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Abstract
Continuous improvements to high-throughput conformation capture (Hi-C) are revealing richer
information about the spatial organization of the chromatin and its role in cellular functions.
Several studies have confirmed the existence of structural features of the genome 3D organiza-
tion that are stable across cell types and conserved across species, called topological associating
domains (TADs). The detection of TADs has become a critical step in the analysis of Hi-C data,
e.g., to identify enhancer-promoter associations. Here we present East, a novel TAD identifi-
cation algorithm based on fast 2D convolution of Haar-like features, that is as accurate as the
state-of-the-art method based on the directionality index, but 75-80× faster. East is available
in the public domain at https://github.com/ucrbioinfo/EAST.
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1 Introduction

Recent studies have revealed that genomic DNA is not arbitrarily packed into the nucleus.
The chromatin has a well organized and regulated structure in accordance to the stage of
the cell cycle and environmental changes [15, 16]. The structure of chromatin in the nucleus
plays a critical role in gene expression, epigenetic organization, and DNA replication, among
others [7, 6, 18, 17].

With the advent of genome-wide DNA proximity ligation (Hi-C), life scientist have shed
new light on the way that chromatin folds and its relation to cellular functions [13, 1, 2, 10].
The analysis of Hi-C data has revealed surprising new findings including the discovery of
new structural features of chromosomes such as topologically associating domains [7] and
chromatin looping [17].

Topological associating domains (TADs) are large, megabase-sized contiguous local chro-
matin interaction domains that have a high average interaction within and a low average
interaction with their surrounding regions. Because of the role that TADs play in cellular
functions they have been widely explored since their discovery. TADs are stable across
different cell types and highly conserved across species [7]. TADs tend to interact with each
other in a tree-like structure and form a hierarchy of domains-within-domains (metaTAD),
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which can scale up to the size of chromosomes [9]. metaTADs show correlation with genetic
and epigenomic features. TAD boundaries are enriched for the insulator binding protein
CTCF, housekeeping genes, transfer RNAs and histone modifications [7, 8]. More impor-
tantly, enhancers tend to interact with gene promoters within the same TAD [11]. Disruption
of TAD boundaries can affect the expression of nearby genes and lead to developmental
disorders or cancer [14].

Several methods have been developed to identify TADs genome-wide. Dixon et al. were
the first group to define and identify TADs [7]. In their seminal work, they proposed an
identification method based on the directionality index (DI) which measures the frequency of
interaction of a genomic locus with a fixed-sized neighborhood. Drastic changes of the DI
score are expected at TAD boundaries where the region tends to have a high rate of both
upstream and downstream interactions.

Filippova et al. [8] introduced a single parameter, two-step dynamic programming method.
Assuming that there exist a few characteristic resolutions across which TADs are similar,
they identify a set of non-overlapping domains that are persistent across the resolutions.

Crane et al. [4] proposed a method based on the insulation index (IS). For each chromo-
some segment, IS score is the average number of interactions that cross the segment in a
pre-specified size neighborhood. Given that interactions tend to be isolated within TADs,
IS local minima are expected to occur at TAD boundaries. The IS score can be computed
efficiently by sliding a window across the diagonal of the contact matrix and computing the
average number of interactions that fall inside the window.

Chen et al. [3] translated the TAD identification problem into a graph segmentation/-
clustering problem. In this method, domains at different scales are identified by running the
spectral graph cuts algorithm recursively until the connectivity of the graph reaches some
predefined threshold.

In this paper, we present a novel TAD calling algorithm called East (for “Efficient
and Accurate Summed-area-table-based TAD calling”) that takes advantage of fast 2D
convolution. Experimental results show that East is as accurate in detecting TADs as the
DI method [7], which is accepted as the state-of-the art algorithm. East is however, 75-80×
faster than DI.

2 Methods

Each chromosome is segmented into evenly sized fragments, where the size of the segment
is based on the resolution of the data. In a Hi-C contact map (or interaction matrix) A,
each entry A[i, j] represents the number of times segments i and j are observed together in a
DNA proximity ligation experiment. Larger values of A[i, j] indicate closer loci i and j in
3D space inside the nucleus. Segments that are close in genomic 1D distance tend to form
dense areas which can be seen as isolated high frequency blocks along the matrix diagonal,
namely, TADs. TADs have high intra-frequency within and low inter-frequency with their
neighboring blocks. The aim is to identify TADs efficiently and accurately.

We propose an algorithm called East that utilizes rectangular Haar-like features [21] and
dynamic programming to identify TADs. Genomic regions are scored based on an objective
function that measures their likelihood of containing a TAD with respect to the characteristics
mentioned above. We use Haar-like features to describe such a scoring function.

2.1 Summed area table and Haar-like features
A Haar-like feature is a set of adjacent rectangular regions each of which has a certain
weight. Weights of rectangular regions indicate certain characteristics of a particular area of
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Figure 1 If the summed area table ASAT is available, computing the sum of values in any
rectangular region takes O(1) time.

the image. By convolving Haar-like features, i.e., by computing the weighted sum of pixel
values for a particular location, we obtain a value that represents how well a region (window)
satisfies the characteristics we are looking for. To compute the weighted sum efficiently we
use the summed area table.

A summed area table (SAT), also known as integral image in computer vision, is a data
structure used for efficiently calculating the sum of values in a rectangular region. By
precomputing the summed area table one can obtain the sum of values in any arbitrary
rectangular region using only a constant number of operations. SAT was first introduced to
computer graphics in 1984 by Frank Crow [5] and later to computer vision in 2001 by Lewis
[21] in a popular face detection framework called Viola-Jones. The value of a point (x, y) in
a summed area table ASAT is the sum of all pixels above and to the left of that point in the
original grid A, including the (x, y) point itself.

ASAT(x, y) =
∑

x′≤x, y′≤y

A(x′, y′) .

Since the value of each point in the SAT can be computed based on the values of neighboring
points, the formula can be rewritten as

ASAT(x, y) = A(x, y) +ASAT(x− 1, y) +ASAT(x, y − 1)−ASAT(x− 1, y − 1) .

Given the summed area table, computing the sum of values in an arbitrary size rectangular
region can be done in O(1) time (see Figure 1).

2.2 TAD objective function
To score TADs we need to define a function f that quantifies the quality of an arbitrary
region along the matrix diagonal with respect to the following properties:
1. The average frequency inside the region must be “high”.
2. The average frequency with the neighborhood must be “low”.
3. The average frequency between start and end segments of the region must be higher than

the average frequency inside the region.

WABI 2017
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Figure 2 Objective function f . (LEFT) Representation of a TAD of size 2w. High interaction
frequency expected inside the TAD’s domain (green) while low interaction frequency is expected
between the TAD and surrounding domains (red) (RIGHT) Coordinates of Haar-like representation
of a TAD.

The last property derives from the fact that TADs are the result of a compact locality or
loop formation in the chromatin. To explain the design of the objective function f we refer
to Figure 2, where different colors indicates different weighting. The area in green color is
the region we expect to have a high frequency of interaction (intra-frequency), as opposed to
the area in red where lower frequency is expected (inter-frequency). The corner region which
is colored in blue in Figure 2 has a higher weight in order to account for the last property in
the list above. Using the SAT data structure, function f can be computed as follows.

f([i, j]) = CDEF � − α · (ABGH� − CDEF �) + β · IDJK�

N

where CDEF �, ABGH� and IDJK� represent the sum of pixel values inside the rectangular
regions CDEF (defined by interval [i, j]), ABGH and IDJK respectively, which can be
computed in O(1) time from the SAT of the interaction matrix A. Parameters α and β

are dataset-independent, and they can be determined experimentally. Parameter N is a
normalization factor discussed in Subsection 3.1.

2.3 Finding the optimal set of domains
Given a n× n interaction matrix A, the problem of TAD identification is an optimization
problem aimed at identifying the set of contiguous non-overlapping domains for which the∑

di∈D

f(di)

is maximized, where D = {di|di = [si, ei]} is a set of non-overlapping intervals, i.e., ej < si

or ei < sj for i6=j.
We use dynamic programming to solve this optimization problem. The optimal solution

OPT (i) for the sub-problem [1, i] can be expressed by following recurrence relation

OPT (i) = max
0≤k≤i−1

{OPT (k) + f([k + 1, i])} .

By gradually increasing the size of the sub-problem and keeping track of the set of extracted
domains, the optimal set of TADs for the entire interaction matrix can be computed. As
we grow the size of the sub-problem, for each bin i, we need to find the optimal location
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to break the sub-problem [1, i] into a sub-problem [1, k] and a domain d = [k + 1, i]. The
overall time-complexity is O(n2), where n is the number of bins/segments.

If we do not allow TADs to be larger than L, the optimal break point for a sub-problem
[1, i] can always be found in the interval [max{i− L, 0}, i− 1]. Therefore, the overall time
complexity decreases to O(nL).

I Theorem 1. Let D∗ = {[a1, a2], [a2, a3], . . . , [as−1, as]} be an optimal set of domains for
the interaction matrix A for which∑

di∈D∗

f(di)

is maximized. Then,

OPT ∗(n) = OPT (n)

where

OPT∗(i) = max
max{i−L,0}≤k≤i−1

{OPT ∗(k) + f([k + 1, i])} .

Proof. We prove the theorem by induction. For the base case OPT ∗(a1) = OPT (a1) = 0.
Now, suppose OPT ∗(ai−1) = OPT (ai−1) then we have

OPT ∗(ai) = OPT ∗(ai−1) + f([ai−1 + 1, ai])
= OPT (ai−1) + f([ai−1 + 1, ai])
= OPT (ai) for k = ai−1

where k satisfies the inequality max{ai − L, 0} ≤ k ≤ ai − 1. J

3 Experimental results

We performed the analysis on Hi-C data for two mouse cell types (cortex and embryonic
stem cell), and one human cell type (embryonic stem cell) at bin resolution of 40kb. The
Hi-C data was obtained from [7].

3.1 Parameter settings
In addition to α, β and L, East relies on two additional parameters. The first is the
minimum quality threshold τ that is used to filter out low-quality TADs. If we assume
that TAD quality scores are distributed according to a Gaussian distribution, we define the
threshold τ = µ− σ where µ and σ are the mean and standard deviation of the distribution
of scores. Observe that parameter τ can be computed from the analysis of the dataset.

The second parameter is the normalization parameter N for the function f . Since the
quality measure f is proportional to the sum of interactions inside the domains, f grows as
the TAD size increases. Figure 3 illustrates how the sum of interactions inside a domain grows
as the size of the TAD increases for the three datasets used in the experimental results below
and for a synthetic interaction matrix. In the synthetic data, the number of interactions was
set to be inversely proportional to the genomic distance. For purpose of comparison, the
sum of interactions is normalized by the sum of the largest domain.

Observe that the curve for the mouse embryonic data roughly matches the curve for
the synthetic data. This suggests that the average interaction frequency of two loci in the

WABI 2017
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Figure 3 Growth of the quality measure f as the size of the TAD increases on the three datasets
used in the experimental results and for a synthetic interaction matrix (see text).

mESC dataset is inversely proportional to their genomic distance. The growth function of
the synthetic data can be estimated by (n/L)1.2 where L is the largest domain size we are
evaluating.

Also observe the hESC and mouse cortex curves are slightly different from the curve
for the synthetic data, and they can be estimated by (n/L)1.36 and (n/L)1.4 respectively.
We experimentally determined that as the curves diverge from the curve for the synthetic
data, the normalization factor needs to adjusted accordingly. We set N = n0.4, N = n0.43

and N = n0.38 for hESC, mESC and mouse cortex, respectively. Parameters α and β were
optimized experimentally to values α = 0.2 and β = 0.2, and they are dataset-independent.

3.2 Comparison with existing methods
Based on the availability and popularity of TAD calling methods, we decided to compare
East with the directionality index method [7], insulation score method [4] and multiscale
method in [8]. We hereafter refer to these methods as DI, INS and MR respectively.

East, DI, INS and MR were ran on an Intel Core-i7 2.7GHz CPU with 16GB of memory.
For the DI method we ran the experiments with posterior marginal probability threshold
0.99 and up/downstream span size of 2Mb (default parameters according to [7]). For the INS
method, we set the insulation delta span to 200kb and the insulation square size to 500kb.
For the MS method, we set the highest resolution parameter to 0.5.

In our experiment we investigated the enrichment of epigenetic characteristics of chromatin
near the TAD boundaries. Although the mechanism behind the formation of TADs and
their role in gene regulation are not fully understood, multiple studies have shown that some
proteins and histone marks are enriched at the TAD boundary regions, implying that these
boundaries play a role in gene transcription. As it was done in other studies [8, 20, 3], we
can therefore use these genomic markers to evaluate the quality of the computed TADs.

To produce enrichment plots, we used each method to determine the boundary locations
of TADs. Then, the frequency of each marker was calculated in 10kb bins in a window of
1Mb centered at the TAD boundaries. Each plot show the distribution of specific markers
for each tool in the region centered at the TAD boundaries.

For mouse cortex and stem cells we evaluated the enrichment of transcription factor
CTCF, promoter related marks RNA Polymerase II and H3K4me3, and enhancer-related
histone modification H3K27ac. This marker data was collected from [19]. For human stem
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Table 1 Running time of East, INS, MS and DI on the three datasets used in this work.

hESC mESC Cortex
East 58s 50s 48s

INS 52s 44s 42s
DI 4,721s 3,845s 3,628s

MS 762s 545s 520s

cells we assessed the enrichment of CTCF near TAD boundaries. The CTCF data was
obtained from [12].

Figure 4 shows that CTCF binding sites are almost twice as enriched near the TAD
boundaries than the surrounding regions, suggesting that TAD boundaries are associated
with insulator genomic regions and their mediator protein CTCF. Figure 5 and Figure 6 show
that promoter marks RNA Polymerase II and H3K4me3 peak within the TAD boundaries for
both mouse cortex and embryonic stem cells. Observe in Figure 7 that histone modification
mark H3K27ac is highly enriched around TAD boundaries in mouse embryonic stem cells but
not in mouse cortex cells. Also observe in Figure 8 that enhancer marks are highly depleted
around TAD boundaries in mouse cortex cells but not in mouse embryonic stem cells.

Overall, observe in Figures 4–8 that the blue curve for East is almost always higher than
the other three tools, suggesting that our tool generates TADs with very accurate boundaries.
The closest competitor is DI (green curve), but East is significantly faster than DI.

We compared the running time of East with that of DI, MS and INS on Hi-C data for
human embryonic stem cells, mouse embryonic stem cells and mouse cortex [7]. Table 1
shows that East and INS are comparable in speed, MS is 10–14× slower, DI is 75-80×
slower.

Figure 9 illustrates the size distribution of TADs for all four methods for the human
embryonic stem cells. The numbers of TADs extracted by East, DI, MS and INS are 2229,
2429, 12427 and 4708 respectively. Observe that East and DI roughly produce the same
size distribution.

In summary, these experimental results show that while East can identify the TAD
boundaries as accurately as the best method (DI), but it is much more time efficient.

4 Conclusion

In this paper, we introduced an efficient algorithm called East, to accurately identify
topological associating domains in chromatin from interaction matrices obtained from high-
throughput chromosome conformation capture (Hi-C). East can be downloaded from https:
//github.com/ucrbioinfo/EAST.

We performed a comparative evaluation of East on Hi-C data for human stem cells,
mouse stem cells and mouse cortex cells. We showed that our algorithm extracts TADs as
accurately as the state-of-the art. TADs identified by East show substantial enrichment
of various epigenetic modification factors at their boundaries, confirming similar findings
in previous studies. By comparing the running time of East with the other published
methods, we showed that our method is very time efficient. For a given Hi-C dataset, the
only parameter in East that might need to be tuned by the user is the normalization factor
for which we have given some guidance in Subsection 3.1.

The framework we presented here for TAD identification is based on fast 2D-convolution
of Haar-like features. We believe that this framework could be adapted to other chromatin
feature detection problems such as chromatin loops [17]. We also plan to extend our work to
efficiently identify chromatin features at arbitrary scales.
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Figure 4 CTCF enrichment in human embryonic stem cells, (left) mouse embryonic stem cells
(center) and mouse cortex cells (right).
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Figure 5 H3K4me3 enrichment in mouse embryonic stem cells (left) and mouse cortex cells
(right).
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Figure 6 polII enrichment in mouse embryonic stem cells (left) and mouse cortex cells (right).
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Figure 7 H3K27ac enrichment in mouse embryonic stem cells (left) and mouse cortex cells (right).
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Figure 8 Enhancer enrichment in mouse embryonic stem cells (left) and mouse cortex cells
(right).
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Figure 9 Comparison of the distribution of TAD size.
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