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Abstract
In this article, we propose a novel pattern matching algorithm, called BAPM, that performs search-
ing in the encoded genomic sequences. The algorithm works at the level of single bytes and it
achieves sublinear performance on average. The preprocessing phase of the algorithm is linear
with respect to the size of the searched pattern m. A simple O(m)-space data structure is used to
store all factors (with a defined length) of the searched pattern. These factors are later searched
during the searching phase which ensures sublinear time on average. Our algorithm significantly
overcomes the state-of-the-art pattern matching algorithms in the locate time on middle and long
patterns. Furthermore, it is able to cooperate very easily with the block q-gram inverted index.
The block q-gram inverted index together with our pattern matching algorithm achieve superior
results in terms of locate time to the current index data structures for less frequent patterns.
We present experimental results using real genomic data. These results prove efficiency of our
algorithm.
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1 Introduction

DNA sequencing is nowadays the integral part of several disciplines like personalized medicine,
biology, biotechnology, or forensic biology. The demand for cheap sequencing induced the
evolution of High-Throughput Sequencing (HTS) technologies that can sequence large
stretches of DNA in a massively parallel fashion and that produce millions of DNA sequences
simultaneously. The public sources report the necessary time per one run in the order of
hours and the cost per one million bases lower than 0.02 USD1. General availability of the
sequencing causes producing large volumes of genomic data that needs to be stored effectively
in the form allowing extremely fast searching.

DNA molecule can be mapped one-to-one to a sequence of letters which implies that it
can be processed as a text string. The string matching problem is crucial task since early
beginnings of the text processing. The task is very simple – to find all occurrences of a given
pattern P in a large text T . However, this task is performed very frequently and over large
volumes of data (text T ) which implies that very fast algorithms are necessary. To accelerate

1 https://www.genome.gov/sequencingcostsdata/
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the string matching, the algorithm can preprocess either the pattern or the text or both. The
pattern preprocessing is relevant only for the given pattern and therefore it is included in
the search process. The text preprocessing (which includes especially the indexing methods)
is universal for all possible patterns, however it usually requires some extra space to store an
auxiliary data structure.

Knuth-Morris-Pratt (KMP) [11] is one of the most famous pattern matching algorithms
and the first one ensuring the worst-case time linear with the length of the text T . Boyer-
Moore (BM) [3] family algorithms represent backward pattern matching approach. BM
algorithm allows skipping of some characters which leads to lower than linear average time.
There exist also other variations of this algorithm given by Horspool [10] or Sunday [20].
Suffix automaton (often called DAWG – Deterministic Acyclic Word Graph) is the essence of
another algorithm achieving sublinear average time BDM (Backward DAWG Match) [4]. The
suffix automaton of the reversed pattern performs backward searching for the pattern. The
byproduct of the search is always the longest prefix of the pattern occurring at that position
in the text which ensures safe shifting for BDM. Another approach is to use non-deterministic
instead of deterministic automata for searching in the text. So-called bit-parallelism [5, 2]
proved to be a very simple way how to simulate the non-deterministic automaton. It exploits
the parallelism provided by bitwise operations in terms of one computer word. It can
accelerate the operations up to a factor w, where w is the number of bits in the computer
word. Bit-parallelism is particularly efficient for the patterns with size lower than the size of
the computer word m ≤ w. Navarro et al. applied the bit-parallelism to simulate the suffix
automaton and they proposed BNDM algorithm [17] that achieved 20%-25% improvement
in search time in comparison to its deterministic version BDM. Later, Durian et al. [22]
proposed an efficiency improvement of BNDM and Shift-Or algorithm residing in processing
q-grams of the input symbols. BSDM [7] is relatively recent algorithm using suffix automaton
searching for a factor with no repetitions of a condensed pattern. BSDM proved to be very
fast especially for middle-sized and longer patterns. Very recently, the algorithms (e.g., [6, 21])
exploiting SIMD (Single Instruction, Multiple Data) instructions of modern CPUs appeared.
EPSM [6] tabulates all the factors (of a given length) of the searched pattern. The factors
are easy to access using hash table whereas the hash function is provided by CRC SIMD
specialized instruction. The algorithm performs searching for any of the factors (in the
filtering phase) and any of the hits must be confirmed by direct check at the corresponding
position in the text.

We propose a novel pattern matching algorithm, called BAPM (Byte-Aligned Pattern
Matching). Our algorithm is optimized for searching in the encoded genomic sequences
only. It exploits the low alphabet size of the genomic sequences which implies a possibility
to tabulate all factors (of a given length) of the pattern achieving reasonable memory
consumption. Furthermore, a simple encoding scheme for genomic sequences allows to
process the factors as a sequence of one or more bytes. The searching phase of BAPM resides
in shifting over the encoded DNA sequence, reading a sequence of one or more bytes and
comparing its value with the tabulated factors of the searched pattern. When a factor is
found the potential occurrence of the searched pattern must be still confirmed by direct
comparison of the text to the pattern. BAPM works at the level of bytes all the time. Only
the very last step confirming a potential occurrence applies bitwise operations. This leads to
high efficiency in searching for middle-sized and long patterns.

Preprocessing of the input text is another way how to speed up searching in the text.
Suffix trees [23] are one of the fundamental index structures. Suffix array [14] is another basic
index structure that significantly improves demanding space requirements of the suffix trees.
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Other indexes like FM-index [8] or CSA (Compressed Suffix Array) [9] further improved
the space requirements of the index data structure to be the same or lower than the size of
the input text. A separate branch of research focused on indexing text files with natural
language content. In this field, so-called inverted index [15] is considered as de-facto standard.
However, the inverted index proved its efficiency also when performed on other kind of
data [18]. We supplemented our BAPM with a simple block q-gram inverted index and
experimentally compared its locate speed with state-of-the-art index data structures.

The rest of the paper is organized as follows. We give definitions of some basic notions in
Section 2. The Section 3 is dedicated to definition and detailed description of BAPM algorithm
and necessary data structures. The Section 4 summarizes experimental results performed on
real genomic data. We give the conclusion and some ideas for future work in Section 5.

2 Basic Notions

Let x = x1x2..xn be a string composed of single symbols xi of a finite ordered alphabet Σ.
The length of the string x is n = |x|. The size of the alphabet Σ is σ = |Σ| = O(1). The start
position i and the length j define so-called factor (or substring) denoted by xi,j = xi..xi+j−1.
A factor with i = 0 is called prefix and a factor with i + j − 1 = n is called suffix of the
string x. We denote by ε so-called empty string of length 0. The problem of string pattern
matching is to find all occurrences of a pattern P = p1p2..pm in a text T = t1t2..tn where
both strings are composed of symbols from the same alphabet Σ and m� n. Particularly,
we can distinguish two tasks: (i) count when number of occurrences of P in T is reported
and (ii) locate when exact positions of the occurrences of P in T are reported.

Pattern substitution method [13] is a compression method when q-grams of symbols of the
input text T (i.e., Σq) are substituted with an assigned byte value b where b ∈ {0, 1, . . . , 255}.
The pattern matching on the compressed (encoded) text means to find all occurrences of the
compressed pattern PC in the compressed text TC (both defined over the alphabet of byte
values b ∈ {0, 1, . . . , 255}).

Traditional inverted index consists of two major components: a vocabulary storing all
distinct words occurring in the text T and a set of posting lists storing positions of all
occurrences of a given word in the text T . The vocabulary of a q-gram inverted index [18]
is composed of all possible q-grams of the alphabet Σ, i.e., Σq. For the purpose of block
indexing we split the indexed text into single blocks of a defined fixed size. The posting lists
of a block inverted index then store addresses of the blocks covering the exact positions of
occurrences. The exact positions are determined in the next step when a standard pattern
matching method is performed in terms of the preselected blocks.

In later description of the algorithm, we use C-like syntax for bitwise operations. Par-
ticularly, we use | for bitwise-or, & for bitwise-and, � for shift-left operation and � for
shift-right operation.

3 Byte-Aligned Pattern Matching

Byte-Aligned Pattern Matching algorithm (BAPM) is optimized for searching in the encoded
genomic sequences. It assumes the input alphabet Σ = {A,C,G, T} and a simple substitution
encoding defined as f : Σ4 7→ B where B = {0, 1, . . . , 255} and b ∈ B represents a byte value
that is composed as a concatenation of bit couples given by the single symbols of the 4-gram
s ∈ Σ4 (A→ 00, C → 01, G→ 10, T → 11). The algorithm detects single occurrences within
two steps. In the first step, the algorithm performs searching for all factors of a defined fixed

WABI 2017
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Figure 1 BAPM: Preprocessing phase. The length of the encoded pattern PC is nB bytes.

length that must be a multiple of 4 (in terms of the input alphabet Σ). This ensures that
each encoded factor is represented as a sequence of one or more bytes. BAPM tabulates all
possible factors of the encoded pattern during the preprocessing phase. It is reasonable to
require the set of all factors to fit into the memory cache. For this reason, the acceptable
lengths of the factors are 4 and 8 bases/symbols (in terms of the input alphabet Σ) which
implies the length of one or two bytes, respectively for the encoded factors. The first step
of the searching is only the filtering of possible occurrences. A potential occurrence must
be always confirmed using direct comparison of the encoded pattern PC with the encoded
text TC at a given position i. We have implemented two versions of BAMP tabulating 4-gram
factors (BAPM4) and 8-gram factors (BAPM8), respectively. We explain all the principles of
the algorithm using the version with 4-gram factors. However, the same principles are valid
for the version with 8-gram factors as well. From now on, BAPM reports to 4-gram version of
the algorithm if not stated other way.

Figure 1 depicts a simple data structure used to store the tabulated encoded factors of
the pattern and it demonstrates also BAPM preprocessing phase when this data structure is
filled. The dictionary data structure is depicted in the right part of the figure and its main
part is an array with 256 entries (corresponding to 256 different byte values). Every entry
can contain a pointer to a list which stores all occurrences of the factor (corresponding to the
entry) in terms of the pattern. Each element of the list is a couple (offset, alignment). The
offset o represents a byte position of the factor in the encoded pattern and it is easy deducible
from its starting position i in the raw pattern o = b i−1

4 c. The alignment a represents a
position of the factor in terms of the byte and it can be computed as a = (i − 1) mod 4.
Suppose constant size of the computer word. Then, it is obvious that the dictionary requires
O(m) space where m is a size of the raw pattern. The space of the array is constant and
the lists contain together m− 3 elements, each of them consuming O(1) space. The offset o
requires O(log m

4 ), however, we suppose it can be encoded within a single computer word in
all practical cases.

The left part of Figure 1 describes single steps of the preprocessing phase of the algorithm.
For every possible alignment a ∈ {0, 1, 2, 3}, consecutive byte values of the shifted encoded
pattern PC are processed. The value of the byte determines its position in the dictionary.
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For every byte, its offset and alignment are stored to the corresponding list pointed from the
dictionary. The remaining bases at the end of the shifted pattern that do not compose a
complete byte are omitted (e.g., the suffix AAC for alignment = 1 in Figure 1).

Suppose the length of the raw pattern m = 128 bases which implies 32 bytes for the
encoded pattern PC . BAPM4 needs to store 128 − 3 = 125 factors (elements of the lists).
Suppose a simple byte code used to store the offset o and the alignment a for every factor.
Only two bytes are consumed for every pair (o, a) and still all the information is encoded at
the level of bytes. Thus, for BAPM4 the total space is (128− 3)× 2 + 256 = 506 bytes, plus
some overhead needed to implement the lists. Still, the data structure easily fits into 2 kiB
of memory and it can be kept in the top level of the computer cache. For BAPM8, we can
estimate the needed space as (128− 7)× 2 + 256× 256 = 65 778 bytes, plus the overhead for
the lists. This is still acceptable space ensuring storing the data structure in the fast levels
of the computer memory.

Algorithm 1 describes preprocessing and searching phase of BAPM4. The function encode
is called in the preprocessing phase. The function performs the simple substitution encoding
described above. Its parameters are: the text to be encoded; the starting index for encoding;
and the number of bases/symbols that need to be encoded. The function returns desired
encoded factor of the text. The function buildDictionary is responsible for constituting
dictionary D and storing the shifted versions of the pattern in the array B. The while
cycle (line 4) iterates over all possible alignments a ∈ {0, 1, 2, 3}. For every alignment, the
number of bases/symbols that constitute the longest byte sequence starting at i is computed
(line 5) and the corresponding encoded pattern is obtained (line 6). The encoded pattern is
stored for the given alignment (line 7) and later is used for direct comparison of bytes (the
encoded text with the encoded pattern). Next while cycle (line 9) iterates over all bytes of
the encoded aligned pattern and it ensures storing the couples (offset, alignment) to their
corresponding lists (line 12).

The function buildMask is another part of the preprocessing. It generates all necessary
masks possibly needed in the last step of the comparison (a prefix and/or a suffix of the
encoded pattern with the corresponding part of the encoded text). Since the prefix and the
suffix are smaller than one byte the masks are necessary to minimize the bitwise operations
and therefore also the needed time. The function stores the masks in single variables. The
variable pref stores a prefix of the encoded pattern (smaller than one byte) for all possible
alignments a ∈ {0, 1, 2, 3}. The variable suf stores a suffix of the encoded pattern (smaller
than one byte) for all possible alignments a ∈ {0, 1, 2, 3}. The examples of the stored prefixes
and suffixes can be seen in Figure 1 as the symbols preceding/following the red rectangles.
Similarly, the variables prefMask and sufMask store the masks (used for bitwise-and operation
with the corresponding byte in the encoded text) needed to compare a prefix or the suffix,
respectively of the encoded pattern. The while cycle (line 22) iterates over only three
possible alignments. The pref value is stored for the alignments a ∈ {1, 2, 3} (starting from
the value 3). The prefix for the alignment a = 0 is an empty string ε and therefore it is not
stored. The pointer to the array of the suffix values suf is shifted by the value la and it
starts from the position (la+ i) mod 4. In every step of the cycle, the algorithm: (i) stores
the corresponding prefix value to pref array and the corresponding prefix mask to prefMask
array; (ii) stores the corresponding suffix value to suf array and the corresponding suffix
mask to sufMask array; (iii) shifts auxiliary variables prefM and prefB two bits right; (iv)
shifts auxiliary variables sufM and sufB two bits left.

The function search represents the main function of BAPM. After the preprocessing of
the searched pattern (lines 31 and 32) the algorithm states a safe shift as the number of

WABI 2017
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Algorithm 1 BAPM4 preprocessing and searching phase
1: function buildDictionary(P , m)
2: D ← ∅; B ← ∅;
3: i← 0;
4: while i ≤ 3 do
5: b← b(m− i)/4c × 4;
6: E ← encode(P, i + 1, b);
7: Bi ← E;
8: j ← 1;
9: while j ≤ b(m− i)/4c do

10: if DEj
= ∅ then

11: DEj
← create a new list storing offsets and alignments;

12: add a couple of offset and alignment (j − 1, i) to the list DEj
;

13: j ← j + 1;
14: i← i + 1;

15: function buildMask(P , m)
16: pref ← ∅; prefMask ← ∅; prefM ← 0x3f;
17: suf ← ∅; sufMask ← ∅; sufM ← 0xfc;
18: prefB ← encode(P, 1, 4) � 2;
19: sufB ← encode(P, m− 4, 4) � 2;
20: la ← m mod 4;
21: i← 1;
22: while i ≤ 3 do
23: prefMask4−i ← prefM ;
24: sufMask(la+i) mod 4 ← sufM ;
25: pref 4−i ← prefB;
26: suf (la+i) mod 4 ← sufB;
27: prefM ← prefM � 2; prefB ← prefB � 2;
28: sufM ← sufM � 2; sufB ← sufB � 2;
29: i← i + 1;

30: function search(T , n, P , m)
31: buildDictionary(P, m);
32: buildMask(P, m);
33: shift ← bm/4c − 1;
34: i← shift;
35: while i ≤ n do
36: if DTi

6= ∅ then
37: for each couple of offset and alignment (o, a) ∈ DTi

do
38: r ← compare all bytes starting from Ti−o with Ba;
39: if r = 0 & a 6= 0 then
40: r ← compare (Ti−o−1 & prefMaska) with pref a;
41: if r = 0 & a 6= la then
42: r ← compare (Ti−o+shift & sufMaska) with suf a;
43: if r = 0 then
44: report an occurrence at position 4× (i− o)− a + 1;
45: i← i + shift;

whole bytes of the encoded pattern minus one (line 33). The while cycle (line 35) traverses
the encoded text T of length n. It always reads a byte value Ti and the corresponding entry
in the dictionary DTi is checked (line 36). If the dictionary entry DTi is empty the algorithm
shifts (line 45) and it continues at the next position. Otherwise, the algorithm has to traverse
over all couples (o, a) stored in the corresponding list and perform three-level comparison
for every couple. The first level is comparison of the bytes in the encoded text (starting
at the position given by the offset o) with the bytes of the encoded pattern Ba according
to the shift/alignment a (see line 38). The second level (see line 40) is comparison of the
prefix and it is applied only if the first level was successful. The third level (see line 42) is
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Figure 2 Block q-gram inverted index. Single colors (red, green, blue, yellow) represent the
alignments a ∈ {0, 1, 2, 3} of the pattern.

comparison of the suffix and it is applied only if the second level was successful. If all levels
of the comparison are successful the algorithm reports a new occurrence at the corresponding
position 4× (i− o)− a+ 1 in the raw text (line 44).

The preprocessing phase of the algorithm needs clearly O(m) time at most. In the
function buildDictionary, the algorithm consumes O(m) time to perform encoding (line 6)
and O( m

4 ) time to perform the while cycle (line 9). Other steps of the function are performed
in the constant time. The function buildMask contains all steps that are performed in the
constant time. The worst-case time complexity for the searching phase of the algorithm is
given by the while cycle (line 35) traversing the text and the for each cycle traversing the
list of couples (line 37). Thus, the upper bound is O(nm). However, the average time is
lower than linear for real genomic data. According to our tests on real data, the most of
the factors (especially for BAPM8) occur only once in the pattern and therefore majority of
the lists pointed from the dictionary D contain only one element. Furthermore, especially
for longer patterns where the size of the pattern is significantly greater than the size of the
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tabulated factors, the algorithm jumps over majority of the processed text and so achieves
lower than linear time. We can conclude that the worst-case time of the algorithm is O(nm),
however the average expected time is lower than linear O(n).

The next logical step in improving efficiency of the searching is to add an index data
structure. Navarro et al. [16] proved the efficiency of the block inverted index in combination
with sequential scanning of the encoded text. BAPM works with the encoded q-grams (q ∈
{4, 8}) so we decided to supply it with the block q-gram inverted index. The q = 8 proved to
be optimal in our experiments. The 8-gram factors are encoded into two-byte long values
(short data type in C) which means that they are easily addressed and manipulated. Figure 2
gives a brief description of generating and applying the index. The index dictionary stores
all encoded factors of all pattern alignments a ∈ {0, 1, 2, 3}. Every engaged dictionary entry
points to a posting list implemented as a bitmap. Single bits correspond to blocks in the
encoded text and are set to one when the q-gram occurs in the block.

Searching using the inverted index has the following steps. The pattern has to be encoded.
For each alignment a ∈ {0, 1, 2, 3} (represented by different colors in Figure 2) all two-byte
long values are retrieved. The posting lists of all retrieved values (of a given alignment)
are processed and bitwise-and operation is applied. Next, bitwise-or operation is applied
among intermediate results of single alignments. Finally, the blocks of the encoded text
corresponding to the set bits contain a possible occurrences of the pattern and need to be
processed using BAPM to confirm the occurrences and report the exact positions in the text.

4 Experiments

We present experimental results that give a detailed comparison of our newly presented
algorithms BAPM4 and BAPM8 with the state-of-the-art best algorithms. We considered all
known algorithms focused especially on searching middle-sized and long patterns. The essence
of BAPM (its byte orientation and its principle of tabulating all factors) predetermines this
algorithm to search for patterns with length m ≥ 8 bases. In particular, we compared BAPM4
and BAPM8 with the following algorithms (all of them from SMART library2):

Exact Packed String Matching (EPSM) [7],
Shift-Or algorithm (SO) [1],
Backward-SRN-DAWG-Matching (BSDM4 and BSDM8) [6],
Simplified BNDM with q-grams (SBNDMQ4 and SBNDMQ8) [22].

All the tested algorithms were implemented in C programming language3. We carried
out our tests on Intel® CoreTM i7-4702MQ 2.20 GHz, 8 GB RAM. We used compiler gcc
version 5.4.0 with compiler optimization -O3. The tested patterns were chosen randomly
from the input text and their length m was ranging from 12 to 256. All experiments were run
in loop 1 000 times and we report the mean of the running time in milliseconds. All reported
times represent measured user time + sys time and they always include any necessary
preprocessing. For evaluating the algorithms, we used Ecoli.txt file from the Canterbury
corpus4 and human100MB.txt file that contains the sequence of human chromosome 15 from
the project Ensembl5.

2 http://www.dmi.unict.it/~faro/smart/
3 BAPM4 and BAPM8 implementation is available at http://www.stringology.org/bapm/bapm.zip
4 http://corpus.canterbury.ac.nz/descriptions/large/E.coli.html
5 http://www.ensembl.org/info/data/ftp/index.html

http://www.dmi.unict.it/~faro/smart/
http://www.stringology.org/bapm/bapm.zip
http://corpus.canterbury.ac.nz/descriptions/large/E.coli.html
http://www.ensembl.org/info/data/ftp/index.html
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Table 1 Ecoli.txt: Locate times in milliseconds. The best results are bolded.

m BAPM4 BAPM8 EPSM SO BSDM4 BSDM8 SBNDMQ4 SBNDMQ8
12 1.032 1.188 1.031 4.015 1.031 1.984 1.156 2.953
16 0.813 0.609 1.468 4.000 0.843 1.125 0.906 1.625
20 0.672 0.407 1.515 4.015 0.734 0.812 0.765 1.125
24 0.609 0.328 1.312 4.015 0.687 0.640 0.671 0.875
28 0.562 0.265 1.328 4.015 0.656 0.531 0.625 0.703
32 0.515 0.219 1.265 4.000 0.625 0.468 0.578 0.593
36 0.546 0.203 1.265 3.062 0.609 0.406 0.546 0.625
40 0.515 0.187 1.250 3.093 0.593 0.375 0.546 0.609
44 0.500 0.172 1.250 3.078 0.593 0.359 0.546 0.609
48 0.484 0.156 1.234 3.000 0.563 0.328 0.546 0.625
52 0.469 0.141 1.234 3.046 0.562 0.312 0.546 0.625
56 0.454 0.140 1.218 3.078 0.562 0.296 0.546 0.625
60 0.454 0.125 1.218 3.093 0.562 0.296 0.546 0.625
64 0.453 0.124 1.203 3.015 0.546 0.281 0.546 0.609
96 0.422 0.102 1.203 3.062 0.531 0.250 0.546 0.609

128 0.391 0.094 1.172 3.015 0.531 0.234 0.546 0.609
160 0.375 0.092 1.171 3.046 0.515 0.218 0.546 0.625
192 0.344 0.092 1.155 3.125 0.515 0.218 0.546 0.625
224 0.328 0.095 1.155 3.015 0.515 0.218 0.562 0.609
256 0.312 0.098 − − − − − −
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Figure 3 Ecoli.txt: Locate time depending on the length of the searched pattern m.

Table 1 and Figure 3 report the results of single algorithms when performed on the file
Ecoli.txt. Our BAPM8 algorithm achieved the best locate time for almost all pattern lengths.
For the shortest pattern m = 12, the algorithms EPSM and BSDM4 overcame all the other
competitors. The safe shift distance is limited for BAPM. It is given as the number of complete
bytes of the encoded pattern minus one. In practise, it means shifting by b 12

4 c − 1 = 2 bytes
for a pattern of length m = 12 and thus omitting only 50 % of the input text.

At the same time, BAPM4 achieved better result than BAPM8 for m = 12. The tabulated
encoded factors of length one byte are sufficient for efficient filtration in the first step of
searching. The higher memory consumption of BAPM8 is not balanced by significantly more
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Table 2 human100MB.txt: Locate times in milliseconds. The best results are bolded.

m BAPM4 BAPM8 EPSM SO BSDM4 BSDM8 SBNDMQ4 SBNDMQ8
12 21.250 22.030 22.031 79.531 21.375 38.578 24.796 59.234
16 16.560 11.250 31.562 79.547 17.890 22.766 19.531 33.656
20 14.370 7.500 32.031 79.546 16.171 16.375 16.688 23.906
24 12.650 5.940 30.171 79.547 15.047 12.828 15.141 18.312
28 11.880 4.680 30.421 79.844 14.266 10.891 14.031 15.343
32 11.100 3.900 29.876 79.562 13.969 9.875 13.250 12.828
36 11.720 3.440 29.938 59.421 13.641 9.296 12.796 13.359
40 10.940 3.130 29.734 59.437 13.343 8.828 12.812 13.359
44 10.780 2.810 29.672 59.453 13.141 8.671 12.828 13.375
48 10.620 2.650 29.922 59.422 13.000 8.562 12.750 13.375
52 10.470 2.500 29.875 59.438 12.859 8.516 12.766 13.343
56 10.310 2.340 30.296 59.453 12.672 8.468 12.781 13.360
60 9.850 2.340 30.250 59.438 12.546 8.391 12.750 13.359
64 9.840 2.190 30.219 59.453 12.500 8.375 12.796 13.360
96 9.060 2.030 29.734 59.453 12.093 8.343 12.750 13.328

128 8.590 2.030 29.078 59.438 11.860 8.375 12.812 13.359
160 7.960 2.030 28.266 59.453 11.781 8.390 12.781 13.313
192 7.500 2.030 27.703 59.422 11.656 8.391 12.781 13.343
224 7.030 2.030 26.938 59.453 11.578 8.406 12.828 13.328
256 6.560 2.030 − − − − − −

Table 3 Block inverted index: Locate time per occurrence in milliseconds (Ecoli.txt,
human100MB).

Ecoli.txt human100MB
m BAPM8 LZ77 RLCSA BAPM8 LZ77 RLCSA
12 0.717 0.077 0.156 0.087 0.096 0.175
16 0.507 0.099 0.159 0.072 0.092 0.159
20 0.287 0.127 0.170 0.104 0.092 0.155
24 0.177 0.158 0.173 0.126 0.080 0.153
28 0.115 0.177 0.177 0.127 0.074 0.126
32 0.087 0.176 0.167 0.117 0.078 0.129
36 0.056 0.195 0.180 0.109 0.101 0.134
40 0.044 0.251 0.192 0.088 0.088 0.121
44 0.043 0.271 0.181 0.070 0.111 0.123
48 0.029 0.262 0.175 0.074 0.108 0.123
52 0.030 0.283 0.175 0.055 0.126 0.127
56 0.031 0.273 0.196 0.058 0.189 0.139
60 0.044 0.301 0.195 0.048 0.187 0.136
64 0.044 0.329 0.194 0.044 0.216 0.137
96 0.044 0.460 0.222 0.035 0.550 0.200

128 0.043 0.606 0.251 0.042 0.799 0.240
160 0.044 0.775 0.268 0.047 1.215 0.295
192 0.060 0.958 0.302 0.053 1.701 0.367
224 0.060 1.108 0.329 0.060 2.021 0.401
256 0.059 1.553 0.350 0.057 2.226 0.436

efficient filtration and the search speed of BAPM8 is lower for m = 12. The more efficient
filtration outweighs for the longer patterns where m ≥ 16. Similar results were achieved also
on the file human100MB.txt (see Table 2 and Figure 4). BAPM4 achieved the best result for
m = 12 and BAPM8 proved to be superior for m ≥ 16. For m = 224, BAPM8 is more than four
times faster than the second fastest algorithm BSDM8.

We present the comparison of different indexing methods in Figure 5. Our BAPM8 works
together with block q-gram inverted index. We performed the experiments with q = 8 and
the size of the block 102 400 bytes. BAPM8 (together with the inverted index) was compared
with LZ77 self-index [12] and RLCSA [19]. The presented results prove that block q-gram
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Figure 4 human100MB.txt: Locate time depending on the length of the searched pattern m.
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Figure 5 Comparison BAPM8 supplemented with the block q-gram inverted index with other
indexing methods. Minimum, average and maximum locate time per occurrence for different patterns
(m ranging from 12 to 256) are reported. The horizontal axis presents the spaces consumption of
single methods in MiB.

inverted index together with BAPM8 represent a very good alternative to the other indexing
methods, especially for sequences obtained using so-called De Novo Sequencing when LZ77
self-index and RLCSA cannot exploit their ability to compress highly similar sequences.

5 Conclusion and Future work

We presented a novel pattern matching algorithm, named BAPM (Byte-Aligned Pattern
Matching), optimized for searching in encoded genomic sequences. The presented algorithm
is based on two crucial properties: (i) processing at byte level of the input text; (ii) tabulating
all factors of the pattern and searching for them in the filtration step. These two principles
provide extraordinary efficiency of searching that was proved on real genomic data. We
demonstrated that BAPM together with block q-gram inverted index can overcome other
indexing methods and achieve locate time in the order of tens of microseconds per one
occurrence.
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In our future work, we aim to extend BAPM to be applicable for texts of larger alphabets
(e.g., protein sequences, natural language texts). Furthermore, we intend to present a version
of the algorithm for the degenerate strings (e.g., genomic sequences composed of symbols of
IUPAC alphabet6) with its possible applications like searching for so-called Clustered-Clumps.
The solution of this problem consists in an efficient data structure allowing the access to the
sparse alphabet of the pattern factors in constant time.
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