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Abstract
Variant calling, in particular, calling SNPs (Single Nucleotide Polymorphisms) is a fundamental
task in genomics. While existing packages offer excellent performance on calling SNPs which
have uniquely mapped reads, they suffer in loci where the reads are multiply mapped, and are
unable to make any reliable calls. Variants in multiply mapped loci can arise, for example in
long segmental duplications, and can play important role in evolution and disease.

In this paper, we develop a new SNP caller named abSNP, which offers three innovations.
(a) abSNP calls SNPs from RNA-Seq data. Since RNA-Seq data is primarily sampled from gene
regions, this method is inexpensive. (b) abSNP is able to successfully make calls on repetitive
gene regions by exploiting the quality scores of multiply mapped reads carefully in order to
make variant calls. (c) abSNP exploits a specific feature of RNA-Seq data, namely the varying
abundance of different genes, in order to identify which repetitive copy a particular read is
sampled from.

We demonstrate that the proposed method offers significant performance gains on repetitive
regions in simulated data. In particular, the algorithm is able to achieve near-perfect sensitivity
on high-coverage SNPs, even when multiply mapped.
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1 Introduction

Decoding individual-specific (or even tissue or cell-specific) variations with respect to a
reference genome is an important task, downstream of DNA sequencing. Among the
variations that can be detected with high throughput sequencing data, the most frequently
called variants are single nucleotide polymorphisms (SNPs), which specify single base loci at
which the target sequence differs from the reference allele. There are tens of millions of SNPs
in a human genome (which has 3 billion bases), and a reliable detection of them (i.e. SNP
calling) is an important task because they are relevant in predicting organismal traits as well
as implicated in several diseases.

Existing SNP calling softwares (i.e. DNA-Seq SNP callers), such as GATK [6], GlfMultiples
[1], SAMtools mpileup [16], FreeBayes [8] and VarScan [14], mainly rely on whole genome
sequencing (WGS) or whole exome sequencing (WES). While WGS can call SNPs throughout
the entire genome, many downstream pipelines only consider SNPs in gene exon regions, as
their impact is easier to quantify. Therefore, WES is a widely-used cheaper alternative, which
focuses on DNA reads from the exonic regions. A third strategy is to utilize RNA-seq reads
from a tissue of interest and use those reads both for (a) expression estimation as well as (b)
variant calling. Beside being fast and inexpensive [3], this third strategy is advantageous
when the genes harboring SNPs of interest are likely to have non-negligible expression, such
as in cancer tissue analysis. However existing DNA-Seq SNP callers are not suitable to
properly handle RNA-Seq data directly. One reason is that RNA-Seq reads may be sampled
from two different exons, and these splice junctions are typically not captured by these
callers. In addition, RNA-Seq data also has a specific feature, namely the varying expression
of different genes, with expression levels varying over several orders of magnitude.

To address the above mentioned challenges, designing SNP callers tailored for RNA-Seq
data (RNA-Seq SNP callers) is necessary. There are only a limited number of works on
RNA-Seq SNP calling, such as GATK, eSNV-detect [22], SNPiR [19] and SNVMix [10].
eSNV-detect and SNPiR essentially rely on SAMtools mpileup and GATK to call SNPs
respectively, and SNVMix depends on SAMtools mpileup to prepare necessary statistics for
SNP calling. Among these, only GATK is still under constant maintenance and development.

Even though most existing SNP callers (especially GATK) offer excellent performance on
benchmark sets, these sets are usually only representative of regions in the genome without
repeats. On the repetitive regions, where reads are not uniquely mapped, most callers are
unable to make any reliable calls, since they simply discard all of the multiply mapped
reads, and consequently corresponding SNP information will be missed. We note that even
projects that are designed to catalogue the performance of SNP callers, such as Genome in a
bottle project [23], consider high-quality calls only in non-repetitive regions. This limitation
fundamentally comes from the fact that existing read aligners are unable to differentiate
between multiply mapped reads, and therefore cannot make any predictions on the origin
of the SNP with confidence. There are some studies regarding DNA-Seq SNP calling that
consider multiply mapped reads, such as Sniper [21], SiRen [5] and GW-CALL [9], but to our
best knowledge there is no work yet on RNA-Seq SNP Calling that addresses the problem of
multiply mapped reads on repetitive genomic regions.

To fill this gap, we’ve designed abSNP (“a” stands for abundance and “b” stands
for Bayesian principles. abSNP is written in Python and is freely available at https:
//github.com/shunfumao/abSNP), which is a novel RNA-Seq SNP calling software that is
able to call SNPs even in repetitive regions. The key idea, as illustrated in Figure 1, is to
use the products of abundance estimation (or called quantification), which include estimated

https://github.com/shunfumao/abSNP
https://github.com/shunfumao/abSNP
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Figure 1 The utility of abundance estimation in SNP calling. Suppose target individual genome
has (approximate) repetitive regions inside genes A, B and C, and gene B contains a SNP of G→ T .
Step (a) shows sampling RNA reads from transcriptome (e.g. set of RNA transcripts), where reads
{A1, A2, . . . , A50} and {B1, B2} are sampled from genes A and B, respectively. In step (b) we align
reads onto a reference genome. However it is possible that all reads are mapped onto all three genes
because of their similarity. One may rely on {B1, B2} and call SNPs in all three genes, therefore
bringing wrong calls (false positives) in gene A and C. Alternatively, existing methods discard all
these reads, which results in a false negative (a true SNP not detected) of the SNP in gene B. Now
let us consider an additional RNA-Seq abundance estimation procedure in step (c): One byproduct
we can obtain is rich information of mapping quality scores for reads. Suppose the mapped reads (in
dotted shape) onto gene C are therefore known to have very low mapping scores (e.g. < 0.1), we then
exclude them for SNP calling. The other product we can obtain is the estimated gene abundance.
Suppose the abundance levels (the number of reads per locus here) of genes A, B and C are therefore
known to be λA = 50, λB = 2 and λC = 0. Then we can say reads {B1, B2} are more likely to come
from gene B, while {A1, A2, . . . , A50} are probably sampled from gene A. Consequently, we call the
SNP correctly in gene B.

gene expression levels as well as rich information of read mapping quality scores. As far as
we know, such kind of information has not been exploited yet for RNA-Seq SNP calling.
We demonstrate that utilizing such information leads to significant gains in SNP calling
performance. In comparison to existing callers that are unable to make any calls in multiply
mapped regions, abSNP is able to get significantly increased sensitivity. In particular, in
SNPs that have high coverage, abSNP demonstrates near perfect sensitivity, making it a
viable alternative to existing SNP callers.

2 Method

2.1 Problem Statement
In this work, our goal is to call SNPs in diploid genome based on RNA-Seq data. The input
to our caller is the set of RNA-Seq reads sampled from the transcriptome (i.e. set of RNA
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transcripts). Our goal is to identify SNPs located within the gene regions of the target
individual, i.e., loci at which the target genome is different from a known reference genome.
To this end, we use the standard technique of read alignment of the sampled reads onto
the reference sequence, and compare the nucleotides on the mapped reads to those of the
reference genome to call SNPs.

There are several challenges that need to be addressed: (i) The most important factor is
due to existence of (approximately) repetitive regions in the target/reference; reads sampled
from repetitive regions get mapped to multiple loci, and the algorithm has to figure out where
they are sampled from. (ii) Not all the reads sampled from a locus carry SNP information.
This is due to the heterozygous SNPs, in which one of the alleles contain a SNP, and the
other one matches with the reference genome. (iii) A unique feature of RNA-Seq data is that
there is potentially a wide gap between the number of reads sampled from the paternal and
maternal alleles, due to the varying expression levels of the corresponding genes.

2.1.1 Assumptions
To handle the above-mentioned challenges, we develop abSNP based on the following three
key assumptions in order to simplify our modeling of the problem:
(i) Heterozygous SNPs: We assume that SNP only appears in one of the paternal or the

maternal allele, while the other allele is consistent with the reference genome. Our
methods can also detect SNP occurring in both alleles (i.e. homozygous SNP), but
further refinement is needed to distinguish whether a SNP occurs in one or both of the
alleles.

(ii) Equal allele contribution: This means each paternal and maternal allele contributes
equally to the abundance for each genomic locus1.

(iii) Single SNP across repetitive regions: When there are repetitive regions, we assume
that at most one copy has a SNP at a given locus. This assumption is valid since the
probability of SNP is small (p ≈ 0.001) and the probability of two SNPs p2 is negligible.
We note that each copy of a repetitive region can have many SNPs; just that they do
not occur at the same base locus.

2.2 Definitions
We briefly review a set of terms and notations (as summarized in Figure 2) that are useful
for presentation of the algorithm and the following discussions.

The proposed SNP calling procedure examines genomic loci one-by-one, to identify
whether a SNP occurs at each locus or not. While processing the sequence at locus i, the
base of the reference genome (reference base) at locus i is denoted by r ∈ {A,C,G, T}.
In a typical scenario where no SNP exists, both the paternal and maternal alleles of the
individual target also have base r at the current locus i. A locus i is called a SNP if among
the two alleles of the individual target, one allele (non-SNP allele) has base r, and the
other allele (SNP allele) has x 6= r (recall the heterozygous SNP assumption).

After read alignment, a subset of J reads (denoted by R = {R1, R2, . . . , RJ}) sampled
from the target alleles will be mapped onto the reference genome so that they cover locus
i. We denote by λ0 the expression level (abundance) of locus i, which can be estimated by
quantifying the transcripts with observed reads, for example, by using RSEM [15]. For each

1 This assumption is used to develop our algorithm, however, this assumption is not critical. In our actual
evaluation each allele has a randomly assigned (thus different) expression levels.
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Figure 2 A typical scenario of SNP calling at locus i.

Rj , we denote its base covering locus i in alignment by bj , and denote its base quality2 at
locus i by qj . A read Rj is called a SNP read if its read base differs from the reference
base, i.e. bj 6= r.

As illustrated in Figure 2, these reads may be also mapped to other repetitive regions of
the reference genome. The corresponding bases of multiply mapped reads will cover other
loci of the reference, which are called alternative loci for locus i, and will be denoted by
{i1, i2, . . . , iK}. Their respective reference base and estimated abundance are denoted as rk
and λk for k ∈ {1, ...,K}.

2.3 Overall Flow
The core stages of the proposed caller are illustrated in Figure 3. The algorithm takes in raw
reads, known transcriptome annotations (such as .gtf format), and reference genome, and
first performs abundance estimation using RSEM [15], which estimates abundance for each
RNA transcript. Based on RSEM results, we utilize the following outputs: (1) estimated
abundance per genome locus, as well as (2) genome-based read alignments. Although it
is also possible to use pure alignment softwares (e.g. STAR [7] or TopHat2 [13]) to obtain
read alignments, our alternate process using RSEM offers rich mapping quality information
which can be used to filter out noisy multiply mapped reads in a step called MAPQ filtering
(Section 2.4). Based on the estimated abundance and read alignments, we perform Count
Generation, where we collect necessary information (Figure 2 and Section 2.2) required for
SNP calling per target locus. We then use our Bayesian SNP calling criteria to find SNP
candidates for the target genome. This step is carried out using information at a given locus
(including multiply mapped reads, their alternative loci and abundance). Since the SNP call

2 The base quality is encoded in read file, and is different from mapping quality of a read, which is
encoded in the read alignment file.
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Figure 3 Overall Flow of abSNP.

at each locus is made independently, in order to share information between the multiple SNP
calls, we have a filtering step that takes into account the calls at alternative loci; this step is
called shadow SNP filtering, see Section 2.6.

2.4 MAPQ Filtering
MAPQ (MAPping Quality of read alignments) is a metric used to capture the confidence
about mapping of a read to a reference region. As described in [17] as well as in official read
alignment format [11], it is defined as: −10log10(1− P (correct mapping)). Since a read can
be multiply mapped onto different loci (i.e. repetitive genomic regions), a better knowledge of
MAPQ for each alignment can potentially help us remove false alignments and consequently
achieve a better SNP calling performance.

Though well defined, the MAPQ scores reported by existing RNA-Seq aligners (such
as STAR and TopHat2) are usually uninformative and usually have same value for all of
the multiply mapped reads. For example, in STAR (also similar in TopHat2), a uniquely
mapped read will have MAPQ = 255 and a read multiply mapped onto Nmap loci will have
MAPQ = −10log10(1 − 1

Nmap
) corresponding to P (correct mapping) = 1

Nmap
. If the read

maps equally well to all possible loci, it appears that there may be no way to get further
information.

However, when one considers multiple reads, it is possible to get additional information,
since each gene has a differing abundance, which when estimated, modifies the posterior
probability of mapping. In other words, we can obtain a more informative mapping quality
measure as a side product of RNA-Seq abundance estimation. Typically, an Expectation-
Maximization (EM) algorithm is involved, which alternates between the two steps: (1) given
the read alignments onto RNA transcripts, the abundance of transcripts is estimated; (2) given
the abundance of transcripts, the read alignment probabilities are refined. This iterative
procedure calculates the probability that a given read is assigned to a particular genomic
locus, and therefore can be used as a sharper estimate of MAPQ.
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Here we use RSEM [15], a software extensively used for abundance estimation, to provide
us with refined MAPQ scores. We then filter out some of the low quality read alignments
with MAPQ scores lower than certain threshold (e.g. 0.1) via the MAPQ filtering process.
We empirically choose this threshold, since we find this helps effectively removing false
alignments of multiply mapped reads that may cause false positives.

To the best of our knowledge, our algorithm is the first to use abundance estimators
for RNA-Seq SNP calling. They provide us with not only better MAPQ scores, but also
estimates of abundance levels required by our algorithm to detect (as in Section 2.5) and
refine (as in Section 2.6) SNP calls. While we choose RSEM in our current implementation
due to its popularity, it is also possible to replace RSEM with other abundance estimators
such as eXpress [20].

2.5 SNP Calling Algorithm
Here we describe our core SNP calling algorithm. Our algorithm runs over all loci, and
for a given locus i, it examines whether i consists of a SNP. Consequently, throughout this
section we present the algorithm for a given locus i (as illustrated in Figure 2), and hence
dependency of variables on i is eliminated, whenever it is clear from the context.

Based on the assumptions of equal allele contribution and heterozygous SNPs (Sec-
tion 2.1.1), at locus i we have two target alleles: one allele with base r (identical to the
reference sequence) and abundance λ0

2 , and the other allele with base x ∈ {A,C,G, T} and
abundance λ0

2 . There is a SNP at locus i if and only if x 6= r.
At locus i, we try to estimate the corresponding x using maximum a-posterior probability

(MAP) estimation:

x̂ = arg max
x∈{A,C,G,T}

P (X = x|R) = arg max
x∈{A,C,G,T}

P (R|X = x)P (X = x) (1)

where R = {R1, . . . , RJ} is the set of reads mapped over locus i of the reference genome, and
X is a random variable, which represents possible base at locus i of the potential SNP allele.

The second equation holds due to P (X = x|R) = P (R|X=x)P (X=x)
P (R) (according to the

Bayes’ theorem) and the fact that P (R) is the same for all values of x. Here P (X = x) can
be further expressed as:

P (X = x) =
{

PSNP
3 if x ∈ {A,C,G, T} \ {r}

1− PSNP if x = r
(2)

where PSNP indicates the prior probability (i.e. general knowledge) for a SNP to occur per
genomic locus3.

In order to solve the optimization in (1) we also need to find P (R|X = x). A common
approach is to assume reads are independent from each other (as used in [17]), so we have:

P (R|X = x) = ΠJ
j=1Pj = ΠJ

j=1P (Rj = bj |X = x, r, qj , λbj
, λΣ) (3)

Here Pj indicates the probability of the j-th read (i.e. Rj) having base bj at locus i, given
all the other assumptions, including base x at the target, base r in the reference, and all
related quality scores and abundance levels. In particular, qj denotes the quality score of
base bj at the read, λbj

denotes the (sum of the) abundance level(s) of alternative loci that

3 PSNP can be set based on the knowledge of SNP rate of the genome of interest. Suppose there are
around 10 million SNPs across human genome of 3 billion bases, then we set PSNP as 107

3×109 ≈ 3× 10−3.
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the read can be mapped to and the reference has bj , i.e., λbj =
∑K
k=1 λk1{rk = bj}, where

1{·} is an indicator function. Finally, for the current locus i and read Rj , λΣ is the total
estimated abundance level, given by λΣ = λ0 +

∑K
k=1 λk. Hence, we can further expand Pj

as:

P (Rj = bj |X = x, r, qj , λbj , λΣ) = 1
λΣ


λ0qj + λbj if bj = x = r

λ0( qj

3 + 1
6 ) + λbj

if bj = x 6= r

λ0( qj

3 + 1
6 ) + λbj

if bj = r 6= x

λ0
1−qj

3 + λbj
if bj /∈ {x, r}

(4)

To understand Equation (4), let’s first consider an Rj with no alternative mappings
(i.e. λbj = 0, λΣ = λ0). For bj = x = r, Pj is the probability that read Rj is sampled from
target individual’s paternal or maternal allele at locus i (which is 1) and no error has occurred
(which happens with probability qj): thus we have Pj = 1× qj = qj . If bj = x 6= r, there are
two possibilities for observing Rj : either Pj is the probability of sampling Rj from the SNP
allele at locus i (which is 1

2 , due to assumption of equal allele contribution) without error
(which is qj), or Pj is the probability of sampling Rj from the non-SNP allele (which is 1

2 )
with error (which is 1−qj

3 ). Therefore, Pj = 1
2qj + 1

2
1−qj

3 = qj

3 + 1
6 . Similar reasoning applies

to the remaining cases. For Rj with alternative mappings (λΣ > λ0), the additional term
λbj

λΣ
represents the possibility of Rj being sampled from the alternative loci. For simplicity,

we have assumed the alternative loci have no SNPs and the sampling from them is error free.
Therefore, this possibility is

∑K
k=1

λk

λΣ
1{rk = bj} = λbj

λΣ
.

Once at locus i, we have obtained estimated x̂ by using Equation (1) to (4), we will call
a SNP at locus i if x̂ 6= r.

2.6 Shadow SNP Filtering
For SNPs called at their multiply mapped loci, we have assumed there is one true SNP
among them (Section 2.1.1). We call the others as shadow SNPs because they are typically
called when the reads sampled from some true SNP locus are multiply mapped onto these
loci and thus propagate the false (i.e. shadow) SNP information. This is mainly due to the
fact that our SNP caller operates on a locus-by-locus basis, and the SNP calls at the multiply
mapped regions are not coordinated. This causes our SNP calls to violate Assumption (iii),
i.e., there is a single SNP in repetitive regions. In order to compensate for this, we apply a
filtering method, which tries to enforce that the called SNPs obey Assumption (iii). The
basic idea is to keep only the most likely SNP among the SNPs called in the alternate loci.

To formulate, suppose we have a locus i for which we have called a SNP with Nb SNP reads
with base value b 6= r mapped at locus i, having abundance λ0. Let us consider the other
loci to which multiply mapped reads also get mapped to, among which loci {i1, ...ik, ..., iK}
have also been called as SNP, and the abundance at locus ik be λk.

We assume the number of reads with base b actually sampled at locus i is a Poisson
random variable Xb with mean λ = λi

2 . λi

2 is used here because we have assumed each allele
has equal contribution to abundance. We now do a hypothesis testing whether SNP reads
came from locus i or an alternate locus ik. Let the confidence of Nb reads sampled at locus
i be denoted as P (Xb = Nb|λi

2 ). Similarly, the confidence of Nb reads actually sampled at
alternative locus ik is P (Xb = Nb|λk

2 ).
We throw away SNP at locus i if the confidence of Nb SNP reads actually sampled at i is

not high enough compared to at its alternative loci:

maxikP (Xb = Nb|
λk
2 ) ≥ αP (Xb = Nb|

λi
2 ) (5)
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Here α ≥ 0 is a design parameter. When α = 0, a SNP detected locus i containing SNP
reads alternatively mapped elsewhere will always be filtered away, thus achieving minimal
false positive. When α = 1, it implies there is some other locus with higher confidence for
Nb reads to be sampled from. Therefore we filter the current SNP away.

Empirically we find false positives increase faster than false negatives decrease as α(> 1)
gets larger, so we only consider 0 ≤ α ≤ 1.

3 Results

In this section, we perform simulation studies to compare the results of abSNP with other
alternatives for RNA-Seq SNP calling. It is difficult to obtain real data with ground truth
for SNPs that have multiply mapped reads, as existing methods are unable to call these loci
reliably. Therefore, we resort to simulation studies in order to evaluate the performance of
abSNP and compare it against GATK, which has a best-practice guideline for RNA-Seq SNP
calling. We demonstrate that while GATK is unable to make any calls on multiply mapped
reads, abSNP can call SNPs with significant accuracy.

Simulation Setup: To evaluate performance, we have developed a RNA-Seq SNP simulator.
The simulator takes as input a reference genome, a transcriptome annotation, the requested
number of SNPs, and the read requirements (e.g. number, length, error rate). It assigns each
transcript a random expression level according to a log-normal distribution. We explicitly
account for the effect of allele-specific expression with maternal and paternal transcripts
having different expression levels (in our case, we simulate these expression levels to be
independent of each other). The requested number of SNPs are generated randomly in
the gene regions where high expression levels (top 10 percent) are assigned, so that the
majority of these true SNPs are expected to be covered by SNP reads. We then generate
reads independently from the paternal and maternal transcriptomes that contain SNPs using
the UC Riverside RNA-seq simulator [18], with error rate set at 1% (to mimic Illumina error
rates). Note that due to the randomeness of read sampling, it is possible that some true
SNPs are still covered by no or only a few SNP reads. We then pool the reads from the two
alleles in order to generate the read dataset.

We generate 5 datasets each with 2M 100-bp reads, so that we can get a sense of the
average performance. We choose human chromosome 15 of GRCh37 [4] as the reference
genome and the relevant UCSC gene annotations [12] as the transcriptome, and generate
2000 SNPs for each dataset. To compare performance, we run both abSNP and GATK by
taking simulated reads as input and obtaining SNP candidates as output. For abSNP, the
process is described in Section 2.3. For GATK (version 3.4-46), we apply its best practice [2]
and incorporate the annotated transcriptome to improve its read alignment.

Overall Performance: The SNP calls are compared to the ground truth SNPs in order
to estimate the number of ground-truth SNPs missed (false negative) and the number of
falsely-called SNPs (false positive). For false negative, we have excluded the SNPs where no
SNP reads are sampled because they are trivially to be not detected. The overall performance
is plotted in Figure 4a. abSNP has a parameter α that can be tuned in order to change
the tradeoff between the false negative and false positive (to make it more conservative or
less conservative, as described in Section 2.6), and here we focus on two extreme points
α = 0 and α = 1. We find that abSNP attains much less false negatives with a small increase
in false positives. To quantify the effect, we measure the sum of false negative and false

WABI 2017
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(a) (b)

(c) (d)

Figure 4 Performance Evaluation on Simulated Data (1K SNPs per allele, 2M 100-bp reads with
error rate 0.01). We categorize true SNPs by their multi-mapping degree (based on GATK’s read
alignment) in (b) and by their SNP reads coverage in (c) and (d). A SNP is multiply mapped if all
its SNP reads are multiply mapped, and its multi-mapping degree is the mean of multiple mappings
of its SNP reads. Otherwise it’s uniquely mapped with degree 1. SNP reads coverage is the number
of SNP reads originally sampled from (instead of mapped onto) the SNPs. (a) abSNP has much less
false negatives with small increase in false positives; with total error (which is the sum of the false
positive and false negative, as demonstrated by 45-degree dashed lines where “m” stands for false
negative error (missed), “f” stands for false positive and “e” stands for total error) reduced from
189 (GATK) to 102 (abSNP α = 1). (b) abSNP and GATK share similar sensitivity for uniquely
mapped SNPs. For multiply mapped SNPs, GATK fails to make any calls while abSNP is still able
to capture these SNPs. (c) Both abSNP and GATK increase sensitivity as coverage increases. (d)
While GATK fails to capture any multiply mapped SNPs across different coverages, abSNP is able
to recover these SNPs with high accuracy provided their SNP reads coverages are high.

positive as the total number of errors, and this is plotted by a 45-degree line, from which we
can see the gain from abSNP. The total error for abSNP(α = 1) is 102 whereas GATK makes
189 errors; showing the significant improvement in the error rate. We also point out that
abSNP(α = 0) has only 5 false positives compared to 2 false positives for GATK, while the
number of false negatives is reduced from 187 to 122, thus incurring a modest false positive
increase can lead to significantly improved sensitivity.
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Performance on multiply mapped reads: While the overall results indicate that abSNP
can afford performance gain over GATK, the full picture emerges only when we stratify the
performance results by the average number of mappings for each read. Consider Figure 4b,
where each bar represents an average recovery fraction, and in the x-axis, the true SNPs are
grouped based on their multi-mapping degree using GATK’s intermediate read alignment.
Let the true SNP at locus i (SNPi) has U uniquely mapped SNP reads and V multiply
mapped SNP reads (each of which has the number of multiple mappings as v1, ..., vj , ..., vV
respectively, with any vj > 1). SNPi is considered as multiply mapped only when all its
SNP reads are multiply mapped (i.e. U = 0), and its multi-mapping degree is the mean of
multiple mappings of its multiply mapped SNP reads.

For uniquely mapped SNPs (e.g. group uniq_map), abSNP and GATK have very similar
sensitivity, with 96% for GATK, 96% for abSNP(α = 0) and 97% for abSNP(α = 1). Indeed,
the false positives also remain similar between GATK and abSNP(α = 0). For multiply
mapped SNPs (e.g. in groups [2, 3) to [7, 9)), GATK fails to detect any SNPs because it will
throw away all multiply mapped reads and thus captures no SNP information, while abSNP
is still able to call many SNPs succesfully. Indeed, the mild-increase in false positives in
abSNP also comes from the the multiply mapped loci. Actually there can be two factors
contributing to the gains of abSNP - the first is due to MAPQ filtering, and the second
is due to our SNP calling algorithm together with shadow SNP filtering. Both factors are
needed in order to obtain the full performance improvement of abSNP, and are only possible
due to the exploitation of abundance variation of the different transcripts. In particular,
when abSNP becomes conservative (i.g. α = 0) on false positives, MAPQ filtering plays a
dominant role in our gain. When abSNP becomes less conservative (e.g. α→ 1), our calling
algorithm together with shadow SNP filtering will dominate the gain especially for SNPs of
high multi-mapping degrees.

We choose a very strict definition of multiply mapped SNPs requiring no uniquely mapped
SNP reads on that locus (i.e. U = 0). This strict choice is motivated from the fact that
if there are a non-zero number of uniquely-mapped SNP reads, then existing algorithms
can indeed make non-trivial calls. Also, when gene regions are repeated, due to paralogous
gene families or long segmental duplications, we expect the SNP to be embedded inside a
duplicated region, and hence have no uniquely mapped reads.

Dependence on coverage: We can also stratify the performance by coverage in Figure 4c,
where the true SNPs are grouped based on their SNP reads coverage: the number of SNP
reads originally sampled from these SNPs. Each group contains 25% of the true SNPs. Each
bar represents an average recovery fraction. As SNP reads coverage increases, the sensitivity
of all callers improves, with abSNP approaching 100% at the highest coverage group. We
note that this is highly significant considering that the highest coverage bar also contains
nearly 25% of the multiply mapped SNPs. Thus abSNP has the potential to detect multiply
mapped SNPs with high accuracy provided their SNP reads coverage is high. To verify this,
we only focus on the true SNPs that are multiply mapped (based on GATK’s read alignment)
and group them based on their SNP reads coverage as in Figure 4d, where each group also
contains approximately 25% of the multiply mapped true SNPs. Whereas GATK does not
recover these SNPs, abSNP has a tendency of better recovery as the coverage increases.

4 Discussion

While many algorithms have been developed in order to reveal SNPs in human genome (both
coding and non-coding regions) based on different sequencing technologies, SNPs at repetitive
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genomic regions remain mostly unexplored, because the current SNP discovery mainly relies
on methods that ignores all multiply mapped reads due to repetitive genomic regions. We
have developed abSNP that is especially designed in order to fill this gap (in particular with
regard to the usage of RNA-Seq), through Bayesian principles and filtering methods that
utilize the unique products of RNA-Seq abundance estimation that contain rich mapping
quality information and estimated abundance. We believe this is the first work to explore
this kind of information through an abundance estimation procedure. Our simulated results
have shown abSNP’s promising performance gain over the widely used GATK best practice.
The main gain over GATK is in multiply mapped reads, where GATK does not make any
SNP calls, whereas abSNP can get most SNP calls right on the highly abundant gene regions.
Our algorithm abSNP is freely available at Github for others to use.

There are many directions for future work: (1) Testing abSNP on real data-sets is an
important direction for future work. This is complicated by the lack of ground-truth SNP
calls in multiply mapped regions. The present gold-standard datasets focus on SNPs in
non-repetitive regions (i.e. they may not belong to the category of multiply mapped SNPs
discussed in Section 3), which is the reason for the excellent performance on these datasets.
(2) Current version of abSNP does not utilize the pairing information in paired-end reads; this
can be potentially utilized to improve performance. (3) abSNP does not factor RNA-editing
into account, therefore the SNPs called are post-transcriptional. Thus abSNP in combination
with DNA SNP calling can be used to quantify the impact of RNA-editing; although this
requires strong statistical controls to reduce the impact of false-positives. (4) Currently
abSNP assumes that both alleles have equal expression levels. While we have tested this in
the simulation by having differing allele specific expressions, the algorithm can be potentially
improved if the effect of allele-specific expression is accounted for. This is a chicken-and-egg
problem since SNP calls are needed in order to quantify allele-specific expression, whereas,
knowledge of allele-specific expression can improve SNP calls. Thus a joint SNP-calling and
allele-specific expression detection can be useful. (5) In many cases, data from both DNA and
RNA sequencing are available in order to make SNP calls, sometimes both from regular and
diseased tissues. Extending abSNP to this framework is an interesting direction of research.
(6) A potential application of abSNP is on real cancer datasets to detect somatic mutations.
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