichler. Discovery and genotyping of structural variation
from long-read haploid genome sequence data. Genome research, page gr.214007.116, 2016.
URL: http://www.ncbi.nlm.nih.gov/pubmed/27895111, doi:10.1101/gr.214007.116.

9 W James Kent. BLAT – The BLAST-Like Alignment Tool. Genome Research, 12:656–664,
2002. doi:10.1101/gr.229202.

10 Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with Bowtie 2. Nat
Methods, 9(4):357–359, 2012. arXiv:{\#}14603, doi:10.1038/nmeth.1923.

11 Ryan M. Layer, Colby Chiang, Aaron R. Quinlan, and Ira M. Hall. LUMPY: a probabilistic
framework for structural variant discovery. Genome biology, 15(6):R84, 2014. arXiv:
1210.2342, doi:10.1186/gb-2014-15-6-r84.

http://arxiv.org/abs/NIHMS150003
http://dx.doi.org/10.1038/nrg2958
http://dx.doi.org/10.1038/nrg2958
http://dx.doi.org/10.1038/nrg3555
http://dx.doi.org/10.1145/371920.372165
http://dx.doi.org/10.1145/1055558.1055568
http://dx.doi.org/10.1145/1055558.1055568
http://dx.doi.org/10.1093/bioinformatics/btr708
http://dx.doi.org/10.1093/bioinformatics/btr708
http://www.ncbi.nlm.nih.gov/pubmed/27895111
http://dx.doi.org/10.1101/gr.214007.116
http://dx.doi.org/10.1101/gr.229202.
http://arxiv.org/abs/{#}14603
http://dx.doi.org/10.1038/nmeth.1923
http://arxiv.org/abs/1210.2342
http://arxiv.org/abs/1210.2342
http://dx.doi.org/10.1186/gb-2014-15-6-r84

J. Kim and K. Reinert 13:13

12 Heng Li. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
arXiv preprint arXiv, 00(00):3, 2013. URL: http://arxiv.org/abs/1303.3997.

13 Matthew Meyerson, Stacey Gabriel, and Gad Getz. Advances in understanding cancer
genomes through second-generation sequencing. Nature reviews. Genetics, 11(10):685–96,
2010. doi:10.1038/nrg2841.

14 Alison M Meynert, Morad Ansari, David R FitzPatrick, and Martin S Taylor. Variant de-
tection sensitivity and biases in whole genome and exome sequencing. BMC bioinformatics,
15:247, 2014. doi:10.1186/1471-2105-15-247.

15 Ryan E. Mills, Klaudia Walter, Chip Stewart, Robert E. Handsaker, Ken Chen, Can Alkan,
Alexej Abyzov, Seungtai Chris Yoon, Kai Ye, R. Keira Cheetham, Asif Chinwalla, Don-
ald F. Conrad, Yutao Fu, Fabian Grubert, Iman Hajirasouliha, Fereydoun Hormozdiari,
Lilia M. Iakoucheva, Zamin Iqbal, Shuli Kang, Jeffrey M. Kidd, Miriam K. Konkel, Joshua
Korn, Ekta Khurana, Deniz Kural, Hugo Y.K. Lam, Jing Leng, Ruiqiang Li, Yingrui Li,
Chang-Yun Lin, Ruibang Luo, Xinmeng Jasmine Mu, James Nemesh, Heather E. Peckham,
Tobias Rausch, Aylwyn Scally, Xinghua Shi, Michael P. Stromberg, Adrian M. Stütz, Alex-
ander Eckehart Urban, Jerilyn A. Walker, Jiantao Wu, Yujun Zhang, Zhengdong D. Zhang,
Mark A. Batzer, Li Ding, Gabor T. Marth, Gil McVean, Jonathan Sebat, Michael Snyder,
Jun Wang, Kenny Ye, Evan E. Eichler, Mark B. Gerstein, Matthew E. Hurles, Charles Lee,
Steven A. McCarroll, and Jan O. Korbel. Mapping copy number variation by population-
scale genome sequencing. Nature, 470(7332):59–65, feb 2011. doi:10.1038/nature09708.

16 Marghoob Mohiyuddin, John C. Mu, Jian Li, Narges Bani Asadi, Mark B. Gerstein, Alexej
Abyzov, Wing H. Wong, and Hugo Y K Lam. MetaSV: An accurate and integrative
structural-variant caller for next generation sequencing. Bioinformatics, 31(16):2741–2744,
2015. doi:10.1093/bioinformatics/btv204.

17 Gene Myers. A fast bit-vector algorithm for approximate string matching based on dynamic
programming. Journal of the ACM, 46(3):395–415, 1999. doi:10.1145/316542.316550.

18 Hemang Parikh, Marghoob Mohiyuddin, Hugo Y K Lam, Hariharan Iyer, Desu Chen,
Mark Pratt, Gabor Bartha, Noah Spies, Wolfgang Losert, Justin M Zook, and Marc Salit.
Svclassify: a Method To Establish Benchmark Structural Variant Calls. BMC genomics,
17(1):64, 2016. doi:10.1186/s12864-016-2366-2.

19 T. Rausch, T. Zichner, A. Schlattl, A. M. Stutz, V. Benes, and J. O. Korbel. DELLY:
structural variant discovery by integrated paired-end and split-read analysis. Bioinformat-
ics, 28(18):i333–i339, 2012. doi:10.1093/bioinformatics/bts378.

20 Suzanne S. Sindi, Selim Onal, Luke Peng, Hsin-Ta Wu, and Benjamin J. Raphael. An integ-
rative probabilistic model for identification of structural variation in sequencing data. Gen-
ome biology, 13(3):R22, 2012. URL: http://www.ncbi.nlm.nih.gov/pubmed/22452995,
doi:10.1186/gb-2012-13-3-r22.

21 Peter H. Sudmant, Tobias Rausch, Eugene J. Gardner, Robert E. Handsaker, Alexej
Abyzov, John Huddleston, Yan Zhang, Kai Ye, Goo Jun, Markus Hsi-Yang Fritz, Miriam K.
Konkel, Ankit Malhotra, Adrian M. Stütz, Xinghua Shi, Francesco Paolo Casale, Jiem-
ing Chen, Fereydoun Hormozdiari, Gargi Dayama, Ken Chen, Maika Malig, Mark J. P.
Chaisson, Klaudia Walter, Sascha Meiers, Seva Kashin, Erik Garrison, Adam Auton, Hugo
Y.K. Lam, Xinmeng Jasmine Mu, Can Alkan, Danny Antaki, Taejeong Bae, Eliza Cerveira,
Peter Chines, Zechen Chong, Laura Clarke, Elif Dal, Li Ding, Sarah Emery, Xian Fan,
Madhusudan Gujral, Fatma Kahveci, Jeffrey M. Kidd, Yu Kong, Eric-Wubbo Lameijer,
Shane McCarthy, Paul Flicek, Richard A. Gibbs, Gabor Marth, Christopher E. Mason,
Androniki Menelaou, Donna M. Muzny, Bradley J. Nelson, Amina Noor, Nicholas F. Par-
rish, Matthew Pendleton, Andrew Quitadamo, Benjamin Raeder, Eric E. Schadt, Mallory
Romanovitch, Andreas Schlattl, Robert Sebra, Andrey A. Shabalin, Andreas Untergasser,
Jerilyn A. Walker, Min Wang, Fuli Yu, Chengsheng Zhang, Jing Zhang, Xiangqun Zheng-

WABI 2017

http://arxiv.org/abs/1303.3997
http://dx.doi.org/10.1038/nrg2841
http://dx.doi.org/10.1186/1471-2105-15-247
http://dx.doi.org/10.1038/nature09708
http://dx.doi.org/10.1093/bioinformatics/btv204
http://dx.doi.org/10.1145/316542.316550
http://dx.doi.org/10.1186/s12864-016-2366-2
http://dx.doi.org/10.1093/bioinformatics/bts378
http://www.ncbi.nlm.nih.gov/pubmed/22452995
http://dx.doi.org/10.1186/gb-2012-13-3-r22

13:14 Vaquita: Identification of Structural Variation Using Combined Evidence

Bradley, Wanding Zhou, Thomas Zichner, Jonathan Sebat, Mark A. Batzer, Steven A.
McCarroll, Ryan E. Mills, Mark B. Gerstein, Ali Bashir, Oliver Stegle, Scott E. Devine,
Charles Lee, Evan E. Eichler, and Jan O. Korbel. An integrated map of structural variation
in 2,504 human genomes. Nature, 526(7571):75–81, 2015. doi:10.1038/nature15394.

22 Kathrin Trappe, Anne-Katrin Katrin Emde, Hans-Christian Christian Ehrlich, and Knut
Reinert. Gustaf: Detecting and correctly classifying SVs in the NGS twilight zone. Bioin-
formatics (Oxford, England), 30(24):1–8, 2014. doi:10.1093/bioinformatics/btu431.

23 Jianmin Wang, Charles G Mullighan, John Easton, Stefan Roberts, Sue L Heatley, Jing
Ma, Michael C Rusch, Ken Chen, Christopher C Harris, Li Ding, Linda Holmfeldt, Debbie
Payne-Turner, Xian Fan, Lei Wei, David Zhao, John C Obenauer, Clayton Naeve, Elaine R
Mardis, Richard K Wilson, James R Downing, and Jinghui Zhang. CREST maps somatic
structural variation in cancer genomes with base-pair resolution. Nature methods, 8(8):652–
4, 2011. arXiv:NIHMS150003, doi:10.1038/nmeth.1628.

24 Kai Ye, Marcel H. Schulz, Quan Long, Rolf Apweiler, and Zemin Ning. Pindel: A pattern
growth approach to detect break points of large deletions and medium sized insertions
from paired-end short reads. Bioinformatics, 25(21):2865–2871, 2009. arXiv:NIHMS150003,
doi:10.1093/bioinformatics/btp394.

25 Seungtai Yoon, Zhenyu Xuan, Vladimir Makarov, Kenny Ye, and Jonathan Sebat. Sensitive
and accurate detection of copy number variants using read depth of coverage. Genome
Research, 19(9):1586–1592, 2009. doi:10.1101/gr.092981.109.

http://dx.doi.org/10.1038/nature15394
http://dx.doi.org/10.1093/bioinformatics/btu431
http://arxiv.org/abs/NIHMS150003
http://dx.doi.org/10.1038/nmeth.1628
http://arxiv.org/abs/NIHMS150003
http://dx.doi.org/10.1093/bioinformatics/btp394
http://dx.doi.org/10.1101/gr.092981.109

	Introduction
	Methods
	Breakpoint and structural variation identification
	Candidate merging: SE + PE
	Realignment of soft-clipped reads: SE + PE + CE
	Calculation of depth discrepancy
	Combined evidence
	SE + PE + CE
	Voting based metric for candidate selection
	Prioritization by rank aggregation

	Result
	Preliminaries
	Datasets and variant callers
	Validation process

	Performance comparison using simulation data
	Performance comparison using real datasets
	Overlap between variant callers
	Trio analysis

	Runtime performance

	Discussion and conclusion

