
17th International Workshop on
Algorithms in Bioinformatics

WABI 2017, August 21–23, 2017, Boston, MA, USA

Edited by

Russell Schwartz
Knut Reinert

LIPIcs – Vo l . 88 – WABI 2017 www.dagstuh l .de/ l ip i c s

Editors
Russell Schwartz Knut Reinert
Carnegie Mellon University Freie Universität Berlin
Pittsburgh, USA Berlin, Germany
russells@andrew.cmu.edu knut.reinert@fu-berlin.de

ACM Classification 1998
F.2.2 Nonnumerical Algorithms and Problems, F.2.2 Pattern Matching, I.1.2 Algorithms, J.3 Life and
Medical Sciences

ISBN 978-3-95977-050-7

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at http://www.dagstuhl.de/dagpub/978-3-95977-050-7.

Publication date
August, 2017

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at http://dnb.d-nb.de.

License
This work is licensed under a Creative Commons Attribution 3.0 Unported license (CC-BY 3.0):
http://creativecommons.org/licenses/by/3.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.WABI.2017.0

ISBN 978-3-95977-050-7 ISSN 1868-8969 http://www.dagstuhl.de/lipics

http://www.dagstuhl.de/dagpub/978-3-95977-050-7
http://www.dagstuhl.de/dagpub/978-3-95977-050-7
http://dnb.d-nb.de
http://dx.doi.org/10.4230/LIPIcs.WABI.2017.0
http://www.dagstuhl.de/dagpub/978-3-95977-050-7
http://drops.dagstuhl.de/lipics
http://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Reykjavik University)
Susanne Albers (TU München)
Chris Hankin (Imperial College London)
Deepak Kapur (University of New Mexico)
Michael Mitzenmacher (Harvard University)
Madhavan Mukund (Chennai Mathematical Institute)
Anca Muscholl (University Bordeaux)
Catuscia Palamidessi (INRIA)
Raimund Seidel (Saarland University and Schloss Dagstuhl – Leibniz-Zentrum für Informatik)
Thomas Schwentick (TU Dortmund)
Reinhard Wilhelm (Saarland University)

ISSN 1868-8969

http://www.dagstuhl.de/lipics

WABI 2017

http://www.dagstuhl.de/dagpub/1868-8969
http://www.dagstuhl.de/lipics

Contents

Disentangled Long-Read De Bruijn Graphs via Optical Maps
Bahar Alipanahi, Leena Salmela, Simon J. Puglisi, Martin Muggli,
and Christina Boucher . 1:1–1:14

Gene Tree Parsimony for Incomplete Gene Trees
Md. Shamsuzzoha Bayzid and Tandy Warnow . 2:1–2:13

Better Greedy Sequence Clustering with Fast Banded Alignment
Brian Brubach, Jay Ghurye, Mihai Pop, and Aravind Srinivasan 3:1–3:13

Optimal Computation of Overabundant Words
Yannis Almirantis, Panagiotis Charalampopoulos, Jia Gao, Costas S. Iliopoulos,
Manal Mohamed, Solon P. Pissis, and Dimitris Polychronopoulos 4:1–4:14

Detecting Locus Acquisition Events in Gene Trees
Michał Aleksander Ciach, Anna Muszewska, and Paweł Górecki 5:1–5:13

An IP Algorithm for RNA Folding Trajectories
Amir H. Bayegan and Peter Clote . 6:1–6:16

Fast Spaced Seed Hashing
Samuele Girotto, Matteo Comin, and Cinzia Pizzi . 7:1–7:14

A General Framework for Gene Tree Correction Based on Duplication-Loss
Reconciliation

Nadia El-Mabrouk and Aïda Ouangraoua . 8:1–8:14

Towards Distance-Based Phylogenetic Inference in Average-Case Linear-Time
Maxime Crochemore, Alexandre P. Francisco, Solon P. Pissis, and Cátia Vaz 9:1–9:14

Yanagi: Transcript Segment Library Construction for RNA-Seq Quantification
Mohamed K. Gunady, Steffen Cornwell, Stephen M. Mount,
and Héctor Corrada Bravo . 10:1–10:14

Shrinkage Clustering: A Fast and Size-Constrained Algorithm for Biomedical
Applications

Chenyue W. Hu, Hanyang Li, and Amina A. Qutub . 11:1–11:13

Sparsification Enables Predicting Kissing Hairpin Pseudoknot Structures of Long
RNAs in Practice

Hosna Jabbari, Ian Wark, Carlo Montemagno, and Sebastian Will 12:1–12:13

Vaquita: Fast and Accurate Identification of Structural Variation Using Combined
Evidence

Jongkyu Kim and Knut Reinert . 13:1–13:14

Assessing the Significance of Peptide Spectrum Match Scores
Anastasiia Abramova and Anton Korobeynikov . 14:1–14:11

abSNP: RNA-Seq SNP Calling in Repetitive Regions via Abundance Estimation
Shunfu Mao, Soheil Mohajer, Kannan Ramachandran, David Tse,
and Sreeram Kannan . 15:1–15:14

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:vi Contents

All Fingers Are Not the Same: Handling Variable-Length Sequences in a
Discriminative Setting Using Conformal Multi-Instance Kernels

Sarvesh Nikumbh, Peter Ebert, and Nico Pfeifer . 16:1–16:14

Forbidden Time Travel: Characterization of Time-Consistent Tree Reconciliation
Maps

Nikolai Nøjgaard, Manuela Geiß, Daniel Merkle, Peter F. Stadler, Nicolas Wieseke,
and Marc Hellmuth . 17:1–17:12

Rainbowfish: A Succinct Colored de Bruijn Graph Representation
Fatemeh Almodaresi, Prashant Pandey, and Rob Patro . 18:1–18:15

ThIEF: Finding Genome-wide Trajectories of Epigenetics Marks
Anton Polishko, Md. Abid Hasan, Weihua Pan, Evelien M. Bunnik, Karine Le Roch,
and Stefano Lonardi . 19:1–19:16

Byte-Aligned Pattern Matching in Encoded Genomic Sequences
Petr Procházka and Jan Holub . 20:1–20:13

Analysis of Min-Hashing for Variant Tolerant DNA Read Mapping
Jens Quedenfeld and Sven Rahmann . 21:1–21:13

Efficient and Accurate Detection of Topologically Associating Domains from
Contact Maps

Abbas Roayaei Ardakany and Stefano Lonardi . 22:1–22:11

Outlier Detection in BLAST Hits
Nidhi Shah, Stephen F. Altschul, and Mihai Pop . 23:1–23:11

Finding Local Genome Rearrangements
Pijus Simonaitis and Krister M. Swenson . 24:1–24:13

Seed-driven Learning of Position Probability Matrices from Large Sequence Sets
Jarkko Toivonen, Jussi Taipale, and Esko Ukkonen . 25:1–25:13

Improved De Novo Peptide Sequencing using LC Retention Time Information
Yves Frank, Tomas Hruz, Thomas Tschager, and Valentin Venzin 26:1–26:17

Optimal Completion of Incomplete Gene Trees in Polynomial Time Using OCTAL
Sarah Christensen, Erin K. Molloy, Pranjal Vachaspati, and Tandy Warnow 27:1–27:14

Preface

This proceedings volume contains papers presented at the 17th Workshop on Algorithms
in Bioinformatics (WABI 2017), which was held in Boston, MA, USA in conjunction with
the 8th ACM Conference on Bioinformatics, Computational Biology, and Health Informatics
(ACM BCB) from August 21–23, 2017.

The Workshop on Algorithms in Bioinformatics is an annual conference established in 2001
to cover all aspects of algorithmic work in bioinformatics, computational biology, and systems
biology. The workshop is intended as a forum for discrete algorithms and machine-learning
methods that address important problems in molecular biology, that are founded on sound
models, that are computationally efficient, and that have been implemented and tested in
simulations and on real datasets. The meeting’s focus is on recent research results, including
significant work-in-progress, as well as identifying and explore directions of future research.

WABI 2017 is grateful for the support of ACM-BCB in allowing us to cohost the meetings,
as well as to ACM-BCB’s sponsors: the Association for Computing Machinery (ACM) and
ACM’s SIGBIO.

In 2017, a total of 55 manuscripts were submitted to WABI from which 27 were selected
for presentation at the conference. This year, WABI is adopting a new proceedings form,
publishing the conference proceedings through the LIPIcs (Leibniz International Proceedings
in Informatics) proceedings series. Extended versions of selected papers will be invited for
publication in a thematic series in the journal Algorithms for Molecular Biology (AMB),
published by BioMed Central.

The 27 papers were selected based on a thorough peer review, involving at least three
independent reviewers per submitted paper, followed by discussions among the WABI Program
Committee members. The selected papers cover a wide range of topics, including statistical
inference, phylogenetic studies, sequence and genome analysis, comparative genomics, and
mass spectrometry data analysis.

We thank all the authors of submitted papers and the members of the WABI Program
Committee and their reviewers for their efforts that made this conference possible. We are
also grateful to the WABI Steering Committee for their help and advice. We also thank all
the conference participants and speakers who contribute to a great scientific program. In
particular, we are indebted to the keynote speaker of the conference, Tandy Warnow, for
her presentation. We also thank Christopher Pockrandt for setting up the WABI webpage
and Umit Acar for his help with coordinating the WABI and ACM-BCB pages. Finally, we
thank the ACM-BCB Organizing Committee, especially Nurit Haspel and Lenore Cowen,
for their hard work in making all of the local arrangements and working closely with us to
ensure a successful and exciting WABI and ACM-BCB.

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

List of Authors

Anastasiia Abramova
Saint Petersburg State University
St. Petersburg, Russia
abramova.asya93@gmail.com

Bahar Alipanahi
University of Florida
Gainesville, USA
bahar.panahie@gmail.com

Yannis Almirantis
National Center for Scientific Research
Demokritos
Athens, Greece
yalmir@bio.demokritos.gr

Fatemeh Almodaresi
Stony Brook University
New York, USA
falmodaresit@cs.stonybrook.edu

Stephen Altschul
National Institutes of Health
Bethesda, USA
altschul@ncbi.nlm.nih.gov

Amir H. Bayegan
Boston College
Boston, USA
bayegan@bc.edu

Shamsuzzoha Bayzid
Bangladesh University of Engineering and
Technology
Dhaka, Bangladesh
shams.bayzid@gmail.com

Christina Boucher
University of Florida
Gainesville, USA
christinaboucher@ufl.edu

Hector Bravo
University of Maryland
College Park, USA
hcorrada@umiacs.umd.edu

Brian Brubach
University of Maryland
College Park, USA
bbrubach@cs.umd.edu

Evelyn Bunnik
University of Texas
Houston, USA
bunnik@uthscsa.edu

Pannagiotos Charalampopoulos
King’s College London
London, UK
panagiotis.charalampopoulos@kcl.ac.uk

Sarah Christensen
University of Illinois
Urbana-Champaign, USA
sac2@illinois.edu

Michal Ciach
University of Warsaw
Warsaw, Poland
m_ciach@student.uw.edu.pl

Peter Clote
Boston College
Boston, USA
clote@bc.edu

Matteo Comin
University of Padova
Padova, Italy
comin@dei.unipd.it

Steven Cornwell
University of Pennsylvania
Philadelphia, USA
steffenc@seas.upenn.edu

Maxime Crochemore
King’s College London
London, UK
maxime.crochemore@kcl.ac.uk

Peter Ebert
Max Planck Institute for Informatics
Saabrücken, Germany
pebert@mpi-inf.mpg.de

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://www.dagstuhl.de/en/publications/lipics/
http://www.dagstuhl.de/en/about-dagstuhl/

0:x Authors

Nadia El-Mabrouk
University of Montreal
Montreal, Canada
mabrouk@iro.umontreal.ca

Alexandre Francisco
Universidade de Lisboa
Lisboa, Portugal
aplf@ist.utl.pt

Yves Frank
ETH Zurich
Zurich, Switzerland
yfrank@student.ethz.ch

Jia Gao
King’s College London
London, UK
jia.gao@kcl.ac.uk

Manuela Geiß
University of Leipzig
Leipzig, Germany
manuela@bierdepot.bioinf.uni-leipzig.de

Samuele Girotto
University of Padova
Padova, Italy
samuele.girotto@gmail.com

Jay Ghurye
University of Maryland
College Park, USA
jayg@cs.umd.edu

Pavel Górecki
University of Warsaw
Warsaw, Poland
gorecki@mimuw.edu.pl

Mohamed Gunady
University of Maryland
College Park, USA
mgunady@cs.umd.edu

Md Abid Hasan
University of California, Riverside
Riverside, USA
mhasa006@ucr.edu

Marc Hellmuth
University of Greifswald
Greifswald, Germany
mhellmuth@mailbox.org

Jan Holub
Czech Technical University in Prague
Prague, Czech Republic
Jan.Holub@fit.cvut.cz

Thomas Hruz
ETH Zurich
Zurich, Switzerland
tomas.hruz@inf.ethz.ch

Chenyue Hu
Rice University
Houston, USA
wendyhu001@gmail.com

Costas Iliopoulos
King’s College London
London, UK
costas.iliopoulos@kcl.ac.uk

Hosna Jabbari
University of Alberta
Edmonton, Canada
jabbari@ualberta.ca

Sreeran Kannan
University of Washington
Seattle, USA
ksreeram@uw.edu

Jonkyu Kim
Freie Universität Berlin
Berlin, Germany
j.kim@fu-berlin.de

Anton Korobeynikov
Saint Petersburg State University
St. Petersburg, Russia
anton@korobeynikov.info

Karine Le Roch
University of California, Riverside
Riverside, USA
karine.leroch@ucr.edu

Hanyang Li
Rice University
Houston, USA
hl43@rice.edu

Stefano Lonardi
University of California, Riverside
Riverside, USA
stelo@cs.ucr.edu

Authors 0:xi

Mohamed Manal
King’s College London
London, UK
manal.mohamed@kcl.ac.uk

Shunfu Mao
University of Washington
Seattle, USA
shunfu@uw.edu

Daniel Merkle
University of Southern Denmark
Odense, Denmark
daniel@imada.sdu.dk

Sohail Mohajer
University of Minnesota
Rochester, USA
soheil@umn.edu

Erin K. Molloy
University of Illinois
Urbana-Champaign, USA
emolloy2@illinois.edu

Carlo Montemagno
University of Alberta
Edmonton, Canada
montemag@ualberta.ca

Steven Mount
University of Maryland
College Park, USA
smount@umd.edu

Martin Muggli
University of Helsinki
Helsinki, Finland
Martin.Muggli@colostate.edu

Anna Muszewsak
Polish Academy of Sciences
Warsaw, Poland
mmusze@ibb.waw.pl

Sarvesh Nikumbh
Max Planck Institute for Informatics
Saabrücken, Germany
snikumbh@mpi-inf.mpg.de

Nikolai Nøjgaard
University of Greifswald
Greifswald, Germany
nnoej10@student.sdu.dk

Aïda Ouangraoua
Sherbrooke university
Quebec, Canada
aida.ouangraoua@usherbrooke.ca

Weihua Pan
University of California, Riverside
Riverside, USA
wpan005@ucr.edu

Prashand Pandey
Stony Brook University
New York, USA
ppandey@cs.stonybrook.edu

Rob Patro
Stony Brook University
New York, USA
Rob.Patro@cs.stonybrook.edu

Nico Pfeifer
University of Tübingen & Max Planck
Institute for Informatics
Saabrücken, Germany
pfeifer@informatik.uni-tuebingen.de

Solon Pissis
King’s College London
London, UK
solon.pissis@kcl.ac.uk

Cinzia Pizzi
University of Padova
Padova, Italy
cinzia.pizzi@dei.unipd.it

Anton Polishko
University of California, Riverside
Riverside, USA
polishka@cs.ucr.edu

Dimitri Polychronopoulos
Imperial College London
London, UK
dpolychr@imperial.ac.uk

Mihai Pop
University of Maryland
College Park, USA
mpop@umiacs.umd.edu

WABI 2017

0:xii Authors

Petr Procházka
Czech Technical University in Prague
Prague, Czech Republic
Petr.Prochazka@fit.cvut.cz

Simon Puglisi
University of Helsinki
Helsinki, Finland
puglisi@cs.helsinki.fi

Jens Quedenfeld
Technical University of Munich
Munich, Germany
jens.quedenfeld@in.tum.de

Amina Qutub
Rice University
Houston, USA
aminaq@rice.edu

Sven Rahmann
University of Duisburg-Essen
Duisburg, Germany
sven.rahmann@uni-due.de

Kannan Ramachandran
University of California, Berkeley
Berkeley, USA
kannanr@eecs.berkeley.edu

Knut Reinert
Freie Universität Berlin
Berlin, Germany
knut.reinert@fu-berlin.de

Abbas Roayaei Ardakany
University of California, Riverside
Riverside, USA
roayaei@gmail.com

Leena Salmela
University of Helsinki
Helsinki, Finland
leena.salmela@cs.helsinki.fi

Pijus Simonaitis
ENS Lyon
Lyon, France
pijus.simonaitis@ens-lyon.fr

Nidhi Shah
University of Maryland
College Park, USA
nidhi@cs.umd.edu

Aravind Srinivasan
University of Maryland
College Park, USA
srin@cs.umd.edu

Peter F. Stadler
University of Leipzig
Leipzig, Germany
studla@bioinf.uni-leipzig.de

Krister Swenson
Université Montpellier
Montpellier, France
swenson@lirmm.fr

Jussi Taipala
Karolinska Institutet
Stockholm, Sweden
jussi.taipale@ki.se

Jarkko Toivonen
University of Helsinki
Helsinki, Finland
jarkko.toivonen@cs.helsinki.fi

Thomas Tschager
ETH Zurich
Zurich, Switzerland
thomas.tschager@inf.ethz.ch

David Tse
Stanford University
Stanford, USA
dntse@stanford.edu

Esko Ukkonen
University of Helsinki
Helsinki, Finland
esko.ukkonen@cs.helsinki.fi

Pranjal Vachaspati
University of Illinois
Urbana-Champaign, USA
vachasp2@illinois.edu

Cátia Vaz
Universidade de Lisboa
Lisboa, Portugal
cvaz@cc.isel.ipl.pt

Valentin Venzin
ETH Zurich
Zurich, Switzerland
vvenzin@student.ethz.ch

Authors 0:xiii

Ian Wark
University of Alberta
Edmonton, Canada
wark@ualberta.ca

Tandy Warnow
University of Illinois
Urbana-Champaign, USA
warnow@illinois.edu

Nicolas Wieseke
University of Leipzig
Leipzig, Germany
wieseke@informatik.uni-leipzig.de

Sebastian Will
University of Vienna
Vienna, Austria
will@tbi.univie.ac.at

WABI 2017

Disentangled Long-Read De Bruijn Graphs via
Optical Maps∗

Bahar Alipanahi1, Leena Salmela2, Simon J. Puglisi2,
Martin Muggli4, and Christina Boucher5

1 Department of Computer and Information Science and Engineering, University
of Florida, Gainesville, FL, USA
baharpan@ufl.edu

2 Department of Computer Science, HIIT, University of Helsinki, Helsinki,
Finland
leena.salmela@cs.helsinki.fi

3 Department of Computer Science, HIIT, University of Helsinki, Helsinki,
Finland
puglisi@cs.helsinki.fi

4 Department of Computer Science, Colorado State University, Fort Collins, CO,
USA
martin.muggli@colostate.edu

5 Department of Computer and Information Science and Engineering, University
of Florida, Gainesville, FL, USA
christinaboucher@ufl.edu

Abstract
While long reads produced by third-generation sequencing technology from, e.g, Pacific Bios-
ciences have been shown to increase the quality of draft genomes in repetitive regions, fun-
damental computational challenges remain in overcoming their high error rate and assembling
them efficiently. In this paper we show that the de Bruijn graph built on the long reads can
be efficiently and substantially disentangled using optical mapping data as auxiliary information.
Fundamental to our approach is the use of the positional de Bruijn graph and a succinct data
structure for constructing and traversing this graph. Our experimental results show that over
97.7% of directed cycles have been removed from the resulting positional de Bruijn graph as
compared to its non-positional counterpart. Our results thus indicate that disentangling the de
Bruijn graph using positional information is a promising direction for developing a simple and
efficient assembly algorithm for long reads.

1998 ACM Subject Classification J.3 [Life and Medical Sciences] Biology and Genetics, G.2.2
Graph Theory

Keywords and phrases Positional de Bruijn graph, Optical maps, PacBio

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.1

1 Introduction

Today, high-throughput DNA sequencing technology is central to every major (re)sequencing
and de novo assembly project. Complex and long repetitive regions in genomes are a challenge

∗ This work was supported by Academy of Finland grants 284598 (CoECGR) and 294143, and the National
Science Foundation (NSF) grant III: 1618814.

© Bahar Alipanahi, Leena Salmela, Simon J. Puglisi, Martin Muggli, and Christina Boucher;
licensed under Creative Commons License CC-BY

17th Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 1; pp. 1:1–1:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.WABI.2017.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2 Disentangled Long-Read De Bruijn Graphs via Optical Maps

for accurate assembly, especially for short-read sequencing technologies like Illumina, and this
has driven a recent shift toward long-read sequencing technologies like Pacific Biosciences
(PacBio). Long reads have already been successful in disambiguating the repetitive regions,
leading to draft assemblies with fewer mis-assembled regions [25]. To date, however, long
reads have a high error rate, which increases the complexity of assembly. For example,
PacBio produces reads up to 50,000 bp in length, but with an insertion/deletion error rate of
15–20% [15].

Most assemblers targeting short read technologies use the Eulerian approach [13, 24]. In
this assembly paradigm, all distinct k-mers (substrings of length k) are first extracted from
the set of reads. A de Bruijn graph is then constructed with a vertex v for every (k − 1)-mer
present in the set of reads, and an edge (v, v′) for every observed k-mer in the reads with
(k − 1)-mer prefix v and (k − 1)-mer suffix v′. The prefix of string S is any substring of S

that includes its first character, and accordingly the suffix of string S is any substring of it
that includes its last character. A contig corresponds to a non-branching path through this
graph. SPAdes [1], ABySS [29], and Velvet [32] are examples of short read assemblers using
the Eulerian approach. This approach is computationally efficient but does not easily adapt
to reads with a high error rate. Moreover, applying it to long reads seems to discard the
long range information in those reads.

With the above-mentioned caveats in mind, the first assemblers for long reads have
adopted the Overlap-Layout-Consensus (OLC) approach. OLC first calculates the overlap
between all pairs (or a subset of the pairs) of sequence reads and builds an overlap graph
(in which there is an edge between pairs of reads having highest overlap). Similarly to the
Eulerian approach, contigs then correspond to the non-branching paths through this graph.
The computational bottleneck in OLC is the computation of (approximate) suffix-prefix
overlaps between reads, which becomes computationally infeasible when the number of reads
and the error rate grows.

Optical mapping is another technology that has been proposed for solving the repetitive
regions in genomes. A genome-wide optical map contains the approximate genomic location
of each restriction site corresponding to one or more restriction enzymes. Put another way,
the optical map is the sequence of locations corresponding to all the occurrences of a short
nucleotide sequence (typically 5–7bp) in the genome. Optical maps span significantly larger
genomic regions than long reads: the typical region covered by a genome wide optical map is
300 kbp [9], as opposed to the 15 kbp average for long reads. This quality combined with
recent increased commercial availability, have lead to a rise in both data generation and tool
development [31, 18, 16].

In this paper we consider Eulerian assembly applied to long reads in the presence of
optical map data. In particular, we propose to use genome-wide optical maps to disentangle a
de Bruijn graph constructed from long read data. In our approach we first correct sequencing
errors in the long reads and then align the reads to the genome-wide optical map. This
alignment information is then incorporated into the de Bruijn graph by constructing a
positional de Bruijn graph, which is constructed from a set of positional k-mers (k-mer
sequences with approximate positions associated with them) rather than k-mers alone [26].
Since this variant of the de Bruijn graph effectively creates a separate k-mer for each distinct
occurrence of it in the genome, a space-efficient representation is vital for the graph to
be constructed and used. We devise a space-efficient representation of the positional de
Bruijn graph by augmenting a succinct BWT-based de Bruijn graph data structure [3]. We
implement this method in a tool called Koota (Finnish for “assemble”).

More specifically, our contributions are as follows: (1) a new Eulerian approach for
long read assembly that is based on the positional de Bruijn graph; (2) a space-efficient

B. Alipanahi, L. Salmela, S. J. Puglisi, M. Muggli, and C. Boucher 1:3

representation of the positional de Bruijn graph, and (3) the first long read-optical map
hybrid assembler. Our experimental results demonstrate that the positional information
greatly reduces the complexity of the de Bruijn graph. In this paper, we study this complexity
in terms of the number of cycles in the graph – which, using standard genome assembly
terminology, are referred to as bulges (undirected cycles) and whirls (directed cycles). In our
experiments on E. coli and yeast data all bulges and more than 97% of whirls were removed
from the graph when positional information was introduced.

The results of Koota on E. coli and yeast are compared to those of ABruijn [17] and
Canu [14], two leading long read assemblers. These were selected for comparison since
ABruijn [17] is currently the only other de Bruijn graph long-read assembler, and Canu has
been shown to be the most memory and time efficient long read assembler [14]. Koota
was competitive with respect to both memory and runtime. Further, we show that Koota
achieved the lowest mismatch rate for both yeast and E. coli, and had a competitive genome
fraction. This later statistic demonstrates that the fraction of the genome in the graph is not
reduced by the removal of whirls and complexities within the graph. Thus these results show
that disentangling the de Bruijn graph using positional information is a promising direction
to develop an efficient and simple algorithm for long read assembly. Lastly, we note that
Koota is freely available at https://github.com/baharpan/cosmo/tree/positional.

2 Background and Related Work

Optical Mapping

Optical mapping is a technology that generates ordered, high-resolution, restriction maps of
an entire genome. Optical maps are produced by immobilizing DNA molecules on a plate and
applying a restriction enzyme on the molecules. Restriction enzyme will cleave the molecules
at a specific DNA pattern E. The molecules are then imaged and the length of the fragments
between restriction sites can be measured from the image. An optical map of a sequence
is thus a sequence R = r1, r2, . . . , rn where each ri is the length of the fragment between
consecutive restriction sites. Given a DNA sequence X and an enzyme recognizing the
restriction site pattern E we can create an in silico digested optical map of it by mimicking
how the enzyme cleaves the DNA molecule. Let i1, i2, . . . , ik be the occurrences of E in X.
Then the in silico digested optical map of X is M(X|E) = i2 − i1, i3 − i2, . . . , ik − ik−1. For
example if X =ACGAGACGGTTACGTG and E =ACG then the occurrences of E in X are 1, 6, 12
and M(X|E) = 5, 6.

Since 2015 several methods for alignment of optical mapping data have become available,
including OPTIMA [31], Maligner [18], and OMBlast [16]. Previously optical maps have
been used for genome assembly in SOMA [20]. SOMA is a Eulerian assembler that uses both
sequence data and optical mapping data. It builds the de Bruijn graph from short sequence
reads and uses the optical map to eliminate or promote paths in the de Bruijn graph.

Long-Read Assemblers

Canu [14], HGPA [7] and MHPA [2] are long read assemblers using the OLC approach. Canu
is a fork of Celera assembler [19], which uses tf-idf weighted MinHash and a sparse assembly
graph construction on its overlapping strategy. HGPA uses the Celera assembler [19] for the
assembly and performs self-correction of continuous long reads sequences (CLR). MHPA [2],
uses a probabilistic, locality-sensitive hashing for overlapping long reads that also works along
with Celera assembler [19]. Lin et al. [17] present an Eulerian approach to assembling long

WABI 2017

https://github.com/baharpan/cosmo/tree/positional

1:4 Disentangled Long-Read De Bruijn Graphs via Optical Maps

reads. Their tool, called ABruijn, constructs the A-Bruijn graph from a set of sufficiently
frequent k-mers and uses path extension to derive genomic paths from short-read paths
during traversal of the graph; errors are later corrected using an OLC approach. Lin et al.
[17] demonstrate that in order to correctly assemble long reads, only a small number of the
reads are actually needed. They extract all sufficiently frequent distinct k-mers from long
sequence reads, the rationale being that those with low frequency are erroneous and those
with high frequency originate from repetitive regions. Building the de Bruijn graph with this
smaller set of filtered k-mers removes whirls and bulges in the resulting graph and simplifies
the assembly process. The hybrid assembly using both short and long reads has also been
considered for example by Pendleton et al. [22]. They combine long single-molecule and short
high-throughput sequences to generate a hybrid genome assembly, which they then use to
determine single nucleotide variants and structural variations.

Succinct Representations

Fundamental to our method is the succinct data structure for the positional de Bruijn graph.
Although, there is a significant amount of work in constructing succinct de Bruijn graph
representations – one of the first such approaches was introduced by Simpson et al. [28] as
part of the development of the ABySS assembler – this is the first such representation for
this de Bruijn graph variant.

Minia, by Chikhi and Rizk [6], uses a Bloom filter to store edges. They traverse the
graph by generating all possible outgoing edges at each node and testing their membership
in the Bloom filter. The representation that most closely reflects our work is BOSS graph
representation of Bowe, Onodera, Sadakane and Shibuya [3] which is based on the Burrows-
Wheeler transform [4]. More recently, Chikhi et al. [5] implemented the de Bruijn graph
using an FM-index and minimizers.

3 Methods

In this section we present our method for disentangling the de Bruijn graph using a genome-
wide optical map. We start by describing how the sequencing errors in the reads are corrected
and how the long reads are aligned to the genome-wide optical map. Then we define the
positional de Bruijn graph and describe methods to construct and extract reads from it.

3.1 Error Correction and Alignment of Long Reads
Before we can construct the positional de Bruijn graph, each long read must be localized
on the genome-wide optical map. This involves three subprocesses: error correction, in
silico digestion, and alignment. We first apply two rounds of the LoRMA long-read error
correction method [27] to the long reads: once before, and once after aligning them to the
optical map. LoRMA, which is purely long-read based, proceeds in three phases. First a de
Bruijn graph based approach is used for rough correction. The regions of the reads deemed
to be unrecoverable by the de Bruijn graph based method are then cut out. This process
trims and splits the reads. In the final phase multiple alignments are formed between similar
reads. In this work we used the intermediate reads after de Bruijn graph based correction to
avoid splitting the reads.

After this first round of error correction, we create for each read r an in silico digested
optical map M(r|E) where E is the restriction site pattern(s) recognized by the restriction
enzyme(s) used to build the genome-wide optical map. We then align these in silico digested

B. Alipanahi, L. Salmela, S. J. Puglisi, M. Muggli, and C. Boucher 1:5

Genome:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

S: C A T A T A G C A T A C A T A A G →M(S|’CAT’) = 7, 4

Reads:

1 2 3 4 5 6 7 8 9 10 11 12
r1 : A G C A T A C A T A A G →M(r1|’CAT’) = 4 → pos(r1) = 6

1 2 3 4 5 6 7 8 9 10 11 12 13
r2 : C A T A T T T A G C A T A →M(r2|’CAT’) = 9 → pos(r2) = 1

Positional k-mers:
r1: AGC GCA CAT ATA TAC ACA CAT ATA TAA AAG

r2: CAT ATA TAT ATT TTT TTA TAG AGC GCA CAT ATA

6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11

Positional dBG (∆ = 4): CAT ATA TAT ATT TTT TTA TAG AGC GCA CAT ATA TAC ACA TAA AAG

1 2 3 4 5 6 7 72 82 103 113 10 11 14 15

Positional dBG with
merged k − 1-mers: CAT ATA TAT ATT TTT TTA TAG AGC GCA TAC ACA TAA AAG

1,103 2,113 3 4 5 6 7 72 82 10 11 14 15

Figure 1 Positional de Bruijn graph G4,4 constructed from the reads r1 and r2 and the genome
wide optical map M(S|’CAT’). Top of the figure shows the genome sequence S and the corresponding
genome wide optical map. Note that S is not available to the method but it is shown here for
clarity. Our method then in silico digests the error corrected reads r1 and r2 producing optical maps
M(r1|’CAT’) and M(r2|’CAT’). They are aligned against the genome wide optical map yielding
the positions 6 and 1 for the reads r1 and r2, respectively. The positional (k − 1)-mers obtained
from the reads and their positions are shown in the middle. The positional de Bruijn graph is then
constructed by gluing together (k − 1)-mers whose positions are within ∆ = 4 of each other. The
position of a glued k− 1-mer is the average of the positions of the original k− 1-mers. The positions
of the (k − 1)-mers are shown above the nodes and the multiplicity of the positional (k − 1)-mer is
shown as a subscript if it is greater than one. Note that the positional (k − 1)-mers (AGC, 6) and
(AGC, 8) are correctly glued together as they originate from the same genomic positions but are
derived from different reads. On the other hand we see that although the positional (k − 1)-mers
(CAT, 8), (CAT, 12), and (CAT, 10) do not all originate from the same genomic position, they are all
glued together creating a small whirl in the graph. Bottom of the figure shows the positional de
Bruijn graph where all positional (k − 1)-mers with the same (k − 1)-mer are merged to a single
node with a list of positions and their multiplicities.

reads to the genome-wide optical map using the method by Valouev et al. [30]. Of the
alignments returned by that method, we retain only those for which at least 40% of fragments
align (this threshold was found experimentally, and reduces the number of clearly erroneous
alignments reported by Valouev et al.’s software). A second round of error-correction is then
applied to this subset using LoRMA. We saw superior results with the E. coli data (see
Section 4) when we error corrected a second time, but results were not substantially improved
by a third round of error correction. After these steps we have a set of error corrected reads
and for each of these reads we have an approximate genomic position based on the alignment
to the genome wide optical map. This set of aligned reads and their genomic positions will
then be used to build the positional de Bruijn graph.

3.2 Succinct Positional de Bruijn Graph

After the alignment of the reads to the optical map, the positional k-mers are extracted from
this alignment. The set of positional k-mers from a given read r of length n is the set of all
distinct k-length substrings (k-mers) in r with a list of the positions where the substring
occurred in the optical map. Thus, we can state this more formally using the notation from

WABI 2017

1:6 Disentangled Long-Read De Bruijn Graphs via Optical Maps

Ronen et al. [26] as follows: n− k + 1 positional k-mers ([r1 . . . rk], i), ([r2 . . . rk+1], i + 1) ,

. . . , ([rn−k+1 . . . rn], i + n− k) can be extracted from r = [r1 . . . rn] when aligned to i of the
optical map. Thus, one k-mer can have many different positions because they can come from
different reads which allows us to disambiguate k-mers at different positions. The multiplicity
of a positional k-mer occurring at position p is defined as the number of the occurrences
of that k-mer at p. We further note that the alignment to the optical map also gives the
orientation of each read and thus also the orientation of each k-mer. Therefore, unlike in a
de Bruijn graph without positional information, there is no need to merge a k-mer and its
reverse complement which simplifies the construction and processing of the graph.

Next, we define the positional de Bruijn graph using an analogous constructive definition
to the one for the de Bruijn graph [23]. Hence, to construct the positional de Bruijn graph
Gk,∆ for a multi-set of positional k-mers and input parameter ∆ a set of directed edges
is constructed, which contains a directed edge ((prefix(sk), p), (suffix(sk), p + 1)) for each
positional k-mer (sk, p), where prefix(sk) and suffix(sk) are the first and last k− 1 characters
of sk, respectively. Therefore after all edges are formed, the graph undergoes a gluing
operation, where positional (k − 1)-mers are glued together as follows. We group together
positional (k− 1)-mers having the same (k− 1)-mer sequence and positions within ∆ of each
other. Such a group of m positional (k − 1)-mers is then replaced with a single positional
(k − 1)-mer having a position equal to the average position of the group. The associated
multiplicity is also stored. The definition, which is conceptually identical to that of Ronen et
al. [26], is included here for completeness. We refer the interested reader to this work for
another usage of this data structure.

Disambiguating identical k-mers (with positional information) should lead to a simpler
graph, but an overall increase in space usage is likely because, for example, the positional de
Bruijn graph will have more nodes than the plain graph, so care must be taken with graph
representation.

We have implemented a space-efficient data structure for storing and traversing the
positional de Bruijn graph that is based on the BOSS de Bruijn graph representation of Bowe,
Onodera, Sadakane, and Shibuya [3]. We begin by briefly defining the BOSS construction
of the de Bruijn graph and then demonstrate how this structure can be extended to allow
positional information to be stored. The first step of constructing this graph G for a given
set of k-mers is to add dummy k-mers (edges) to ensure that there exists an edge k-mer
starting with first k − 1 symbols of another edge’s last k − 1 symbols. These dummy edges
ensure that each edge in G has an incoming node. After this small perturbation of the data,
a list of all edges sorted into right-to-left lexicographic order of their last k − 1 symbols
(with ties broken by the first character) is constructed. We denote this list as F, and refer
to its ordering as co-lexicographic ordering. Next, we define L to be the list of edges sorted
co-lexicographically by their starting nodes with ties broken co-lexicographically by their
ending nodes. Hence, two edges with same label have the same relative order in both lists;
otherwise, their relative order in F is the same as their labels’ lexicographic order. The
sequence of edge labels (k-mers) sorted by their order in list L is called the edge-BWT. Now,
let BF be a bit vector in which every 1 indicates the last incoming edge of each node in L,
and let BL be another bit vector with every 1 showing the position of the last outgoing edge
of each node in L. Given a character c and a node v with co-lexicographic rank rank(c), we
can determine the set of v’s outgoing edges using BL and then search the edge-BWT(G) for
the position of edge e with label c. Using BF we can find the co-lexicographical rank of e’s
outgoing edge.

We augment the BOSS representation with extra information per edge to obtain a
positional de Bruijn graph. In particular, we build and store a vector V of integer vectors

B. Alipanahi, L. Salmela, S. J. Puglisi, M. Muggli, and C. Boucher 1:7

(containing positions associated with each node). Integers in each vector are stored bit
packed, using the SDSL library [10], which also provides us fast random access to individual
positions. V is indexed by k-mer lexicographic rank, so that V [i] is the set (vector) of
positions where the ith lexicographically ranked k-mer in the input occurs. Rank operations
on edge-BWT allow us to easily map from positions in edge-BWT (edges in the de Bruijn
graph) to associated sets of positions in V . Figure 1 illustrates a small example of the
positional de Bruijn graph representation built for a set of 4-mers and ∆=4.

3.3 Construction of the Positional de Bruijn Graph

In our implementation, we first count the k-mers and calculate their associated positions
(using the positional information of each read that comes from its alignment to the optical
map). After clustering the positional k-mers as described in the previous section, we write the
lexicographically sorted k-mers and the associated positions in separate files (both ordered
by k-mer). Each k-mer is indexed by its lexicographic rank (lexrank). We build and store
a vector of position sets V , in which, V [i] is the set of positions at which the k-mer with
lexrank i occurs in the genome. Then we construct the BOSS representation for the k-mers
such that instead of co-lexicographically sorting k-mers only, we sort (k-mer, lexrank) pairs.

To construct the F table, for each k-mer, (k-mer, lexrank) pairs will be sorted by the
first k − 1 symbols (the source node of the edge). Similarly, to construct the L table, we
also sort each k-mer (without its row number) by the last k − 1 symbols (the next node of
the edge). At this step we calculate F \ L (comparing only the (k − 1)-length prefixes and
suffixes respectively), and L \ F to find the nodes that require incoming dummy edges and
outgoing dummy edges, respectively. We will sort the set of incoming dummy edges by their
first k − 1 symbols. We call this table D. The set of outgoing edges does not require sorting.
Eventually we merge D with F and L \ F. During the merge we push the index of each
resulting edge to a vector. Afterward, while traversing the jth edge (k-mer) in the graph, the
k-mer’s index allows us to map to the jth element of the index vector, providing us access to
the appropriate part of V containing the set of its associated positions of the k-mer. Sorting
the D and F (arrays of k-mers) is the computational bottleneck in construction, and overall
construction of the data structure takes O(k|F| log |F|) time.

3.4 Graph Traversal and Contig Recovery

A contig in the positional de Bruijn graph is a non-branching path and thus to recover the
contigs it is sufficient to enumerate all non-branching paths in the graph. The following
procedure is repeated until all positional k-mers in the graph have been visited. We start
by picking an unvisited positional k-mer (sk, p) and mark it as visited. We then traverse
the graph both forward and backward starting from (sk, p). Let us consider the forward
traversal. In our representation we need to retrieve all out-neighbors of the k-mer sk. We
then filter the position lists of the out-neighbors to find all positional k-mers (s′k, p′) such
that p′ is within ∆ of p. We say that these positional k-mers are consecutive to (sk, p). If
a consecutive positional k-mer is marked visited or if there are no or several consecutive
positional k-mers, we have reached the end of a non-branching path and stop our traversal.
If there is exactly one consecutive positional k-mer, we mark that k-mer visited and continue
the traversal from that k-mer. After the forward traversal finishes, we will traverse backward
from the initial k-mer which proceeds analogously to the forward traversal.

WABI 2017

1:8 Disentangled Long-Read De Bruijn Graphs via Optical Maps

4 Results

4.1 Datasets
We simulated 92,818 PacBio reads from the reference genome of E. coli K-12 substr. MG
1655 with model-based simulation of PBSIM [21] using the following parameters: mean
accuracy of 85%, average read length of 10,000, and minimum read length of 1,000, and
average coverage of 200x. According to observed distributions of real PacBio read length,
the model-based method simulates PacBio reads with a log-normal length distribution. The
average accuracy over the length of each read is taken from a normal distribution. We
simulated an optical map using the reference genome for E. coli (str. K-12 substr. MG1655)
and the enzymes XhoI, NheI and EagI since there is no publicly available one for this genome.
The simulation was done by finding the locations of each restriction site in the reference
genome and then in silico digesting at those locations.

Our second dataset consists of 220,336 sequence reads from Saccharomyces cerevisiae
str. W303 (yeast) using data generated using PacBio RS II System and P4-C2 chemistry.
The reads are available for public download from PacBio DevNet1. The average read length
is 6,349 bp, with the minimum and maximum read length being 500 bp and 30,164 bp,
respectively. Given there is no publicly available optical map for yeast, one was simulated
using the reference genome of Saccharomyces cerevisiae str. W303 and enzymes XhoI, NheI
and EagI.

4.2 The Effect of Filtering and Error Correction
As previously mentioned, in order to use long reads in the construction of the positional de
Bruijn graph, they need to be aligned to the genome-wide optical map. Error correction was
used to maximize the number of reads that aligned to the optical map and thus, could be
used for assembly. Prior to error correction, only 30% of the simulated E. coli reads aligned
to the optical map, whereas 57% of them aligned to the optical map after error correction.
Of these 57% of reads, 45% of them had an alignment where at least 40% of the fragments
aligned. This increase in the aligned reads reflects the increase in the overall quality of the
reads. The distribution of the frequency of k-mers changed dramatically with both the first
and second error correction. This is illustrated in Figure 2. Prior to the first error correction
a large portion of the reads had either very high frequency or very low frequency. We note
that both of these sets of reads would be filtered by ABruijn. After the first error correction,
alignment, and second error correction, the distribution of the k-mer frequency was much
more uniform, with the majority of the k-mers having frequency between 20 and 90. Thus,
as can be seen, the majority of these k-mers can be more effectively used for the assembly
process by disambiguating them.

4.3 Comparison Between Assemblies
We analyzed the ability of Canu, ABruijn, and Koota to accurately assemble both datasets.
As previously stated, these were selected since Canu has been shown to be more memory and
time efficient than Miniasm[12], FALCON [8], SPAdes [1], and ABruijn – which only compares
against Canu – is the only other de Bruijn graph long-read assembler. All assemblers were

1 https://github.com/P50acificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-
Assembly-Contigs

https://github.com/P50acificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-Assembly-Contigs
https://github.com/P50acificBiosciences/DevNet/wiki/Saccharomyces-cerevisiae-W303-Assembly-Contigs

B. Alipanahi, L. Salmela, S. J. Puglisi, M. Muggli, and C. Boucher 1:9

Figure 2 An illustration of the effect of error correction on number of aligned reads and 19-mer
frequency on the E. coli data. The histogram in yellow illustrates the frequency of all distinct
19-mers in the initial corrected data. The histogram in red illustrates the frequency of all distinct
19-mers that occur in reads that underwent error correction once and aligned to the genome-wide
optical map. Lastly, the histogram in blue illustrates the frequency of all 19-mers that underwent
error correction twice (once prior to alignment and once afterward) and aligned to the genome-wide
optical map.

run with their default parameters, on the filtered, error corrected data and using k = 19.
Koota used ∆ = 500. All statistics were computed by QUAST in default mode [11]. The
results demonstrate that Koota achieves the best E. coli assembly with respect to both
genome fraction and rate of mismatches. Although the Canu and Koota E. coli assembly
had similar genome fractions – 93.25% and 94.23%, respectively – ABruijn had a much
lower genome fraction (62.94%) – and Canu had a significantly higher number of mismatches
than both ABruijn and Koota. Koota’s contigs had a mismatch rate of 0.37 per 100 kbp.
ABruijn and Canu had a mismatch rate of 1.16 and 2.89 per 100 kbp, respectively.

Of the 220,336 reads from yeast, 95,289 (approximately 43%) of them aligned to optical
map, were error corrected a second time, and subsequently used for assembly. All the
assemblies produced by Koota and ABruijn had similar genome fractions – 92% and 93.5%,
respectively; however, ABruijn had a substantially higher mismatch rate (90.47 mismatches
per 100 kbp) than Koota (2.02 mismatches per 100 kbp). The Canu assembly had a
moderately higher genome fraction (95%) in comparison to ABruijn and Koota but also a
higher mismatch rate (22.9 mismatches per 100 kbp) in comparison to Koota.

4.4 Time and Memory Usage

We compared the resource usage of Koota with ABruijn and Canu on the two datasets, in
particular peak memory usage, which was measured as the maximum resident set size, and
run time, measured as the user process time. All experiments were performed on a 2 Intel(R)
Xeon(R) CPU E5-2650 v2 @ 2.60 GHz server with 512GB of RAM, and both resident set size
and user process time were reported by the operating system. Again, Canu, ABruijn, and
Koota were applied to long reads that had undergone error correction and filtering. Table 1
shows the memory and time usage of the three different assemblers on both the E. coli and
yeast datasets. The assembly time of Canu was moderately less than Koota. Canu required
7 minutes and 35 seconds to assemble E. coli and 3 hours and 38 minutes to assemble yeast;

WABI 2017

1:10 Disentangled Long-Read De Bruijn Graphs via Optical Maps

Table 1 Comparison between the peak memory and time usage required to assemble the (error
corrected and aligned) E. coli reads using Koota, ABruijn, and Canu, and the rate of mismatch in
their assembly. k = 19 was used for all assemblers. The peak memory is given in megabytes (MB)
or gigabytes (GB). The running time is reported in seconds (s), minutes (m), and hours (h). The
mismatch rate (MM) is reported per 100 kbp.

Koota Canu ABruijn
Time Memory MM Time Memory MM Time Memory MM

E.coli 32m
20s

1.18GB 0.37 7m 35s 3.7GB 2.89 3h 46m 2.7GB 1.16

Yeast 12h 4m 4.4GB 2.02 3h 38m 3.8GB 22.9 48h
44m

15.4GB 90.47

Table 2 Comparison between the number of whirls (directed cycles) and bulges (undirected
cycles) in the positional de Bruijn graph (denoted as PDBG) and the de Bruijn graph (denoted as
DBG) for E.coli and yeast.

Number of Whirls Number of Bulges
DBG PDBG DBG PDBG

E.coli 1,940 3 17,200 0
Yeast 13,223 302 59,283 0

whereas, Koota required 32 minutes and 20 seconds to assemble E. coli and 12 hours and 4
minutes to assemble yeast. Both Canu and Koota also used less than 5 GB of memory to
assemble both yeast and E.coli. Lastly, as can be seen in Table 1, ABruijn required more
time and memory to produce assemblies for both E.coli and yeast.

4.5 The Simplicity of the Positional De Bruijn Graph

Lastly, we compared the properties of the positional de Bruijn graph with the de Bruijn
graph on the yeast and E.coli datasets. In particular, we built the positional de Bruijn
graph and the de Bruijn graph using the code base for Koota by considering the graph
construction with positional k-mers and (non-positional) k-mers – the former gives rise to
the positional de Bruijn graph and the latter gives rise to the de Bruijn graph. In each
graph we considered the in-degree, out-degree of each node, the number of bulges, and the
number of whirls. Tables 2 and 3 summarize our findings. As can be seen in the following
tables, taking the positional information into account in the construction of the de Bruijn
graph significantly decreases the complexity of the graph and this reduction in the number of
bulges becomes even more prevalent as the genome size increases. For example, the number
of bulges in the de Bruijn graph for E. coli and yeast was 17,200 and 59,283, respectively;
whereas, there exists zero bulges in the positional de Bruijn graph for these genomes. A
significant reduction in the number of whirls can also be seen in Table 2. There was more
than 300x and 40x more whirls in the de Bruijn graph than the positional counterpart for
E.coli and yeast, respectively. These results mirror the results seen in Table 3.

In each case the number of nodes that have in-degree and out-degree greater than one
decreased by at least two orders of magnitude. We should note that the number of nodes in
the positional de Bruijn graph is guaranteed to be at least the number of nodes in the de
Bruijn graph since we considered only the Koota implementation, which does not contain
any graph simplification step.

B. Alipanahi, L. Salmela, S. J. Puglisi, M. Muggli, and C. Boucher 1:11

Table 3 Comparison between the percentage of nodes with out-degree and in-degree greater than
one in de Bruijn graph (denoted as DBG) and the positional de Bruijn graph (denoted as PDBG) in
E.coli and yeast.

E.coli Yeast
Out-degree 2 3 4 2 3 4

DBG 0.27 0.0043 0.001 0.71 0.039 0.01
PDBG 0.0079 0.00011 0.000011 0.0051 0.00038 0.00023

In-degree 2 3 4 2 3 4
DBG 0.27 0.004 0.00083 0.68 0.033 0.005
PDBG 0.01 0.00022 0.000022 0.0039 0.00031 0.00015

5 Discussion and Conclusions

Development of a production quality assembler requires sophisticated traversal algorithms,
the implementation of which is well beyond the scope of this paper. Our aim in developing
Koota is to demonstrate that incorporating the approximate positions of the k-mers into
the de Bruijn graph construction can greatly reduce the complexity of the resulting graph.
Furthermore, using space-efficient encodings, the positional information can be added without
a dramatic increase in memory requirements.

Koota required the least space to assemble the simulated E. coli reads; 1.18GB in
comparison to the 3.7GB required by Canu and the 2.7GB required by ABruijn. Koota
also had the highest genome fraction of the methods tested, and a low mismatch rate. Taken
together these statistics show that we have not discarded a significant portion of the genome,
making accurate assembly possible. For completeness we report that Koota’s N50 scores
are currently low (2,301 vs. 126,754 for Canu on the E. coli dataset), however this belies the
absence of a sophisticated traversal algorithm to effectively deal with branches in the graph,
and to resolve the remaining whirls. We reemphasize that our goal was not to compete
with state-of-the-art assemblers, but instead to demonstrate how positional information can
simplify the de Bruijn graph, in the context of long reads.

Indeed, the real influence of the optical map is its ability to disentangle the de Bruijn
graph by assigning approximate positions to each of the long reads (and so the k-mers), and
the addition of positions to the graph greatly reduces the number of whirls and bulges. We
showed in Section 4.5 that in our experiments all bulges and over 97% of whirls disappear
from the de Bruijn graphs when positional information is added to the graph.

Our main contribution has been to demonstrate the effect of adding positional information
to long read assembly and how optical mapping data can assist in the assembly of long reads.
Given the rarity of whirls in the positional de Bruijn graph, we expect that even slightly more
sophisticated traversal algorithms would be capable of constructing 94% or more of the E. coli
genome with only a few contigs that have a small mismatch rate (Koota has 0.37 mismatches
per 100 kbp) without using more than 1.2GB of space. This would bridge the gap between
long-read and short-read assembly since it would enable longer (more complicated genomes)
to be assembled the same accuracy as short reads. A further advantage of integrating the
positional information into the de Bruijn graph is that it allows for a meaningful partitioning
of the graph. Each partition of the graph would contain the k-mers belonging to an interval
of positions. Each of these partitions could be independently processed yielding a natural
way to develop parallel or distributed algorithms for the positional de Bruijn graph.

WABI 2017

1:12 Disentangled Long-Read De Bruijn Graphs via Optical Maps

References
1 A. Bankevich et al. SPAdes: A new genome assembly algorithm and its applications to

single-cell sequencing. J. Comp. Bio., 19(5):455–477, 2012.
2 K. Berlin et al. Assembling large genomes with single-molecule sequencing and locality-

sensitive hashing. Nature Biotech., 33:623–630, 2015.
3 A. Bowe et al. Succinct de Bruijn graphs. In Proc. WABI, pages 225–235, 2012.
4 M. Burrows and D. J. Wheeler. A block sorting lossless data compression algorithm. Tech-

nical Report 124, Digital Equipment Corporation, 1994.
5 R. Chikhi et al. On the representation of de Bruijn graphs. In Proc. RECOMB, pages

35–55, 2014.
6 R. Chikhi and G. Rizk. Space-efficient and exact de Bruijn graph representation based on

a Bloom filter. Algorithms Mol. Biol., 8(22), 2012.
7 C.-S. Chin et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT

sequencing data. Nature Methods, 10(6):563–569, 2013.
8 C.-S. Chin, P. Peluso, F. J. Sedlazeck, M. Nattestad, G.T. Concepcion, A. Clum, C. Dunn,

and R. et al. O’Malley. Phased diploid genome assembly with single-molecule real-time
sequencing. Nat Methods, 13:1050–1054, 2016.

9 Y. Dong et al. Sequencing and automated whole-genome optical mapping of the genome
of a domestic goat (Capra hircus). Nature Biotech., 31(2):135–141, 2013.

10 S. Gog et al. From theory to practice: Plug and play with succinct data structures. In
Proc. SEA, pages 326–337, 2014.

11 A. Gurevich et al. QUAST: Quality assessment tool for genome assemblies. Bioinformatics,
29(8):1072–1075, 2013.

12 Li. H. Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences.
Bioinformatics, pages 2103–2110, 2016.

13 R.M. Idury and M. S. Waterman. A new algorithm for DNA sequence assembly. J. Comp.
Bio., 2:291–306, 1995.

14 S. Koren et al. Canu: scalable and accurate long-read assembly via adaptive k-mer weight-
ing and repeat separation. Genome Research, 2017. doi:10.1101/gr.215087.116.

15 S. Koren and A.M. Phillippy. One chromosome, one contig: complete microbial genomes
from long-read sequencing and assembly. Cur. Opin. Microbiol., 23:110–120, 2015.

16 A.K.-Y. Leung et al. OMBlast: Alignment tool for optical mapping using a seed-and-extend
approach. Bioinformatics, 2016. To appear.

17 Y. Lin et al. Assembly of long error-prone reads using de bruijn graphs. Proceedings of the
National Academy of Sciences, 2016. doi:10.1073/pnas.1604560113.

18 L.M. Mendelowitz, D.C. Schwartz, and M. Pop. MAligner: a fast ordered restriction map
aligner. Bioinformatics, 32(7):1016–1022, 2016.

19 E.W. Myers et al. A whole-genome assembly of drosophila. Science, 287:2196–2204, 2000.
20 N. Nagarajan, T.D. Read, and M. Pop. Scaffolding and validation of bacterial genome

assemblies using optical restriction maps. Bioinformatics, 24(10):1229–1235, 2008.
21 Y. Ono, K. Asai, and M. Hamada. PBSIM: PacBio reads simulator – toward accurate

genome assembly. Bioinformatics, 29(1):119–121, 2013.
22 M. Pendleton et al. Assembly and diploid architecture of an individual human genome via

single-molecule technologies. Nature Methods, 12:780–786, 2015.
23 P.A. Pevzner, H. Tang, and G. Tesler. De novo repeat classification and fragment assembly.

Genome Res., 14(9):1786–1796, 2004.
24 P.A. Pevzner, H. Tang, and M. S. Waterman. An Eulerian path approach to DNA fragment

assembly. Proc. Nat. Acad. Sci., 98(17):9748–9753, 2001.
25 A. Rhoads and K.F. Au. PacBio sequencing and its applications. Genomics, Proteomics

& Bioinformatics, 13(5):278–289, 2015.

http://dx.doi.org/10.1101/gr.215087.116
http://dx.doi.org/10.1073/pnas.1604560113

B. Alipanahi, L. Salmela, S. J. Puglisi, M. Muggli, and C. Boucher 1:13

26 R. Ronen, C. Boucher, H. Chitsaz, and P. Pevzner. SEQuel: Improving the accuracy of
genome assemblies. Bioinformatics, 28(12):i188–i196, 2012.

27 L. Salmela et al. Accurate self-correction of errors in long reads using de Bruijn graphs.
Bioinformatics, 2016. To appear.

28 J.T. Simpson and R. Durbin. Efficient construction of an assembly string graph using the
FM-index. Bioinformatics, 26(12):i367–i373, 2010.

29 J.T. Simpson et al. ABySS: A parallel assembler for short read sequence data. Genome
Res., 19(6):1117–1123, 2009.

30 A. Valouev et al. Alignment of optical maps. J. Comp. Bio., 13(2):442–462, 2006.
31 D. Verzotto et al. OPTIMA: Sensitive and accurate whole-genome alignment of error-

prone genomic maps by combinatorial indexing and technology-agnostic statistical analysis.
GigaScience, 5:2, 2016.

32 D.R. Zerbino and E. Birney. Velvet: Algorithms for de novo short read assembly using de
Bruijn graphs. Genome Research, 18(5):821–829, 2008.

WABI 2017

1:14 Disentangled Long-Read De Bruijn Graphs via Optical Maps

A Appendix

Figure 3 illustrates when a whirl can persist in a positional de Bruijn graph. In this example,
(a) and (b) illustrate the de Bruijn graph and the positional de Bruijn graph constructed for
k = 4 and ∆ = 4 and read CTAACTAACG that aligns to position 30 in the genome. Both the
de Bruijn graph and its positional counterpart contain a whirl. The whirl in the positional
de Bruijn graph is created since the occurrences of CTAA and TAAC are clustered together at
positions 32 and 33, respectively, creating positional k-mers that have multiplicity greater
than one. The third graph in Figure 3 shows, more typically, how positional information
resolves the whirls within the graph.

A

G
T

A
CTA

ACT ACG

TAA

AAC

C

A
ACG

33

TAA

11

CTA

30

TAA

31

CTA

10

AAC

32

... A C G

(CTAA),(TAAC),(AACT),(ACTA),(AACG)(a) de Bruijn graph

(b) Positional de Bruijn graph

(CTAA, 30),(TAAC, 31),(AACT, 32),(ACTA,33),(CTAA, 34),
(TAAC,35),(AACG, 36)

(CTAA, 32),(TAAC, 33),(AACT, 32),(ACTA,33),(CTAA, 32),
(TAAC,33),(AACG, 36)

Positional k-mers before clustering

Positional k-mers clustered

A

G
T

A
CTA

ACT ACG

TAA

AAC

C

32 33

3233

36

(c) Positional de Bruijn graph

(CTAA, 10),(TAAC, 11),(CTAA, 30),(TAAC, 31),(AACG,32),

Positional k-mers before and after clustering

Figure 3 An illustration showing when a whirl in the positional de Bruijn graph can prevail. (a)
shows a de Bruijn graph constructed for a read CTAACTAACG and k = 4. (b) shows the positional
de Bruijn graph with constructed for a read CTAACTAACG whose alignment starts at position 30 of
the genome, k = 4 and ∆ = 4. The set of positional k-mers before and after clustering with ∆
are illustrated. (c) shows the positional de Bruijn graph with constructed for a read CTAA..CTAACG
whose alignment starts and resumes at position 10 and 30 of the genome respectively. In this last
example, k = 4 and ∆ = 4. As can be seen by these illustrations, whirls will persist in the positional
de Bruijn graph for short genomic repeats when the difference between k and ∆ is reasonably small
since they will create positional k-mers whose multiplicity is greater than one. In (b) CTAA at position
32 and TAAC at position 33 both have multiplicity 2 after clustering.

Gene Tree Parsimony for Incomplete Gene Trees∗

Md. Shamsuzzoha Bayzid1 and Tandy Warnow2

1 Department of Computer Science and Engineering, Bangladesh University of
Engineering and Technology, Dhaka, Bangladesh
shams_bayzid@cse.buet.ac.bd

2 Department of Computer Science, University of Illinois Urbana-Champaign,
Illinois, IL, USA
warnow@illinois.edu

Abstract
Species tree estimation from gene trees can be complicated by gene duplication and loss, and
“gene tree parsimony” (GTP) is one approach for estimating species trees from multiple gene
trees. In its standard formulation, the objective is to find a species tree that minimizes the total
number of gene duplications and losses with respect to the input set of gene trees. Although
much is known about GTP, little is known about how to treat inputs containing some incomplete
gene trees (i.e., gene trees lacking one or more of the species). We present new theory for GTP
considering whether the incompleteness is due to gene birth and death (i.e., true biological loss)
or taxon sampling, and present dynamic programming algorithms that can be used for an exact
but exponential time solution for small numbers of taxa, or as a heuristic for larger numbers of
taxa. We also prove that the “standard” calculations for duplications and losses exactly solve
GTP when incompleteness results from taxon sampling, although they can be incorrect when
incompleteness results from true biological loss. The software for the DP algorithm is freely
available as open source code at https://github.com/shamsbayzid/DynaDup.

1998 ACM Subject Classification G.2.1 Combinatorics, G.2.2 Graph Theory, J.3 Life and Med-
ical Sciences

Keywords and phrases Gene duplication and loss, gene tree parsimony, deep coalescence

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.2

1 Introduction

The estimation of species trees is often performed by estimating multiple sequence alignments
for some collection of genes, concatenating these alignments into one super-matrix, and then
estimating a tree (often using maximum likelihood or a Bayesian technique) on the resultant
super-matrix. However, this approach cannot be used when the species’ genomes contain
multiple copies of some gene, which can result from gene duplication. Since gene duplication
and loss is a common phenomenon, the estimation of species trees requires a different type
of approach in this case.

Gene Tree Parsimony (GTP) is an optimization problem for estimating species trees from
a set of gene trees (estimated from individual gene sequence alignments). In its most typical
formulations, only gene duplication and loss are considered, so that GTP depends upon two
parameters: cd (the cost for a duplication) and cl (the cost for a loss). The two most popular
versions of GTP are MGD (minimize gene duplication), for which cd = 1 and cl = 0, and

∗ This work was supported by US NSF (1062335) to TW and Fulbright Fellowship to SB. The authors
thank Siavash Mirarab for his helpful suggestions and help in implementing the software.

© Md. Shamsuzzoha Bayzid and Tandy Warnow;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 2; pp. 2:1–2:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://github.com/shamsbayzid/DynaDup
http://dx.doi.org/10.4230/LIPIcs.WABI.2017.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2 Gene Tree Parsimony for Incomplete Gene Trees

MGDL (minimize gene duplication and loss), for which cd = cl = 1. The version of GTP that
seeks the tree minimizing the total number of losses has also been studied; for this, cd = 0
and cl = 1. These variants of GTP are NP-hard optimization problems [14], but software
such as DupTree [24] and iGTP [4] for GTP are in wide use.

Basic to all these problems is the ability to compute the number of duplications and
losses implied by a species tree and gene tree. This problem is called the “reconciliation
problem”, surveyed in [7], and intensively studied in the literature (see, for example, [9, 12,
18, 16, 19, 17, 20, 27, 13, 14, 10, 28]). The mathematical formulation of the reconciliation
problem was derived for the case where the gene tree and the species tree have the same set
of taxa, and then extended to be able to be used on incomplete gene trees, i.e., trees that
can miss some taxa.

Incomplete gene trees are quite common, and can arise for two different reasons: (1) taxon
sampling: the gene may be available in the species’ genome, but was not included for some
reason in the dataset for that gene, or (2) gene birth/death: as a result of gene birth and
death (true biological gene loss), the species does not have the gene in its genome.

Given a gene tree gt and a species tree ST , two formulations for the number of losses have
been defined. The most commonly used one computes the number of losses by first computing
the “homeomorphic subtree” ST (gt) of ST induced by gt, and then computing the number
of losses required to reconcile gt with ST (gt) (see, for example, [12, 14, 28]). Although
this second formulation is in wide use (and is the basis of both iGTP [4] and Duptree [24],
two popular methods for “solving” GTP), we will show that this can be incorrect when
incompleteness is due to true biological loss. We refer to this formulation as the “standard”
approach because of this widespread use in both software and the theoretical literature
on GTP. The other, described in [5, 23], correctly computes the number of losses when
incompleteness is a result of true gene loss, as we will prove.

This paper addresses the GTP problem for the case where some of the input gene trees
may be incomplete due to either sampling or true biological loss. The main results are as
follows:

We formalize the duploss reconciliation problem when gene trees are incomplete due to
taxon sampling as the “optimal completion of a gene tree” (Section 2.2), and we prove
(Theorem 1) that the standard calculation correctly computes losses for this case.
We show by example that the standard calculation for losses in GTP can be incorrect
when incompleteness is due to true biological loss (Section 2.3).
We show how to compute the number of losses implied by a gene tree and species tree,
when incompleteness is due to true biological loss (Section 3).
We formulate variants of the GTP problem (when gene tree incompleteness is due to
true biological loss) as minimum weight maximum clique problems (see Theorem 10 for
one duploss variant), and show how to solve these problems efficiently using dynamic
programming (Section 4). We show that these optimal cliques can be found in polynomial
time in the number of vertices of the graph, because of the special structure of the graphs.
We also show that a constrained version of these problems, where the subtree-bipartitions
of the species tree are drawn from the subtree-bipartitions of the input gene trees, can be
solved in time that is polynomial in the number of gene trees and taxa.

2 Basics

2.1 Notation and terminology
Throughout this paper we will assume that gene trees and species trees are rooted binary
trees, with leaves drawn from the set X of n taxa, and we allow the gene trees to have

Md. S. Bayzid and T. Warnow 2:3

multiple copies of the taxa, and even to miss some taxa. We let gt denote a gene tree and
ST denote a species tree. We let L(t) denote the set of taxa at the leaves of the tree t, and
require that L(gt) ⊆ L(ST). If L(gt) = L(ST) we say that gt is complete, and otherwise we
say that gt is incomplete.

We now define some general terminology we will use throughout this paper; other
terminology will be introduced as needed. Let T be a rooted binary tree. We denote the set
of vertices of T by V (T), the set of edges of T by E(T), the root by r(T), the internal nodes
by Vint(T), and the set of taxa that appear at the leaves by L(T). Note that if T is a gene
tree, it can be incomplete, and so it is possible for |L(T)| to be smaller than the number of
leaves in T . A clade in T is a subtree of T rooted at a node in T , and the set of leaves of the
clade is called a cluster. Given a node v in T , the cluster of leaves below v is denoted by
cT (v), and the subtree of T rooted at v is denoted by Tv. The most recent common ancestor
(MRCA) of a set A of leaves in T is denoted by MRCAT (A). Given a gene tree gt and
a species tree ST , we define M : V (gt) → V (ST) by M(v) = MRCAST (cgt(v)). Finally,
given a node u in a rooted binary tree, we let r denote the right child of u and l denote the
left child of u.

For a rooted gene tree gt and a rooted species tree ST , where L(gt) ⊆ L(ST), an internal
node v in gt is called a duplication node if M(v) = M(v′) for some child v′ of v, and
otherwise v is a speciation node [28, 12, 14, 1].

ST (gt) is the homeomorphic subtree of ST induced by the taxon set of gt, and is produced
as follows: ST is restricted to the taxon set of gt, and then nodes with in-degree and out-
degree 1 are suppressed. ST ∗(gt) is the tree obtained by restricting ST to the taxon set of
gt, but not suppressing nodes of in-degree and out-degree 1.

We say that clade cl in ST is a missing clade with respect to gt if L(gt) ∩ L(cl) = ∅,
and a maximal missing clade if it is not contained in any other missing clade. Maximal
missing clades that are descendants of M(r(gt)) are called the “lower” maximal missing
clades, and those that are not descendants of M((r(gt)) are called the “upper” maximal
missing clades. We denote by LMMC(gt, ST) (or LMMC), the set of lower maximal missing
clades, and UMMC(gt, ST) (or UMMC), the set of upper maximal missing clades. Note
UMMC(gt, ST) = ∅ iffM((r(gt)) = r(ST).

2.2 The standard formula for computing losses
The standard formula (see, for example, [12, 14, 10, 28, 1]) for computing the minimum
number of losses of a (potentially incomplete) gene tree gt with respect to a species tree ST

is denoted Lstd(gt, ST), and is defined to be Lstd(gt, ST) =
∑

u∈Vint(gt) F (u, ST (gt)), where
F (u, T) is defined for internal nodes u with children l and r (which can be interchanged in
the formula below) by:

F (u, T) =

d(M(r), M(u)) + 1 if M(r) 6= M(u) & M(l) = M(u),
d(M(l), M(u)) + 1 if M(l) 6= M(u) & M(r) = M(u),
d(M(r), M(u))
+d(M(l), M(u)) if M(r) 6= M(u) & M(l) 6= M(u),
0 if M(r) = M(l) = M(u).

(1)

where d(s, s′) is the number of internal nodes in T on the path from s to s′. When gt is
complete, then ST (gt) = ST , and this formula follows from [5].

Optimal completion of a gene tree

Input: rooted binary gene tree gt and rooted binary species tree with L(gt) ⊆ L(ST).
Output: complete gene tree Tsamp(gt, ST) that is an extension of gt such that Tsamp(gt,

ST) implies a minimum number of losses with respect to ST .

WABI 2017

2:4 Gene Tree Parsimony for Incomplete Gene Trees

In other words, we add all the missing taxa into gt (each taxon added at least once, but
perhaps several times) so as to produce a complete binary gene tree that has a minimum
number of losses with respect to ST . Let Lsamp(gt, ST) = Lstd(Tsamp(gt, ST), ST). Thus,
Lsamp(gt, ST) denotes the total number of losses needed for an optimal completion of gt.
Similarly, we can define DLsamp(gt, ST) to be the total number of duplications and losses
needed for a completion of gt that minimizes the duploss score.

I Theorem 1. Given a binary rooted gene tree gt and a binary rooted species tree ST such
that L(gt) ⊆ L(ST), the MRCA mapping defines a reconciliation that minimizes the number
of duplications, the number of losses, and hence also the total number of duplications and
losses, where we treat losses as due to sampling. Furthermore, Lstd(gt, ST) = Lsamp(gt, ST),
which means the standard formula correctly computes the number of losses when we treat
incompleteness as due to sampling.

Proof omitted due to space constraints.

2.3 Incompleteness due to gene birth and death
As we will see, while the MRCA mapping is still an optimal reconciliation when gene trees
are incomplete due to gene birth and death (implied from [5, 11]), the standard formula does
not correctly compute the number of losses.

Consider the simple example gt = ((a, b), c) and ST = ((a, (b, d)), c). Under the standard
formula, Lstd(gt, ST) = 0, since ST (gt) = gt. Under the assumption that incompleteness is
due to true biological loss, the genome for d does not have the gene. Because d is sister to
b and all the other taxa have the gene, the gene must have been present in the parent of
d, and lost on the branch leading to d. Therefore, the standard formula for the number of
losses can be incorrect when gene trees are incomplete due to gene birth and death (i.e., true
biological loss).

3 How to calculate losses

We now show how to calculate the number of losses for an incomplete gene tree gt and species
tree ST , treating incomplete gene trees as due to gene birth and death. How this is defined
will depend upon whether one assumes, a priori, that the gene is present in the genome of
the common ancestor of the species in ST (i.e., at the root of ST). Thus, this section shows
how to calculate the following values:

L∗bd(gt, ST), the minimum number of losses, under the assumption the gene is present
in the common ancestor of the species in ST (DL∗bd(gt, ST) is defined similarly for the
total number of duplications and losses), and
Lbd(gt, ST) the minimum number of losses without assuming the gene is present in the
common ancestor of the species in ST (DLbd(gt, ST) is defined similarly for duplications
and losses).

We now show how to compute the number of losses (i.e., Lbd(gt, ST) and L∗bd(gt, ST)),
using the fact that the MRCA mapping defines an optimal reconciliation.

I Theorem 2. Let gt be a gene tree and ST a species tree such that L(gt) ⊆ L(ST). Then,
Lbd(gt, ST) =

∑
u∈Vint(gt) F (u, ST), and L∗bd(gt, ST) = Lbd(gt, ST) + |UMMC(gt, ST)|.

Furthermore, these values can be calculated in O(n + n′) time, where ST has n leaves and gt

has n′ leaves.

Md. S. Bayzid and T. Warnow 2:5

Proof. Note that we use a modification of the standard formula, F (u, ST), so that we do
not replace ST by ST (gt) as was done in [5, 23]. The equality for Lbd is implied from [5]
and we omit the proof concerning Lbd due to space constraints.

Derivation of L∗
bd(gt, ST). By definition of L∗bd(gt, ST), the gene is assumed to be present

at the root of the species tree ST . IfM((r(gt)) = r(ST), then UMMC(gt, ST) = ∅, and the
result follows. However, ifM((r(gt)) 6= r(ST), the gene must be present on the path between
r(ST) andM((r(gt)). Since the gene is not present in any leaf that is not belowM((r(gt)),
to minimize losses, the gene must be lost on every edge off that path, since such edges lead to
subtrees that do not have the gene present in any leaf. Note that ifM((r(gt)) 6= r(ST), then
the number of edges that lead off that path is |UMMC(gt, ST)| = d(M((r(gt)), r(ST)) + 1.
Since the gene must be lost on each of those edges, and the total number of losses is the sum
of this value and the number of losses that occur within the subtree rooted atM((r(gt)), it
follows that L∗bd(gt, ST) = Lbd(gt, ST) + |UMMC(gt, ST)|.

The running time follows easily from the fact that the MRCA mapping can be computed
in linear time [8]. J

4 Algorithms to find species trees

Here we address the problem of finding a species tree that has a minimum total number
of duplications and losses, treating incompleteness as due to true biological loss. Prior
results on GTP include a branch-and-bound algorithm in [6], based on techniques from [5], a
randomized hill climbing based heuristic presented in [24], a probabilistic and computationally
expensive method for coestimating gene and species trees [2], and dynamic programming
based solutions by Hallett and Lagergren [13], Bayzid et al. [1] and Chang et al. [3]. However,
none of these works takes the reasons of incompleteness into account, and we have already
shown in Sec 2.3 that the standard calculation for losses can be incorrect when incompleteness
is due to true biological loss.

In this section, we derive a different approach for the GTP problems, treating incomplete
gene trees as due to true biological loss (i.e., minimizing Lbd(gt, ST) or L∗bd(gt, ST)). The
techniques we propose can be used to solve GTP exactly for small datasets, or approximately
(though without any guaranteed error bounds) on larger datasets. The approach we take
here is based on [1] (see also [21, 13, 26, 25], which use very similar techniques). Bayzid et
al. [1] provided a graph-theoretic formulation for MGDLstd, whereby an optimal solution
to MGDLstd corresponded to finding a minimum weight maximum clique inside a graph
called the “Compatibility Graph”. The nodes of the compatibility graph correspond to
“subtree-bipartitions”, a concept Bayzid et al. [1] introduced and we will also use. [1] showed
how to find a minimum weight max clique using a dynamic programming approach. We will
use the same graph-theoretic formulation as in [1], but modify the weights appropriately, to
show that the optimal solution to MGDL∗bd still corresponds to a minimum weight max clique.
The DP algorithm in [1] can then be used directly to find the optimal solution to MGDL∗bd.
To achieve this, we first derive an efficient formula for Lbd(gt, ST) (and L∗bd(gt, ST), similar
to the one derived in [28] for Lstd(gt, ST), but somewhat more involved.

We will let Dgt,ST denote the set of duplication nodes in gt with respect to ST and
Sgt,ST denote the set of speciation nodes in gt with respect to ST . When gt and ST are
known, we may write these as D and S. The calculation for the number of losses depends
on how we interpret incompleteness in gene trees. Therefore, rather than having a single
optimization problem like MGDL, we have variants of this problem depending on how we

WABI 2017

2:6 Gene Tree Parsimony for Incomplete Gene Trees

treat incompleteness. As shown in Theorem 1, the term MGDL in the literature refers
to MGDLstd, which (by Theorem 1) is identical to MGDLsamp. Here, we consider the
optimization problems MGDL∗bd, where we treat incompleteness as due to gene birth and
death. And therefore, we also consider MGDLbd, MGL∗bd, and MGLbd.

4.1 Basic material

4.1.1 Subtree-bipartitions
Let T be a rooted binary tree and u an internal node in T . The subtree-bipartition of u,
denoted by SBPT (u), is the unordered pair (cT (l)|cT (r)), where l and r are the two children
of u. Note that subtree-bipartitions are not defined for leaf nodes. The set of subtree-
bipartitions of a tree T is denoted by SBPT = {SBPT (u) : u ∈ Vint(T)}. Furthermore, any
pair A and B of disjoint subsets of X also define a subtree-bipartition (though we may refer
to these as candidate subtree-bipartitions to emphasize this).

Subtree-bipartition domination: Let BPi = (Pi1 |Pi2) and BPj = (Pj1 |Pj2) be two subtree-
bipartitions. We say that BPi is dominated by BPj (and conversely that BPj dominates BPi)
if either of the following two conditions holds: (1) Pi1 ⊆ Pj1 and Pi2 ⊆ Pj2 , or (2) Pi1 ⊆ Pj2

and Pi2 ⊆ Pj1 . We say that subtree-bipartition (A|B) is dominated by a species tree T if
one of T ’s subtree-bipartitions dominates (A|B). Bayzid et al. showed that an internal node
u in a gene tree gt is a duplication node with respect to a species tree ST if SBPgt(u) is
dominated by ST [1]. Finally, for a set G of gene trees on taxon set X and for any candidate
subtree-bipartition (A|B), we let Wdom(A|B) be the total number of subtree-bipartitions in
G that are dominated by (A|B).

Due to space constraints, we refer to Bayzid et al. [1] for discussions on subtree-bipartition
“domination”, “containment” and “compatibility”, and the compatibility graph.

4.1.2 Deep coalescence and the MDC problem
Deep coalescence (also called incomplete lineage sorting, or ILS) refers to the failure of
alleles to coalesce (looking backwards in time) into a common ancestral allele until deeper
than the most recent speciation events [15]. One of the measures for incongruence between
a gene tree and a species tree under ILS is XL(gt, ST), the number of extra lineages
defined for the pair ST and gt [15]. For a gene tree gt and a species tree ST such that
L(gt) ⊆ L(ST), the number of extra lineages (summing over all edges) is defined to be
XL(gt, ST) =

∑
e′∈E(ST∗(gt)) XL(gt, e′), where XL(gt, e′) is the number of extra lineages

on e′.
MDC (“minimize deep coalescence”) is an optimization problem for estimating species

trees in the presence of ILS. The input to MDC is a set G of gene trees and the output is a
species tree ST such that

∑
gt∈G XL(gt, ST) is minimized. This problem is also NP-hard [28],

and software for the problem exists in Phylonet [22] and iGTP [4], among others. We now
describe theoretical material leading to the algorithmic approach in Phylonet [26].

I Definition 3 (From [26]). For B ⊆ X and gene tree gt, we set kB(gt) to be the number
of B-maximal clusters in gt, where a B-maximal cluster is a cluster Y ⊆ L(gt) such that
Y ⊆ B but no other cluster of gt containing Y is a subset of B.

I Definition 4. We define Wxl(x, gt) for x either a subtree-bipartition or a subset of
X , as follows. If x ⊆ X , then we set Wxl(x, gt) = 0 if x ∩ L(gt) = ∅ and otherwise

Md. S. Bayzid and T. Warnow 2:7

Wxl(x, gt) = kx(gt) − 1. If x is a subtree-bipartition, then we let B = p ∪ q for x = (p|q),
and we set Wxl(x, gt) = 0 if B ∩ L(gt) = ∅, and otherwise Wxl(x, gt) = kB(gt)− 1. For a set
G of gene trees and ST a species tree, we set W0 =

∑
gt∈G

∑
x∈X Wxl({x}, gt).

Yu et al. [26] showed that for any edge e in ST , where B is the cluster below e, then kB(gt)
is the number of lineages going through edge e, and so kB(gt) − 1 is the number of extra
lineages going through e. They defined weights on potential species tree clusters B by
Wmdc(B, gt) = 0 if B ∩ L(gt) = ∅ and otherwise Wmdc(B, gt) = kB(gt) − 1 (i.e., Wmdc is
defined for clusters while Wxl is defined for subtree-bipartitions), and extended this to a
set G of gene trees by W ′

mdc(B) =
∑

gt∈GWmdc(B, gt), and then to a set C of clusters by
W ′′

mdc(C) =
∑

B∈C W ′
mdc(B). From this, it follows easily that a set C of n− 1 compatible

clusters minimizing W ′′
mdc(C) defines a rooted binary species tree with a minimum MDC

score.

4.2 Deriving Lbd(gt, ST) and L∗bd(gt, ST)
We begin with the following theorem:

I Theorem 5 (From [28]). Let gt be a rooted binary gene tree, ST a rooted binary species
tree and D the set of duplication nodes in gt with respect to ST . Then

Lstd(gt, ST) = XL(gt, ST (gt)) + 2|D|+ |V (gt)| − |V (ST (gt))|.

We now derive formulas for Lbd(gt, ST) and L∗bd(gt, ST); to obtain formulas for DLbd(gt,

ST) and DL∗bd(gt, ST), simply add |Dgt,ST)|.
Recall that in the definition of F (u, T) given in Eqn. 1, losses are associated with internal

nodes, and the total number of losses is defined as the sum of losses associated to each
internal node. However, the definition of the number of losses corresponding to a node can
be rewritten in terms of edges, as we now show. Let D(s, s′) be the number of edges in the
path in ST between s and s′. Therefore, D(s, s′) can be defined as follows.

D(s, s′) =
{

d(s, s′) + 1 if d(s, s′) ≥ 1,
d(s, s′) if d(s, s′) = 0.

Then, for a vertex u in gt with children r and l, we can rewrite Eqn. 1 as follows:

F (u, ST) =

D(M(r),M(u)) + D(M(l),M(u)) ifM(r) 6=M(u) =M(l),
(D(M(r),M(u))− 1) + (D(M(l),M(u))− 1) ifM(u) 6∈ {M(l),M(r)},
D(M(r),M(u)) + D(M(l),M(u)) ifM(r) =M(u) =M(l).

It is easy to see that in all three branches of the equation above, the two terms of the sum
correspond to the edges connecting u to its two children l and r. (The second term in the
first branch and both terms in the third branch are 0, but we wrote them in terms of the
function D(., .) for convenience.) Let p(x) be the parent of x in a tree T . Therefore, we can
associate gene losses to edges e = (x, p(x)) instead of nodes, as follows:
MD(e) = D(M(x),M(p(x)), and

edgelossST (e) =
{
MD(e) if p(x) ∈ Dgt,ST ,
MD(e)− 1 otherwise.

We use the subscript ST in edgelossST (e) to emphasize the fact that the distance is
taken within the tree ST and not within ST (gt). Note therefore

∑
u∈Vint(gt) F (u, ST) =∑

e∈E(gt) edgelossST (e).

WABI 2017

2:8 Gene Tree Parsimony for Incomplete Gene Trees

I Lemma 6. For all gene trees gt and species trees ST with L(gt) ⊆ L(ST),

Lbd(gt, ST) =
∑

e∈E(gt)

MD(e)− |E(gt)|+ 2|D|, (2)

and for a set G of gene trees,

Lbd(G, ST) =
∑
gt∈G

Lbd(gt, ST)

=
∑
gt∈G

∑
e∈E(gt)

MD(e)−
∑
gt∈G
|E(gt)|+ 2

∑
gt∈G
|Dgt,ST |. (3)

Finally, equalities concerning DLbd(gt, ST) and DLbd(G, ST) can be obtained from these
equalities by adding |Dgt,ST | and |DG,ST |, where |DG,ST | =

∑
gt∈G |Dgt,ST |.

Proof. We partition all the non-root nodes in gt into two sets: CD (children of duplica-
tions), consisting of those nodes whose parents are duplication nodes, and CS (children of
speciations), consisting of those nodes whose parents are speciation nodes. Note that every
edge (x, p(x)) ∈ E(gt) can be associated with the set containing x. Therefore,

Lbd(gt, ST) =
∑

e∈E(gt)

edgelossST (e)

=
∑

x ∈ CD

MD(x, p(x)) +
∑

x ∈ CS

(MD(x, p(x))− 1)

=
∑

e∈E(gt)

MD(e)− |CS|. (4)

Since each internal node has two children, clearly the number of vertices x for which p(x)
is a speciation node is twice the number |S| of speciation nodes; therefore Lbd(gt, ST) =∑
e∈E(gt)

MD(e)− 2|S|. Since each internal node is a speciation node or a duplication node, it

follows that 2(|D|+ |S|) = |E(gt)|, and the result follows. J

Let L(gt, e) be the number of lineages that go through edge e ∈ E(ST); thus, XL(gt, e) =
L(gt, e)− 1, and so

XL(gt, ST) =
∑

e′∈E(ST∗(gt))

L(gt, e′)− |E(ST ∗(gt))|. (5)

I Lemma 7. For any gene tree gt and species tree ST ,∑
e∈E(gt)MD(e) =

∑
e′∈E(ST∗(gt)) L(gt, e′), and (by Equation 5)

XL(gt, ST) =
∑

e∈E(gt)

MD(e)− |E(ST ∗(gt))|. (6)

Thus, for a set G of gene trees and species tree ST ,

XL(G, ST) =
∑
gt∈G

XL(gt, ST) =
∑
gt∈G

∑
e∈E(gt)

MD(e)−
∑
gt∈G
|E(ST ∗(gt))|.

Proof. We establish the first equality, since the remaining ones follow directly from it.
Consider the lists of edges in paths in ST from M(x) to M(p(x)), as x ranges over the
internal vertices in gt. It is easy to see that the number of occurrences of an edge e′ ∈
E(ST ∗(gt)) in these lists is L(gt, e′) (the number of lineages through e′). Also, the edges
e ∈ E(ST)−E(ST ∗(gt)) will not be present in these lists, since these are the edges incident
on the missing clades in ST with respect to gt. Therefore, the sum of the lengths of these
lists is equal to

∑
e∈E(gt)MD(e) and also equal to

∑
e∈ST∗(gt) L(gt, e). J

Md. S. Bayzid and T. Warnow 2:9

I Theorem 8. For all gene trees gt, sets G of gene trees, and species trees ST , Lbd(gt, ST) =
XL(gt, ST) + 2|D|+ |E(ST ∗(gt))| − |E(gt)|, and

Lbd(G, ST) = XL(G, ST) + 2
∑
gt∈G
|Dgt,ST |+

∑
gt∈G

(|E(ST ∗(gt))| − |E(gt)|). (7)

Proof. Follows from Lemma 6 and Lemma 7. J

I Corollary 9. For all gene trees gt and species trees ST ,

L∗bd(gt, ST) = Lbd(gt, ST) + |UMMC(gt, ST)|
= XL(gt, ST) + 2|Dgt,ST |+ |E(ST ∗(gt))| − |E(gt)|+ |UMMC(gt, ST)|.

DL∗bd(gt, ST) = Lbd(gt, ST) + |UMMC(gt, ST)|+ |Dgt,ST |
= XL(gt, ST) + 3|Dgt,ST |+ |E(ST ∗(gt))| − |E(gt)|+ |UMMC(gt, ST)|

Proof. The equalities concerning L∗bd follow from Thm. 2 and Thm. 8. The equalities
concerning DL∗bd follow by adding |Dgt,ST |. J

4.3 Assigning weights to subtree-bipartitions
To use the graph-theoretic formulation of MGDL∗bd, we have to assign weights to each node
in the compatibility graph, CG(G), where G is the input set of gene trees, so that a minimum
weight clique of n− 1 vertices defines an optimal solution to MGDL∗bd(G). We will define
weights Wxl(v), Wdom(v), WEC(v), and WMMC(v) to each subtree-bipartition (i.e., node in
the compatibility graph), and set

WMGDL∗
bd

(v) = Wxl(v)− 3Wdom(v) + WEC(v) + WMMC(v).

We then prove (see Theorem 10) that a set of n − 1 compatible subtree-bipartitions that
has minimum total weight defines a species tree that optimizes MGDL∗bd. Note that
weights Wxl(v) and Wdom(v) have already been defined (in Section 4.1.1 and Section 4.1.2,
respectively). Hence, all that remains is to define WEC(v) and WMMC(v), and then to prove
Theorem 10.

Calculating WEC(v) and |E(ST ∗(gt))|

We now show how to define weight WEC(v, gt) for every vertex v in the compatibility graph
CG(G) so that for all species trees ST , |E(ST ∗(gt))| is the sum of the vertex weights for the
n− 1 clique C in CG(G) corresponding to ST . To count the number of edges in E(ST ∗(gt)),
we need to exclude those edges from E(ST) that are incident on a clade that is missing in gt.
For a vertex v associated with the subtree-bipartition (p|q), we define WEC(v, gt) as follows
(swapping p and q as needed):

WEC(v, gt) =

0 if p∩L(gt) = ∅ and q∩L(gt) ∈ {L(gt), ∅}
1 if p∩L(gt) = ∅ and ∅ 6= q∩L(gt) (L(gt)
2 otherwise.

(8)

Then, |E(ST ∗(gt))| =
∑

u∈SBPST
WEC(u, gt). We set WEC(v) =

∑
gt∈GWEC(v, gt). Then,

for any species tree ST and set G of gene trees,∑
gt∈G
|E(ST ∗(gt))| =

∑
v∈C

WEC(v), (9)

where C is the clique in CG(G) that corresponds to ST .

WABI 2017

2:10 Gene Tree Parsimony for Incomplete Gene Trees

Calculating WMMC(v) and |UMMC(gt, ST)|

We now show how to assign the weight WMMC(v, gt) to each vertex v of the compatibility
graph so that for all species trees ST , |UMMC(gt, ST)| is the sum of the weights over all the
vertices of the clique C in CG(G) corresponding to ST . Recall that UMMC(gt, ST) is the set
of upper maximal missing clades in ST . For a vertex v associated with the subtree-bipartition
(p|q), we define WMMC(v, gt) as follows (swapping p and q as needed):

WMMC(v, gt) =
{

1 if p∩L(gt) = ∅ and q ∩L(gt) = L(gt) (or vice-versa)
0 otherwise. (10)

Then |UMMC(gt, ST)| =
∑

u∈SBPST
WMMC(u, gt). Finally, we set

WMMC(v) =
∑

gt∈GWMMC(v, gt). Then, for any species tree ST and set G of gene trees,

∑
gt∈G
|UMMC(gt, ST)| =

∑
v∈C

WMMC(v), (11)

where C is the clique in CG(G) that corresponds to ST .

We can extend the MGDL∗bd techniques to allow for losses and duplications to have
different costs, as follows. Let cd be the cost of a duplication and assume the cost of a
loss (cl) is 1. (Note that, our techniques work for any arbitrary cd and cl.) Let |DG,ST | =∑k

i |Dgti,ST |, and set DL∗bd(G, ST, cd) = cd ∗ |DG,ST | + L∗bd(G, ST). Let MGDL∗bd(G, cd)
be the problem that takes a set G of gene trees and duplication cost cd as input, and
finds the species tree that minimizes the weighted duploss score DL∗bd(G, ST, cd). Let
W cd

MGDL∗
bd

(v) = Wxl(v)− (cd + 2)Wdom(v) + WEC(v) + WMMC(v). (If cd = 1, we omit the
superscript cd and write WMGDL∗

bd
(v).)

I Theorem 10. Let G = {gt1, gt2, . . . , gtk} be a set of binary rooted gene trees on set X of
n species, and set the weights on the vertices in the compatibility graph using W cd

MGDL∗
bd

(v).
(a) A set of subtree-bipartitions in an (n− 1)-clique of minimum weight in CG(G) defines a
binary species tree ST that minimizes DL∗bd(G, ST, cd). Furthermore, the weighted duploss
score of ST is given by W0 + W cd

MGDL∗
bd

(C) + cd(N − k), where N =
∑k

i=1 ni. (b) If we reset
the weights to be WMGL∗

bd
(v) = WMGDL∗

bd
(v) + Wdom(v), then a set of subtree-bipartitions

in an (n − 1)-clique of minimum weight in CG(G) defines a binary species tree ST that
minimizes L∗bd(G, ST).

Proof. We prove (a), since (b) follows directly from (a). Let C be a clique of size n−1 in CG(G)
and ST the associated species tree. Let SBPdom(gt, ST) be the set of subtree-bipartitions
in gt that are dominated by a subtree-bipartition in ST . Note that |SBPdom(gt, ST)|
is the number of speciation nodes in gt with respect to ST [1]. Therefore, the total
number of speciation nodes in G is

∑k
i=1 |SBPdom(gti, ST)| =

∑
v∈Vint(ST) Wdom(v). Also,∑

v∈CWxl(v) =
∑k

i=1 XL(gti, ST), and
∑k

i=1 |Dgti,ST | =
∑k

i=1(ni − 1) −
∑

v∈CWdom(v),
where ni is the number of leaves in gti. Finally, since all gene trees are rooted binary trees,
|E(gti)| = 2ni − 2 and |Vint(gti)| = ni − 1. Recall that W0 is the number of extra lineages

Md. S. Bayzid and T. Warnow 2:11

contributed by the leaf set of the species tree (Definition 4). Therefore,

DL∗bd(G, ST, cd) =
k∑

i=1
(cd ∗ |Dgti,ST |+ L∗bd(gti, ST))

=
k∑

i=1
[XL(gti, ST) + (cd + 2)|Dgti,ST |+ |UMMC(gti, ST)|

+ |E(ST ∗(gti))| − |E(gti)|] (by Cor. 9)

= W0 +
∑
v∈C

Wxl(v) +
k∑

i=1
(cd + 2)(ni − 1)− (cd + 2)

∑
v∈C

Wdom(v)

+
∑
v∈C

WMMC(v) +
∑
v∈C

WEC(v)−
k∑

i=1
(2ni − 2) (by Eqns. 9 and 11.)

= W0 + W cd

MGDL∗
bd

(C) + cd(N − k).

Note that W0 does not depend on the topology of the species tree. Hence, the (n− 1)-clique
C with minimum weight defines a tree ST that minimizes DL∗bd(G, ST, cd). The proof for (b)
follows trivially. J

4.4 Dynamic programming algorithm
Let SBP be a set of subtree-bipartitions, with SBP equal to all possible subtree-bipartitions
if an exact solution is desired, and otherwise a proper subset if a faster algorithm is desired
or necessary. We present the DP algorithm for the MGDL∗bd(G, cd) problem. We compute
score(A) in order, from the smallest cluster to the largest cluster X .

Algorithm MGDL∗
bd(G, cd)

if |A| = 1 then score(A) = WXL(A)
else
score(A) = max{score(A1) + score(A−A1) +W cd

MGDL∗
bd

(A1|A−A1) : (A1|A−A1) ∈ SBP}

If there is no (A1|A−A1) ∈ SBP, we set its score(A) to −∞, signifying that A cannot be
further resolved. At the end of the algorithm, if SBP includes at least one clique of size
n− 1, we have computed score(X) as well as sufficient information to construct the optimal
set of compatible clusters and hence the optimal species tree (subject to the constraint that
all the subtree bipartitions in the output tree are in SBP). If subtree bipartitions in SBP
are not sufficient for building a fully resolved tree on X , then score(X) will be −∞, and our
algorithm returns FAIL.

The running time is O(n|SBP |2). The optimal number of duplications and losses is given
by score(X)+cd(N−k), by Theorem 10. If SBP contains all possible subtree-bipartitions, we
have an exact but exponential time algorithm. However, if SBP contains only those subtree-
bipartitions from the input gene trees, then the algorithm finds the optimal constrained
species tree in time that is polynomial in the number of gene trees and taxa.

4.5 Extensions
It is trivial to extend the theory for MGDL∗bd and MGL∗bd to MGDLbd and MGLbd,
as we now show. Recall that Lbd(gt, ST) = L∗bd(gt, ST) − |UMMC(gt, ST)| and that

WABI 2017

2:12 Gene Tree Parsimony for Incomplete Gene Trees

DLbd(gt, ST) = DL∗bd(gt, ST) − |UMMC(gt, ST)|. Therefore, to extend the algorithmic
approach to solve MGLbd and MGDLbd, we define WMGLbd

(v, gt) = WMGL∗
bd

(v, gt) −
WMMC(v, gt) and WMGDLbd

(v, gt) = WMGDL∗
bd

(v, gt) − WMMC(v, gt), and then seek a
minimum weight maximum clique in the compatibility graph with these modified weights.

5 Conclusion

In this paper we investigated how different reasons for gene tree incompleteness affects the
mathematical formulation of gene loss. We present the first mathematical formulation to
model gene loss due to true biological loss, and distinguish this from incompleteness due to
taxon sampling. We proposed exact and heuristic algorithms to infer species trees from a set
of incomplete gene trees by minimizing gene duplications and losses when the incompleteness
is due to true biological loss.

References
1 M.S. Bayzid, S. Mirarab, and T. Warnow. Inferring optimal species trees under gene

duplication and loss. In Proc. of Pacific Symposium on Biocomputing (PSB), volume 18,
pages 250–261, 2013.

2 B. Boussau, G. J. Szöllősi, L. Duret, M. Gouy, E. Tannier, and V. Daubin. Genome-scale
coestimation of species and gene trees. Genome research, 23(2):323–330, 2013.

3 W.C. Chang, A. Wehe, P. Górecki, and O. Eulenstein. Exact solutions for classic gene tree
parsimony problems. In Proc. of the 5th Int. Conf. on Bioinformatics and Computational
Biology, pages 225–230, 2013.

4 R. Chaudhary, M. S. Bansal, A. Wehe, D. Fernández-Baca, and O Eulenstein. iGTP: a
software package for large-scale gene tree parsimony analysis. BMC Bioinf., pages 574–574,
2010.

5 C. Chauve, J. P. Doyon, and N. El-Mabrouk. Gene family evolution by duplication, speci-
ation, and loss. J. Comp. Biol., 15(8):1043–1062, 2008.

6 J. P. Doyon and C. Chauve. Branch-and-bound approach for parsimonious inference of a
species tree from a set of gene family trees. Adv. Exp. Med. Biol., 696:287–295, 2011.

7 J. P. Doyon, V. Ranwez, V. Daubin, and V. Berry. Models, algorithms and programs for
phylogeny reconciliation. Brieif. Bioinf., 12(5):392–400, 2011.

8 H.N. Gabow and R.E. Tarjan. A linear-time algorithm for a special case of disjoint set
union. In Proc. 15th ACM Symp. Theory of Comp. (STOC), pages 246–251, 1983.

9 M. Goodman, J. Czelusniak, G. Moore, E. Romero-Herrera, and G. Matsuda. Fitting
the gene lineage into its species lineage: a parsimony strategy illustrated by cladograms
constructed from globin sequences. Syst. Zool., 28:132–163, 1979.

10 P. Górecki. Reconciliation problems for duplication, loss and horizontal gene transfer. In
Proc. 8th Ann. Int. Conf. on Computational Molecular Biology, pages 316 – 325, 2004.

11 P. Górecki and J. Tiuryn. DLS-trees: A model of evolutionary scenarios. Theor. Comput.
Sci., 359(8):378–399, 2006.

12 R. Guigo, I. Muchnik, and T. Smith. Reconstruction of ancient molecular phylogeny. Mol.
Phylog. and Evol., 6(2):189–213, 1996.

13 M.T. Hallett and J. Lagergren. New algorithms for the duplication-loss model. In Proc
RECOMB, pages 138–146, 2000.

14 B. Ma, M. Li, and L. Zhang. From gene trees to species trees. SIAM J. on Comput.,
30(3):729–752, 2000.

15 W.P. Maddison. Gene trees in species trees. Syst Biol, 46:523–536, 1997.

Md. S. Bayzid and T. Warnow 2:13

16 B. Mirkin, I. Muchnik, and T. Smith. A biologically consistent model for comparing mo-
lecular phylogenies. J. Comput. Biol., 2(4):493–507, 1995.

17 R. Page and M. Charleston. Reconciled trees and incongruent gene and species trees. In
B. Mirkin, F.R. McMorris, F. S. Roberts, and A. Rzehtsky, editors, Mathematical hierarch-
ies in biology, volume 37. American Math. Soc., 1997.

18 R.D.M. Page. Maps between trees and cladistic analysis of historical associations among
genes, organisms and areas. Systematic Biology, 43(1):58–77, 1994.

19 R.D.M. Page. GeneTree: comparing gene and species phylogenies using reconciled trees.
Bioinformatics, 14(9):819–820, 1998. doi:10.1093/bioinformatics/14.9.819.

20 U. Stege. Gene trees and species trees: The gene-duplication problem is fixed-parameter
tractable. In Proc. of the 6th Int. Workshop on Algorithms and Data Structures (WADS’99),
pages 166–173, 1999.

21 C.V. Than and L. Nakhleh. Species tree inference by minimizing deep coalescences. PLoS
Comp. Biol., 5(9), 2009.

22 C.V. Than, D. Ruths, and L. Nakhleh. PhyloNet: A software package for analyzing and
reconstructing reticulate evolutionary relationships. BMC Bioinf., 9:322, 2008.

23 B. Vernot, M. Stolzer, A. Goldman, and D. Durand. Reconciliation with non-binary species
trees. J. Comp. Biol., 15(8):981–1006, 2008.

24 A. Wehe, M. S. Bansal, J.G. Burleigh, and O. Eulenstein. Duptree: A program for large-
scale phylogenetic analyses using gene tree parsimony. Amer. Jour. Bot., 24(13):1540–1541,
2008.

25 Y. Yu, T. Warnow, and L. Nakhleh. Algorithms for MDC-based multi-locus phylogeny
inference. In Proc. RECOMB, 2011.

26 Y. Yu, T. Warnow, and L. Nakhleh. Algorithms for MDC-based multi-locus phylogeny
inference: Beyond rooted binary gene trees on single alleles. J. Comp. Biol., 18(11):1543–
1559, 2011.

27 L. Zhang. On a Mirkin-Muchnik-Smith conjecture for comparing molecular phylogenies. J.
Comp. Biol., 4(2):177–188, 1997.

28 L. Zhang. From gene trees to species trees II: Species tree inference by minimizing deep
coalescence events. IEEE/ACM Trans. Comp. Biol. Bioinf., 8(9):1685–1691, 2011.

WABI 2017

http://dx.doi.org/10.1093/bioinformatics/14.9.819

Better Greedy Sequence Clustering with Fast
Banded Alignment∗†

Brian Brubach1, Jay Ghurye2, Mihai Pop3, and
Aravind Srinivasan4

1 Department of Computer Science, University of Maryland, College Park, USA
bbrubach@cs.umd.edu

2 Department of Computer Science, University of Maryland, College Park, USA
jayg@cs.umd.edu

3 Department of Computer Science, University of Maryland, College Park, USA
mpop@umiacs.umd.edu

4 Department of Computer Science, University of Maryland, College Park, USA
srin@cs.umd.edu

Abstract
Comparing a string to a large set of sequences is a key subroutine in greedy heuristics for clustering
genomic data. Clustering 16S rRNA gene sequences into operational taxonomic units (OTUs)
is a common method used in studying microbial communities. We present a new approach to
greedy clustering using a trie-like data structure and Four Russians speedup. We evaluate the
running time of our method in terms of the number of comparisons it makes during clustering
and show in experimental results that the number of comparisons grows linearly with the size of
the dataset as opposed to the quadratic running time of other methods. We compare the clusters
output by our method to the popular greedy clustering tool UCLUST. We show that the clusters
we generate can be both tighter and larger.

1998 ACM Subject Classification B.2.4 Algorithms

Keywords and phrases Sequence Clustering, Metagenomics, String Algorithms

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.3

1 Introduction

The problem of comparing a string against a large set of sequences is of central importance
in domains such as computational biology, information retrieval, and databases. Solving this
problem is a key subroutine in many greedy clustering heuristics, wherein we iteratively choose
a cluster center and form a cluster by recruiting all strings which are similar to the center. In
computational biology, sequence similarity search is used to group biological sequences that
are closely related. We will use this domain as a motivating example throughout the paper.

Traditionally, clustering 16S rRNA gene [11] sequences involved building a multiple
sequence alignment of all sequences, computing a pairwise distance matrix of sequences based
on the multiple sequence alignment, and clustering this matrix [17]. However, finding the
best multiple sequence alignment is computationally intractable and belongs to the class of

∗ AS and BB were supported in part by NSF Awards CNS 1010789 and CCF 1422569. MP and BB were
supported in part by the NIH, grant R01-AI-100947 to MP. MP and JG were supported in part by the
Bill and Melinda Gates Foundation (PI Jim Nataro, subcontract to MP). AS was supported in part by
a research award from Adobe, Inc.

† The authors wish to thank the anonymous reviewers for their helpful comments.

© Brian Brubach, Jay Ghurye, Mihai Pop and Aravind Srinivasan;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 3; pp. 3:1–3:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.WABI.2017.3
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

3:2 Better Greedy Sequence Clustering with Fast Banded Alignment

NP-hard problems[16]. Another naive way of clustering sequences is to perform all-versus-all
comparison to compute a similarity metric such as edit distance and perform hierarchical
clustering to merge closely related sequences together. However, the resulting running time
is at least quadratic in the total number of sequences. With the development of faster and
cheaper DNA sequencing technologies, metagenomic sequencing datasets can contain over 1
billion short reads [2]. At this scale, both strategies can prove to be very expensive and take
months to generate clusters. To counter this, heuristic-based methods like greedy clustering
are used. While these methods can have worst case quadratic running time, they can run
faster in practice[8, 3, 5].

Here, we show a new method for reducing that worst case quadratic running time in
practice when the distance metric is the Levenshtein distance [7] and similarity is determined
by a maximum distance of d. Our algorithm improves the speed of the recruitment step
wherein we seek all strings within d distance of a chosen center. In addition to promising
experimental results, we give slightly weaker, but provable, guarantees for our techniques
while many existing methods do not. Finally, we analyze the quality of the clusters output
by our method in comparison to the popular greedy clustering tool UCLUST. We show that
the clusters we generate can be both tighter and larger.

1.1 Related Work
The problem of comparing a query string against a large string database has been widely
studied for at least the past twenty years. For similarity metrics like the edit distance, a
dynamic programming algorithm [14] can be used to compare two sequences in O(m2) time,
where m is the length of the sequences. When we only wish to identify strings which are
at most edit distance d apart, the running time for each comparison can be reduced to
O(md) [12] using a modified version of the standard dynamic programming algorithm. This
type of sequence alignment is referred to as banded alignment in the literature since we
only need to consider a diagonal “band” through the dynamic programming table. The
simple dynamic programming approach can also be sped up by using the Four Russians
method [10, 9], which divides the alignment matrix into small square blocks and uses a lookup
table to perform the alignment quickly within each block. This brings the running time
down to O(m2 log(log(m))/ log(m)) and O(m2/ logm) for arbitrary and finite alphabets,
respectively. Myers [13] considered the similar problem of finding all locations at which a
query string of length m matches a substring of a text of length M with at most d differences.
They used the bit vector parallelism in hardware to achieve a running time of O(mM/w)
where w is the machine word size. However, when used for clustering sequences, these
methods need to perform pairwise comparison of all sequences, thereby incurring the high
computational cost of O(n2) comparisons where n is the total number of sequences.

Sequence search against a database is a crucial subroutine in sequence clustering in
general and greedy clustering in particular. In greedy approaches, we choose some sequences
to be cluster centers and clusters are formed by recruiting other sequences which are similar
to the centers. Depending on the approach, we may compare a sequence to recruit against
a set of cluster centers or compare a single cluster center against all other sequences,
recruiting those within some specified distance. The comparison can be done using any of the
methods mentioned above, but in the worst case, existing algorithms may need to perform
all pairs banded alignment resulting in O(n2md) running time on arbitrary input data.
However, the interesting property of sequencing data is that most of the sequences generated
by the experiments are highly similar to each other. To exploit sequence similarity and
reduce the computation performed in dynamic programming, the DNACLUST [5] algorithm

B. Brubach, J. Ghurye, M. Pop, and A. Srinivasan 3:3

lexicographically sorts the sequences and compares sequences against the center sequence
in sorted order. Since the adjacent sequences in sorted order share a long prefix, the part
of the dynamic programming table corresponding to their longest common prefix remains
unchanged, allowing the “free” reuse of that part of the table for further alignments. This
method fails when two sequences differ at the start but are otherwise similar. In this case,
the entire dynamic programming table needs to be recomputed. The UCLUST [3] algorithm
uses the USEARCH [3] algorithm to compare a query sequence against a database of cluster
centers. However, the algorithm used by UCLUST makes several heuristic choices in order
to speed up the calculation of clusters and thus, the resulting clusters are not guaranteed to
satisfy any specific requirement. For example, the distances between sequences assigned to
the same cluster should ideally satisfy triangle inequality (ensuring that the cluster diameter
is at most twice the radius) and the cluster diameters should be both fairly uniform and
within the bounds specified by the user.

1.2 Preliminaries
Let the multiset S be the set of n sequences to be clustered. Let m be the maximum length
of any sequence in S. For simplicity of exposition and analysis, we will assume throughout
most of this paper that all sequences have length exactly m. We also assume m is much
smaller than n.

1.2.1 Distance metric
We use the same edit distance-based similarity metric as DNACLUST[5], namely

similarity = 1− edit distance
length of the shorter sequence

Here, we define edit distance to be Levenshtein distance with uniform penalties for insertions,
deletions, and substitutions. The “length of the shorter sequence” refers to the original
sequences’ lengths without considering gaps inserted by the alignment. We say that two
sequences are similar if their alignment meets or exceeds a given similarity threshold. Let
d be the maximum edit distance between two sequences aligned to the same cluster. This
distance is usually computed from a similarity threshold provided by the user, e.g., 97%.
Both of our algorithms will be performing banded alignment with d as the maximum allowable
distance. In this case, if we determine that two sequences have distance greater than d, we
need not report their actual distance.

1.2.2 Intervals
Our algorithm involves dividing each sequence into overlapping substrings of length k at
regular intervals. We formalize the definition of an interval as follows. Given a period length
p such that k = p + d + 1, we divide each sequence into bm/pc intervals of length k. For
i ∈ {0, 1, . . . , bm/pc − 1}, the ith interval starts at index ip inclusive and extends to index
ip+k exclusive. We will see in Section 2.1.2 that we must choose p to be at least d. However,
choosing a larger p may give a better speedup when dealing with highly similar sequences.
Further, for an interval i, we define bi to be the number of distinct substrings for interval i
over all sequences in S and we define b = maxi bi. We will show in Section 2.1.3 that when b
is much smaller than n we get some theoretical improvement on the running time. Figure 1
shows an example of how a sequence is partitioned into a set of overlapping substrings. We

WABI 2017

3:4 Better Greedy Sequence Clustering with Fast Banded Alignment

A T A C T A A T G G A C T A T T T C

A T A C T A A T

A A T G G A C T

A C T A T T T C

0 .. 7

5 .. 12

10 .. 17

Figure 1 An example of how a string is divided in overlapping substrings called intervals. In this
case, the length of each substring (k) is 8. Since the substrings must overlap by d+ 1 characters,
which in this case is 3, the period length (p) is 5.

store these intervals in a data structure we call an Edit Distance Interval Trie (EDIT) which
is described in detail in Section 2.2.

1.2.3 Greedy clustering
The greedy clustering approach (similar to CD-HIT[8], UCLUST, and DNACLUST) can
be described at a high level as follows. De-replicate the multiset S to get the set U of
distinct sequences. Optionally, impose some ordering on U . Then, iteratively remove the top
sequence from U to form a new cluster center sc. Recruit all sequences s ∈ U that are within
d distance from sc. When we recruit a sequence s, we remove it from U and add it to the
cluster centered at sc. If sc does not recruit any sequences, we call it a singleton and add it
to a list of singletons, rather than clusters. We continue this process until U is empty.

We order the sequences of U in decreasing order of their abundance/multiplicity in
S. This is also the default ordering used by UCLUST. Alternatively, DNACLUST uses
decreasing order of sequence length. The reason for ordering by abundance is that assuming
a random error model, the abundant sequences should be more likely to be “true” centers of
a cluster. The reason for DNACLUST ordering by length is to preserve triangle inequality
among sequences in a cluster when performing semi-global alignment allowing gaps at the
end with no penalty. Semi-global alignment is necessary for comparing reads generated by
specific sequencing technologies such as 454. However, since we perform global alignment,
triangle inequality is guaranteed regardless of the ordering and thus, ordering by abundance
is preferred.

1.3 Our Contributions
We developed a method for recruiting in exact greedy clustering inspired by the classical Four
Russians speedup. In Section 2, we describe our algorithm and prove that the worst case
theoretical running time is better than naive all-versus-all banded alignment under realistic
assumptions on the sequencing data used for clustering. In section 3, we present experimental
results from using our method to cluster a real 16S rRNA gene dataset containing about
2 million distinct sequences. We show that on real data the asymptotic running time of
the algorithm grows linearly with the size of the input data. We also evaluated the quality
of the clusters generated by our method and compared it with UCLUST, which is one of
the widely used methods. We show that our method generates tighter and larger clusters
at 99% similarity both when considering edit distance and evolutionary distance. At 97%

B. Brubach, J. Ghurye, M. Pop, and A. Srinivasan 3:5

1 1 0 1
1
0
1
1 -1 -1 1 1,-1

0
0
1

A T T G A
G
C
A
T
T

1 1 0 1
1
0
1
1 -1 -1 1 1,-1

0
0
1

. . . A T T G A. . .

.

.

.

G
C
A
T
T
.
.
.

Figure 2 Example of classic Four Russians. Left: a single block. Notice that for any input in
the upper left corner, we can sum that value with one path along the edges of the block to recover
the value in the lower right corner. Note that the offset value in the lower right corner may be
different for the row and column vectors overlapping at that cell. In this case, the lower right cell is
one more than its left neighbor and one less than its above neighbor. Center: the full dynamic
programming table divided into nine 5 × 5 blocks. Note that the offset values in the example block
may not correspond to the optimal alignment of the two substrings shown since they depend on
the global alignment between the two full length strings. Right: blocks covering only the diagonal
band in the context of banded alignment.

similarity, we show that the our method produces clusters with a much tighter edit distance
diameter compared to UCLUST. While UCLUST runs faster at similarities 97% and less,
our approach is faster at higher similarities. In particular, we highlight that UCLUST does
not scale linearly at the 99% similarity threshold while our approach does.

2 Recruiting algorithm

We show two ways in which the classical Four Russians speedup can be adapted to banded
alignment. Then, we describe a trie-like data structure for storing sequences. Finally, we use
this data structure to recruit similar sequences to a given center sequence using our Four
Russians method.

2.1 Banded Four Russians approach
We present two ways to extend the Four Russians speedup of edit distance computation
to banded alignment. The first is a very natural extension of the classical Four Russians
speedup. The second is useful for tailoring our algorithm to meet the needs of 16S rRNA
gene clustering. Specifically, we exploit the fact that the strings are similar and the maximum
edit distance is small.

2.1.1 Warm-up: classic Four Russians speedup
In the classical Four Russians speedup of edit distance computation due to [10, 9], the
dynamic programming table is broken up into square blocks as shown in the center of Fig. 2.
These blocks are tiled such that they overlap by one column/row on each side (for a thorough
description of this technique see [6]). When computing banded alignment, we only need to
tile the area within the band as in the righthand of Fig. 2. Let the maximum edit distance
be d and the string lengths be m. Then our block size k can be as small as d+ 1 and we
require roughly 2m/k blocks in total.

WABI 2017

3:6 Better Greedy Sequence Clustering with Fast Banded Alignment

The high level idea of the Four Russians speedup is to precompute all possible solutions
to a block function and store them in a lookup table (In our implementation we use lazy
computation and store the lookups in a hash table instead of precomputing for all inputs).
The block function takes as input the two substrings to be compared in that block and the
first row and column of the block itself in the dynamic programming table. It outputs the
last row and column of the block. We can see in the Fig. 2 that given the two strings and the
first row and column of the table, such a function could be applied repeatedly to compute the
lower right cell of the table and therefore, the edit distance. Note that cells outside the band
will not be used since any alignment visiting those cells must have distance larger than d.

There are several tricks that reduce the number of inputs to the block function to bound
the time and space requirements of the lookup table. For example, the input row and column
for each block can be reduced to vectors in {−1, 0, 1}d. These offset vectors encode only the
difference between one cell and the next (see Fig. 2) which is known to be at most 1 in the
edit distance table. It has also been shown that the upper left corner does not need to be
included in the offset vectors. This bounds the number of possible row and column inputs at
3d each [10].

Notice that for the banded alignment problem, this may not provide any speedup for
comparing just two strings of length m. Indeed, building and querying the lookup table may
take more time than simply running the classical dynamic programming algorithm restricted
to the band of width 2d+ 1. However, our final algorithm will do many such comparisons
between different pairs of strings using the same lookup table. In practice, we also populate
the lookup table as needed rather than pre-computing it. This technique, known as lazy
computation, allows us to avoid adding unnecessary entries for comparisons that don’t appear
in our dataset. Additionally, decomposing sequences into blocks will be a crucial step in
building the data structure in Section 2.2.

2.1.2 Our approach to the Four Russians speedup
Notice that the previous approach will not offer much benefit in practice when d is small
(e.g. d = 2). The overhead of looking up block functions and stitching them together may
even be slower than simply running dynamic programming on a block. Further, our dataset
may not require us to build a lookup table comparing all possible strings of length k.

Here we consider a different block function. This function is designed for situations in
which we wish to use a block size k that is larger than d+ 1. The blocks now overlap on a
square of size d+ 1 at the upper left and lower right corners. We will call these overlapping
regions overlap squares. Our block function now takes as input the two substrings to be
compared and the first row and column of the the upper left overlap square. It outputs the
first row and column of the lower right overlap square as well as the difference between the
upper left corners of the two overlap squares.

Thus, we can move directly from one block to the next, storing a sum of the differences
between the upper left corners. In this case, reaching the final lower right cell of the table
requires an additional O(d2) operation to fill in the last overlap square, but this adds only a
negligible factor to the running time.

This approach succeeds when the number of possible substring inputs to the block function
is limited by some properties of the dataset as opposed to an absolute theoretical upper bound
such as O(|σ|k) based on the number of possible strings of length k for an alphabet σ. Rather
than computing and storing all possible inputs, we simply store the inputs encountered by
our algorithm. The advantage is that a larger block size reduces the number of lookups
needed to compare two strings which is m/(k− d− 1) for this approach. Naturally, the same

B. Brubach, J. Ghurye, M. Pop, and A. Srinivasan 3:7

0 1
-1
-1

1 1
-1
0

δ

A A C T G T C C
T
G
A
A
T
T
G
C

0 1
-1
-1

1 1
-1
0

δ

. . . A A C T G T C C. . .

.

.

.

T
G
A
A
T
T
G
C
.
.
.

Figure 3 Example of our approach to the Four Russians speedup. Left: a block for maximum
edit distance d = 2. The output δ represents the offset from the upper left corner of the current
block to the upper left corner of the next block. Note that we only need to consider a diagonal
band of the block itself. Right: using these blocks to cover the diagonal band of the dynamic
programming table in the context of banded alignment.

tricks such as offset encoding of the input rows and columns as some vector in {−1, 0, 1}d

can be applied in this case.
Another benefit of this approach is that it is more straightforward to implement in

practice. Each block depends on the full output of one previous block. In contrast, the
classical approach requires combining partial input from two previous blocks and also sending
output to two separate blocks.

2.1.3 Theoretical bound on the running time of our approach
To give some intuition, we prove a theoretical bound on the running time under the assumption
of at most b distinct substrings per interval in the dataset. This is a reasonable assumption
for certain application in computational biology. For example, the 16s rRNA gene is highly
conserved and thus b is much smaller than n for such datasets. While standard banded
alignment takes O(n2md), we show that for small enough b this can be reduced to O(n2m).
We prove this bound for our approach to using the Four Russians speedup for banded
alignment, but it extends to the classical approach as well.

I Theorem 1. If b ≤ n
3d
√

d
, we can find all pairs of distance at most d in O(n2m) time.

Proof. To simplify, we will assume the lookup table is pre-computed. Then, we must show
that if b ≤ n

3d
√

d
, then building the lookup table and doing the actual string comparisons can

each be done in O(n2m) time. We further assume k ≈ 2d (in practice we choose a larger k).
First, we show that there are at most m

k−db
232d entries in the lookup table. There are

at most m
k−d intervals and since each interval has at most b distinct strings, there are at

most b2 relevant string comparisons. Each distinct string comparison must be computed for
all 32d offset vector inputs. The cost of generating each lookup entry is simply the cost of
computing banded alignment on a block, kd. Thus, the lookup table can be built in time

m
k−db

232dkd. Keeping our goal in mind we see that

m

k − d
b232dkd ≤ n2m is true when b ≤ n

3d
√
d

since k ≈ 2d

To bound the running time of the string comparisons, notice that comparing two strings
requires computing m

k−d block functions. The time spent at each block will be O(k + d) to

WABI 2017

3:8 Better Greedy Sequence Clustering with Fast Banded Alignment

(1) s1:A C T G G A C A G T T
s2:A C T G G A C A A A C
s3:A C T G G T C A G T T

(2) A C T G G 1
G G A C A 2
C A G T T 3
C A A A C 4
G G T C A 5

(3) s1: 1, 2, 3

s2: 1, 2, 4

s3: 1, 5, 3

(4)

Root 1
2

5

3

4

3

s1

s2

s3

Figure 4 Example illustrating the steps of Algorithm 1 with d = 1 and k = 5.

look up the output of the block function and update our sum for the next corner. Thus,
building the lookup table and computing the edit distance between all pairs using the lookup
table each take O(n2m) time. J

2.2 The Edit Distance Interval Trie (EDIT)
To facilitate the crucial step of identifying all strings within edit distance d of a chosen
cluster center, we construct a trie-like data structure on the intervals. This structure will be
built during a pre-processing stage. Then, during recruitment, any recruited sequences will
be deleted from the structure. The procedure for building this structure is summarized in
Algorithm 1 and illustrated in Figure 4. The main benefit of this data structure, like any
trie, is that it exploits prefix similarity to avoid duplicating work.

The mapping in step 2 of Algorithm 1 is a one-to-one mapping to integers from one to
the number of distinct substrings. Here, it serves to reduce the size of the data structure
since the number of distinct substrings will typically be much less than all possible length k
strings on the given alphabet. This mapping also speeds up calls to the lookup table during
the recruitment subroutine summarized in the next section.

Algorithm 1: Build-EDIT
1 Partition each sequence into overlapping intervals of length k, such that each interval

overlaps on exactly d+ 1 characters.
2 Map each distinct substring of length k appearing in our list of interval strings to an

integer.
3 Assign an integer vector signature to each sequence by replacing each block with its

corresponding integer value.
4 Insert these signatures into a trie with the leaves being pointers to the original

sequences.

2.3 Recruiting to a center
Given a center sequence sc, we can recruit all sequences of distance at most d from sc by
simply traversing the trie in depth first search order and querying the block function of each

B. Brubach, J. Ghurye, M. Pop, and A. Srinivasan 3:9

Figure 5 Plots for the average number of nodes explored in the tree while recruiting sequences
to a cluster center.

node we encounter. The input to each block function is the substring of that node in the trie,
the substring at the same depth within the signature of sc, and the offset vectors output by
the previous block function. As we traverse a path from the root toward a leaf, we store a
sum of the edit distance as provided by the output of each block function. If this sum ever
exceeds the maximum distance d, we stop exploring that path and backtrack. Whenever
we reach a leaf `, we retrieve its corresponding sequence s`. Then, we align the remaining
suffixes and compute the true similarity threshold d′ ≤ d based on the length of the shorter
sequence. If the final edit distance is less than d′, we add s` to the cluster centered at sc and
prune/remove any nodes in the the trie corresponding only to s`.

3 Experimental results

3.1 Properties of our recruitment algorithm and data structure
In this section, we highlight some key features of our recruitment algorithm and the EDIT
data structure. To evaluate our method, we used a dataset consisting of about 57 million
16S rRNA amplicon sequencing reads with 2.7 million distinct sequences. To understand the
impact of the number of input sequences to cluster on the average number of comparisons in
each recruitment step, we ran our algorithm on different input sizes at different similarity
thresholds. We counted the average number of tree nodes explored while recruiting a
particular center sequence and used it as a quantitative representation of the amount of
comparisons made since all nodes represent a substring of fixed length k. Figure 5 shows the
plots for the average number of tree nodes explored for different similarity thresholds. For
the 95% and 97% similarity thresholds, the average number nodes explored decreases as more
sequences are clustered. This happens because of the fact that although more sequences are
clustered, due to the lower similarity threshold a large number of sequences get clustered
in each traversal of the tree. For 99% similarity threshold, the average number of nodes
explored increases initially with the number of sequences, but becomes uniform after about
100, 000 sequences. The strict increase in the number of nodes can be explained by the high
similarity threshold. However, in all cases, the number of nodes explored by each center
does not increase linearly with the number of input sequences. Thus the total number of
comparisons made for given dataset is observed to be increasing as function of n rather than
the worst case n2.

To understand the likelihood of backtracking at each level of the tree, we clustered a
sample of 1.07 million distinct sequences at three different similarity thresholds (95%, 97%,
and 99%). The backtracking probability for a given node was calculated as the ratio of the
number of times we stopped exploring a path at that node to the total number of times

WABI 2017

3:10 Better Greedy Sequence Clustering with Fast Banded Alignment

Figure 6 Plots for the probability of backtracking at a particular level in the tree. Note that
the number of levels is different for different similarity thresholds since our substring length k is
dependent on the maximum distance d.

0.950 0.955 0.960 0.965 0.970 0.975 0.980 0.985 0.990
Similarity threshold

0

20

40

60

80

100

120

140

R
un

ti
m

e
(M

in
ut

es
)

Runtime comparison
EDIT
UCLUST

0 500 1000 1500 2000 2500
Number of sequences (x 1000)

0

100

200

300

400

500

600

R
un

ti
m

e
(M

in
ut

es
)

Runtime comparison
EDIT
UCLUST

Figure 7 Running time comparison of EDIT and UCLUST as a function of similarity threshold
and number of sequences.

that node was explored. We aggregated this probability for all of the nodes belonging to the
same level of the tree. Figure 6 shows this likelihood for all levels of the tree at the different
similarity thresholds. As we define block size based on the similarity, there are a different
number of levels in the tree corresponding to different similarity thresholds. For all three
similarity thresholds, the probability of backtracking decreases as we go deeper into the tree
except a couple of sharp peaks at intermediate levels. These peaks can be attributed to the
sequencing artifacts. The 16S rRNA gene reads are sequenced using the Illumina paired-end
sequencing protocol. These paired reads are then merged to make a single read which we use
for clustering. The reads contain sequencing errors concentrated near their ends. Due to
such sudden errors along the sequence, while recruiting, the edit distance can easily go above
the threshold and backtracking needs to be performed. Since we’re using lazy computation,
our first encounter with a particular input to the block function requires us to explicitly
perform the dynamic programming for that block and store it in the lookup table. However,
we observed that this explicit dynamic programming computation is rare and most block
functions can be computed by simply querying the lookup table (data not shown).

3.2 Comparison with UCLUST
Here, we evaluate EDIT against UCLUST, a highly used tool for analyzing 16S rRNA gene
datasets.

3.2.1 Running time analysis
We compared the running time of EDIT and UCLUST on a subsample 1.07 million distinct
sequences at different similarity thresholds. Figure 7 shows the plot for running time at

B. Brubach, J. Ghurye, M. Pop, and A. Srinivasan 3:11

Figure 8 Evaluation at similarity threshold of 99%. All of the plots are log scaled.

Figure 9 Evaluation at similarity threshold of 97%. All of the plots are log scaled.

different similarity thresholds. We observed that the running time of EDIT stays fairly
constant at different similarity thresholds whereas the running time of UCLUST was very
low for lower similarity thresholds, but increased non-linearly at higher similarity thresholds.
Especially, between 98.5% to 99%, the running time of UCLUST grows 5 folds. We did
further analysis of running time at 99% similarity threshold using different sample sizes
as input. Figure 7 shows the running time comparison of UCLUST and EDIT. It can be
observed that, the running time of UCLUST on large sample sizes (> 1 million) grows much
faster that the running time of EDIT, which scales almost linearly. For the largest sample
of 2.7 million sequences, UCLUST running time was ten times greater than EDIT running
time. This evaluation implies that higher similarity thresholds (> 98%), EDIT was faster
compared to UCLUST. Also, the running time of EDIT showed low variance compared to
UCLUST for different similarity thresholds.

3.2.2 Evaluation of clusters
We subsampled 135,880 distinct sequences from the entire dataset and ran both methods at
the 97% and 99% similarity thresholds. We then compared the outputs of both methods
using three metrics: the cluster size, the cluster diameter based on the sequence similarity,
and the cluster diameter based on the evolutionary distance. To compute the cluster diameter
based on sequence similarity, we computed the maximum edit distance between any two
sequences in each cluster. To compute the cluster diameter based on evolutionary distance,
we first performed a multiple sequence alignment of the sequences in each cluster using
clustalW [15]. Once the multiple sequence alignment was computed, we used the DNADIST
program from the phylip [4] package to compute a pairwise evolutionary distance matrix.
The maximum distance between any pair of sequences is defined as the DNADIST diameter.
Using two orthogonal notions of cluster diameter helps to define the “tightness” of clusters.
Figures 8 and 9 show violin plots for different comparison metrics at the 99% and 97%
similarity thresholds, respectively. At the 99% similarity threshold, EDIT is able to produce
larger clusters compared to UCLUST. The edit distance diameters for the clusters generated
by EDIT is fairly well constrained. However, the edit distance diameters for the clusters

WABI 2017

3:12 Better Greedy Sequence Clustering with Fast Banded Alignment

generated by UCLUST had a large variance, implying that several dissimilar sequences may
be getting clustered together. The DNADIST diameter for both methods was comparable.
At the 97% similarity threshold, both EDIT and UCLUST generated similar sized clusters.
Even in this case, the edit distance diameter for UCLUST clusters showed a larger variance
compared to the edit distance diameter for EDIT clusters. The DNADIST diameter for
UCLUST has slightly more variance compared to that of EDIT clusters, implying some of
the clusters generated by UCLUST had sequences with a large evolutionary distance between
them. This validation confirms that the sequences in the clusters produced by EDIT at
different similarity thresholds are highly similar to each other.

At the 99% similarity threshold, we observed a stark difference between the cluster sizes
of EDIT and UCLUST. For example, the two largest clusters produced by EDIT had sizes
7,978 and 3,383 respectively whereas the two largest clusters produced by UCLUST were
of sizes 249 and 233, which is almost 30 times smaller than the largest EDIT cluster. To
investigate this further, we used BLAST[1] to align all clusters of UCLUST against the
top two largest clusters of EDIT. We only considered the alignments with 100% alignment
identity and alignment coverage. We observed that 765 distinct UCLUST clusters had all of
their sequences aligned to the largest EDIT cluster and 837 distinct clusters had at least
80% of their sequences aligned to the largest EDIT cluster. Only 82 UCLUST clusters out
of 16,968 total (not including singletons) had less than 80% of their sequences mapped to
the largest EDIT cluster. Those 82 clusters accounted for only 255 sequences, roughly 30
times fewer than the number of the sequences in the largest EDIT cluster alone. As far
as singletons (the clusters with only one sequence) are concerned, EDIT generated 22,318
singleton clusters whereas UCLUST generated 33,519 singleton clusters. For the size of the
sample considered in this analysis, this difference is very significant. This evaluation implies
that at a high similarity threshold, heuristic based methods like UCLUST tend to produce
fragmented clusters whereas EDIT was able to capture a higher number of similar sequences
in a single cluster.

4 Conclusion and future directions

The datasets analyzed by biologists are rapidly increasing in size due to the advancements
in sequencing technologies and efficient clustering are needed to analyze these datasets in
reasonable memory and running time. In this paper, we proposed a first step towards this goal
by designing a novel data structure to perform banded sequence alignment. We extended the
traditional Four Russian’s method to perform banded alignment of highly similar sequences
and use that to perform greedy clustering of 16S rRNA amplicon sequencing reads. We
compared our method to UCLUST and showed that our method generates tight clusters
at different similarity thresholds when both string similarity and evolutionary distance are
considered. We focused our discussion of results around high similarity clustering (> 97%)
because there is no fixed threshold that can create biologically meaningful clusters. Our
method can generate mathematically well-defined and tight clusters, which can serve as
representative clusters from the original data and thus can be used to perform downstream
computationally intensive analysis.

Although we use clustering as a motivating example throughout the paper, our algorithm
could be used in a variety of different contexts where highly similar sequences need to
be identified from the data. We plan to extend our algorithm to make it parallelized by
performing the traversal of each tree branch in parallel. Most the the tree is explored by
sequences which end up becoming singletons and this dominated the running time. We

B. Brubach, J. Ghurye, M. Pop, and A. Srinivasan 3:13

plan to explore different methods such as k-mer filters and locality sensitive hashing to flag
singletons and exclude them from the recruiting process.

References
1 Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman.

Basic local alignment search tool. Journal of molecular biology, 215(3):403–410, 1990.
2 J. Gregory Caporaso, Christian L. Lauber, William A Walters, Donna Berg-Lyons, James

Huntley, Noah Fierer, Sarah M. Owens, Jason Betley, Louise Fraser, Markus Bauer, et al.
Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq
platforms. The ISME journal, 6(8):1621–1624, 2012.

3 Robert C. Edgar. Search and clustering orders of magnitude faster than BLAST. Bioin-
formatics, 26(19):2460–2461, 2010.

4 J. Felsenstein. PHYLIP-phylogeny inference package (version 3.2). cladistics, 5:164–166,
1989.

5 Mohammadreza Ghodsi, Bo Liu, and Mihai Pop. DNACLUST: accurate and efficient
clustering of phylogenetic marker genes. BMC bioinformatics, 12(1):271, 2011.

6 Dan Gusfield. Algorithms on strings, trees and sequences: computer science and computa-
tional biology. Cambridge university press, 1997.

7 Vladimir I. Levenshtein. Binary codes capable of correcting deletions, insertions, and
reversals. In Soviet physics doklady, volume 10, pages 707–710, 1966.

8 Weizhong Li and Adam Godzik. Cd-hit: a fast program for clustering and comparing large
sets of protein or nucleotide sequences. Bioinformatics, 22(13):1658–1659, 2006.

9 William J. Masek and Michael S. Paterson. How to compute string-edit distances quickly.
In D. Sankoff and J. B. Kruskal, editors, Time Warps, String Edits, and Macromolecules:
the Theory and Practice of Sequence Comparison, pages 337–349. Addison-Wesley Publ.
Co., Mass., 1983.

10 William J. Masek and Mike Paterson. A faster algorithm computing string edit distances.
J. Comput. Syst. Sci., 20(1):18–31, 1980. doi:10.1016/0022-0000(80)90002-1.

11 Gerard Muyzer, Ellen C. De Waal, and Andre G. Uitterlinden. Profiling of complex mi-
crobial populations by denaturing gradient gel electrophoresis analysis of polymerase chain
reaction-amplified genes coding for 16S rRNA. Applied and environmental microbiology,
59(3):695–700, 1993.

12 Eugene W. Myers. An O(ND) difference algorithm and its variations. Algorithmica,
1(1):251–266, 1986.

13 Gene Myers. A fast bit-vector algorithm for approximate string matching based on dynamic
programming. Journal of the ACM (JACM), 46(3):395–415, 1999.

14 Temple F. Smith and Michael S. Waterman. Identification of common molecular subse-
quences. Journal of molecular biology, 147(1):195–197, 1981.

15 Julie D. Thompson, Toby Gibson, Des G. Higgins, et al. Multiple sequence alignment using
ClustalW and ClustalX. Current protocols in bioinformatics, pages 2–3, 2002.

16 Lusheng Wang and Tao Jiang. On the complexity of multiple sequence alignment. Journal
of computational biology, 1(4):337–348, 1994.

17 James R. White, Saket Navlakha, Niranjan Nagarajan, Mohammad-Reza Ghodsi, Carl
Kingsford, and Mihai Pop. Alignment and clustering of phylogenetic markers-implications
for microbial diversity studies. BMC bioinformatics, 11(1):152, 2010.

WABI 2017

http://dx.doi.org/10.1016/0022-0000(80)90002-1

Optimal Computation of Overabundant Words
Yannis Almirantis1, Panagiotis Charalampopoulos2, Jia Gao3,
Costas S. Iliopoulos4, Manal Mohamed5, Solon P. Pissis6, and
Dimitris Polychronopoulos7

1 National Center for Scientific Research Demokritos, Athens, Greece
yalmir@bio.demokritos.gr

2 Department of Informatics, King’s College London, London, UK
panagiotis.charalampopoulos@kcl.ac.uk

3 Department of Informatics, King’s College London, London, UK
jia.gao@kcl.ac.uk

4 Department of Informatics, King’s College London, London, UK
costas.iliopoulos@kcl.ac.uk

5 Department of Informatics, King’s College London, London, UK
manal.mohamed@kcl.ac.uk

6 Department of Informatics, King’s College London, London, UK
solon.pissis@kcl.ac.uk

7 Computational Regulatory Genomics Group, MRC London Institute of
Medical Sciences, Imperial College London, Hammersmith Hospital Campus,
London, UK
dpolychr@imperial.ac.uk

Abstract
The observed frequency of the longest proper prefix, the longest proper suffix, and the longest
infix of a word w in a given sequence x can be used for classifying w as avoided or overabundant.
The definitions used for the expectation and deviation of w in this statistical model were described
and biologically justified by Brendel et al. (J Biomol Struct Dyn 1986). We have very recently
introduced a time-optimal algorithm for computing all avoided words of a given sequence over an
integer alphabet (Algorithms Mol Biol 2017). In this article, we extend this study by presenting
an O(n)-time and O(n)-space algorithm for computing all overabundant words in a sequence x of
length n over an integer alphabet. Our main result is based on a new non-trivial combinatorial
property of the suffix tree T of x: the number of distinct factors of x whose longest infix is the
label of an explicit node of T is no more than 3n−4. We further show that the presented algorithm
is time-optimal by proving that O(n) is a tight upper bound for the number of overabundant
words. Finally, we present experimental results, using both synthetic and real data, which justify
the effectiveness and efficiency of our approach in practical terms.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases overabundant words, avoided words, suffix tree, DNA sequence analysis

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.4

1 Introduction

Brendel et al. in [6] initiated research into the linguistics of nucleotide sequences that focused
on the concept of words in continuous languages – languages devoid of blanks – and introduced
an operational definition of words. The authors suggested a method to measure, for each
possible word w of length k, the deviation of its observed frequency f(w) from the expected
frequency E(w) in a given sequence x. The observed frequency of the longest proper prefix,

© Yannis Almirantis, Panagiotis Charalampopoulos, Jia Gao, Costas S. Iliopoulos, Manal Mohamed,
Solon P. Pissis, and Dimitris Polychronopoulos;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 4; pp. 4:1–4:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.WABI.2017.4
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

4:2 Optimal Computation of Overabundant Words

the longest proper suffix, and the longest infix of w in x were used to measure E(w). The
values of the deviation, denoted by dev(w), were then used to identify words that are avoided
or overabundant among all possible words of length k. The typical length of avoided (or
of overabundant) words of the nucleotide language was found to range from 3 to 5 (tri- to
pentamers). The statistical significance of the avoided words was shown to reflect their
biological importance. That work, however, was based on the very limited sequence data
available at the time: only DNA sequences from two viral and one bacterial genomes were
considered. Also note that the range of typical word length k might change when considering
eukaryotic genomes, the complex dynamics and function of which are expected to impose
more demanding roles to avoided or overabundant words of nucleotides.

To this end, in [1], we presented an O(n)-time and O(n)-space algorithm for computing
all avoided words of length k in a sequence of length n over a fixed-sized alphabet. For words
over an integer alphabet of size σ, the algorithm requires time O(σn), which is optimal for
sufficiently large σ. We also presented a time-optimal O(σn)-time algorithm to compute
all avoided words (of any length) in a sequence of length n over an integer alphabet of size
σ. We provided a tight asymptotic upper bound for the number of avoided words over an
integer alphabet and the expected length of the longest one. We also proved that the same
asymptotic upper bound is tight for the number of avoided words of fixed length k when the
alphabet is sufficiently large. The authors in [3, 2, 4] studied a similar notion of unusual words
– based on different definitions than the ones Brendel et al. use for expectation and deviation
– focusing on the factors of a sequence; based on Brendel et al.’s definitions, we focus on any
word over the alphabet. More recently, space-efficient detection of unusual words has also
been considered [5]; such avoidances is becoming an interesting line of research [18].

In this article, we wish to complement our study in [1] by focusing on overabundant
words. The motivation comes from molecular biology. Genome dynamics, i.e. the molecular
mechanisms generating random mutations in the evolving genome, are quite complex, often
presenting self-enhancing features. Thus, it is expected to often give rise to words of
nucleotides which will be overabundant, i.e. being present at higher amounts than expected
on the basis of their longest proper prefix, longest proper suffix, and longest infix frequencies.
One specific such mechanism, which might generate overabundant words, is the following: it
is well-known that in a genomic sequence of an initially random composition, the existing
relatively long homonucleotide tracts present a higher frequency of further elongation than
the frequency expected on the basis of single nucleotide mutations [15]; that is, they present
a sort of autocatalytic self-elongation. This feature, in combination with the much higher
frequency of transition vs. transversion mutation events, generates overabundant words which
are homopurinic or homopurimidinic tracts. It is also anticipated that the overabundance
of homonucleotide tracts will strongly differentiate between conserved and non-conserved
parts of the genome. While this phenomenon is largely free to act within the non-conserved
genomic regions, and thus it is expected to generate there large amounts of overabundant
words, it is hindered in the conserved genomic regions due to selective constraints.

Our Contributions. Analogously to avoided words [6, 11, 1], many different models and
algorithms exist for identifying words that are in abundance in a given sequence; see for
instance [7, 9]. In this article, we make use of the biologically justified model introduced
by Brendel et al. [6] and, by proving non-trivial combinatorial properties, we show that it
admits efficient computation for overabundant words as well. We also present experimental
results, using both synthetic and real data, which further highlight the effectiveness of this
model. The computational problem can be described as follows. Given a sequence x of length

Y.Almirantis et al. 4:3

n and a real number ρ > 0, compute the set of ρ-overabundant words, i.e. all words w for
which dev(w) ≥ ρ. We present an O(n)-time and O(n)-space algorithm for computing all
ρ-overabundant words (of any length) in a sequence x of length n over an integer alphabet.
This result is based on a combinatorial property of the suffix tree T of x that we prove here:
the number of distinct factors of x whose longest infix is the label of an explicit node of T
is no more than 3n− 4. We further show that the presented algorithm is time-optimal by
proving that O(n) is a tight upper bound for the number of ρ-overabundant words. Finally,
we pose an open question of combinatorial nature on the maximum number OW(n, σ) of
overabundant words that a sequence of length n over an alphabet of size σ > 1 can contain.

2 Terminology and Technical Background

2.1 Definitions and Notation
We begin with basic definitions and notation, generally following [8]. Let x = x[0]x[1] . . . x[n−
1] be a word of length n = |x| over a finite ordered alphabet Σ of size σ, i.e. σ = |Σ|. In
particular, we consider the case of an integer alphabet; in this case each letter is replaced by
its rank such that the resulting word consists of integers in the range {1, . . . , n}. In what
follows we assume without loss of generality that Σ = {0, 1, . . . , σ − 1}. We also define Σx

to be the alphabet of word x and σx = |Σx|. For two positions i and j on x, we denote by
x[i . . j] = x[i] . . . x[j] the factor (sometimes called subword) of x that starts at position i and
ends at position j (it is empty if j < i), and by ε the empty word, word of length 0. We
recall that a prefix of x is a factor that starts at position 0 (x[0 . . j]) and a suffix is a factor
that ends at position n− 1 (x[i . . n− 1]), and that a factor of x is a proper factor if it is not
x itself. A factor of x that is neither a prefix nor a suffix of x is called an infix of x. We
denote the reverse word of x by rev(x), i.e. rev(x) = x[n− 1]x[n− 2] . . . x[1]x[0]. We say that
x is a power of a word y if there exists a positive integer k, k > 1, such that x is expressed
as k consecutive concatenations of y; we denote that by x = yk.

Let w = w[0]w[1] . . . w[m − 1] be a word, 0 < m ≤ n. We say that there exists an
occurrence of w in x, or, more simply, that w occurs in x, if w is a factor of x, which we
denote by w � x. Every occurrence of w can be characterised by a starting position in x.
Thus we say that w occurs at position i in x when w = x[i . . i+m− 1]. Further, let f(w)
denote the observed frequency, that is, the number of occurrences of a non-empty word w in
word x. If f(w) = 0 for some word w, then w is called absent (which is denoted by w 6� x),
otherwise, w is called occurring.

By f(wp), f(ws), and f(wi) we denote the observed frequency of the longest proper prefix
wp, suffix ws, and infix wi of w in x, respectively. We can now define the expected frequency
of word w, |w| > 2, in x as in Brendel et al. [6]:

E(w) = f(wp)× f(ws)
f(wi)

, if f(wi) > 0; else E(w) = 0. (1)

The above definition can be explained intuitively as follows. Suppose we are given f(wp),
f(ws), and f(wi). Given an occurrence of wi in x, the probability of it being preceded by
w[0] is f(wp)

f(wi) as w[0] precedes exactly f(wp) of the f(wi) occurrences of wi. Similarly, this
occurrence of wi is also an occurrence of ws with probability f(ws)

f(wi) . Although these two
events are not always independent, the product f(wp)

f(wi) ×
f(ws)
f(wi) gives a good approximation of

the probability that an occurrence of wi at position j implies an occurrence of w at position
j − 1. It can be seen then that by multiplying this product by the number of occurrences of
wi we get the above formula for the expected frequency of w.

WABI 2017

4:4 Optimal Computation of Overabundant Words

O(σn) O((σn)2) O(n)

ρ1 ρ2
dev(w)

number of words

Figure 1 For a word x, the words for which dev(w) is defined are the ones of the form w = aub,
where u is a factor of x and a, b ∈ Σ, not necessarily distinct. There are O(n2) distinct factors in a
word of length n and for each of these we obtain σ2 words of this form. We have shown that the
ρ1-avoided words are O(σn) [1]. In this article, we show that the ρ2-overabundant ones are O(n).

Moreover, to measure the deviation of the observed frequency of a word w from its expected
frequency in x, we define the deviation (χ2 test) of w as:

dev(w) = f(w)− E(w)
max{

√
E(w), 1}

. (2)

For more details on the biological justification of these definitions see [6] and [1].
Using the above definitions and two given thresholds, we can classify a word w as either

avoided, common, or overabundant in x. In particular, for two given thresholds ρ1 < 0 and
ρ2 > 0, a word w is called ρ1-avoided if dev(w) ≤ ρ1, ρ2-overabundant if dev(w) ≥ ρ2, and
(ρ1, ρ2)-common otherwise (see Figure 1). We have very recently shown that the number of
ρ1-avoided words is O(σn), and have introduced a time-optimal algorithm for computing all
of them in a given sequence over an integer alphabet [1]. In this article, we show that the
number of ρ2-overabundant words is O(n), and study the following computational problem.

AllOverabundantWordsComputation
Input: A word x of length n and a real number ρ > 0
Output: All ρ-overabundant words in x

2.2 Suffix Trees
In our algorithms, suffix trees are used extensively as computational tools. For a general
introduction to suffix trees see [8].

The suffix tree T (x) of a non-empty word x of length n is a compact trie representing all
suffixes of x. The nodes of the trie which become nodes of the suffix tree are called explicit
nodes, while the other nodes are called implicit. Each edge of the suffix tree can be viewed
as an upward maximal path of implicit nodes starting with an explicit node. Moreover, each
node belongs to a unique path of that kind. Then, each node of the trie can be represented
in the suffix tree by the edge it belongs to and an index within the corresponding path.

We use L(v) to denote the path-label of a node v, i.e., the concatenation of the edge
labels along the path from the root to v. We say that v is path-labelled L(v). Additionally,
D(v) = |L(v)| is used to denote the word-depth of node v. Node v is a terminal node if and
only if L(v) = x[i . . n− 1], 0 ≤ i < n; here v is also labelled with index i. It should be clear
that each occurring word w in x is uniquely represented by either an explicit or an implicit

Y.Almirantis et al. 4:5

node of T (x). The suffix-link of a node v with path-label L(v) = αy is a pointer to the node
path-labelled y, where α ∈ Σ is a single letter and y is a word. The suffix-link of v exists if v
is a non-root internal node of T (x).

In any standard implementation of the suffix tree, we assume that each node of the suffix
tree is able to access its parent. Note that once T (x) is constructed, it can be traversed in a
depth-first manner to compute the word-depth D(v) for each node v. Let u be the parent of
v. Then the word-depth D(v) is computed by adding D(u) to the length of the label of edge
(u, v). If v is the root then D(v) = 0. Additionally, a depth-first traversal of T (x) allows us
to count, for each node v, the number of terminal nodes in the subtree rooted at v, denoted
by C(v), as follows. When internal node v is visited, C(v) is computed by adding up C(u) of
all the nodes u, such that u is a child of v, and then C(v) is incremented by 1 if v itself is a
terminal node. If a node v is a leaf then C(v) = 1.

We assume that the terminal nodes of T (x) have suffix-links as well. We can either store
them while building T (x) or just traverse it once and construct an array node[0 . . n− 1] such
that node[i] = v if L(v) = x[i . . n − 1]. We further denote by Parent(v) the parent of a
node v in T (x) and by Child(v, α) the explicit node that is obtained from v by traversing
the outgoing edge whose label starts with α ∈ Σ. A batch of q Child(v, α) queries can be
answered off-line in time O(n+ q) for a word x over an integer alphabet (via radix sort).

3 Combinatorial Properties

In this section, we prove some properties that are useful for designing the time-optimal
algorithm presented in the next section.

I Fact 1. Given a word x of length n over an alphabet of size σ, the number of words w for
which dev(w) is defined is O((σn)2).

Proof. For a word w over Σ, dev(w) is only defined if wi � x. Hence the words w for which
dev(w) is defined are of the form aub for some non-empty u � x and a, b ∈ Σ. For each
distinct factor u 6= ε of x there are σ2 words of the form aub, a, b ∈ Σ. Since there are O(n2)
distinct factors in a word of length n, the fact follows. J

I Fact 2. Every word w that does not occur in x and for which dev(w) is defined has
dev(w) ≤ 0.

Proof. For such a word we have that E(w) ≥ 0 and that f(w) = 0 and hence dev(w) =
f(w)−E(w)

max{
√

E(w),1}
≤ 0. J

Naïve algorithm. By using Fact 2, we can compute dev(w), for each factor w of x, thus
solving Problem AllOverabundantWordsComputation. There are O(n2) such factors,
however, which make this computation inefficient.

I Fact 3. Given a factor w of a word x, if wi corresponds to an implicit node in the suffix
tree T (x), then so does wp.

Proof. A factor w′ of x corresponds to an implicit node T (x) if and only if every occurrence
of it in x is followed by the same unique letter b ∈ Σ. Hence, since wp = awi for some a ∈ Σ,
if wi is always followed by, say, b ∈ Σ, every occurrence of wp in x must also always be
followed by b. Thus wp corresponds to an implicit node as well. J

I Lemma 4. If w is a factor of a word x and wi corresponds to an implicit node in T (x),
then dev(w) = 0.

WABI 2017

4:6 Optimal Computation of Overabundant Words

Proof. If a word w′ � x corresponds to an implicit node along the edge (u, v) in T (x) and
L(v) = w then the number of occurrences of w′ in x is equal to that of w.

If wi corresponds to an implicit node on edge (u, v) it follows immediately that f(wi) =
f(ws), as either ws also corresponds to an implicit node in the same edge or ws = L(v). In
addition, from Fact 3 we have that wp is an implicit node as well and it similarly follows
that f(wp) = f(w). We thus have E(w) = f(wp)×f(ws)

f(wi) = f(w) and hence dev(w) =
f(w)−E(w)

max{
√

E(w),1}
= 0. J

Based on these properties, the aim of the algorithm in the next section is to find the factors
of x whose longest infix corresponds to an explicit node and check if they are ρ-overabundant.
More specifically, for each explicit node v in T (x), such that L(v) = y, we aim at identifying
the factors of x that have y as their longest infix (i.e. factors of the form ayb, a, b ∈ Σ).
We will do that by identifying the factors of x that have y as their longest proper suffix
(i.e. factors of the form ay, a ∈ Σ) and then checking for each of these the different letters that
succeed it in x. Then we can check in time O(1) if each of these words is ρ-overabundant.

Note that the algorithm presented in Section 4 is fundamentally different and in a sense
more involved than the one presented in [1] for the computation of occurring ρ-avoided
words (note that a ρ-avoided word can be absent). This is due to the fact that for occurring
ρ-avoided words we have the stronger property that wp must correspond to an explicit node.

I Theorem 5. Given a word x of length n, the number of distinct factors of x of the form
ayb, where a, b ∈ Σ and y 6= ε is the label of an explicit node of T (x), is no more than
3n− 2− 2σx.

Proof. Let S be the set of all explicit or implicit nodes in T (x) of the form yb such that y is
represented by an explicit node other than the root. We have at most 2n− 2− σx of them;
there are at most 2n − 2 edges in T (x), but σx of them are outgoing from the root. For
such a word yb, the number of factors of x of the form ayb is equal to the degree of the node
representing rev(yb) in T (rev(x)).

For every node in S, we obtain a distinct node in T (rev(x)). Let us suppose that k1 of
these nodes are non-root internal explicit nodes, k2 are leaves, and the rest 2n−2−σx−k1−k2
are implicit nodes. Each internal explicit node u contributes at most deg(u) factors, where
deg(u) is the number of outgoing edges of node u, each leaf contributes 0 factors, and each
implicit node contributes at most 1 factor.

Hence the number of such factors would be maximised if we obtained all the non-root
internal explicit nodes and no leaves in T (rev(x)). Let T (rev(x)) have m non-root internal
explicit nodes. The resulting upper bound then is

∑
u∈T (rev(x))\{root} deg(u) + (2n− 2−σx−

m) ≤ n+m− σx + (2n− 2− σx −m) = 3n− 2− 2σx.
Note that

∑
u∈T (rev(x))\{root} deg(u) ≤ n+m− σx since there are at most n edges from

explicit internal nodes to leaves and m edges to other internal nodes; σx of these are outgoing
from the root. J

I Corollary 6. The ρ-overabundant words in a word x of length n are at most 3n− 2− 2σx.

Proof. By Fact 2, Lemma 4, and symmetry, it follows that the ρ-overabundant words in x
are factors of x of the form ayb, where a, b ∈ Σ, such that y 6= ε is represented by an explicit
node in T (x) and rev(y) represented by an explicit node in T (rev(x)). Hence they are a
subset of the set of words considered in Theorem 5. J

I Lemma 7. The ρ-overabundant words in a word x of length n over a binary alphabet
(e.g. Σ = {a, b}) are no more than 2n− 4.

Y.Almirantis et al. 4:7

Proof. For every internal explicit node u of T (x), other than the root, let deg′(u) be deg(u)+1
if node u is terminal and deg(u) otherwise. The sum of deg′(u) over the internal explicit
non-root nodes of T (x) is no more than 2n− 4 (ignoring the case when x = αn, α ∈ Σ). We
will show that, for each such node, the ρ-overabundant words with wi = L(u) as their longest
proper infix are at most deg′(u).

Case I: deg′(u) = 2.
Subcase 1: deg(u) = 1. Node u is terminal and it has an edge with label α. We can
then have at most 2 ρ-overabundant words with wi as their longest proper infix: awiα

and bwiα.
Subcase 2: deg(u) = 2. Node u is not terminal and it has an edge with label a and an
edge with label b. If only one of awi and bwi occurs in x we are done. If both of them
occur in x we argue as follows (irrespective of whether wi is also a prefix of x):
If awia is ρ-overabundant, then
f(awia)− f(awi)× f(wia)/f(wi) ≥ ρ > 0⇒ f(awia)/f(awi) > f(wia)/f(wi)⇔ 1−
f(awia)/f(awi) < 1−f(wia)/f(wi)⇔ f(awib)/f(awi) < f(wib)/f(wi)⇔ f(awib)−
f(awi)× f(wib)/f(wi) < 0
and hence awib is not ρ-overabundant. (Similarly for bwia and bwib.)

Case II: deg′(u) = 3. Node u is terminal and it has an edge with label a and an edge
with label b. If only one of awi and bwi occurs in x or if both of them occur in x, but wi

is not a prefix of x, we can have at most 2 ρ-overabundant words with wi as the proper
longest infix; this can be seen by looking at the node representing rev(wi) in T (rev(x)),
which falls in Case I.
So we only have to consider the case where both awi and bwi occur in x and wi is a
prefix of x. For this case, we assume without loss of generality that awi is a suffix of x.
If awia is ρ-overabundant, then
f(awia) − f(awi) × f(wia)/f(wi) ≥ ρ > 0 ⇒ f(awia)/f(awi) > f(wia)/f(wi) ⇔
1−f(awia)/f(awi) < 1−f(wia)/f(wi)⇔ (f(awib)+1)/f(awi) < (f(wib)+1)/f(wi)⇒
f(awib)/f(awi) < (f(wib)/f(wi)⇔ f(awib)− f(awi)× f(wib)/f(wi) < 0
and hence awib is not ρ-overabundant. Thus in this case we can have at most 3 = deg′(u)
ρ-overabundant words.

We can thus have at most deg′(u) ρ-overabundant words for each internal explicit non-root
node of T (x). This concludes the proof. J

I Lemma 8. The ρ-overabundant words in a word of length n are O(n) and this bound is
tight. There exists a word over the binary alphabet with 2n− 6 ρ-overabundant words.

Proof. The asymptotic bound follows directly from Corollary 6. The tightness of the
asymptotic bound can be seen by considering word x = ban−2b, a, b ∈ Σ, of length n and
some ρ such that 0 < ρ < 1/n. Then for every prefix w of x of the form bak and for
every suffix w′ of x of the form akb, 2 ≤ k ≤ n − 2, we have that f(wp) = f(w′s) = 1,
f(ws) = f(w′p) = n − k − 1, and f(wi) = f(w′i) = n − k. Hence for any w we have
dev(w) = 1 − 1×(n−k−1)

n−k = 1
n−k > ρ. For instance, for w = ban−2, we have dev(w) = 1/2.

There are 2n−6 = Ω(n) such factors and hence at least these many ρ-overabundant words. J

I Corollary 9. The (ρ1, ρ2)-common words in a word of length n over an alphabet of size σ
are O((σn)2).

Proof. By Fact 1 we know that dev(w) is defined for O((σn)2) words. The ρ1-avoided ones
are O(σn) [1], while the ρ2-overabundant are O(n) by Corollary 6. Hence the (ρ1, ρ2)-common
words are O((σn)2). J

WABI 2017

4:8 Optimal Computation of Overabundant Words

node v u = suffix-link[v]

q = Child(v, α) z = suffix-link[q]

node v u = suffix-link[v]

q = Child(v, α), label[q] = i label[z] = i+ 1

Figure 2 The above figures illustrate the nodes (implicit or explicit) considered in a step (lines
6–37) of Algorithm 1. The figure on the left presents the case where Child(v, α) is an internal node,
while the right one the case that it is a leaf. Black nodes represent implicit nodes along the edge
(v, q) that we have to consider as potential wp, and the red dotted line joins them with the respective
(white) explicit node that represents the longest suffix of this wp, i.e. wi.

4 Algorithm

Based on Fact 2 and Lemma 4 all ρ-overabundant words of a word x are factors of x of the
form ayb, where a, b ∈ Σ and y is the label of an explicit node of T (x). It thus suffices to
consider these words and check for each of them whether it is ρ-overabundant. We can find
the ones that have their longest proper prefix represented by an explicit node in T (x) easily,
by taking the suffix-link from that node during a traversal of the tree. To find the ones that
have their longest proper prefix represented by an implicit node we use the following fact,
which follows directly from the definition of the suffix-links of the suffix tree.

I Fact 10. Suppose aw, where a ∈ Σ and w ∈ Σ∗, is a factor of a word x and that w is
represented by an explicit node v in T (x), while aw by an implicit node along the edge (u1, u2)
in T (x). The suffix-link from u2 points to a node in the subtree of T (x) rooted at v.

The algorithm first builds the suffix tree of word x, which can be done in time and space
O(n) for words over an integer alphabet [10]. It is also easy to compute D(v) and C(v), for
each node v of T (x), within the same time complexity (lines 2–5 in Algorithm 1).

The algorithm then performs a traversal of T (x). When it first reaches a node v, it
considers L(v) as a potential longest proper prefix of ρ-overabundant words – i.e. L(v) = wp =
awi, where a ∈ Σ. By following the suffix-link to node u, which represents the respective wi,
and based on the first letter of the label of each outgoing edge (v, q) from v, it computes
the deviation for all possible factors of x of the form wpb, where b ∈ Σ. (Note that we can
answer all the Child(u, α) queries off-line in time O(n) in total for integer alphabets.) It is
clear that this procedure can be implemented in time O(n) in total (lines 7–19).

Then, while on node v and based on Fact 10, the algorithm considers for every outgoing
edge (v, q), the implicit nodes along this edge that correspond to words (potential wp’s)
whose proper longest suffix (the respective wi) is represented by an explicit node in T (x).

Hence, when D(q)−D(v) > 1 the algorithm follows the suffix-link from node q to node z.
It then checks whether Parent(z) = u. If not, then the word L(q)[0 . .D(Parent(z))] is
represented by an implicit node along the edge (v, q) and hence L(q)[0 . .D(Parent(z)) + 1]
has to be checked as a potential ρ-overabundant word. After the check is completed, the
algorithm sets z = Parent(z) and iterates until Parent(z) = u. This is illustrated in

Y.Almirantis et al. 4:9

Algorithm 1 Compute all ρ-overabundant words
1: procedure ComputeOverabundantWords(word x, real number ρ)
2: T (x)← BuildSuffixTree(x)
3: for each node v ∈ T (x) do
4: D(v)← word-depth of v
5: C(v)← number of terminal nodes in the subtree rooted at v
6: for each node v ∈ T (x) do . prefix node
7: . Report ρ-overabundant words w such that wp is explicit
8: u← suffix-link[v] . infix node
9: if D(v) > 1 and IsInternal(v) then
10: fp ← C(v), fi ← C(u)
11: if fi > fp and u 6= Root(T (x)) then
12: for each child y of node v do
13: if not(IsTerminal(y) and D(y) = D(v) + 1) then
14: fw ← C(y)
15: α← L(y)[D(v) + 1]
16: fs ← C(Child(u, α))
17: E ← fp × fs/fi

18: if (fw − E)/(max{1,
√
E}) ≥ ρ then

19: Report(L(y)[0 . .D(v)])
20: . Report ρ-overabundant words w such that wp is implicit
21: for each child y of node v do
22: if D(y) > D(v) + 1 then
23: if IsInternal(y) then
24: z ← suffix-link[y]
25: else . y is a terminal node
26: i← label[y]
27: z ← node[i+ 1]
28: if D(z) = D(Parent(z)) + 1 then
29: z ← Parent(z)
30: fw ← fp ← C(y)
31: while Parent(z) 6= u do
32: fi ← C(Parent(z))
33: fs ← C(z)
34: E ← fp × fs/fi

35: if (fw − E)/(max{1,
√
E}) ≥ ρ then

36: Report(L(y)[0 . .D(Parent(z)) + 1])
37: z ← Parent(z)

Figure 2. By Theorem 5, the Parent(z) = u check will fail O(n) times in total. All other
operations take time O(1) and hence this procedure takes time O(n) in total (lines 20–37).

We formalise this procedure in Algorithm 1, where we assume that the suffix tree of x$ is
built, where $ is a special letter, $ /∈ Σ. This forces all terminal nodes in T (x) to be leaf
nodes. We thus obtain the following result; optimality follows directly from Lemma 8.

I Theorem 11. Algorithm 1 solves problem AllOverabundantWordsComputation in
time and space O(n), and this is time-optimal.

5 Experimental Results: Effectiveness, Efficiency, and Applications

Algorithm 1 was implemented as a program to compute the ρ-overabundant words in
one or more input sequences. The program was implemented in the C++ programming

WABI 2017

4:10 Optimal Computation of Overabundant Words

Table 1 The deviation of the randomly generated inserted word w, as well as the word wmax

with the maximum deviation. The length of each of the 25 randomly generated sequences over
Σ = {A, C, G, T} was n = 80, 000, the length of w was m = 6, and ρ = 0.000001. In green are the
cases when the word with the maximum deviation was w itself or one of its factors.

Times t of inserting w 20 40 80 160 320
w TTACAA GTGCCC CACTTT AGTTAC AAACAG

dev(w) 2.233313 4.143015 5.623615 6.010327 5.674220
wmax CTCCTATG GTGCCC CACTTT AGTTA ACAG

dev(wmax) 3.354102 4.143015 5.623615 6.900740 9.617803
w AATCTG AGTCGA GAAGTC TATCTT CAAAAA

dev(w) 2.034233 2.888529 4.456468 5.073860 11.071170
wmax ATTGGGG TCTGTATG GAAGTC ATCTT CAAAAA

dev(wmax) 3.265609 3.272727 4.456468 6.115612 11.071170
w GTACCA GGCGTG AAGGAT GGGTCC TTCCGG

dev(w) 2.187170 3.658060 4.428189 5.467296 5.256409
wmax TCTGTGCG ACGATACC AAGGAT GGTCC TTCCG

dev(wmax) 3.548977 4.000000 4.428189 6.787771 9.105009
w CCATAG GTTGAT TGAGCG ACATTT CTTGTA

dev(w) 2.470681 2.467858 4.214544 5.755475 5.362435
wmax CAGTGGTC TTTTCCT TGAGC ACATT TTGTA

dev(wmax) 3.333333 3.368226 5.072968 6.376277 9.467110
w TCGACA CGCTTT TACAAC TATTAG TGAGAT

dev(w) 1.531083 2.789220 3.552902 4.959926 5.124976
wmax CTTTGCT ATTACC ACAAC ATTAG GACAT

dev(wmax) 3.308195 3.322163 5.653479 6.837628 10.012316

language and developed under GNU/Linux operating system. Our program makes use of
the implementation of the compressed suffix tree available in the Succinct Data Structure
Library [12]. The input parameters are a (Multi)FASTA file with the input sequence(s) and
a real number ρ > 0. The output is a file with the set of ρ-overabundant words per input
sequence. The implementation is distributed under the GNU General Public License, and
it is available at http://github.com/solonas13/aw. The experiments were conducted on
a Desktop PC using one core of Intel Core i5-4690 CPU at 3.50GHz under GNU/Linux.
The program was compiled with g++ version 4.8.4 at optimisation level 3 (-O3). We also
implemented a brute-force approach to confirm the correctness of our implementation. Here
we do not plot the results of the brute-force approach as it is easily understood that it is
orders of magnitude slower than our linear-time approach.

Experiment I (Effectiveness). In the first experiment, our task was to establish the ef-
fectiveness of the statistical model in identifying overabundant words. To this end, we
generated 25 random sequences of length n = 80, 000 over the DNA alphabet Σ = {A, C, G, T}
(uniform distribution). Then for each of these sequences, we inserted a random word w of
length m = 6 in t random positions. We varied the value of t based on the fact that in a
random sequence of length n over an alphabet of size σ = |Σ|, where letters are independent,
identically uniformly distributed random variables, a specific word of length m is expected
to occur roughly r = n/σm times. We hence considered t equal to r, 2r, 4r, 8r, and 16r. We
then ran our program for each resulting sequence to identify the ρ-overabundant words with

http://github.com/solonas13/aw

Y.Almirantis et al. 4:11

 0

 500

 1000

 1500

 2000

 2x107 4x107 6x107 8x107 1x108 1.2x108

T
im

e
 [
s]

Length n

DNA
Proteins

Figure 3 Elapsed time of Algorithm 1 using synthetic DNA (σ = 4) and proteins (σ = 20)
sequences of length 1M to 128M.

ρ = 0.000001, and output the deviation of the inserted word w, as well as the word wmax
with the maximum deviation. The inserted word w was reported as a ρ-overabundant word
in all cases. Furthermore, in many cases the word with the maximum deviation was w itself
and in many other cases one of its factors; this was true in all cases for t ≥ 80 ≈ 4r. Hence,
the model is effective in identifying words that are overabundant. The full results of this
experiment are presented in Table 1.

Experiment II (Efficiency). Our task here was to establish the fact that the elapsed time of
the implementation grows linearly with n, the length of the input sequence. As input datasets,
for this experiment, we used synthetic DNA (σ = 4) and proteins (σ = 20) sequences ranging
from 1 to 128 M (Million letters). For each sequence we used a constant value of ρ = 10.
The results are plotted in Fig. 3. It becomes evident from the results that the elapsed time
of the program grows linearly with n. The longer time required for the proteins sequences
compared to the DNA sequences for increasing n is explained by the dependence of the
time required to answer queries of the form Child(v, α) on the size of the alphabet (σ = 20
vs. σ = 4) in the implementation of the compressed suffix tree we used.

Experiment III (Real Application). Here we proceed to the examination of seven collections
of Conserved Non-coding Elements (CNEs) obtained through multiple sequence alignment
between the human and other genomes. Despite being located at the non-coding part of
genomes, CNEs can be extremely conserved on the sequence level across organisms. Their
genesis, functions and evolutionary dynamics still remain enigmatic [16, 13]. The detailed
description of how those CNEs were identified can be found in [17]. For each CNE of these
datasets, a sequence stretch (surrogate sequence) of non-coding DNA of equal length and
equal GC content was taken at random from the repeat-masked human genome. The CNEs
of each collection were concatenated into a single long sequence and the same procedure
was followed for the corresponding surrogates. We have determined through the proposed
algorithm the overabundant words for k = 10 (decamers) and ρ = 3 for these fourteen datasets
and the results are presented in Table 2. Likewise, in Table 3, we show all overabundant
words (i.e. k > 2) for ρ = 3.

WABI 2017

4:12 Optimal Computation of Overabundant Words

Table 2 Number of overabundant words for k = 10 and ρ = 3.

k = 10, CNEs CNEs CNEs CNEs CNEs Mammalian Amniotic
ρ = 3 75–80 80–85 85–90 90–95 95–100
Surr 1,144 718 473 297 469 15,470 2,874
CNEs 331 181 100 59 71 491 149
Ratio 3.46 3.97 4.73 5.03 6.61 31.51 19.29

Table 3 Number of overabundant words for k > 2 and ρ = 3.

k > 2, CNEs CNEs CNEs CNEs CNEs Mammalian Amniotic
ρ = 3 75–80 80–85 85–90 90–95 95–100
Surr 5,925 3,798 2,770 1,948 2,405 69,022 12,913
CNEs 1,373 778 512 390 403 7,549 1,401
Ratio 4.32 4.88 5.41 4.99 5.97 9.14 9.22

The first five CNE collections have been composed through multiple sequence alignment
of the same set of genomes (human vs. chicken; mapped on the human genome) and
they differ only in the thresholds of sequence similarity applied between the considered
genomes: from 75% to 80% (the least conserved CNEs, which thus are expected to serve
less demanding functional roles) to 95–100% which represent the extremely conserved non-
coding elements (UCNEs or CNEs 95–100) [17]. The remaining two collections have been
composed under different constraints and have been derived after alignment of Mammalian
and Amniotic genomes. In Tables 2 and 3, the last line shows the ratios formed by the
numbers of overabundant words of each concatenate of surrogates divided by the numbers of
overabundant words of the corresponding CNE dataset.

Inspecting data contained in Tables 2 and 3, first we observe in all cases that absolute
numbers of overabundant words drop from low- to high-conserved CNE concatenates. This
feature is shared by the corresponding concatenates of surrogate sequences as evidenced
along table rows from CNEs 75–80 to CNEs 95–100. This is due to the considerable decrease
in absolute numbers of the corresponding elements in the human genome, which is reflected
to the length of their concatenates. Note that in genomic sequences, extreme conservation is
always clearly less frequent than medium conservation. As the studied sequences decrease in
length, the numbers of overabundant words also drop in each category (CNEs or surrogates).
Consequently, the important quantity is the ratio of these numbers between CNE and
surrogate dataset. As amniotic and mammalian CNEs are classes characterized by different
conservation thresholds (the former being much more conserved), they also present disparate
overabundant word numbers, again the corresponding ratios being the relevant quantities.

Two results directly related to our analysis stem from inspection of Tables 2 and 3:
1. In all cases, the number of overabundant words from the surrogate concatenate of

sequences far exceeds the corresponding number derived from the CNE dataset.
2. In the case of datasets with increasing degree of similarity between aligned genomes

(from 75–80 to 95–100), the ratios of the numbers of overabundant words show a clear,
increasing trend.

Both these findings can be understood on the basis of the difference in functionality
between CNE and surrogate datasets. As we briefly describe in Section 1, this systematic
difference (finding 1 above) is expected on the basis of the self-enhancing elongation of
relatively long homonucleotide tracts [14, 15], which occurs mainly in the non-constrained

Y.Almirantis et al. 4:13

parts of the genome, here the surrogate datasets. Therefore, we expect and we do find
that CNE datasets always have less overabundant words than their corresponding surrogate.
Moreover, finding 2 corroborates the proposed mechanism of overabundance, as in CNE
datasets 1–5 depletion in overabundant words quantitatively follows the degree of sequence
conservation. Inspection of the individual overabundant words found in the surrogate datasets
verifies that they largely consist of short repeats of the types described in [14] and in [15].
There is an analogy of this finding with a corresponding one, concerning the occurrence of
avoided words in the same sequence sets, which is described in [1].

6 Open Question

By Corollary 6 and Lemma 8, we have the following bounds on the maximum number
OW(n, σ) of overabundant words in a sequence of length n over an alphabet of size σ > 1:

2n− 6 ≤ OW(n, σ) ≤ 3n− 2− 2σ.

We have conducted computational experiments, and for σ > 2 we obtained sequences with
more than 2n overabundant words. An open problem is thus to find OW(n, σ).

References
1 Yannis Almirantis, Panagiotis Charalampopoulos, Jia Gao, Costas S. Iliopoulos, Manal

Mohamed, Solon P. Pissis, and Dimitris Polychronopoulos. On avoided words, absent
words, and their application to biological sequence analysis. Algorithms for Molecular
Biology, 12(1):5, 2017.

2 Alberto Apostolico, Mary Ellen Bock, and Stefano Lonardi. Monotony of surprise and
large-scale quest for unusual words. Journal of Computational Biology, 10(3-4):283–311,
2003.

3 Alberto Apostolico, Mary Ellen Bock, Stefano Lonardi, and Xuyan Xu. Efficient detection
of unusual words. Journal of Computational Biology, 7(1-2):71–94, 2000.

4 Alberto Apostolico, Fang-Cheng Gong, and Stefano Lonardi. Verbumculus and the discov-
ery of unusual words. Journal of Computer Science and Technology, 19(1):22–41, 2004.

5 Djamal Belazzougui and Fabio Cunial. Space-efficient detection of unusual words. In
SPIRE, volume 9309 of LNCS, pages 222–233. Springer, 2015.

6 Volker Brendel, Jacques S Beckmann, and Edward N Trifonov. Linguistics of nucleotide
sequences: morphology and comparison of vocabularies. Journal of Biomolecular Structure
and Dynamics, 4(1):11–21, 1986.

7 Chris Burge, Allan M. Campbello, and Samuel Karlin. Over- and under-representation of
short oligonucleotides in DNA sequences. Proc Natl Acad Sci USA, 89(4):1358–1362, 1992.

8 Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on strings.
2007.

9 Alain Denise, Mireille Régnier, and Mathias Vandenbogaert. Assessing the statistical signi-
ficance of overrepresented oligonucleotides. In WABI, volume 2149 of LNCS, pages 85–97.
Springer Berlin Heidelberg, 2001.

10 Martin Farach. Optimal suffix tree construction with large alphabets. In FOCS, pages
137–143. IEEE, 1997.

11 Mikhail S. Gelfand and Eugene V. Koonin. Avoidance of palindromic words in bacterial
and archaeal genomes: a close connection with restriction enzymes. Nucleic Acids Research,
25(12):2430–2439, 1997.

WABI 2017

4:14 Optimal Computation of Overabundant Words

12 Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice:
Plug and play with succinct data structures. In SEA, volume 8504 of LNCS, pages 326–
337. Springer, 2014.

13 Nathan Harmston, Anja Barešić, and Boris Lenhard. The mystery of extreme non-coding
conservation. Phil. Trans. R. Soc. B, 368(1632):20130021, 2013.

14 Suzanne E. Hile and Kristin A. Eckert. Positive correlation between DNA polymerase
α-primase pausing and mutagenesis within polypyrimidine/polypurine microsatellite se-
quences. Journal of Molecular Biology, 335(3):745–759, 2004.

15 G. Levinson and G.A. Gutman. Slipped-strand mispairing: a major mechanism for DNA
sequence evolution. Molecular Biology and Evolution, 4(3):203–221, 1987.

16 Dimitris Polychronopoulos, Diamantis Sellis, and Yannis Almirantis. Conserved noncod-
ing elements follow power-law-like distributions in several genomes as a result of genome
dynamics. PloS One, 9(5):e95437, 2014.

17 Dimitris Polychronopoulos, Emanuel Weitschek, Slavica Dimitrieva, Philipp Bucher, Gio-
vanni Felici, and Yannis Almirantis. Classification of selectively constrained DNA elements
using feature vectors and rule-based classifiers. Genomics, 104(2):79–86, 2014.

18 Ivan Rusinov, Anna Ershova, Anna Karyagina, Sergey Spirin, and Andrei Alexeevski.
Lifespan of restriction-modification systems critically affects avoidance of their recognition
sites in host genomes. BMC Genomics, 16(1):1, 2015.

Detecting Locus Acquisition Events in Gene
Trees∗

Michał Aleksander Ciach1, Anna Muszewska2, and Paweł Górecki3

1 Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw,
Warsaw, Poland; and
Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw,
Poland
m_ciach@student.uw.edu.pl

2 Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw,
Poland

3 Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw,
Warsaw, Poland
gorecki@mimuw.edu.pl

Abstract
Horizontal Gene Transfer (HGT), a process of acquisition and fixation of foreign genetic material,
is an important biological phenomenon. Several approaches to HGT inference have been proposed.
However, most of them either rely on approximate, non-phylogenetic methods or on the tree
reconciliation, which is computationally intensive and sensitive to parameter values. In this
work, we investigate the Locus Tree Inference problem as a possible alternative that combines
the advantages of both approaches. We show several algorithms to solve the problem in the
parsimony framework. We introduce a novel tree mapping, which allows us to obtain a heuristic
solution to the problems of locus tree inference and duplication classification. Our approach
allows not only for faster comparisons of gene and species trees but also to improve known
algorithms for duplication inference in the presence of polytomies in the species trees.

1998 ACM Subject Classification J.3 [Life and Medical Sciences] Genomics

Keywords and phrases rank, taxon, ranked species tree, speciation, gene duplication, gene loss,
horizontal gene transfer

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.5

1 Introduction

Horizontal Gene Transfer (HGT) is the process of acquisition and fixation of foreign genetic
material. It can lead to substantial changes in the ecology and evolution of recipient
organism, sometimes leading to the emergence of new pathogens [8]. HGT is interesting both
from biological and computational perspective. Several methods of detecting horizontally
transferred genes have been proposed, which can be roughly divided into two categories [14].
So-called surrogate methods are computationally efficient, yet often imprecise. The other
group are the the phylogenetic methods, most notably the tree reconciliation [5].

HGT and gene duplication are examples of evolutionary events in which an organism gains
a new locus, i.e. a fragment of a chromosome with a specific gene. The new locus evolves more
or less independently of other loci. This observation leads to the concept of a locus tree [13],

∗ The support was provided by NCN grants #2015/19/B/ST6/00726 and 2012/07/D/NZ2/04286.

© Michał Aleksander Ciach, Anna Muszewska, and Paweł Górecki;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 5; pp. 5:1–5:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.WABI.2017.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 Detecting Locus Acquisition Events in Gene Trees

which represents the evolutionary history of the loci. A corresponding gene tree represents
evolutionary histories of alleles found in those loci, including populational effects like the
incomplete lineage sorting. Therefore, a locus tree is an "intermediate" concept between the
gene and the species tree. When population effects are negligible, a locus tree is equivalent
to a gene tree with some branches labelled as locus gain events. Such labelling allows to
"decompose" the gene tree into a set of independent evolutionary histories of different loci.
The concept of gene tree decomposition has been investigated earlier in the context of tree
comparison [10]. Distinguishing between different locus gain events is challenging, as their
effects on gene trees are topologically similar. In reconciliation, weights of events have to
be specified; these are, however, rarely known. The fact that the results depend strongly
on those unknown parameters may undermine the credibility of biological conclusions. To
properly estimate the weights, high-quality training datasets are needed, in which inferred
events are biologically supported.

Many cases of HGT were found by manual inspection of incongruences in gene trees [15].
Inferring a locus tree facilitates such analyses, as it allows to automatically detect the
incongruences. This approach has several advantages over reconciliation. It allows to restrict
to only two parameters: the locus gain and the locus loss weight. It is also more robust
to imprecise data, as improperly placed branches will only be locally detected as new loci,
without interfering with the global evolutionary scenario. This allows to disregard the noise
when analyzing the tree, and instead focus on several important events. The locus tree
inference has been addressed in populational genetics setting [13]. However, this approach
requires several difficult to obtain parameters, like speciation times or population sizes.

Our contribution: In this work, we address the problem of Locus Tree Inference when
populational effects are negligible. This allows addressing the locus tree inference problem in
a parsimony framework. We propose to solve it by decomposing a binary gene tree into a
forest of subtrees that can be embedded into a possibly polytomic species tree, in a way that
minimizes the weighted sum of the forest size and the number of loss events. We propose
two variants of the problem: the Locus Tree Inference, LTI, in which forest elements are
subtrees of the species tree, and the Conditional Locus Tree Inference, CLTI, where each
forest element is a subtree of some binarization of the species tree. We show a dynamic
programming algorithm that solves LTI in O(|G||S|m) time and O(|G||S|) space, where
m is the maximal degree of a node from the species tree. To solve CLTI, we propose a
new mapping, called the Highest Separating Rank. Based on the mapping, we show an
O(d|G|+ |S|) time and O(|G|+ |S|) space algorithm, where d is the height of S, for inferring
required and conditional duplications in gene trees, which improves O(|G|(d+m) + |S|) time
solution from [18]. Finally, we propose an efficient heuristic to solve CLTI, and present a
comparative study on simulated and empirical data.

2 Definitions

Let T = 〈VT , ET 〉 be a rooted directed tree. For a, b ∈ VT , by lcaT (a, b) we denote the lowest
common ancestor of a and b in T . We also use the binary order relation a � b if b is a
node on the path between a and the root of T (note that a � a). Two nodes a and b are
called siblings if they are children of lcaT (a, b). We call a and b comparable if a � b or b � a,
otherwise a and b are called incomparable. The parent of a node a is denoted as parent(a).
The subtree of T rooted at v is denoted by T (v). By L(T) we denote the set of all leaves in
a tree T and we use L(v) instead of L(T (v)). By root(T) we denote the root of tree T . A

M.A. Ciach, A. Muszewska, and P. Górecki 5:3

species tree S is a rooted directed tree in which nodes are called taxa. A gene tree G is a
rooted directed binary tree, such that every leaf of G is labeled by a leaf-taxon from S, i.e.,
an element of L(S). For a node g in G, by tax(g) ⊂ L(S) we denote the set of all labels of
leaves from L(g).

The lowest common ancestor mapping, or lca-mapping, between G and S is a function
M : VG → VS such that M(g) = t if g is a leaf labelled by the leaf-taxon t, or M(g) =
lcaS(M(g1),M(g2)) if g is has two children g1 and g2. An internal node g in G is a duplication
if M(g) = M(gi) for any child gi of g. Every other node, i.e. a leaf or an internal node
satisfying M(g) �M(gi) for every child gi of g, is called a speciation [12, 7, 4].

A node with more than two children is called a polytomy. For a polytomy s in a tree S, let
H(s) be the set of all possible binary trees whose leaves are the children of s. For instance, if s
is the polytomy node present in S from Fig. 2, then H(s) = {(d, (e, f)), (e, (d, f)), (f, (d, e))}.
Let H∗(S) be the set of all possible binary trees obtained from S by replacing each polytomy
s with a tree from H(s). An element of H∗(S) is called a binarization of S.

3 Locus gain Problems

In this section we introduce the parsimony framework for the (Conditional) Locus Tree
Inference problem and a dynamic programming formula for solving the problem. We say
that a gene tree G is embeddable (respectively, conditionaly embeddable) into a species tree
S, if each node of G is a speciation (respectively, a speciation in some binarization of S).
For instance, (a, (b, c)) is embeddable into (a, (b, c, e), f), while (a, (a, b)) is not. Since the
polytomies in S can be resolved independently, we get the following result:

I Lemma 1. G is conditionally embeddable into S if and only if there is a binarization S′
of S such that G is embeddable into S′.

Every internal node g of G induces a set of loss events defined as nodes of the species
tree strictly between M(g) and M(parent(g)), plus M(g) if M(g) is a polytomy. The above
definition yields a notion of the loss cost, denoted by Λ(G,S), and defined as the total number
of loss events required to embed G into S.

A gene tree may not be embeddable into a species tree due to duplications or HGTs. Our
goal is to decompose a gene tree into a set of embeddable subtrees in the most parsimonious
way. We say that a forest F is a decomposition of G, if

⋃
T∈F L(T) = L(G), and for every

T ∈ F , G|L(T) = T , where, for A ⊆ L(G), G|A is a tree induced by A and the set of internal
nodes {lcaG(a, b)|a, b ∈ A} and inheriting the ancestor relation from G. Decompositions can
be equivalenty obtained by tree edit operations as follows. Given a gene tree G, X ⊆ EG is
called a set of cuts if no two edges in X share their top nodes.

I Lemma 2. Let X be a set of cuts from G. Let GX be a graph obtained from G by: removing
all cuts from G, contracting all nodes with one parent and one child, and then removing all
roots having exactly one child. Then GX is a decomposition of G.

In the context of X every node of G can be uniquelly associated with a node from GX

by a mapping σX that maps a node g to the first non-removed node below g. Formally,
σX(g) = σX(g1) if 〈g, g2〉 ∈ X and g1 is the sibling of g2, and σX(g) = g, otherwise. By
MX : G→ S we denote the "locus-aware" lca-mapping, given byMX(g) = M ′(σX(g)), where
M ′ is the lca-mapping between T ∈ GX and S such that σX(g) ∈ T (see Fig. 1).

Consider a set of cuts X in G. We say that X detaches g ∈ G, or is g-detaching, if σX(g)
is the root of some tree from GX . For example, in Fig. 1, the cuts from the right example

WABI 2017

5:4 Detecting Locus Acquisition Events in Gene Trees

a1 b2 b3 c4

G

a b c d

S

b2 a1 b3 c4

F1

a1 b2 b3 c4

G

a b c d

S

a1 b2 b3 c4

F2

Figure 1 An example of locus trees for G = ((a1, b2), (b3, c4)) with two decompositions F1

and F2 consistent with S = (a, (b, c), d). These decompositions are created by cuts indicated
with red color. MX : G → S is depicted for every set of cuts X (only for internal nodes). Here,
Λ(F1, S) = Λ(F2, S) = 0, ∆(F1) = 2 ·GAIN and ∆(F2) = 3 ·GAIN, i.e., F1 is optimal.

detach the parent of leaf a (as σX(parent(a)) = b is a root in GX), while the cuts from the
left one do not (σX(g) = a is below the root).

We say that a decompositon is consistent (respectively, conditionally consistent) with a
species tree S if for every T ∈ F , T is (respectively, conditionally) embeddable into S. From
the definition of σX we have:

I Remark. Let GX be a decomposition consistent with S. Then, a set of cuts X detaches
g ∈ G if and only if every tree in GX is either disjoint with or entirely contained in G(g).

Given a species tree S and a gene tree G we define a locus tree with respect to S as a
pair (G,X), where X is a set of cuts such that the decompositon GX is consistent with S.
Locus trees which induce the same decompositions are considered equivalent. From Lemma 2
it follows that for each set of cuts there is a unique decomposition induced by this set.
Conversely, for every decomposition F of G there exists a set of cuts X such that F = GX .
Inferring such a set from a given decomposition is straighforward by a bottom-up traversal of
the gene tree. Therefore, we can consider decompositions as equivalent to locus trees. From
computational point of view, it is more natural to seek for optimal decompositions rather
than sets of cuts.

Given a decompositon F , we define the total loss cost as Λ(F, S) =
∑

T∈F Λ(T, S). We
can now define the Locus Tree Inference problem (LTI) in the parsimony framework:

I Problem (Locus Tree Inference, LTI). Given a gene tree G and a species tree S. Find
the decomposition F ∗ of G consistent with S having the minimal weighted cost ∆(G,S) =
GAIN · |F ∗| + LOSS · Λ(F ∗, S) in the set of all decompositions of G consistent with S,
where GAIN ≥ 0 and LOSS ≥ 0 are the weights of locus gain and locus loss events, resp.

Such decompositions we call optimal. In the same way, for conditional consistency, we
define the Conditional Locus Tree Inference problem (CLTI). The problems are equivalent if
the input species tree is binary. From the algorithmic point of view, LTI is similar to the
reconciliation with DTL scenarios [1] with no duplications. A transfer event corresponds to
the creation of a tree in a decomposition forest. Additionally, we do not count loss event at
the root of a new tree.

Our algorithm consists of several functions of g ∈ G, s ∈ S and ι ∈ {0, 1} which denotes
whether a set of cuts detaches g:
D1. δ(g, s, 0) is the minimal partial cost contribution of G(g) in the set of all g-detaching

sets X such that MX(g) = s.
D2. δ(g, s, 1) as above but for non-g-detaching sets of cuts.
D3. δ4(g, s, ι) is the minimal value of δ(g, s′, ι) for s′ � s.
D4. δ↑(g, s, ι) is the minimal partial cost contribution of G(g) in the set of all g-detaching

sets of cuts X such that MX(g) � s. For ι = 1, the cost additionally includes all losses
created by σX(g) and associated with every species node s′ satisfying MX(g) ≺ s′ � s.

M.A. Ciach, A. Muszewska, and P. Górecki 5:5

Let c(v) be the set of children of v (∅ for leaves). By 1 we denote the indicator function,
that is, 1[p] is 1 if p is satisfied and 0 otherwise. Then, we have the following dynamic
programming formula (DP algorithm) that solves LTI:

δ(g, s, ι) =

0 if g is a leaf and M(g) = s,

min{α, γ} if g is not a leaf,
+∞ otherwise,

where

α = 1[c(s) ≥ 3] · LOSS · ι+ min
s′,s′′∈c(s) and s′ 6=s′′

δ↑(g′, s′, 1) + δ↑(g′′, s′′, 1),

γ = GAIN + min(δ4(g′,M(g′), 0) + δ↑(g′′, s, ι), δ4(g′′,M(g′′), 0) + δ↑(g′, s, ι)),

δ↑(g, s, ι) =
{
δ(g, s, ι) if s is a leaf,
min{δ(g, s, ι),1[|c(s)| > 1] · LOSS · ι+ minx∈c(s) δ

↑(g, x, ι)} otherwise,
δ4(g, s, ι) = min{δ(g, s, ι), min

x∈c(s)
δ(g, x, ι)}.

I Theorem 3. For every G and S: ∆(G,S) = mins∈S δ
4(root(G), s, 0)) + GAIN.

Proof. The proof is by induction on the structure of G and S, where the properties D1–D4
of all δ’s are proved. We omit technical details. J

I Theorem 4. The optimal cost can be computed in O(|G||S|m) time and O(|G||S|) space,
where m is the maximal degree of a node from S.

Proof. Time: We show that all values of δ functions can be computed in O(m) time. This
is straighforward for all values except α, where computing min potentially requires O(m2)
time. This can be done, however, in O(m) time, by finding for each node g′ of G, the two
children of s with the minimal and the second minimal value of δ↑ and choosing the minimal
pair one among all four variants. Space: Obvious. J

CLTI can be solved by an algorithm similar to the one presented above. It requires
additional case in δ for resolving duplications. In order to model a proper binarization of
a polytomy in M(g), both children of g have to be mapped into a disjoint sets of children
of M(g). Such solution requires extending all δ’s by a set of species nodes allowed for the
mappings. In consequence, this approach has an exponential time and space complexity. In
general we do not know if there is a polynomial time algorithm for CLTI. However, when
the locus gain weight (GAIN) is much greater than the loss weight (LOSS), an efficient
heuristic can be constructed, based on a mapping introduced in the next section.

4 Ranked Trees and Rank-based Mappings

Usually, when comparing trees, mappings based on their topologies are used (e.g. the
lca-mapping). However, biological species trees contain additional useful structure: the
taxonomic ranks, like species, genus, or family. Several major ranks are common to almost
all living organisms. In this section, we propose a mathematical formalization of ranks and
two rank-based mappings, which are useful in duplication inference and CLTI.

A ranked species tree is a species tree S in which every node s of S has assigned a small
positive integer called rank, denoted R(s), such that, for every s and s′, if s ≺ s′ then
R(s) < R(s′). We assume that the rank of the root of is d > 0 and every leaf has rank 1.

WABI 2017

5:6 Detecting Locus Acquisition Events in Gene Trees

1
2

1
2

2

d1

4
b2 f3 c4

2
5

c5 g6

3
a7 b8 e9 a10

G
5

4
3

a

2

b c

2

d e f g

S a7a10f3e9b2b8b2c4
d1f3

d1

b2f3

b2 f3 c4

c5b8c5g6

c5 g6

a7b8

a7 b8 e9 a10

G

Figure 2 An example of a gene tree G and a species tree S. Left: The lca-mapping M . Each
internal node of S is decorated with its rank based on the height of the corresponding subtree. Each
internal node of G is decorated with the value of mapping P . Right: G in which each internal node
is decorated by a pair of gene leaves that induces the value of mapping P in Alg. 1 (line 7). For
example, for the left child of the root, say x, f3e9 yields P (x) = R(lcaS(f, e)) = 2.

Let G be a gene tree and S be a ranked species tree. For a rank r and a leaf t in S, the
unique directed path in S consisting of all taxa comparable with t having the rank lower
than r will be called an (evolutionary) r-lineage of t. Note that every 1-lineage is empty. We
say that leaf-taxa t and t′ are separated by the rank r if for every x from the r-lineage of
t and every y from the r-lineage of t′, x and y are incomparable. Observe that every pair
of leaf-taxa is separated by the rank of 1. Moreover, if r separates t and t′ then every rank
lower than r also separates t and t′. For example, in Fig. 2 leaf-taxa a and c are separated
by ranks 1, 2 and 3, but not by rank 4.

Let g be an internal node in G with children g1 and g2. The highest separating rank
mapping P : VG → {1, 2, . . . , d} is defined as

P (g) = max{r : r separates every pair of leaf-taxa from tax(g1)× tax(g2)}. (1)

The lowest common rank mapping I : VG → {1, 2, . . . , d} is defined as I(g) = R(M(g)).
We now present some basic properties of both mappings. Simple proofs are omitted for brevity.

I Lemma 5. Let ρ(t, t′) be the highest rank that separates leaf-taxa t and t′ and let g be an
internal node of G with two children g1 and g2. Then:
(A) For every leaf-taxa t and t′, ρ(t, t′) = R(lcaS(t, t′)).
(B) P (g) = min{ρ(t, t′) : 〈t, t′〉 ∈ tax(g1)× tax(g2)}.
(C) I(g) = max{R(lcaS(t, t′)) : 〈t, t′〉 ∈ tax(g1)× tax(g2)}.
(D) P (g) = min{R(lcaS(t, t′)) : 〈t, t′〉 ∈ tax(g1)× tax(g2)}.
(E) P (g) = 1 if and only if tax(g1) ∩ tax(g2) 6= ∅.

Taxonomic ranks have been used earlier for HGT detection [11]. In this work, the authors
decorated nodes of the gene tree with the rank of the lowest taxon shared by each descendant
leaf, equivalent with the I mapping. A high difference between the rank of a node and
the one of its parent was one of the premisses for HGT. To the best of our knowledge, no
mapping equivalent with the highest separating rank has been proposed to day.

4.1 Computing mappings
Given a species tree S and a gene tree G, to compute I we can use the classical algorithm
for lca-queries, in which, after a linear-time preprocessing, computing lca-queries can be
completed in constant time [2]. We conclude that I can be computed in O(|G|+ |S|) time.

A naïve algorithm for computing P , based on Lemma 5, requires O(|G||S|2) time. Here,
we propose an O(d|G|+ |S|) time solution. For two distinct leaves l1 and l2 of G, we write
l1 <p l2 if l1 is visited earlier than l2 in prefix traversal of G. For instance, in Fig. 2 the
leaves are linearly ordered starting from the left, i.e., d1 <p b2 <p f3 <p

M.A. Ciach, A. Muszewska, and P. Górecki 5:7

Algorithm 1 Computing P
1: Input: A ranked tree S with maximal rank d, a gene tree G such that every leaf of G has an

attribute map equal to its label, i.e., a leaf from S. A parent of a node is denoted by attr. parent
(None for the root).
Output: Values of P stored in attr. P of each internal node of G.

2: For s in S.nodes: Let s.lastvisited := None # initialize last visited leaf
3: For g in G.nodes: If g is a leaf Then v.smap := v.map Else g.P := None # init P and smap
4: Initialize data structure in G for lca-queries lcaG(x, y) in G.
5: For rank in 1, 2, . . . , d: For v in G.leaves in prefix order such that v.smap.rank = rank:
6: If not v.smap.lastvisited = None Then
7: g := lcaG(v, v.smap.lastvisited)
8: If g.P = None Then g.P := rank # P assignment
9: v.smap.lastvisited := v # update last visited

10: v.smap := v.smap.parent # climb in S

I Lemma 6. For a fixed s ∈ S, the sequence of all assignment evaluations in line 9 such
that v.smap = s induces a sequence of values v, denoted by v1, v2, . . . , vk such that: (I) the
assignment s.lastvisited := vi is executed only when rank = s.rank, (II) v1 <p v2 <p · · · <p vk,
and (III) {v1, v2, . . . , vk} = M−1(L(s)).

Proof. (I) is obvious by the condition in the second loop. By the condition in the inner
loop, the order of leaves induced by a sequence of such assignments follows <p. For every
gene leaf v, v.smap is initially set to the label of v, i.e., M(v) (see line 3). Thus, if s is a
leaf, i.e., s.rank = 1, then the assignment in line 9 sets the value of v.lastvisited if and only
if the label of v is s. Thus for the leaves, (II) is satisfied. For (III), note that the line 10,
ensures that every leaf v is assigned once to s.lastvisited of every node s of a species tree that
is present on the path starting from M(v) and terminating in the root. Hence, M−1(L(s)) ⊆
{v1, v2, . . . , vk}. The other inclusion follows trivially from the fact that for a leaf v, v.smap
is originally set to M(v) and v cannot be assigned to a node incomparable with M(v). J

I Lemma 7. For every internal node g, P (g) = g.P.

Proof. Let g′ and g′′ be the left and the right child of g, respectively. The proof is by
induction on the rank r = 1, 2, . . . , d. Let r = 1. Assume that P (g) = 1, we show that
g.P = 1. Let s ∈ tax(g′)∩tax(g′′). Then, by Lemma 6, let Λs be the sequence {v1, v2, . . . , vk}
of all leaves assigned to s.lastvisited such that M(vi) = s and ordered by <p. Clearly, the list
has the leaves from both subtrees of g, thus there is an index j < k, such that vj ∈ L(g′) and
vj+1 ∈ L(g′′). Thus lcaG(vj , vj+1) = g. Now, in line 8, when v is vj+1 then v.smap.lastvisited
is vj . In such a case, either g.P is None and g.P will be set to 1, or g.P is already set, however,
it can be only 1. This completes the first part of the proof.

Assume that P (g) = r and for every q, such that P (q) < r, we have P (q) = q.P . For
every v ∈ L(g′) and w ∈ L(g′′), R(lcaS(M(v),M(w))) ≥ r, thus g.P = None, when Alg. 1
starts the main loop with rank = r. From Lemma 5, there is a pair taxa 〈t1, t2〉 ∈ ĝ such
that s = lcaS(t, t′) and R(s) = r. Thus, there are two leaves a1 and a2 in G such that for
each i, M(ai) = ti and lca(a1, a2) = g, i.e. a1 � g′ and a2 � g′′. Similarly, to the first step,
the leaves from M−1(L(s)) are all visited and set to s.lastvisited according to the order <p.
The sequence contains elements a1 and a2, therefore again there is j separating leaves from
both subtrees of g. The rest of the proof is analogous: in line 8 either g.P is already set to r
(if there was other s′, processed before s, with R(s′) = r satisfying the same properties as s)
or it will be set in to r. This completes the proof. J

WABI 2017

5:8 Detecting Locus Acquisition Events in Gene Trees

I Lemma 8. Alg. 1 requires O(d|G|+ |S|) time and O(|G|+ |S|) space.

Proof. Time: Lines 2–5 have O(|G|+ |S|) time complexity, while the body of the inner loop
needs O(1) time. Space: Alg. 1 uses only a few node attributes plus the lca-query data
structure of the size O(|G|). J

5 Classification of Gene Duplications

Several methods for reconciliation with non-binary gene trees have been proposed [20, 16,
19, 6, 3, 9]. However, reconciliation with non-binary species trees is harder to model. This is
because a polytomy may represent a lack of knowledge about the order of speciations, and
therefore some duplication nodes may correspond to biological speciations. This motivates a
further classification of duplication nodes into conditional and required duplications [18].

When reconciling a gene tree G with every binarization of S, if g from G is a duplication
in every reconciliation, then g is called a required duplication. Similarly, if g is a duplication
in at least one but not all reconciliations, we say that g is a conditional duplication. Note
that G is conditionally embeddable in S if and only if each node in G is either a speciation
or a conditional duplication.

In this section, we show how P and I can be used to solve the problem of gene duplication
classification when the species tree has possible polytomies.

I Lemma 9. For an internal node g from a gene tree G, the following conditions are
equivalent:
(A1) P (g) = I(g),
(A2) every subtree rooted below M(g) contains taxa from at most one child of g, i.e., for

every s ≺M(g), if L(s) ∩ tax(g1) 6= ∅ then L(s) ∩ tax(g2) = ∅, where g1 and g2 are the
children of g, and

(A3) for every 〈t, t′〉 ∈ tax(g1)× tax(g2), lcaS(t, t′) = M(g).

Proof. (A1) ⇒ (A2). Assume that s ≺M(g) and there are two leaves t and t′ in L(s) such
that t ∈ tax(g1) and t′ ∈ tax(g2). Hence, 〈t, t′〉 ∈ tax(g1)×tax(g2) and lcaS(t, t′) � s ≺M(g).
Thus, P (g) < I(g), a contradiction. (A2) ⇒ (A3). Let 〈t, t′〉 ∈ ĝ. Then, t and t′ are leaves
from two different subtrees rooted below M(g). Therefore, lcaS(t, t′) = M(g). (A3) ⇒ (A1).
It follows immediately from Lemma 5. J

Note that the above Lemma holds also when P (g) = I(g) = 1, i.e. when an internal node
g is mapped to a leaf of S. In such a case the condition (A2) is satisfied trivially.

I Lemma 10. Let P (g) = I(g). Then, g is a speciation iff M(g) is an internal node and
there are exactly two subtrees rooted at children of M(g) having nodes from tax(g).

Proof. (⇒). We have that g is an internal node. In such a case I(g) > 1 and M(g) is an
internal node. Then, by (A2) from Lemma 9, every child of M(g) has taxa present in at
most one child of g. Clearly, there are at least two children of M(g) satisfying this property.
If there are more than two, then one child of g, say g1, has taxa from at least two children of
M(g). Hence, M(g1) = M(g) and g is a duplication node, a contradiction. (⇐). Similarly, if
M(g) is an internal node, then by (A2), the mappings of the children of g are incomparable
and located below M(g), therefore g cannot be a duplication. J

We have a symmetric property whose proof is similar to the previous one.

M.A. Ciach, A. Muszewska, and P. Górecki 5:9

I Lemma 11. Assume that P (g) = I(g). Then, g is a duplication node if and only if either
M(g) is a leaf or M(g) is an internal node and there are at least three subtrees rooted at a
child of M(g) having nodes from tax(g).

Finally, we have the main property.

I Theorem 12 (Classification Theorem). Let g be an internal node of G. Then:
(C1) If P (g) = I(g) = 1 or P (g) < I(g) then g is a required duplication.
(C2) If P (g) = I(g) > 1, then g is a duplication if and only if g is a conditional duplication.

Proof. (C1) If P (g) = I(g) = 1, then g is mapped to a leaf. Hence, every leaf below g has
the same label. Thus, in every binarization of S, g is a duplication. Assume that P (g) < I(g).
Then M(g) is an internal node in S, having at least three taxa in L(M(g)) (otherwise, the
two children of M(g) are leaves and P (g) = I(g) = 2). We can assume that there are three
leaves t, t′ ∈ tax(g1) and t′′ ∈ tax(g2) such that lcaS(t′, t′′) ≺ lcaS(t, t′, t′′). Clearly, this
property holds for every binarization T of S, where the possible polytomy M(g) is resolved.
Moreover, in every T , M(g1) � lcaT (t, t′, t′′), thus M(g1) is comparable with M(g2) � t′′.
Thus, M(g) = max(M(g1),M(g2)) and g is a duplication node.

(C2,⇐). If g is a conditional duplication, then it is a duplication by the definition.
(C2,⇒). Assume that g is a duplication, then by condition (A2) from Lemma 9, the children
of M(g) can be clustered into three disjoint sets X, X ′ and X ′′ such that every node from X

has no taxa present in tax(g), every node of X ′ has taxa from tax(g′) but not from tax(g′′)
and analogously every node of X ′′ has taxa from tax(g′′) but not from tax(g′), where g′ and
g′′ are the children of g. In addition, by Lemma 11 at least one among X ′ and X ′′, say X ′,
has at least two elements. Consider a binary tree T in H(M(g)), such that all elements of X ′
and X ′′ are located in the left and the right subtree of T , respectively. Then, lcaT (X ′) and
lcaT (X ′′) are incomparable. Thus, in such a binarization of S, g′ and g′′ maps below M(g),
and g is a speciation node. Similarly, it can be shown that there exist a tree in H(M(g)) in
which g is a duplication. J

Based on Alg. 1, Classification Theorem leads to a natural O(d|G|+ |S|) time solution
for the inference of required and conditional duplications when reconciling a given binary
gene tree with a species tree. This improves known O(|G|(d + m) + |S|) time algorithm
from [18], where m is the maximal degree of a node from S. The improvement is beneficial
for highly polytomic species trees. For example, as of 04.28.2017, the genus Aspergillus has
1950 children species in the NCBI Taxonomy.

6 Heuristic for CLTI

In this section, we propose the heuristic algorithm for CLTI when the locus gain weight is
much greater than the loss weight. The algorithm is based on the following lemma, which
follows directly from Theorem 12:

I Lemma 13. Tree G is conditionally embeddable in S if and only if for all internal nodes
g in G, I(g) = P (g) > 1.

Alg. 2 is a greedy approach that iteratively finds the minimal nodes g such that P (g) < I(g)
or I(g) = 1 and detaches an embeddable subtree below each node. Note the following:

I Remark. Let G be conditionally embeddable in S. Let Λ̂(G,S) = |L(M(root(G)))|−|L(G)|.
Then, Λ(G,S) ≤ Λ̂(G,S).

WABI 2017

5:10 Detecting Locus Acquisition Events in Gene Trees

Algorithm 2 Heuristic algorithm for CLTI
1: Input: A ranked tree S and a gene tree G.

Output: A decomposition forest of G conditionally consistent with S.
Initialize: F := ∅

2: Compute I and P in G.
3: Let Z be the set of all minimal nodes g in G such that G(g) is not conditionally embeddable

(i.e. P (g) < I(g) or I(g) = 1). If Z is empty Then Return F ∪ {G}
4: For every g in Z:
5: Let 〈v, w〉 be the edge incident to a child of g with minimal Λ̂(G(w), S) + Λ̂(G(g) \G(w), S)

such that G(w) and G(g) \G(w) are conditionally embeddable.
Add G(w) to F , remove e and G(w) from G.

6: Repeat steps 2-6 until tree G is empty.

DP Heuristic

5 10 15 20 5 10 15 20
0
2
4
6
8

10

Forest size
DP Heuristic

5 10 15 20 5 10 15 20
0
5
10
15
20
25

Number of losses

Number of leaves in the gene tree

Figure 3 Comparison of DP and heuristic algorithms for binary species trees in terms of
forest size |F | and numbers of losses Λ(F, S). The brown line depicts the median cost; the grey
ribbon depicts the 90% confidence interval. The weights in the DP algorithm have been set to
GAIN = 1000, LOSS = 1. The plots have been smoothed with cubic splines.

Let T1 \ T2 denote tree T1 with detached subtree T2. Then, Λ̂(G′, S) + Λ̂(G(g) \G′, S) is
an estimate of the partial loss cost induced by detaching subtree G′. The detached subtree
in Alg. 2 is chosen so as to minimize this estimate. To limit the complexity of a single step,
we consider only subtrees rooted at vertices at a close neighbourgood of g.

A major advantage of Alg. 2 is the space complexity, which is O(|G| + |S|). This
makes the heuristic suitable for trees with hundreds or thousands of nodes. The time
complexity is O(ad|G|+a|S|), where a is the number of recomputations of I and P mappings.
Pessimistically, a = O(|G|), which makes this algorithm assymptotically quadratic. However,
in applications this number is expected to be a small integer.

6.1 Experimental validation

In the case of binary species trees, conditional embeddability is identical to strict embeddab-
ility, and both locus tree inference algorithms can be compared experimentally.

For each |L(G)| = 1, . . . , 20 and |L(S)| = 10 we have generated 100 pairs of random trees
under the Yule-Harding model. The leaves of G have been assigned to leaves of S randomly.
The numbers of losses for heuristic algorithm have been computed using a modification of
the DP algorithm. The inferred costs are shown in Fig. 3.

The costs are similar for both algorithms. The forest size is approximately half the
number of leaves in G. Using linear regression, we have determined that, on average, the
inferred forest size is equal to 0.47|L(G)| for DP and 0.53|L(G)| for the heuristic. The number
of losses is slightly smaller for the heuristic algorithm (on average 0.98|L(G)| for DP and
0.90|L(G)| for the heuristic). The reason for this is that the greedy approach tends to detach
more concise trees.

M.A. Ciach, A. Muszewska, and P. Górecki 5:11

7 Example of evolutionary history decomposition

We have compared our approach with a state-of-the-art reconciliation program, Notung
2.9 [17]. We have analyzed the evolution of the gene family of an aminotransferase from a
fungus Penicillium lilacinoechinulatum1 (GenBank: ABV 48733.1), which has been earlier
reported to undergo a HGT [15]. The gene tree has been reconciled with NCBI Taxonomy
with loss weight 1, duplication weight 1.5 and transfer weight varying from 3 to 8. The
result of decomposition by our heuristic approach is depicted in Fig. 4. Depending on the
transfer weight, Notung 2.9 reported from 1 to 7 transfers and numerous duplications, while
our heuristic inferred a unique result.

Several biological conclusions can be drawn from the decomposition. There are two
probable HGTs: into the ancestors of family Clavicipitaceae (blue subtree) and genus
Fusarium (turquoise subtree). Those groups are distantly related to species in their "mother
locus" subtrees, which makes multiple duplications and losses less likely than a HGT. Since
both recipient groups are pathogenic (as well as Aspergillus fumigatus, in which the gene has
been extensively duplicated), we may expect that the protein ABV 48733.1 plays a role in
their pathogenesis. Both transfers are consistent with reconciliation results.

Note that the P mappings of parents of turquoise and blue subtrees are much higher
than the ones of their children, consistent with a HGT hypothesis. On the contrary, the P
mapping of parent of the green subtree is much lower than the ones of its children, consistent
with a duplication. This observation can be a basis for an event scoring system to aid the
classification of the events. Other locus gain events are ambiguous, both in the case of history
decomposition analysis and the tree reconciliation.

8 Discussion

In this work, we have investigated two new problems for locus tree inference in a parsimony
framework. We have proposed and analyzed a new mapping, called the Highest Separating
Rank, which has been applied to the problems of duplication classification and locus tree
inference. The solution to the duplication classification problem has improved the current
one by removing dependence on the maximum node degree in species tree from the time
complexity. A prototype implementation is publicly availiable at https://github.com/
mciach/LocusTreeInference. The presented approach will be used to obtain a manually
curated dataset of horizontally transferred genes.

Future outlooks. The influence of potential contradictory binarizations on the decomposi-
tion needs to be elucidated. LTI should be generalized for non-binary gene trees, as it would
allow to collapse nodes with low support, possibly decreasing the forest size. The P mapping
can be applied to obtain efficient solutions to the problem of gene tree rooting and supertree
construction. Finally, application of automatic event scoring system should be investigated.

1 Homologs of the protein sequence have been found in 20 fungal species using BLASTp suite. The
sequences have been aligned using MAFFT program and trimmed with TrimAL. The phylogenetic tree
has been created using PhyML and rooted by setting Amanita muscaria as the outgroup. Nodes of the
species tree have been collapsed to represent only the following taxonomic ranks: species, genus, family,
order, class, phylum, kingdom.

WABI 2017

https://github.com/mciach/LocusTreeInference
https://github.com/mciach/LocusTreeInference

5:12 Detecting Locus Acquisition Events in Gene Trees

6/6
1.00

 Amanita muscaria Amanita Amanitaceae Agaricales Agaricomycetes Basidiomycota

5/2
1.00

5/1
0.97

5/5
0.52

4/4
0.98 Trichoderma virens Trichoderma Hypocreaceae Hypocreales Sordariomycetes Ascomycota

 Torrubiella hemipterigena Torrubiella Clavicipitaceae Hypocreales Sordariomycetes Ascomycota

3/3
0.99

2/2
1.00 Aspergillus udagawae Aspergillus Aspergillaceae Eurotiales Eurotiomycetes Ascomycota

2/2
0.73 Aspergillus lentulus Aspergillus Aspergillaceae Eurotiales Eurotiomycetes Ascomycota

2/2
0.33 Aspergillus fischeri Aspergillus Aspergillaceae Eurotiales Eurotiomycetes Ascomycota

1/1
1.00 Aspergillus fumigatus Aspergillus Aspergillaceae Eurotiales Eurotiomycetes Ascomycota

1/1
0.80 Aspergillus fumigatus Aspergillus Aspergillaceae Eurotiales Eurotiomycetes Ascomycota

1/1
0.83 Aspergillus fumigatus Aspergillus Aspergillaceae Eurotiales Eurotiomycetes Ascomycota

 Aspergillus fumigatus Aspergillus Aspergillaceae Eurotiales Eurotiomycetes Ascomycota

2/2
0.99 Penicillium lilacinoechinulatum Penicillium Aspergillaceae Eurotiales Eurotiomycetes Ascomycota

1/1
1.00 Penicillium expansum Penicillium Aspergillaceae Eurotiales Eurotiomycetes Ascomycota

1/1
0.78 Penicillium expansum Penicillium Aspergillaceae Eurotiales Eurotiomycetes Ascomycota

 Penicillium expansum Penicillium Aspergillaceae Eurotiales Eurotiomycetes Ascomycota

5/5
0.71

 Bipolaris victoriae Bipolaris Pleosporaceae Pleosporales Dothideomycetes Ascomycota

5/4
0.96

5/3
0.40

5/5
1.00

2/2
1.00

2/2
0.62 1/1

0.75 Fusarium fujikuroi Fusarium Nectriaceae Hypocreales Sordariomycetes Ascomycota
 Fusarium fujikuroi Fusarium Nectriaceae Hypocreales Sordariomycetes Ascomycota

1/1
0.78 Fusarium proliferatum Fusarium Nectriaceae Hypocreales Sordariomycetes Ascomycota

 Fusarium proliferatum Fusarium Nectriaceae Hypocreales Sordariomycetes Ascomycota

2/2
0.75

 Fusarium verticillioides Fusarium Nectriaceae Hypocreales Sordariomycetes Ascomycota

1/1
1.00

1/1
0.88 Fusarium oxysporum Fusarium Nectriaceae Hypocreales Sordariomycetes Ascomycota

 Fusarium oxysporum Fusarium Nectriaceae Hypocreales Sordariomycetes Ascomycota

1/1
0.77

1/1
0.79 1/1

0.90 Fusarium oxysporum Fusarium Nectriaceae Hypocreales Sordariomycetes Ascomycota
 Fusarium oxysporum Fusarium Nectriaceae Hypocreales Sordariomycetes Ascomycota

1/1
0.75 Fusarium oxysporum Fusarium Nectriaceae Hypocreales Sordariomycetes Ascomycota

1/1
0.75 Fusarium oxysporum Fusarium Nectriaceae Hypocreales Sordariomycetes Ascomycota

1/1
0.00 Fusarium oxysporum Fusarium Nectriaceae Hypocreales Sordariomycetes Ascomycota

 Fusarium oxysporum Fusarium Nectriaceae Hypocreales Sordariomycetes Ascomycota

1/1
0.00 Fusarium oxysporum Fusarium Nectriaceae Hypocreales Sordariomycetes Ascomycota

1/1
0.00 Fusarium oxysporum Fusarium Nectriaceae Hypocreales Sordariomycetes Ascomycota

 Fusarium oxysporum Fusarium Nectriaceae Hypocreales Sordariomycetes Ascomycota

3/2
1.00 Aspergillus lentulus Aspergillus Aspergillaceae Eurotiales Eurotiomycetes Ascomycota

3/3
0.65 Aspergillus udagawae Aspergillus Aspergillaceae Eurotiales Eurotiomycetes Ascomycota

2/2
1.00 Penicillium oxalicum Penicillium Aspergillaceae Eurotiales Eurotiomycetes Ascomycota

 Penicillium arizonense Penicillium Aspergillaceae Eurotiales Eurotiomycetes Ascomycota
 Penicilliopsis zonata Penicilliopsis Aspergillaceae Eurotiales Eurotiomycetes Ascomycota

4/3
0.54

 Escovopsis weberi Escovopsis Hypocreaceae Hypocreales Sordariomycetes Ascomycota

4/4
0.31 2/2

1.00 Metarhizium rileyi Metarhizium Clavicipitaceae Hypocreales Sordariomycetes Ascomycota
 Pochonia chlamydosporia Pochonia Clavicipitaceae Hypocreales Sordariomycetes Ascomycota

2/2
1.00 Trichoderma harzianum Trichoderma Hypocreaceae Hypocreales Sordariomycetes Ascomycota

1/1
1.00 Trichoderma reesei Trichoderma Hypocreaceae Hypocreales Sordariomycetes Ascomycota

 Trichoderma reesei Trichoderma Hypocreaceae Hypocreales Sordariomycetes Ascomycota

5/5
1.00 Trichophyton benhamiae Trichophyton Arthrodermataceae Onygenales Eurotiomycetes Ascomycota

3/3
0.97 Glonium stellatum Glonium Gloniaceae N/A Dothideomycetes Ascomycota

 Stagonospora sp. SRC1lsM3a Stagonospora Massarinaceae Pleosporales Dothideomycetes Ascomycota

Rank=1, species Rank=2, genus Rank=3, family Rank=4, order Rank=5, class Rank=6, phylum

Figure 4 Gene tree of homologs of protein ABV 48733.1 and evolutionary lineages of organisms.
Numbers above branches represent node supports, numbers below branches represent the values of
I/P mappings before decomposition. The separate histories of different loci have been highlited by
different colors.

References

1 Mukul S. Bansal, Eric J. Alm, and Manolis Kellis. Efficient algorithms for the reconciliation
problem with gene duplication, horizontal transfer and loss. Bioinformatics, 28(12):i283–
i291, 2012.

2 Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Latin
American Symposium on Theoretical Informatics, pages 88–94. Springer, 2000.

3 Ann-Charlotte Berglund-Sonnhammer, Pär Steffansson, Matthew J. Betts, and David A.
Liberles. Optimal gene trees from sequences and species trees using a soft interpretation
of parsimony. Journal of Molecular Evolution, 63(2):240–250, 2006.

4 P. Bonizzoni, G. Della Vedova, and R. Dondi. Reconciling a gene tree to a species tree
under the duplication cost model. Theoretical Computer Science, 347(1-2):36–53, 2005.

5 Jean-Philippe Doyon, Vincent Ranwez, Vincent Daubin, and Vincent Berry. Models, al-
gorithms and programs for phylogeny reconciliation. Briefings in Bioinformatics, 12(5):392,
2011.

6 O. Eulenstein, S. Huzurbazar, and D.A. Liberles. Evolution after Gene Duplication, chapter
Reconciling Phylogenetic Trees, pages 185–206. John Wiley & Sons, Inc., 2010.

7 P. Górecki and J. Tiuryn. DLS-trees: A model of evolutionary scenarios. Theoretical
Computer Science, 359(1-3):378–399, 2006.

8 Patrick J. Keeling and Jeffrey D. Palmer. Horizontal gene transfer in eukaryotic evolution.
Nature Reviews Genetics, 9(8):605–618, 2008.

9 Manuel Lafond, Krister M. Swenson, and Nadia El-Mabrouk. An optimal reconciliation
algorithm for gene trees with polytomies. In International Workshop on Algorithms in
Bioinformatics, pages 106–122. Springer, 2012.

10 Marina Marcet-Houben and Toni Gabaldón. Treeko: a duplication-aware algorithm for the
comparison of phylogenetic trees. Nucleic Acids Research, page gkr087, 2011.

M.A. Ciach, A. Muszewska, and P. Górecki 5:13

11 Miguel A Naranjo-Ortíz, Matthias Brock, Sascha Brunke, Bernhard Hube, Marina Marcet-
Houben, and Toni Gabaldón. Widespread inter-and intra-domain horizontal gene transfer
of d-amino acid metabolism enzymes in eukaryotes. Frontiers in Microbiology, 7, 2016.

12 Roderic D.M. Page. Maps between trees and cladistic analysis of historical associations
among genes, organisms, and areas. Systematic Biology, 43(1):58–77, 1994.

13 Matthew D. Rasmussen and Manolis Kellis. Unified modeling of gene duplication, loss, and
coalescence using a locus tree. Genome Research, 22(4):755–765, 2012.

14 Matt Ravenhall, Nives Škunca, Florent Lassalle, and Christophe Dessimoz. Inferring hori-
zontal gene transfer. PLOS Computational Biology, 11(5):1–16, 05 2015.

15 Thomas A. Richards, Guy Leonard, Darren M. Soanes, and Nicholas J. Talbot. Gene
transfer into the fungi. Fungal Biology Reviews, 25(2):98–110, 2011.

16 M. J. Sanderson and M.M. McMahon. Inferring angiosperm phylogeny from EST data with
widespread gene duplication. BMC Evolutionary Biology, 7 (Suppl 1): S3, 2007.

17 Maureen Stolzer, Han Lai, Minli Xu, Deepa Sathaye, Benjamin Vernot, and Dannie Dur-
and. Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary
species trees. Bioinformatics, 28(18):i409–i415, 2012.

18 Benjamin Vernot, Maureen Stolzer, Aiton Goldman, and Dannie Durand. Reconciliation
with non-binary species trees. Journal of Computational Biology, 15(8):981–1006, 2008.

19 Tandy Warnow. Large-scale multiple sequence alignment and phylogeny estimation. In
Models and Algorithms for Genome Evolution, pages 85–146. Springer, 2013.

20 Yu Zheng and Louxin Zhang. Reconciliation with non-binary gene trees revisited. In
International Conference on Research in Computational Molecular Biology, pages 418–432.
Springer, 2014.

WABI 2017

An IP Algorithm for RNA Folding Trajectories∗

Amir H. Bayegan1 and Peter Clote2

1 Boston College, Biology Department, Chestnut Hill, MA, USA
a.h.bayegan@gmail.com

2 Boston College, Biology Department, Chestnut Hill, MA, USA
clote@bc.edu

Abstract
Vienna RNA Package software Kinfold implements the Gillespie algorithm for RNA secondary
structure folding kinetics, for the move sets MS1 [resp. MS2], consisting of base pair additions
and removals [resp. base pair addition, removals and shifts]. In this paper, for arbitrary secondary
structures s, t of a given RNA sequence, we present the first optimal algorithm to compute the
shortest MS2 folding trajectory s = s0, s1, . . . , sm = t, where each intermediate structure si+1 is
obtained from its predecessor by the addition, removal or shift of a single base pair. The shortest
MS1 trajectory between s and t is trivially equal to the number of base pairs belonging to s but not
t, plus the number of base pairs belonging to t but not s. Our optimal algorithm applies integer
programming (IP) to solve (essentially) the minimum feedback vertex set (FVS) problem for the
“conflict digraph” associated with input secondary structures s, t, and then applies topological
sort, in order to generate an optimal MS2 folding pathway from s to t that maximizes the use of
shift moves. Since the optimal algorithm may require excessive run time, we also sketch a fast,
near-optimal algorithm (details to appear elsewhere). Software for our algorithm will be publicly
available at http://bioinformatics.bc.edu/clotelab/MS2distance/.

1998 ACM Subject Classification G.1.6 Optimization

Keywords and phrases Integer programming, RNA secondary structure, folding trajectory, feed-
back vertex problem, conflict digraph

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.6

1 Introduction

In this paper, we introduce the first algorithm to compute the MS2 distance between two
secondary structures s and t of a given RNA sequence a1, . . . , an; i.e. the length m of the
shortest refolding trajectory s = s0, s1, . . . , sm = t, in which each intermediate secondary
structure si+1 is obtained from si by a single base pair addition, removal or shift. Here
a shift transforms a base pair (x, y) to the base pair (x′, y′), where either x ∈ {x′, y′} or
y ∈ {x′, y′}, but not both; see Figure 1 for an illustration of all possible types of shift
moves. Although shifts are considered in the secondary structure folding kinetics program
Kinfold [12] as well as in theoretical work on RNA molecular structure evolution [15],
most papers on RNA secondary structure do not consider shift moves, presumably due
to the sometimes tremendous additional complications even though the shift moves for
helix zippering and defect diffusion are supported by experimental data [14]. Indeed, while
our algorithm to compute the expected number of nearest neighbors with respect to MS1

∗ This research was supported in part by National Science Foundation grant DBI-1262439 (PC). Any
opinions, findings, and conclusions or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National Science Foundation.

© Amir H. Bayegan and Peter Clote;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 6; pp. 6:1–6:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://bioinformatics.bc.edu/clotelab/MS2distance/
http://dx.doi.org/10.4230/LIPIcs.WABI.2017.6
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

6:2 An IP Algorithm for RNA Folding Trajectories

x y′ y x y′y xy′ y

x x′ y xx′ y x x′y

(x,y)-> (x,y'), y'<y (x,y)-> (x,y'), y'>y (x,y)-> (y',x), y'<x

(x,y)-> (x',y), x'>x (x,y)-> (x',y), x'<x (x,y)-> (y,x'), x'>y

Figure 1 Shift moves from solid base pair to dotted base pair. Image taken from [2].

moves [1] is highly non-trivial, our analogous algorithm for MS2 moves is far more complex
[2]. Moreover, the current paper illustrates the enormous computational complexity that
arises when considering MS2 distance rather than MS1 distance – while MS1 distance, also
known as base pair distance, is trivial to compute, we conjecture that MS2 distance is
NP-complete, where this problem can be formalized as a decision problem to determine,
for any given secondary structures s, t and integer m, whether there is an MS2 trajectory
s = s0, s1, . . . , sm = t of length ≤ m, in which each intermediate secondary structure si+1
is obtained from si by a single base pair addition, removal or shift. Here, we describe an
exact (possibly exponential time) integer programming (IP) algorithm, and in a sequel to
this paper, we will describe a fast, near-optimal algorithm, a greedy algorithm and a slow,
exact branch-and-bound algorithm (details of these algorithm cannot be given here, due to
space constraints). We conclude the current paper by a benchmarking comparison between
the optimal IP algorithm and the near-optimal algorithm, and compare the values of MS1,
MS2 and Hamming distance on a data set of 3800 random RNA sequences having random
initial and random target structures of length n, computed for a range of values of n.

Since our algorithms involve the feedback vertex set problem for RNA conflict digraphs,
we now provide a bit of background about this problem. Given a directed graph, or digraph,
G = (V,E), a feedback vertex set (FVS) is a subset V ′ ⊆ V which contains at least one vertex
from every directed cycle in G, thus rendering G acyclic. Similarly, a feedback arc set (FAS)
is a subset E′ ⊆ E which contains at least one directed edge (arc) from every directed cycle
in G. The FVS [resp. FAS] problem is the problem to determine a minimum size feedback
vertex set [resp. feedback arc set] which renders G acyclic. Both the FVS and FAS are
NP-complete for arbitrary digraphs, as well as for tournaments; indeed the FVS and FAS
problems both appear in the list of 21 problems shown by R.M. Karp to be NP-complete
[10]. We now introduce some necessary definitions.

Although the notion of secondary structure is well-known, we give three distinct but
equivalent definitions, that will allow us to overload secondary structure notation to simplify
presentation of our algorithms.

I Definition 1 (Secondary structure as set of ordered base pairs). Let [1, n] denote the set
{1, 2, . . . , n}. A secondary structure for a given RNA sequence a1, . . . , an of length n is
defined to be a set s of ordered pairs (i, j), with 1 ≤ i < j ≤ n, such that the following
conditions are satisfied.
1. Watson-Crick and wobble pairs: If (i, j) ∈ s, then aiaj ∈ {GC,CG,AU,UA,GU,UG}.
2. No base triples: If (i, j) and (i, k) belong to s, then j = k; if (i, j) and (k, j) belong to s,

then i = k.
3. Nonexistence of pseudoknots: If (i, j) and (k, `) belong to s, then it is not the case that

i < k < j < `.
4. Threshold requirement for hairpins: If (i, j) belongs to s, then j − i > θ, for a fixed value

θ ≥ 0; i.e. there must be at least θ unpaired bases in a hairpin loop. Following standard
convention, we set θ = 3 for steric constraints.

A.H. Bayegan and P. G. Clote 6:3

If s is a secondary structure (set of ordered pairs), then |s| denotes the size of s, i.e. the
number of base pairs belonging to s.

Without risk of confusion, it will be convenient to overload the concept of secondary
structure s with two alternative, equivalent notations, for which context will determine the
intended meaning.

I Definition 2 (Secondary structure as set of unordered base pairs). A secondary structure s
for the RNA sequence a1, . . . , an is a set of unordered pairs {i, j}, with 1 ≤ i, j ≤ n, such
that the corresponding set of ordered pairs

{i, j}<
def= (min(i, j),max(i, j)) (1)

satisfies Definition 1. If s is a secondary structure (set of unordered pairs), then |s| denotes
the size of s, i.e. the number of base pairs belonging to s.

I Definition 3 (Secondary structure as an integer-valued function). A secondary structure s for
a1, . . . , an is a function s : [1, . . . , n]→ [0, . . . , n], such that

{
{i, s[i]}< : 1 ≤ i ≤ n, s[i] 6= 0

}
satisfies Definition 1; i.e.

s[i] =
{

0 if i is unpaired in s
j if (i, j) ∈ s or (j, i) ∈ s (2)

I Definition 4 (Secondary structure distance measures). Let s, t be secondary structures of
length n. Base pair distance is defined by equation (3) below, and Hamming distance is
defined by equation (4) below.

dBP (s, t) = |{(x, y) : ((x, y) ∈ s ∧ (x, y) 6∈ t) ∨ ((x, y) ∈ t ∧ (x, y) 6∈ s)}| (3)
dH(s, t) = |{i ∈ [1, n] : s[i] 6= t[i]}| (4)

We next define some primitive notions used later to define a central concept of RNA
conflict directed graph (digraph). Let [1, n] denote the set {1, . . . , n}. Given secondary
structure s on RNA sequence {a1, . . . , an}, we say that a position x ∈ [1, n] is touched by
s, or equivalently that the structure s touches the position x, if x belongs to a base pair of
s, or equivalently s[x] 6= 0. Let BP1 [resp. BP2] denote the set of base pairs of s [resp. t]
which are not touched by any base pair of t [resp. s]; i.e.

BP1 = {(i, j) ∈ s : t[i] = 0 = t[j]} (5)
BP2 = {(i, j) ∈ t : s[i] = 0 = s[j]} (6)

2 MS2 distance between secondary structures

In this section, we present an integer programming (IP) algorithm to compute the MS2
distance between any two secondary structures s, t, i.e. the minimum length of a trajectory
from s to t, involving only base pair additions, removals and shifts. Since any shift move, such
as (x, y)→ (x, z) can be simulated by removal of the base pair (x, y) followed by addition
of the base pair (x, z), our strategy to produce a minimum length MS2 trajectory is to use
graph-theoretic methods to maximize the number of shift moves and minimize the number of
base pair additions and removals. The validity of this approach is formalized in the following
simple theorem, whose proof is straightforward.

WABI 2017

6:4 An IP Algorithm for RNA Folding Trajectories

I Theorem 5. Suppose that the MS1 distance between secondary structures s, t is k, i.e. base
pair distance dBP (s, t) = |s− t|+ |t− s| = k. Suppose that ` is the number of shift moves
occurring in the shortest MS2 trajectory s = s0, s1, . . . , sm = t from s to t. Then the MS2
distance between s and t equals

dMS2(s, t) = `+ (k − 2`) = k − ` . (7)

2.1 RNA conflict digraph
Throughout this section, we take s, t to be two arbitrary, distinct, but fixed secondary
structures of the RNA sequence a1, . . . , an. To determine a minimum length MS2 folding
trajectory from secondary structure s to secondary structure t, we must maximize the number
of shift moves and minimize the number of base pair additions and removals. To that end,
note that the base pairs in s that do not touch any base pair of t must be removed in any
MS2 path from s to t, since there is no shift of such base pairs to a base pair of t – such base
pairs are exactly those in BP1, defined in equation (5). Similarly, note that the base pairs in
t that do not touch any base pair of s must occur must be added, in the transformation of s
to t, since there is no shift of any base pair from s to obtain such base pairs of t – such base
pairs are exactly those in BP2, defined in equation (6). We now focus on the remaining base
pairs of s, all of which touch a base pair of t, and hence could theoretically allow a shift move
in transforming s to t, provided that there is no base triple or pseudoknot introduced by
performing such a shift move. Examples of all six possible types of shift move are illustrated
in Figure 1. To handle such cases, we define the notion of RNA conflict digraph, solve the
feedback vertex set (FVS) problem by integer programming (IP), apply topological sorting [3]
to the acyclic digraph obtained by removing a minimum set of vertices occurring in feedback
loops, then apply shift moves in topologically sorted order. We now formalize this argument.

Define the digraph G = (V,E), whose vertices (or nodes) n ∈ V are defined in the
following Definition 6 and whose directed edges are defined in Definition 7.

I Definition 6 (Vertex in an RNA conflict digraph). If s, t are distinct secondary structures
for the RNA sequence a1, . . . , an, then a vertex in the RNA conflict digraph G = G(s, t)
is a triplet node, or more simply, node v = (x, y, z) consisting of integers x, y, z, such that
the base pair {x, y}< = (min(x, y),max(x, y)) belongs to t, and the base pair {y, z}< =
(min(y, z),max(y, z)) belongs to s. Let v.t [resp. v.s] denote the base pair {x, y}< [resp.
{y, z}<] belonging to t [resp. s]. The middle integer y of node v = (x, y, z) is called the pivot
position, since it is common to both s and t. Nodes are ordered by the integer ordering of
their pivot positions: (x, y, z) � (x′, y′, z′) if and only if y ≤ y′ (or y = y′ and x < x′, or
y = y′, x = x′, and z < z′). If v = (x, y, z) is a node, then flatten(v) is defined to be the set
{x, y, z} of its coordinates.

Nodes are representations of a potential shift move, and can be categorized into six types, as
shown in Figure 1.

I Definition 7 (Directed edge in an RNA conflict digraph). The base pair {a, b}< is said
to cross the base pair {c, d}< if either min(a, b) < min(c, d) < max(a, b) < max(c, d) or
min(c, d) < min(a, b) < max(c, d) < max(a, b); in other words, base pairs cross if they form
a pseudoknot. Base pairs {a, b}< and {c, d}< are said to touch if |{a, b} ∩ {c, d}| = 1; in
other words, base pairs touch if they form a base triple. There is a directed edge from node
n1 = (x1, y1, z1) to node n2 = (x2, y2, z2), denoted n1 → n2, if either z1 = x2 or the base
pair {y1, z1}< ∈ s from n1 crosses base pair {x2, y2}< ∈ t from n2.

A.H. Bayegan and P. G. Clote 6:5

Figure 2 Rainbow diagram (left) and conflict digraph (right) for the toy example of initial
structure s consisting of the six base pairs (1, 13), (5, 9), (17, 29), (21, 25), (33, 41), (49, 57) and
of the target structure t consisting of the four base pairs (5, 25), (9, 21), (29, 37), (45, 53). The
corresponding conflict digraph consists of 5 vertices, 8 directed edges, and 2 directed cycles. Edges
are labeled for discussion in the text.

The motivation behind the definition of edge v1 → v2 is that either a base triple
or pseudoknot will result if one applies the shift corresponding to v2 before the shift
corresponding to v1. To that end, it is natural to define the edge v1 → v2 if the base pair
v1.s either touches or crosses the base pair v2.t. This approach is valid, but may lead to larger
conflict digraphs with many more cycles than necessary, resulting in additional computational
cost in the enumeration of all directed cycles as well as in application of the IP solver.
Consider the example of initial structure s = {(5, 9)} and target structure t = {(1, 5), (9, 13)},
for which an optimal 2-step MS2 trajectory consists of shifting base pair (5, 9) to (1, 5),
followed by adding the base pair (9, 13). Vertices of the conflict digraph G = (V,E) are
clearly v1 = (1, 5, 9) and v2 = (13, 9, 5). Since v1.s = (5, 9) touches v2.t = (9, 13), we would
have v1 → v2; since v2.s = (5, 9) touches v1.t = (1, 5), we would have v2 → v1. However, if
we apply the shift move corresponding to v1, then we cannot subsequently apply the shift
move corresponding to v2, since v1.s = v2.s. A similar issue arises when v1.t = v2.t.

For another example, consider the initial structure s = {(5, 9), (21, 25)} and target
structure t = {(5, 25), (9, 21)}. Vertices of the conflict digraph are B,C,D,E, where B is
(5, 25, 21), D is (21, 9, 5), C is (9, 21, 25), E is (25, 5, 9). Supposing that v1 = (x1, y1, z1)
and v2 = (x2, y2, z2), if v1 → v2 were defined by v1.s touches or crosses v2.t, then the
resulting conflict digraph would be the complete digraph on vertices B,C,D,E, leading to
many more cycles than necessary. By defining v1 → v2 by either z1 = x2 or v1.s crosses
v2.t, the resulting conflict digraph consists of only B → C, C → B, D → E, E → D, which
appears as a portion of Figure 2.

I Definition 8 (Conflict digraph G = (V,E)). Let s, t be distinct secondary structures for the
RNA sequence a1, . . . , an. The RNA confict digraph G(s, t) = (V (s, t), E(s, t)), or G = (V,E)
when s, t are clear from context, is defined by

V = {(x, y, z) : x, y, z ∈ [1, n] ∧ {x, y} ∈ t ∧ {y, z} ∈ s} , (8)

E =
{

(n1, n2) : n1 = (x1, y1, z1) ∈ V ∧ n2 = (x2, y2, z2) ∈ V ∧
(
z1 = x2∨(

[min(y1, z1) < min(x2, y2) < max(y1, z1) < max(x2, y2)]∨ (9)

[min(x2, y2) < min(y1, z1) < max(x2, y2) < max(y1, z1)]
)}

.

Notice that Definition 8 establishes a partial ordering on vertices of the conflict digraph
G = (V,E), in that edges determine the order in which shift moves should be performed.

WABI 2017

6:6 An IP Algorithm for RNA Folding Trajectories

Indeed, if n1 = (x, y, z), n2 = (u, v, w) and (n1, n2) ∈ E, which we denote from now on by
n1 → n2, then the shift move in which {y, z} ∈ s shifts to {x, y} ∈ t must be performed
before the shift move where {v, w} ∈ s shifts to {u, v} ∈ t – indeed, if shifts are performed in
the opposite order, then after shifting {v, w} ∈ s to {u, v} ∈ t and before shifting {y, z} ∈ s
to {x, y} ∈ t, we would create either a base triple or a pseudoknot. Our strategy to efficiently
compute the MS2 distance between secondary structures s and t will be to (1) enumerate all
simple cycles in the conflict digraph G = (V,E) and to (2) apply an integer programming
(IP) solver to solve the minimum feedback arc set problem V ′ ⊂ V . Noticing that the
induced digraph G = (V ,E), where V = V − V ′ and E = E ∩ (V × V), is acyclic, we then
(3) topologically sort G, and (4) perform shift moves from V in topologically sorted order.
In an initial implementation of our algorithms, we used the simple_cycles() function from
the NetworkX python library to enumerate all simple cycles.

There is a first important technical deviation from this strategy, corresponding to an
additional IP constraint (‡) in line 7 of the pseudocode below, necessary to address a possible
overlap between triplet nodes. It can happen, for instance, that base pair (x, y) ∈ t, and
that base pairs (u, x) ∈ s and (y, z) ∈ s, for which we have triplet nodes v1 = (y, x, u) and
v2 = (x, y, z). If we detect node v1 [resp. v2] in a simple cycle C1 [resp. C2], then in the
absence of (‡), the first IP constraint (†) would remove both nodes v1 and v2, whereby IP
variables xv1 and xv2 would both be set to 0, resulting in the removal of both base pairs (u, x)
and (y, z) from s in line 16 of the pseudocode. This causes an additional base pair addition
of (x, y) to the folding pathway in line 18 of the pseudocode. In contrast, if (for instance)
only the node v1 had been removed, resulting in the base pair removal of (u, x) from s, then
it would have been possible to shift base pair (y, z) to (x, y), rather than removing both
(u, x) and (y, z) from s with subsequent base pair addition of (x, y). Such situations are
avoided by the IP constraint (‡) below.

One might (incorrectly) surmise that it is possible to immediately remove the base pair
{y, z} from s for every node v = (x, y, z) 6∈ V . The fallacy of doing this can be illustrated
as follows. Suppose, for instance, that base pair (x, y) ∈ s, and that base pairs (u, x) ∈ t
and (y, z) ∈ t, for which we have triplet nodes v1 = (u, x, y) and v2 = (z, y, x). Since v1, v2
overlap in two positions, by the constraint (‡) in line 7 of the pseudocode below, it cannot
be that both v1 and v2 both belong to V . If neither v1 nor v2 belongs to V , then it is safe to
immediately remove base pair {x, y} from s. However, if (say) v1 ∈ V and v2 6∈ V , then it
would be a mistake to remove {x, y} from s if we could instead later shift base pair {x, y} to
base pair {u, v}, provided that so doing does not create a base triple. Such a shift is possible
if position u is not touched by s. A clean treatment of such situations requires the following
definition.

I Definition 9 (Base pair (x, y) is covered by V). Suppose that G = (V,E) is the RNA
conflict digraph for RNA sequence a1, . . . , an and secondary structures s, t. Let V ⊂ V . Base
pair (x, y) ∈ t is covered by V if there exists v ∈ V such that v.t = (x, y), i.e. the t base pair
portion of v equals (x, y). Base pair (x, y) ∈ s is covered by V if there exists a base pair
(u, v) ∈ t such that (x, y) touches (u, v) and (u, v) is covered.

It will now follow that we can remove all base pairs (x, y) ∈ s that are not covered by V , as
indicated in line 11 of the following pseudocode.

I Algorithm 1 (MS2 distance from s to t).
Input: Secondary structures s, t for RNA sequence a1, . . . , an

Output: Folding trajectory s = s0, s1, . . . , sm = t, where s0, . . . , sm are secondary structures,
m is the minimum possible value for which si is obtained from si−1 by a single base pair
addition, removal or shift for each i = 1, . . . ,m.

A.H. Bayegan and P. G. Clote 6:7

First, initialize the variable numMoves to 0, and the list moveSequence to the empty list [].
Recall that BP2 = {(x, y) : (x, y) ∈ t, (s− t)[x] = 0, (s− t)[y] = 0}. Bear in mind that s is
constantly being updated, so actions performed on s depend on its current value.

//remove base pairs from s that are untouched by t

1. BP1 = {(x, y) : (x, y) ∈ s, (t− s)[x] = 0, (t− s)[y] = 0}
2. for (x, y) ∈ BP1

3. remove (x, y) from s; numMoves = numMoves+1
//define conflict digraph G = (V,E) on updated s and unchanged t

4. define V by equation (8)
5. define E by equation (9)
6. define conflict digraph G = (V,E)
//IP solution of minimum feedback arc set problem

7. maximize
∑

v∈V
xv where xv ∈ {0, 1}, subject to constraints (†) and (‡)

//first constraint removes vertex from each simple cycle of G

(†)
∑

v∈C

xv < |C| for each simple directed cycle C of G

//ensure shift moves cannot be applied if they share same base pair from s or t

(‡) xv + xv′ ≤ 1, for all pairs of vertices v = (x, y, z) and v′ = (x′, y′, z′)
with |{x, y, z} ∩ {x′, y′, z′}| = 2

8. V = {v ∈ V : xv = 1}
9. E = {(v, v′) : v, v′ ∈ V ∧ (v, v′) ∈ E}

10. let G = (V ,E)
//remove all base pairs of s not covered by V

11. let Cover = {(x, y) ∈ s : (x, y) is not covered by V }
12. for (x, y) ∈ Cover
13. remove (x, y) from s; numMoves = numMoves+1

//topological sort of IP solution V

14. topological sort of G to determine total ordering ≺ on V

15. for v = (x, y, z) ∈ V in topologically sorted order ≺
16. shift {y, z} to {x, y} in s; numMoves = numMoves+1

//add remaining base pairs from t− s
17. for (x, y) ∈ t− s
18. add (x, y) to s; numMoves = numMoves+1
19. return folding trajectory, numMoves

Toy example
Consider the following toy 48 nt example of initial structure s consisting of the six base pairs
(1, 13), (5, 9), (17, 29), (21, 25), (33, 41), (49, 57) and the target structure t consisting of the
four base pairs (5, 25), (9, 21), (29, 37), (45, 53) with dot-bracket structures given by

>s
1234567890123456789012345678901234567890123456789012345678
GAAAGAAAUAAACAAAGAAAGAAACAAACAAAGAAAGAAACAAAGAAAGAAACAAACA
(...(...)...)...(...(...)...)...(.......).......(.......).
>t
1234567890123456789012345678901234567890123456789012345678
GAAAGAAAUAAACAAAGAAAGAAACAAACAAAGAAAGAAACAAAGAAAGAAACAAACA
....(...(...........)...)...(.......).......(.......).....

Figure 2a depicts the “rainbow” diagram of initial structure s shown below the line in
red, and of target structure t shown above the line in blue. If G = (V,E) denotes the
corresponding conflict digraph of s, t, as depicted in Figure 2b, then the vertices v = (x, y, z)

WABI 2017

6:8 An IP Algorithm for RNA Folding Trajectories

belonging to V are exactly those triples (x, y, z) such that blue arc v.t = (x, y)< touches
red arc v.s = (y, z)<. Moreover, for vertices v1 = (x1, y1, z1) and v2 = (x2, y2, z2), there
is a directed edge u→ v exactly when either (1) z1 = x2 or (2) v1.s crosses v2.t. For the
current example, it is straightforward for the user to derive the conflict digraph from the
rainbow diagram, and to confirm that the conflict digraph G = (V,E) consists of 5 vertices,
8 directed edges, and 2 directed cycles, as shown in Figure 2b.

A solution feedback vector set (FVS) problem is given by V = {A,B,C} = {(37, 29, 17),
(5, 25, 21), (9, 21, 25)}, since V is a maximum size subset of V such that the induced digraph
G = (V ,E) is acyclic, where edge set E = E ∩ (V × V) = {a, c} – in more intuitive terms, G
is obtained by deleting the bottom two nodes (21, 9, 5), (25, 5, 9) of Figure 2b, and deleting
all edges b, e, f, d, g, h incident to these two nodes. In contrast, a solution feedback arc set
(FAS) problem is given by E = E − {f, h} = {a, b, c, d, e, g} obtained by deleting edges f, h
from the conflict digraph G = (V,E) of Figure 2b. The resulting digraph G = (V,E −{f, g})
is acyclic.

We now trace Algorithm 1. The set BP1 from equation (5) consists of the base pairs
(1, 13), (33, 41), (49, 57) in s that do not touch any base pair of t, and hence cannot be
removed by applying a shift move. Lines 1–3 of Algorithm 1 result in updating the value
of the variable s by removing these three base pairs. Lines 4–6 construct the conflict
digraph G = (V,E) shown in Figure 2. Line 7 invokes the IP solver to maximize the
number of vertices of V subject to constraints (†) and (‡). The maximum size subset
of V that satisfies (†) is simply a solution of VAS. Constraint (‡) additionally requires
that |flatten(v1 ∩ flatten(v2| ≤ 1 for all v1,v2 ∈ V . Observe that from the original
vertex set V in the conflict digraph of Figure 2b, |flatten(B) ∩ flatten(C)| = |{21, 25}| =
2, |flatten(B) ∩ flatten(D)| = |{5, 21}| = 2, |flatten(B) ∩ flatten(E)| = |{5, 25}| = 2,
|flatten(C) ∩ flatten(D)| = |{9, 21}| = 2, |flatten(C) ∩ flatten(E)| = |{9, 25}| = 2. Thus,
although {A,B,C} is a solution of VAS, it is not a solution of both constraints (†) and (‡) –
a maximum size set V ⊆ V that satisfies both (†) and (‡) is V = {A,B}.

Line 11 of Algorithm 1 computes Cover = {(5, 9)}, i.e. base pair (5, 9) is the only
uncovered base pair of s, which is removed from s by lines 12,13. Line 14 applies topological
sorting to establish the following total ordering of vertices in V : (1) vertex A or (37, 29, 17),
(2) vertex B or (5, 25, 21). Lines 15–16 result in the shift (17, 29) to (29, 37), followed by the
shift (21, 25) to (5, 25). Lines 17–18 add any remaining base pairs of t− s to s, resulting in
adding base pairs (9, 21) and (45, 53). This yields an 8-step MS2 trajectory consisting of 4
base pair removals, 2 shifts and 2 base pair additions (not shown due to space constraints).

GAAAGAAAUAAACAAAGAAAGAAACAAACAAAGAAAGAAACAAAGAAAGAAACAAACA
1234567890123456789012345678901234567890123456789012345678

0. (...(...)...)...(...(...)...)...(.......).......(.......). initial structure
1.(...(...)...)...(.......).......(.......). remove (1,13)
2.(...(...)...)...................(.......). remove (33,41)
3.(...(...)...)............................. remove (49,57)
4. (...........)...(...(...)...)...(.......).......(.......). remove (5,9)
5.(...)...(.......)..................... shift (17,29) -> (29,37)
6.(...................)...(.......)..................... shift (21,25) -> (5,25)
7.(...(...........)...)...(.......)..................... add (9,21)
8.(...(...........)...)...(.......).......(.......)..... add (45,53)

Bistable switch
As nontrivial example, consider the 34 nt bistable switch with RNA sequence ACAGGUUCGC
CUGUGUUGCG AACCUGCGGG UUCG taken from Figure 1(b).2 of [8], in which the

A.H. Bayegan and P. G. Clote 6:9

authors performed structural probing by comparative imino proton NMR spectroscopy.
Figures 3a, 3b, and 3c respectively depict the metastable secondary structure s having free
energy −14.00 kcal/mol, the minimum free energy (MFE) secondary structure t having free
energy of −14.70 kcal/mol, and the MFE conflict digraph. In the MFE conflict digraph
G = (V,E), vertices are triplet nodes (x, y, z), where (unordered) base pair {y, z} ∈ s belongs
to the metastable structure, and (unordered) base pair {x, y} ∈ t belongs to the MFE
structure. A direct edge (x, y, z)→ (u, v, w) occurs if {y, z} ∈ s touches or crosses {u, v} ∈ t.
The conflict digraph G = (V,E) for this bistable switch contains 11 vertices, 71 directed
edges, and 92,114 directed cycles. The MS2 distance is 13, consisting of 4 base pair removals,
7 shifts and 2 base pair additions. The the corresponding minimum length trajectory follows.
This optimal MS2 trajectory contains 4 base pair removals, 2 base pair additions, and 7 base
pair shifts.

ACAGGUUCGCCUGUGUUGCGAACCUGCGGGUUCG
1234567890123456789012345678901234

0. (((((....)))))....((((((....)))))) initial structure
1. .((((....)))).....((((((....)))))) remove (1,14)
2. .((.(....).)).....((((((....)))))) remove (4,11)
3. ..(.(....).)......((((((....)))))) remove (2,13)
4.(....)........((((((....)))))) remove (3,12)
5.(.......)((((((....)))))) shift (5,10) -> (10,18)
6.((.......))(((((....))))). shift (19,34) -> (9,19)
7.(((.......)))((((....)))).. shift (20,33) -> (8,20)
8.((((.......))))(((....)))... shift (21,32) -> (7,21)
9.(((((.......)))))((....)).... shift (22,31) -> (6,22)

10.((((((.......))))))(....)..... shift (23,30) -> (5,23)
11. ...(((((((.......))))))).......... shift (24,29) -> (4,24)
12. .(.(((((((.......))))))).)........ add (2,26)
13. .(((((((((.......)))))))))........ add (3,25)

Details concerning our fast, near-optimal algorithm will be presented elsewhere; however,
since Figures 4 and 5 compare the performance of the exact IP (optimal) algorithm with
that of the near-optimal algorithm, we briefly sketch the idea behind the method.

I Algorithm 2 (Near-optimal MS2 distance from s to t).
Input: Secondary structures s, t for RNA sequence a1, . . . , an

Output: Folding trajectory s = s0, s1, . . . , sm = t, where s0, . . . , sm are secondary structures,
for each i = 1, . . . ,m, si is obtained from si−1 by a single base pair addition, removal or
shift, and m is an approximation to MS2 distance between s and t.

The idea is to generate all equivalence classes [x] with respect to equivalence relation ≡,
defined to be the reflexive, transitive closure of ∼, where for x, y ∈ [1, n], we say x ∼ y

if {x, y} ∈ s or {x, y} ∈ t. We consider a coarse-grain digraph, whose vertices are the
equivalence classes [x], and whose directed edges [x] → [y] are defined if a base pair from
s that lies in [x] crosses a base pair from t that lies in [y]. Solve the feedback arc problem
(not feedback vertex problem) for this coarse-grained digraph using IP, where we note that
the number of cycles is dramatically smaller than that for the exact IP algorithm. Apply
topological sorting on the coarse-grained acyclic digraph after removal of feedback arcs.
Subsequently process each equivalence class by using the exact IP algorithm. Due to space

WABI 2017

6:10 An IP Algorithm for RNA Folding Trajectories

A

C

A

G

G

U

U C

G

C

C

U

G

U G U U G C

G

A

A

C

C

U

G C

G

G

G

U

U

C

G

1

10

20

30

34

(a) Metastable structure −14.00 kcal/mol

A C

A

G

G

U

U

C

G

C

C

U

G
U

G

U

U

G

C

G

A

A

C

C

U

G C G G G U U C G

1

10

20

30 34

(b) MFE, −14.70 kcal/mol

(4, 24, 29)

(26, 2, 13)

(25, 3, 12)

(5, 23, 30)

(9, 19, 34)

(6, 22, 31)

(8, 20, 33)

(7, 21, 32)

(24, 4, 11)

(18, 10, 5)

(23, 5, 10)

(c) RNA conflict digraph, where s is metastable, t is MFE structure

Figure 3 Conflict digraph for toy example (a) and for the 34 nt bistable switch (b,c,d) with
sequence ACAGGUUCGC CUGUGUUGCG AACCUGCGGG UUCG taken from Figure 1(b).2 of [8],
in which the authors performed structural probing by comparative imino proton NMR spectroscopy.
(a) Toy example used in a first example of Algorithm 1. (b) Metastable structure having next lowest
free free energy (after that of minimum free energy structure) of −14.00 kcal/mol. (c) Minimum
free energy (MFE) structure having −14.70 kcal/mol. (d) RNA conflict digraph G = (V,E), having
directed edges (x, y, z) → (u, v, w) if the (unordered) base pair {y, z} ∈ s touches or crosses the
(unordered) base pair {u, v} ∈ t. Here, s is in the metastable structure shown in (a) having −14.00
kcal/mol, while t is the MFE structure shown in (b) having −14.70 kcal/mol. The conflict digraph
represents a necessary order of application of shift moves, in order to avoid the creation of base
triples or pseudoknots in the optimal trajetory being constructed. The conflict digraph G has 11
vertices, 71 directed edges and 92,114 directed cycles.

A.H. Bayegan and P. G. Clote 6:11

0 20 40 60 80 100 120 140 160
RNA length

0

10

20

30

40

50

60

70

Di
st

an
ce

MS1-distance
Hamming-distance/2
Near-optimal MS2-distance
Num shift moves(optimal)
Num base pair +/- (optimal)
Optimal MS2-distance

Figure 4 Benchmarking statistics for optimal and near-optimal algorithm to compute minimum
length MS2 folding trajectories between random secondary structures s, t of random RNA sequences
of variable lengths. For each sequence length n = 10, 15, 20, · · · , 150 nt, twenty random RNA
sequences were generated of length n, with probability of 1/4 for each nucleotide. For each RNA
sequence, twenty secondary structures s, t were uniformly randomly generated so that 40% of the
nucleotides are base-paired. It follows that the benchmarking dataset consisted of 20 ·

(20
2

)
= 3800

many triples a, s, t, where a = a1, . . . , an denotes an RNA sequence of length n, and s, t are random
secondary structures of a. Using this dataset, consisting of 20 ·

(20
2

)
= 3800 many triples a, s, t, where

a = a1, . . . , an denotes an RNA sequence of length n, and s, t are random secondary structures of a,
the average MS2 distance was computed for both the exact IP Algorithm 1 and the near-optimal
algorithm, whose details cannot be described due to space constraints. In addition to MS2 distance
computed by the exact IP and the near-optimal algorithm, the figure displays MS1 distance (also
known as base pair distance), Hamming distance over 2, and provides a breakdown of the MS1

distance in terms of the number of base pair addition/removal moves “num base pair +/- (optimal)”
and the shift moves “num shift moves (optimal)”.

constraints, we cannot provide additional details for the near-optimal algorithm, which will
be described elsewhere.

3 Discussion and an application

Computational approaches to the problem of RNA secondary structure folding kinetics involve
one of three approaches: (1) computation of energy-optimal folding pathways [13, 5, 4], (2)
solution of the master equation [11] to determine the time necessary to reach equilibrium
[19, 16], (3) repeated simulations using the Gillespie algorithm [6] as in the software Kinfold
[5] and KINEFOLD [20].

An energy-optimal folding pathway is a sequence s = s0, s1, . . . , sm = t of secondary
structures from initial structure s to target structure t, such that each intermediate structure
si is obtained from its predecessor si−1 by application of a move from a specified move set,
and such that the maximum energy difference E(s, t) = max

i=1,...,m
(E(si)− E(s0)) between

an intermediate structure and the initial structure is the minimum possible value, when
taken over all possible folding trajectories – this energy difference E(s, t) is called the barrier
energy. Intuitively, an energy-optimal folding trajectory is analogous to an alpine walk
between two points A and B, for which the walker reaches the minimum possible intermediate
altitude, and the barrier energy is analogous to the difference between the altitude at the

WABI 2017

6:12 An IP Algorithm for RNA Folding Trajectories

0 20 40 60 80 100 120 140 160
RNA length

0

5

10

15

20

25

30

Ru
n

tim
e

(s
)

Run time of near-optimal algorithm
Run time of optimal algorithm
Cycle Enumeration time
IP solver time

Figure 5 Run time for the exact IP (optimal) algorithm 1 and the near-optimal algorithm 2 to
compute minimum length MS2 folding trajectories for the same data set from previous Figure 4.
Each data point represents the average µ±σ where error bars indicate one standard deviation, taken
over 3800 sequence, structure pairs. Run time of the optimal algorithm depends almost entirely on
the time to enumerate all directed cycles, using our C++ implementation of Johnson’s algorithm [9]
as well as time for the Gurobi IP solver.

mountain pass and that at ground camp A. The problem of computing the barrier energy is
NP-complete, even for the trivial energy model of −1 per base pair [17]. After calling the
program RNAsubopt -e E to generate all secondary structures, whose free energy is within
E kcal/mol of the minimum free energy (MFE), the program barriers [5] uses a “flooding”
procedure to determine an energy-optimal folding trajectory (run time of RNAsubopt -e E
is exponential in the user-input energy parameter E). Note that barriers allows move sets
MS1 and MS2, but that both the initial and target structure must be locally optimal, where
a locally optimal structure has the property that no structure obained by applying one move
from the move set yields a structure with strictly lower energy. The structures s, t for the
previous toy example RNA are not locally optimal, in contrast to the structures s, t for the
the previous bistable switch.

The program RNAtabupath [4] is a local search method using the tabu heuristic [7] which
provides a very fast, near-optimal solution for the barrier energy and energy-optimal folding
trajectory. Note that RNAtabupath does not require that initial and target structures be
locally optimal, but at present only computes near-optimal MS1 trajectories.de Another
application of RNAtabupath is that the true MS1 barrier energy is bounded above by the
RNAtabupath barrier energy estimate, and hence can be used as energy parameter for
barriers; i.e. ethe user need not use trial-and-error when entering an energy parameter that
exceeds the barrier energy in order to generate an energy-optimal folding trajectory – a very
time-consuming, manual procedure. Analogously, one can use Algorithm 1 to provide an
energy parameter that exceeds the MS2 barrier energy in order to generate an energy-optimal
MS2 folding trajectory using barriers.

Figure 6 shows the free energy profile of the shortest MS2 folding trajectory returned by
Algorithm 1 for the 34 nt bistable switch with sequence ACAGGUUCGC CUGUGUUGCG
AACCUGCGGG UUCG, which sequence comes from Figure 1(b).2 of [8]. The barrier
energy for the shortest MS2 trajectory computed by Algorithm 1 is 10.8 kcal/mol with
trajectory length 13. The figure also shows the nearly energy-optimal folding MS2 trajectory

A.H. Bayegan and P. G. Clote 6:13

0 5 10 15 20

-14

-12

-10

-8

-6

-4

-2

0

trajectory step

fr
e
e
e
n
e
rg
y
in
k
c
a
l/
m
o
l

Folding trajectory free energy

Figure 6 Free energy in kcal/mol of secondary structures appearing in RNA folding trajectories of
the bistable switch, whose sequence is given in Figure 1(b).2 of [8]. The dashed blue line corresponds
to the minimum length MS2 trajectory computed by Algorithm 1; the solid red line corresponds to
the lowest energy MS1 folding trajectory found by the program tabuPath described in [4] in 100
folding attempts. The barrier energy for MS1 trajectories estimated by the near-optimal software
tabuPath (without shift) is 12.4 kcal/mol with trajectory length 23. The barrier energy for the
shortest MS2 trajectory computed by Algorithm 1 is 10.8 kcal/mol with trajectory length 13.

of RNAtabupath. Figure 7 shows the Arrhenius tree returned by barriers when run with
energy parameter 10.8 + (14.7− 14.0) = 11.5 kcal/mol, where the value 10.8 is the energy
barrier for the trajectory returned by Algorithm 1, −14.7 [resp. −14.0] is the free energy of
initial [resp. target] structure s [resp. t]. Since t is the minimum free energy (MFE) structure,
the program RNAsubopt -e 11.5 will generate close to the smallest set of structures which
guarantee that the program barriers can find an energy-optimal folding trajectory from s

to t. Figures 6 and 7 consider the small 34 nt bistable switch sequence, for display purposes;
clearly this approach becomes much more practical for long RNA sequences when using the
near-optimal Algorithm 2.

4 Conclusion and discussion

In this paper, we have presented the first algorithms to compute the MS2 distance between
any two secondary structures s, t of a given RNA sequence. Despite the impressive speed and
(approximate) accuracy of our near-optimal algorithm 2, we conjecture that the problem of
computing a minimum-length MS2 trajectory is NP-hard. This is due to several reasons: (1)
the complexity of the exact IP algorithm, (2) the dramatic increase in the number of simple
cycles in RNA conflict digraphs, as sequence length increases (not shown), (3) the dramatic
increase in run time required by the Gurobi IP solver for sequences of increasing length (not
shown), (4) the fact that FVS and FAS are NP-complete problems for several known families
of digraphs. Initial investigations (omitted here) have shown the that family of RNA conflict
digraphs is distinct from a host of graph families, for which the computational complexity of
FVS/FAS is known; however, at present it is unclear whether there is a polynomial time
algorithm to determine whether a given digraph is representable as an RNA conflict digraph.

The complexity of MS2 distance suggests that simple simulation studies of RNA structural
evolution and robustness [18] are unlikely to be extended to consider shift moves, despite
the experimental evidence for particular shift moves such as helix zippering and defect

WABI 2017

6:14 An IP Algorithm for RNA Folding Trajectories

Figure 7 Arrhenius tree produced by running Vienna RNA Package programs RNAsubopt -s -e
11.5 and barriers to obtain an optimal folding pathway. The energy bound of 11.5 kcal/mol was
selected, because the free energy of initial structure s [resp. target structure t] is −14.0 [resp. −14.6]
kcal/mol, and the barrier energy of the shortest MS2 trajectory from the left panel of this figure is 10.8
kcal/mol. It follows that we know there exists a folding trajectory within 10.8 + (14.7− 14.0) = 11.5
kcal/mol of the MFE structure t. The advantage of first running Algorithm 1 is that knowledge
of the energy barrier for the shortest MS2 path allows an efficient computation of RNAsubopt and
barriers – in the current case, RNAsubopt only needed to generate 1556 structures, and to find
28 saddle structures. The number of structures for this 34 nt bistable switch is 845,139,060,165
≈ 8.45 · 1011.

A.H. Bayegan and P. G. Clote 6:15

diffusion [14]. Moreover, studies of RNA structural evolution from [15] used Hamming
distance as a simple approximation to MS2 distance, which we now know from Figure 4
not to be particularly accurate. Finally, some very interesting, yet complex questions are
raised concerning graph theory (which digraphs are representable as conflict digraphs),
computational complexity (whether MS2 distance is NP-hard), and potentially related group
theoretic questions.

References

1 P. Clote. Expected degree for RNA secondary structure networks. J. Comput. Chem.,
0(O):O, November 2014.

2 P. Clote and A. Bayegan. Network Properties of the Ensemble of RNA Structures. PLoS
One, 10(10):e0139476, 2015.

3 T.H. Cormen, C. E. Leiserson, and R. L. Rivest. Algorithms. McGraw-Hill, 1990. 1028
pages.

4 I. Dotu, W.A. Lorenz, P. VAN Hentenryck, and P. Clote. Computing folding pathways
between RNA secondary structures. Nucleic. Acids. Res., 38(5):1711–1722, 2010.

5 C. Flamm, I. L. Hofacker, P. F. Stadler, and M. Wolfinger. Barrier trees of degenerate
landscapes. Z. Phys. Chem., 216:155–173, 2002.

6 D.T. Gillespie. A general method for numerically simulating the stochastic time evolution
of coupled chemical reactions. J. Comp. Phys., 22(403):403–434, 1976.

7 F.W. Glover and M. Laguna. Tabu Search. Springer-Verlag, 1998. 408 p.
8 C. Hobartner and R. Micura. Bistable secondary structures of small RNAs and their struc-

tural probing by comparative imino proton NMR spectroscopy. J. Mol. Biol., 325(3):421–
431, January 2003.

9 D.B. Johnson. Finding all the elementary circuits of a directed graph. SIAM J. Comput.,
4:77–84, 1975.

10 Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of a sym-
posium on the Complexity of Computer Computations, held March 20-22, 1972, at the
IBM Thomas J. Watson Research Center, Yorktown Heights, New York, pages 85–103,
1972. URL: http://www.cs.berkeley.edu/~luca/cs172/karp.pdf.

11 A. Kolmogoroff. Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung.
Mathematische Annalen, 104:415–458, 1931.

12 R. Lorenz, S.H. Bernhart, C. Höner zu Siederdissen, H. Tafer, C. Flamm, P. F. Stadler,
and I. L. Hofacker. Viennarna Package 2.0. Algorithms. Mol. Biol., 6:26, 2011.

13 S.R. Morgan and P.G. Higgs. Barrier heights between ground states in a model of RNA
secondary structure. J. Phys. A: Math. Gen., 31:3153–3170, 1998.

14 D. Pörschke. Model calculations on the kinetics of oligonucleotide double-helix coil trans-
itions: Evidence for a fast chain sliding reaction. Biophys Chem, 2(2):83–96, August 1974.

15 P. Schuster and P. F. Stadler. Modeling conformational flexibility and evolution of structure:
RNA as an example. In U. Bastille, M. Roman, and M. Vendruscolo, editors, Structural
Approaches to Sequence-Evolution, page 3–36. Springer, Heidelberg, 2007.

16 X. Tang, B. Kirkpatrick, S. Thomas, G. Song, and N.M. Amato. Using motion planning
to study RNA folding kinetics. J. Comput. Biol., 12(6):862–881, July/August 2005.

17 C. Thachuk, J. Maňuch, L. Stacho, and A. Condon. NP-completeness of the direct energy
barrier height problem. Natural Computing, 10(1):391–405, 2011.

18 A. Wagner. Robustness and evolvability: a paradox resolved. Proc. Biol Sci., 275(1630):91–
100, January 2008.

WABI 2017

http://www.cs.berkeley.edu/~luca/cs172/karp.pdf

6:16 An IP Algorithm for RNA Folding Trajectories

19 Michael T. Wolfinger, W. Andreas Svrcek-Seiler, Christoph Flamm, Ivo L. Hofacker, and
Peter F. Stadler. Efficient folding dynamics of RNA secondary structures. J. Phys. A:
Math. Gen., 37:4731–4741, 2004.

20 A. Xayaphoummine, T. Bucher, and H. Isambert. Kinefold web server for RNA/DNA
folding path and structure prediction including pseudoknots and knots. Nucleic. Acids.
Res., 33(Web):W605–W610, July 2005.

Fast Spaced Seed Hashing∗

Samuele Girotto1, Matteo Comin2, and Cinzia Pizzi3

1 Department of Information Engineering, University of Padova, Padova, Italy
2 Department of Information Engineering, University of Padova, Padova, Italy

comin@dei.unipd.it
3 Department of Information Engineering, University of Padova, Padova, Italy

cinzia.pizzi@dei.unipd.it

Abstract
Hashing k-mers is a common function across many bioinformatics applications and it is widely
used for indexing, querying and rapid similarity search. Recently, spaced seeds, a special type
of pattern that accounts for errors or mutations, are routinely used instead of k-mers. Spaced
seeds allow to improve the sensitivity, with respect to k-mers, in many applications, however
the hashing of spaced seeds increases substantially the computational time. Hence, the ability
to speed up hashing operations of spaced seeds would have a major impact in the field, making
spaced seed applications not only accurate, but also faster and more efficient.

In this paper we address the problem of efficient spaced seed hashing. The proposed algorithm
exploits the similarity of adjacent spaced seed hash values in an input sequence in order to
efficiently compute the next hash. We report a series of experiments on NGS reads hashing using
several spaced seeds. In the experiments, our algorithm can compute the hashing values of spaced
seeds with a speedup, with respect to the traditional approach, between 1.6x to 5.3x, depending
on the structure of the spaced seed.

1998 ACM Subject Classification I.1.2 Algorithms

Keywords and phrases k-mers, spaced seeds, efficient hashing

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.7

1 Introduction

The most frequently used tools in bioinformatics are those searching for similarities, or local
alignments, between biological sequences. k-mers, i.e. words of length k, are at the basis
of many sequence comparison methods, among which the most widely used and notable
example is BLAST [1].

BLAST uses the so-called “hit and extend” method, where a hit consists of a match of a
11-mers between two sequences. Then these matches are potential candidates to be extended
and to form a local alignment. It can be easily noticed that not all local alignments include
an identical stretch of length 11. As observed in [3] allowing for not consecutive matches
increases the chances of finding alignments. The idea of optimizing the choice of the positions
for the required matches, in order to design the so called spaced seeds, has been investigated
in many studies, and it was used in PatternHunter [16], another popular similarity search
software.

In general contiguous k-mers counts are a fundamental step in many bioinformatic
applications [5, 6, 9, 20, 22, 21, 24]. However, spaced seeds are now routinely used, instead of

∗ This work was supported by the MIUR PRIN project n. 20122F87B2 “Compositional approaches for
the characterization and mining of omics data”.

© Samuele Girotto, Matteo Comin, and Cinzia Pizzi;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 7; pp. 7:1–7:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.WABI.2017.7
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

7:2 Fast Spaced Seed Hashing

contiguous k-mers, in many problems involving sequence comparison like: multiple sequence
alignment [7], protein classification [18], read mapping [23] and for alignment-free phylogeny
reconstruction [13]. More recently, it was shown that also metagenome reads clustering and
classification can benefit from the use of spaced seeds [4, 8, 19].

A spaced seed of length k and weight w < k is a string over the alphabet {1, 0} that
contains w ‘1’ and (k − w) ‘0’ symbols. A spaced seed is a mask where the symbols ‘1’
and ‘0’ denote respectively match and don’t care positions. The design of spaced seeds is a
challenging problem itself, tackled by several studies in the literature [10, 11, 16]. Ideally,
one would like to maximize the sensitivity of the spaced seeds, which is however an NP-hard
problem [15].

The advantage of using spaced seeds, rather than contiguous k-mers, in biological sequence
analysis, comes from the ability of such pattern model to account for mutations, allowing for
some mismatches in predefined positions. Moreover, from the statistical point of view, the
occurrences of spaced seeds at neighboring sequence positions are statistically less dependent
than occurrences of contiguous k-mers [15]. Much work has been dedicated to spaced seeds
over the years, we refer the reader to [2] for a survey on the earlier work.

Large-scale sequence analysis often relies on cataloging or counting consecutive k-mers
in DNA sequences for indexing, querying and similarity searching. An efficient way of
implementing such operations is through the use of hash based data structures, e.g. hash
tables. In the case of contiguous k-mers this operation is fairly simple because the hashing
value can be computed by extending the hash computed at the previous position, since they
share k− 1 symbols [17]. For this reason, indexing all contiguous k-mers in a string can be a
very efficient process.

However, when using spaced seeds these observations do not longer hold. As a consequence,
the use of spaced seeds within a string comparison method generally produces a slow down
with respect to the analogous computation performed using contiguous k-mers. Therefore,
improving the performance of spaced seed hashing algorithms would have a great impact on
a wide range of bioinformatics tools.

For example, from a recent experimental comparison among several metagenomic read
classifiers [14], Clark [20] emerged as one of the best performing tools for such a task. Clark
is based on discriminative contiguous k-mers, and it is capable of classifying about 3.5M
reads per minute. When contiguous k-mers are replaced by spaced seeds, as in Clark-S [19],
while the quality of the classification improves, the classification rate is reduced to just 200K
reads per minute.

The authors of Clark-S attributed such a difference to the use of spaced seeds. In
particular, the possible sources of slowdown are two: the hashing of spaced seeds, and the use
of multiple spaced seeds. In fact, Clark-S uses three different spaced seeds simultaneously in
its processing. However, while the number of spaced seeds used could explain a 3x slowdown,
running Clark-S is 17x slower than the original k-mer based Clark. Thus, the main cause of
loss of speed performances can be ascribe to the use of spaced seed instead of contiguous
k-mers. A similar reduction in time performance when using spaced seeds is reported also in
other studies [4, 18, 23]. We believe that the main cause is the fact that spaced seeds can
not be efficiently hashed, as opposed to contiguous k-mers.

In this paper we address the problem of the computation of spaced seed hashing for
all the positions in an given input sequence, and present an algorithm that is faster than
the standard approach to solve this problem. Moreover, since using multiple spaced seeds
simultaneously on the same input string can increase the sensitivity [13], we also developed
a variant of our algorithm for simultaneous hashing of multiple spaced seeds.

S. Girotto, M. Comin, and C. Pizzi 7:3

In general, when computing a hash function there are also other properties of the
resulting hash that might be of interest like: bit dependencies, hash distributions, collisions
etc. However, the main focus of this paper is the fast computation of spaced seed hashing,
using the most simple hash function. Note that our method can be extended to implement,
for example, the cyclic polynomial hash used in [17] with no extra costs.

In the next section we briefly summarize the properties of spaced seeds and describe our
algorithm, together with a variant for handling multiple seed hashing. Experimental results
on NGS reads hashing for various spaced seeds are reported in Section 3. Conclusions are
driven in Section 4.

2 Methods

A spaced-seed S (or just a seed) is a string over the alphabet {1, 0} where the 1s correspond
to matching positions. The weight of a seed corresponds to the number of 1s, while the
overall length, or span, is the sum of the number of 0s and 1s.

Another way to denote a spaced seed is through the notation introduced in [12]. A spaced
seed can be represented by its shape Q that is the set of non negative integers corresponding
to the positions of the 1s in the seed. A seed can be described by its shape Q where its
weight W is denoted as |Q|, and its span s(Q) is equal to max Q + 1. For any integer i and
shape Q, the positioned shape i + Q is defined as the set {i + k, k ∈ Q}. Let us consider
the positioned shape i + Q = {i0, i1, . . . , iW−1}, where i = i0 < i1 < . . . < iW−1, and let
x = x0x1 . . . xn−1 be a string over the alphabet A. For any position i in the string x, with
0 ≤ i ≤ n−s(Q), the positioned spaced seed i + Q identifies a string of length |Q| that we
call Q-gram. A Q-gram at position i in x is the string xi0xi1 . . . xiW −1 and it is denoted by
x[i + Q].

I Example 1. Let Q = {0, 2, 3, 4, 6, 7}, then Q is the seed 10111011, its weight is |Q| = 6
and its span is s(Q) = 8. Let us consider the string x = ACTGACTGGA, then the Q-gram
x[0 + Q] = ATGATG can be defined as:

x A C T G A C T G G A
Q 1 0 1 1 1 0 1 1

x[0 + Q] A T G A T G

Similarly all other Q-grams are x[1 + Q] = CGACGG, and x[2 + Q] = TACTGA.

2.1 Spaced Seed Hashing
In order to hash any string, first we need to have a coding function from the alphabet A
to a binary codeword. For example let us consider the function encode : A → {0, 1}log2|A|,
with the following values encode(A) = 00, encode(C) = 01, encode(G) = 10, encode(T) = 11.
Based on this function we can compute the encodings of all symbols of the Q-gram x[0 + Q]
as follows:

x[0 + Q] A T G A T G
encodings 00 11 10 00 11 10

There exist several hashing functions, in this paper we consider the Rabin-Karp rolling
hash, defined as h(x[0 + Q]) = encode(A) ∗ |A|0 + encode(T) ∗ |A|1 + encode(G) ∗ |A|2 +
encode(A) ∗ |A|3 + encode(T) ∗ |A|4 + encode(G) ∗ |A|5. In the original Rabin-Karp rolling
hash all math is done in modulo n, here for simplicity we avoid that. In the case of DNA

WABI 2017

7:4 Fast Spaced Seed Hashing

sequences |A| = 4, that is a power of 2 and thus the multiplications can be implemented
with a shift. In the above example, the hashing value associated to the Q-gram ATGATG

simply corresponds to the list of encoding in Little-endian: 101100101100.
To compute the hashing value of a Q-gram from its encodings one can define the function

h(x[i + Q]), for any given position i of the string x, as:

h(x[i + Q]) =
∨

k∈Q

(encode(xi+k)� m(k) ∗ log2|A|) , (1)

where m(k) is the number of shifts to be applied to the encoding of the k-th symbols. For
a spaced seed Q the function m is defined as m(k) = |{i ∈ Q, such that i < k}|. In other
words, given a position k in the seed, m stores the number of matching positions that appear
to the left of k. The vector m is important for the computation of the hashing value of a
Q-gram.

I Example 2. In the following we report an example of hashing value computation for the
Q-gram x[0 + Q].

x A C T G A C T G G A
Q 1 0 1 1 1 0 1 1
m 0 1 1 2 3 4 4 5

shifted encodings 00 11«2 10«4 00«6 11«8 10«10
1100

101100
00101100

1100101100
hashing value 101100101100

The hashing values for the others Q-grams can be determined through the function
h(x[i + Q]) with a similar procedure. Following the above example the hashing values for
the Q-grams x[1 + Q] = CGACGG and x[2 + Q] = TACTGA are respectively 101001001001
and 001011010011.

In this paper we decided to use the Rabin-Karp rolling hash, because it is very intuitive.
There are other hashing functions, like the cyclic polynomial hash, that are usually more
appropriate because of some desirable properties like uniform distribution in the output
space, universality, higher-order independence [17]. In this paper we will focus on the efficient
computation of the Rabin-Karp rolling hash. However, with the same paradigm proposed
in the following sections, one can compute also the cyclic polynomial hash by replacing in
Eq. (1): the function encode(A) with a seed table where the letters of the DNA alphabet are
assigned different random 64-bit integers, shifts with rotations, OR with XOR.

2.2 Efficient Spaced Seed Hashing
In many applications [4, 7, 13, 18, 19, 23] it is important to scan a given string x and to
compute the hashing values over all positions. In this paper we want to address the following
problem.

I Problem 1. Let us consider a string x = x0x1 . . . xi . . . xn−1, of length n, a spaced seed Q

and an hash function h that maps strings into a binary codeword. We want to compute the
hashing values H(x, Q) for all the Q-grams of x, in the natural order starting from the first
position 0 of x to the last n− s(Q):

H(x, Q) = 〈h(x[0 + Q]), h(x[1 + Q]), . . . h(x[n− s(Q)])〉 .

S. Girotto, M. Comin, and C. Pizzi 7:5

Clearly, in order to address Problem 1, it is possible to use Equation 1 for each position
of x. Note that, in order to compute the hashing function h(x[i + Q]) for a given position,
the number of symbols that have to be extracted from x and encoded into the hash is equal
to the weight of the seed |Q|. Thus such an approach can be very time consuming, requiring
the encoding of |Q|(n− s(Q)) symbols. In summary, loosely speaking, in the above process
each symbol of x is read and encoded into the hash |Q| times.

In this paper we present a solution for Problem 1 that is optimal in the number of encoded
symbols. The scope of this study is to minimize the number of times that a symbol needs to
be read and encoded for the computation of H(x, Q). Since the hashing values are computed
in order, starting from the first position, the idea is to speed up the computation of the hash
at a position i by reusing part of the hashes already computed at previous positions.

As mentioned above, using Equation (1) in each position of an input string x is a simple
possible way to compute the hashing values H(x, Q). However, we can study how the hashing
values are built in order to develop a better method. For example, let us consider the simple
case of a contiguous k-mers. Given the hashing value at position i it is possible to compute
the hashing for position i + 1, with three operations: a rotation, the deletion of the encoding
of the symbol at position i, and the insertion of the encoding of the symbol at position
i + k, since the two hashes share k − 1 symbols. In fact in [17] the authors showed that
this simple observation can speed up the hashing of a string by recursively applying these
operations. However, if we consider the case of a spaced seed Q, we can clearly see that this
observation does not hold. In fact, in the above example, two consecutive Q-grams, like
x[0 + Q] = ATGATG and x[1 + Q] = CGACGG, do not necessarily have much in common.

In the case of spaced seeds the idea of reusing part of the previous hash to compute the
next one needs to be further developed. More precisely, because of the shape of a spaced
seed, we need to explore not only the hash at the previous position, but all the s(Q) − 1
previous hashes.

Let us assume that we want to compute the hashing value at position i and that we
already know the hashing value at position i − j, with j < s(Q). We can introduce the
following definition of Cj = {k − j ∈ Q : k ∈ Q ∧m(k − j) = m(k)−m(j)} as the positions
in Q that after j shifts are still in Q with the propriety of m(k− j) = m(k)−m(j). In other
words, if we are processing the position i of x and we want to reuse the hashing value already
computed at position i− j, Cj represents the symbols of h(x[i− j + Q]) that we can keep
while computing h(x[i + Q]). More precisely, we can keep the encoding of |Cj | symbols from
that hash and insert the remaining |Q| − |Cj | symbols at positions Q \ Cj .

I Example 3. If we know the first hashing value h(x[0 + Q]) and we want to compute the
second hash h(x[1 + Q]), the following example show how to construct C1.

k 0 1 2 3 4 5 6 7
Q 1 0 1 1 1 0 1 1

Q«1 1 0 1 1 1 0 1 1
m(k) 0 1 1 2 3 4 4 5

m(k)−m(1) −1 0 0 1 2 3 3 4
C1 2 3 6

The symbols at positions C1 = {2, 3, 6} of the hash h(x[1+Q]) have already been encoded
in the hash h(x[0 + Q]) and we can keep them. In order to complete h(x[1 + Q]), the
remaining |Q| − |C1| = 3 symbols need to be read from x at positions i + k, where i = 1 and
k ∈ Q\C1 = {0, 4, 7}.

WABI 2017

7:6 Fast Spaced Seed Hashing

x A C T G A C T G G A
x[0 + Q] A T G A T G

C1 2 3 6
Q\C1 0 4 7

x[1 + Q] C G A C G G

Note that the definition of |Cj | is not equivalent to the overlap complexity of two spaced
seeds, as defined in [11]. In some cases, like the one presented above, the overlap complexity
coincides with |C1| = 3. However, there are other cases where |Cj | is smaller then the overlap
complexity.

I Example 4. Let us consider the hash at position 2 h(x[2 + Q]), and the hash at position 0
h(x[0 + Q]). In this case we are interested in C2.

k 0 1 2 3 4 5 6 7
Q 1 0 1 1 1 0 1 1

Q«2 1 0 1 1 1 0 1 1
m(k) 0 1 1 2 3 4 4 5

m(k)−m(2) −1 0 0 1 2 3 3 4
C2 0 4

The only symbols that can be preserved from h(x[0 + Q]) in order to compute h(x[2 + Q])
are those at positions 0 and 4, whereas the overlap complexity is 3.

For completeness we report all values of Cj :

C = < C1, . . . , C7 >

= < {2, 3, 6}, {0, 4}, {0, 3, 4}, {0, 2, 3}, {2}, {0}, {0} > .

In order to address Problem 1, we need to find, for a given position i, the best previous
hash that ensures to minimize the number of times that a symbol needs to be read and
encoded, in order to compute h(x[i + Q]). We recall that |Cj | represents the number of
symbols that we can keep from the previous hash at position i− j, and thus the number of
symbols that needs to be read and encoded are |Q \ Cj |. To solve Problem 1 and to minimize
the number of symbols that needs to be read, |Q \ Cj |, it is enough to search for the j that
maximizes |Cj |. The best previous hash can be detected with the following function:

ArgBH(s) = arg max
j∈[1,s]

|Cj | .

If we have already computed the previous j hashings, the best hashing value can be found
at position i − ArgBH(j), and will produce the maximum saving |CArgBH(j)| in terms of
symbols that can be kept. Following the above observation we can compute all hashing values
H(x, Q) incrementally, by using dynamic programming as described by the pseudocode of
Algorithm 1.

The above dynamic programming algorithm scans the input string x and computes all
hashing value according to the spaced seed Q. In order to better understand the amount
of savings we evaluate the above algorithm by counting the number of symbols that are
read and encoded. First, we can consider the input string to be long enough so that we can
discard the transient of the first s(Q)− 1 hashes. Let us continue to analyze the spaced seed
10111011. If we use the standard function h(x[i + Q]) to compute all hashes, each symbol
of x is read |Q| = 6 times. With our algorithm, we have that |CArgBH(7)| = 3 and thus

S. Girotto, M. Comin, and C. Pizzi 7:7

Algorithm 1 Fast Spaced Seed Hashing
1: for i := 0 to |x| − s(Q) do
2: if (i == 0) then
3: h0 := compute h(x[0 + Q]);
4: else if (i < s(Q)− 1) then
5: hi := hi−ArgBH(i) � m(ArgBH(i)) ∗ log2|A|;
6: for all k ∈ Q\CArgBH(i) do
7: insert encode(xi+k) at position m(k) ∗ log2|A| of hi;
8: end for
9: else

10: hi := hi−ArgBH(s(Q)−1) � m(ArgBH(s(Q)− 1)) ∗ log2|A|;
11: for all k ∈ Q\CArgBH(s(Q)−1) do
12: insert encode(xi+k) at position m(k) ∗ log2|A| of hi;
13: end for
14: end if
15: end for

half of the symbols do need to be encoded again, overall each symbol is read 3 times. The
amount of saving depends on the structure of the spaced seed. For example, the spaced
seed 10101010101, with the same weight |Q| = 6, is the one that ensures the best savings
(|CArgBH(10)| = 5). In fact, with our algorithm, we can compute all hashing values while
reading each symbol of the input string only once, as with contiguous k-mers. To summarize,
if one needs to scan a string with a spaced seed and to compute all hashing values, the above
algorithm guarantees to minimize the number of symbols to read.

2.3 Efficient Multiple Spaced Seed Hashing

Using multiple spaced seeds, instead of just one spaced seed, is reported to increase the
sensitivity [13]. Therefore, applications that exploit such an observation (for example
[4, 8, 19]) will benefit from further speedup that can be obtained from the information
already computed from multiple spaced seeds.

Our algorithm can be extended to accommodate the need of hashing multiple spaced seeds
simultaneously, without backtracking. Let us assume that we have a set S = s1, s2, . . . , s|S|
of spaced seeds, from which we can compute the corresponding vectors msi . To this purpose,
Algorithm 1 needs to be modified as follows. First of all, a new cycle (between steps 2 and
14) is needed to iterate the processing among the set of all spaced seeds. Next, Cj needs to
be redefined so that it compares not only a given spaced seed with itself, but all spaced seeds
vs all. In the new definition, Cyz

j = {k − j ∈ sy : k ∈ sz ∧msy
(k − j) = msz

(k)−msz
(j)},

evaluates the number of symbols in common between the seed sy and the j-th shift of the
seed sz. The function Cyz

j allows to identify, while computing the hash of sy, the number of
symbols in common with the j-th shift of seed sz. Similarly, we need to redefine ArgBH(i)
so that it detects not only the best previous hash, but also the best seed. We define
ArgBSH(y, s) = arg maxz∈[1,|S|],j∈[1,s] |Cyz

j | that returns, for the seed sy, the pair (sz, j)
representing the best seed sz and best hash j. With these new definitions we can adjust our
algorithm so that, while computing the hash of sy for a given position i, it can start from
the best previous hash identified by the pair ArgBSH(y, s) = (sz, j). The other steps for
the insertion of the remaining symbols (steps 6–7 and 11-12) do not need to be modified.

WABI 2017

7:8 Fast Spaced Seed Hashing

Table 1 The nine spaced seeds used in the experiments grouped according to their type.

Spaced seeds maximizing the hit probability[19]
Q1 1111011101110010111001011011111
Q2 1111101011100101101110011011111
Q3 1111101001110101101100111011111
Spaced seeds minimizing the overlap complexity[10]
Q4 1111010111010011001110111110111
Q5 1110111011101111010010110011111
Q6 1111101001011100111110101101111

Spaced seeds maximizing the sensitivity[10]
Q7 1111011110011010111110101011011
Q8 1110101011101100110100111111111
Q9 1111110101101011100111011001111

3 Results and discussion

In this section we will discuss the improvement in terms of time speedup of our approach
(TFastHash) with respect to the time TEq1 needed for computing spaced seeds hashing re-
peatedly using Eq. (1): speedup = TEq1

TFastHash
.

3.1 Spaced seeds and datasets description

The spaced seeds we used have been proposed in literature as maximizing the hit probability
[19], minimizing the overlap complexity [10] and maximizing the sensitivity [10]. We tested
nine of such spaced seeds, three for each category. The spaced seeds are reported in Table 1
and labeled Q1, Q2, . . . , Q9. Besides these spaced seeds, we also tested Q0, which corresponds
to an exact match with a 22mer (all 22 positions are set to 1), and Q10, a spaced seed with
repeated ‘10’ and a total of 22 symbols equal to ‘1’. All spaced seeds Q0–Q10 have the same
weight |Qi| = 22. Furthermore, in order to compare seeds with different weights but similar
density, we computed with rasbhari two sets of seeds with weights 11 and 32 and lengths
respectively 16 and 45 (see Tables 3 and 4 in the Appendix).

The datasets we used were taken from previous scientific papers on metagenomic read
binning and classification [9, 25]. We considered both simulated datasets (S,L,R), and
synthetic datasets (MiSeq, HiSeq, MK_a1, MK_a2, and simBA5). The datasets Sx and Lx

contain sets of paired-end reads of length approximately 80bp generated according to the
Illumina error profile with an error rate of 1%, while the datasets Rx contain Roche 454
single-end long reads of length approximately 700bp, and a sequencing error of 1%. The
synthetic datasets represent mock communities built from real shotgun reads of various
species. Table 2 shows, for each dataset, the number of reads and their average length.

All the experiments where run on a laptop equipped with an Intel i74510U cpu at 2GHz,
and 16 GB RAM.

3.2 Analysis of the time performances

Figure 1 plots, for each spaced seed, the speedup that is obtainable with our approach with
respect to the standard hashing computation. As a reference, the baseline given by the
standard approach is about 17 minutes to compute the hash for a given seed on all datasets.

S. Girotto, M. Comin, and C. Pizzi 7:9

Table 2 Number of reads and average lengths for each of the dataset used in our experiments.

Datasets number of reads avg. read length
S6 1426457 80
S7 3307100 80
S9 4468336 80
S10 9981172 80
L5 1016418 80
L6 1182178 80

HiSeq 9989713 91
simBA5 5439738 100
MixK1 9629886 101
MixK2 7149900 101
MiSeq 9933556 131
R7 290473 702
R8 374576 715
R9 588256 715

Figure 1 The speedup of our approach with respect to the standard hashing computation, as a
function of the spaced seeds used in our experiments.

First of all it can be noticed that our approach improves over the standard algorithm for
all of the considered spaced seeds. The smallest improvements are for the spaced seeds Q2
and Q3, both belonging to the class of spaced seeds maximizing the hit probability, for which
the speedup is almost 1.2x, and the running time is about 15 minutes. For all the other
spaced seeds the speedup is close to 1.6x, thus saving about 40% of the time required by the
standard computation, and ending the computation in less than 11 minutes on average.

Figure 2 shows the performances of our approach with respect to the single datasets. In
this experiment we considered the best performing spaced seed in each of the classes that we
considered, namely Q1, Q6, and Q9, and the two additional special cases Q0 and Q10.

We notice that for the spaced seeds Q0 and Q10 the standard approach requires re-
spectively, 12 and 10 minutes, to process all datasets. This is already an improvement of
the standard method with respect to the 17 minutes required with the other seeds Q1–Q9.

WABI 2017

7:10 Fast Spaced Seed Hashing

Figure 2 Details of the speedup on each of the considered datasets. Q0 is the solid 22mer,
Q10 is the spaced seed with repeated 10. The other reported spaced seeds are the ones with the
best performances for each class: Q1 (maximizing the hit probability), Q6 (minimizing the overlap
complexity) and Q9 (maximizing the sensitivity).

Nevertheless, with our algorithm the hashing of all dataset can be completed in just 2.7
minutes for Q0 e 2.5 minutes for Q10, with a speedup of 4.5x and 4.2x.

We observe that while the speedup for the spaced seeds Q1, Q6, and Q9 is basically
independent on the dataset and about 1.6x, the speedup for both the 22-mer Q0 and the
‘alternate’ spaced seed Q10 is higher, spanning from 4.3x to 5.3x, depending on the seed
and on the dataset. In particular, the speedup increases with the length of the reads and
it achieves the highest values for the long read datasets R7, R8 and R9. This behavior is
expected, as these datasets have longer reads with respect to the others, thus the effect of
the initial transient is mitigated.

3.3 Multiple spaced seed hashing

When the analysis of biological data to perform requires the use of multiple spaced seeds, it
is possible to compute the hash of all seeds simultaneously while reading the input string
with the method described in Section 2.3.

In Figure 3 we report the comparison between the speedup we obtained when computing
the hash for each spaced seed Q1,. . . ,Q9 independently (light grey), and the speedup we
obtained when using the multiple spaced seeds approach (dark grey).

In most cases, multiple spaced seed hashing allows for a further improvement of about
2–5%, depending on the dataset. In terms of absolute values, the standard computation to
hash all datasets requires 159 minutes, the computation of all seeds independently with the
approach described in Section 2.2 takes 109 minutes, while the simultaneous computation of
multiple spaced seeds with our method (see Section 2.3) takes 107 minutes. When considering
all datasets the average speedup increases from 1.45x (indipendent computation) to 1.49x
(simultaneous computation). The small improvement can be justified by the fact that the
spaced seeds considered are by construction with minimal overlap.

S. Girotto, M. Comin, and C. Pizzi 7:11

Figure 3 Details of the time speedup of our approach with the multiple spaced seeds hashing
(dark grey) and of our approach with each spaced seed hashed independently (light grey).

Figure 4 The theoretical and real speedup of our approach with respect to the standard hashing
computation, as a function of the spaced seeds weight.

3.4 Spaced Seeds with Different Weights
In order to compare the performance of our method on spaced seeds with different weights
we generated other two sets of nine spaced seeds with rasbhari, all with similar density (see
Tables 3 and 4 in the Appendix). In Figure 4 are reported the average speedup (Real), over
all datasets, for the three different groups of nine seeds. In the same Figure we include also
the speedup when all nine seeds are used simultaneously (Multi) and the theoretical speedup
predicted by our method (Predicted).

It can be observed that if the weight of the seeds grows then also the real speedup grows.
This is expected, because if a seed has more 1s, then the chances to reuse part of the seed
increase. As, for the theoretical predicted speedups, these are usually in line with the real
speedups even if the absolute values are not necessarily close. We suspect that the model
we use, where shifts and insertions have the same cost, is too simplistic. Probably, the real
computational cost for the insertion of a symbol is greater than the cost for shifting, and
also cache misses might play a role.

If the theoretical speedup for multiple seeds is greater than the theoretical speedup for
independent seeds, this indicates that in principle, with multiple seeds, it is possible to

WABI 2017

7:12 Fast Spaced Seed Hashing

improve with respect to the computation of seeds independently. It is interesting to note that
the real results confirm these predictions. For example, in the multiple seeds with weights
32, it is impossible to improve both theoretically and in practice. In the other two cases, the
computation of multiple seeds is faster in practice as correctly predicted by the theoretical
speedup.

4 Conclusions

We presented a new approach for spaced seeds hashing that exploits the information available
from previous matches in order to minimize the number of positions that need to be
recomputed. The experiments we performed on several datasets showed that our method
has a speedup of 1.6x with respect to the standard approach used to compute spaced seeds
hashing, for several kind of spaced seeds defined in the literature. Furthermore, the gain
greatly improved in special cases, where seeds show a high autocorrelation, and for which a
speed up of about 4x to 5x can be achieved.

References
1 Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman.

Basic local alignment search tool. Journal of Molecular Biology, 215(3):403–410, 1990.
doi:10.1016/S0022-2836(05)80360-2.

2 Daniel G. Brown, Ming Li, and Bin Ma. A tutorial of recent developments in the seeding
of local alignment. Journal of Bioinformatics and Computational Biology, 02(04):819–842,
2004. doi:10.1142/S0219720004000983.

3 Jeremy Buhler. Efficient large-scale sequence comparison by locality-sensitive hashing.
Bioinformatics, 17(5):419, 2001. doi:10.1093/bioinformatics/17.5.419.

4 Karel Břinda, Maciej Sykulski, and Gregory Kucherov. Spaced seeds improve k-mer-
based metagenomic classification. Bioinformatics, 31(22):3584, 2015. doi:10.1093/
bioinformatics/btv419.

5 Matteo Comin and Morris Antonello. Fast entropic profiler: An information theoretic
approach for the discovery of patterns in genomes. IEEE/ACM Trans. Comput. Biol.
Bioinformatics, 11(3):500–509, May 2014. doi:10.1109/TCBB.2013.2297924.

6 Matteo Comin, Andrea Leoni, and Michele Schimd. Clustering of reads with alignment-
free measures and quality values. Algorithms for Molecular Biology, 10(1):4, 2015. doi:
10.1186/s13015-014-0029-x.

7 Aaron E. Darling, Todd J. Treangen, Louxin Zhang, Carla Kuiken, Xavier Messeguer,
and Nicole T. Perna. Procrastination leads to efficient filtration for local multiple align-
ment. In Philipp Bücher and Bernard M.E. Moret, editors, Algorithms in Bioinform-
atics: 6th International Workshop, WABI 2006, Zurich, Switzerland, September 11-13,
2006. Proceedings, pages 126–137. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.
doi:10.1007/11851561_12.

8 Samuele Girotto, Matteo Comin, and Cinzia Pizzi. Binning metagenomic reads with prob-
abilistic sequence signatures based on spaced seeds. To Appear, 2017.

9 Samuele Girotto, Cinzia Pizzi, and Matteo Comin. MetaProb: accurate metagenomic
reads binning based on probabilistic sequence signatures. Bioinformatics, 32(17):i567–i575,
September 2016. doi:10.1093/bioinformatics/btw466.

10 Lars Hahn, Chris-André Leimeister, Rachid Ounit, Stefano Lonardi, and Burkhard Mor-
genstern. Rasbhari: Optimizing spaced seeds for database searching, read mapping and
alignment-free sequence comparison. PLOS Computational Biology, 12(10):1–18, 10 2016.
doi:10.1371/journal.pcbi.1005107.

http://dx.doi.org/10.1016/S0022-2836(05)80360-2
http://dx.doi.org/10.1142/S0219720004000983
http://dx.doi.org/10.1093/bioinformatics/17.5.419
http://dx.doi.org/10.1093/bioinformatics/btv419
http://dx.doi.org/10.1093/bioinformatics/btv419
http://dx.doi.org/10.1109/TCBB.2013.2297924
http://dx.doi.org/10.1186/s13015-014-0029-x
http://dx.doi.org/10.1186/s13015-014-0029-x
http://dx.doi.org/10.1007/11851561_12
http://dx.doi.org/10.1093/bioinformatics/btw466
http://dx.doi.org/10.1371/journal.pcbi.1005107

S. Girotto, M. Comin, and C. Pizzi 7:13

11 Lucian Ilie, Silvana Ilie, and Anahita Mansouri Bigvand. SpEED: fast computation of
sensitive spaced seeds. Bioinformatics, 27(17):2433, 2011. doi:10.1093/bioinformatics/
btr368.

12 Uri Keich, Ming Li, Bin Ma, and John Tromp. On spaced seeds for similarity search. Dis-
crete Applied Mathematics, 138(3):253–263, 2004. doi:10.1016/S0166-218X(03)00382-2.

13 Chris-Andre Leimeister, Marcus Boden, Sebastian Horwege, Sebastian Lindner, and
Burkhard Morgenstern. Fast alignment-free sequence comparison using spaced-word fre-
quencies. Bioinformatics, 30(14):1991, 2014. doi:10.1093/bioinformatics/btu177.

14 Stinus Lindgreen, Karen L. Adair, and Paul Gardner. An evaluation of the accuracy
and speed of metagenome analysis tools. Scientific Reports, 6, 2016. Article No. 19233.
doi:10.1038/srep19233.

15 Bin Ma and Ming Li. On the complexity of the spaced seeds. Journal of Computer and
System Sciences, 73(7):1024–1034, 2007. Bioinformatics {III}. doi:10.1016/j.jcss.2007.
03.008.

16 Bin Ma, John Tromp, and Ming Li. Patternhunter: faster and more sensitive homology
search. Bioinformatics, 18(3):440, 2002. doi:10.1093/bioinformatics/18.3.440.

17 Hamid Mohamadi, Justin Chu, Benjamin P. Vandervalk, and Inanc Birol. ntHash: re-
cursive nucleotide hashing. Bioinformatics, page btw397, July 2016. doi:10.1093/
bioinformatics/btw397.

18 Taku Onodera and Tetsuo Shibuya. The gapped spectrum kernel for support vector ma-
chines. In Proceedings of the 9th International Conference on Machine Learning and Data
Mining in Pattern Recognition, MLDM’13, pages 1–15, Berlin, Heidelberg, 2013. Springer-
Verlag. doi:10.1007/978-3-642-39712-7_1.

19 Rachid Ounit and Stefano Lonardi. Higher classification sensitivity of short metagenomic
reads with CLARK-S. Bioinformatics, 32(24):3823, 2016. doi:10.1093/bioinformatics/
btw542.

20 Rachid Ounit, Steve Wanamaker, Timothy J. Close, and Stefano Lonardi. CLARK: fast
and accurate classification of metagenomic and genomic sequences using discriminative
k-mers. BMC Genomics, 16(1):1–13, 2015. doi:10.1186/s12864-015-1419-2.

21 Laxmi Parida, Cinzia Pizzi, and Simona E. Rombo. Irredundant tandem motifs. Theoretical
Computer Science, 525:89–102, 2014. Advances in Stringology. doi:10.1016/j.tcs.2013.
08.012.

22 C. Pizzi, P. Rastas, and E. Ukkonen. Finding significant matches of position weight matrices
in linear time. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
8(1):69–79, Jan 2011. doi:10.1109/TCBB.2009.35.

23 Stephen M. Rumble, Phil Lacroute, Adrian V. Dalca, Marc Fiume, Arend Sidow, and Mi-
chael Brudno. Shrimp: Accurate mapping of short color-space reads. PLOS Computational
Biology, 5(5):1–11, 05 2009. doi:10.1371/journal.pcbi.1000386.

24 Ariya Shajii, Deniz Yorukoglu, Yun William Yu, and Bonnie Berger. Fast genotyping
of known snps through approximate k-mer matching. Bioinformatics, 32(17):i538, 2016.
doi:10.1093/bioinformatics/btw460.

25 Derrick E. Wood and Steven L. Salzberg. Kraken: ultrafast metagenomic sequence
classification using exact alignments. Genome Biology, 15:R46, 2014. doi:10.1186/
gb-2014-15-3-r46.

WABI 2017

http://dx.doi.org/10.1093/bioinformatics/btr368
http://dx.doi.org/10.1093/bioinformatics/btr368
http://dx.doi.org/10.1016/S0166-218X(03)00382-2
http://dx.doi.org/10.1093/bioinformatics/btu177
http://dx.doi.org/10.1038/srep19233
http://dx.doi.org/10.1016/j.jcss.2007.03.008
http://dx.doi.org/10.1016/j.jcss.2007.03.008
http://dx.doi.org/10.1093/bioinformatics/18.3.440
http://dx.doi.org/10.1093/bioinformatics/btw397
http://dx.doi.org/10.1093/bioinformatics/btw397
http://dx.doi.org/10.1007/978-3-642-39712-7_1
http://dx.doi.org/10.1093/bioinformatics/btw542
http://dx.doi.org/10.1093/bioinformatics/btw542
http://dx.doi.org/10.1186/s12864-015-1419-2
http://dx.doi.org/10.1016/j.tcs.2013.08.012
http://dx.doi.org/10.1016/j.tcs.2013.08.012
http://dx.doi.org/10.1109/TCBB.2009.35
http://dx.doi.org/10.1371/journal.pcbi.1000386
http://dx.doi.org/10.1093/bioinformatics/btw460
http://dx.doi.org/10.1186/gb-2014-15-3-r46
http://dx.doi.org/10.1186/gb-2014-15-3-r46

7:14 Fast Spaced Seed Hashing

A Appendix

Table 3 Nine spaced seeds with W = 11 and length 16 computed with rasbhari minimizing
overlap complexity.

Q10 1011101100101110
Q11 1100111100011110
Q12 1101011100011110
Q13 1101101110111000
Q14 1110110010110110
Q15 1111001100101110
Q16 1111001101110010
Q17 1111100011010110
Q18 1111110001011100

Table 4 Nine spaced seeds with W = 32 and length 45 computed with rasbhari minimizing
overlap complexity.

Q19 100111111111110010010111101111001110110110111
Q20 101001111001011111011110111111110001010111111
Q21 110100110101111100011111011011111111111110001
Q22 110101011001100111110101110011001111111111111
Q23 110111011111111101101111101010010000011111111
Q24 111011100111010001101111001111110011111110111
Q25 111100011011010010011111111011111111100011111
Q26 111101001101110011101110101011101110111011111
Q27 111101101111100011111110001011101011110111011

A General Framework for Gene Tree Correction
Based on Duplication-Loss Reconciliation
Nadia El-Mabrouk1 and Aïda Ouangraoua2

1 Département d’informatique et de recherche opérationnelle, Université de
Montréal, Montreal, QC, Canada
mabrouk@iro.umontreal.ca

2 Département d’informatique, Université de Sherbrooke, Sherbrooke, QC,
Canada
aida.ouangraoua@usherbrooke.ca

Abstract
Due to the key role played by gene trees and species phylogenies in biological studies, it is
essential to have as much confidence as possible on the available trees. As phylogenetic tools
are error prone, it is a common task to use a correction method for improving an initial tree.
Various correction methods exist. In this paper we focus on those based on the Duplication-Loss
reconciliation model. The polytomy resolution approach consists in contracting weakly supported
branches and then refining the obtained non-binary tree in a way minimizing a reconciliation
distance with the given species tree. On the other hand, the supertree approach takes as input
a set of separated subtrees, either obtained for separared orthology groups or by removing the
upper branches of an initial tree to a certain level, and amalgamating them in an optimal way
preserving the topology of the initial trees. The two classes of problems have always been
considered as two separate fields, based on apparently different models. In this paper we give
a unifying view showing that these two classes of problems are in fact special cases of a more
general problem that we call LabelGTC, whose input includes a 0-1 edge-labelled gene tree
to be corrected. Considering a tree as a set of triplets, we also formulate the TripletGTC
Problem whose input includes a set of gene triplets that should be preserved in the corrected
tree. These two general models allow to unify, understand and compare the principles of the
duplication-loss reconciliation-based tree correction approaches. We show that LabelGTC is a
special case of TripletGTC. We then develop appropriate algorithms allowing to handle these
two general correction problems.

1998 ACM Subject Classification G.2.1 Combinatorics

Keywords and phrases gene tree correction, supertree,- polytomy, reconciliation, phylogeny

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.8

1 Introduction

Studying the functional specificities of gene copies, such as their role in metabolic pathways
of interest, usually requires a trusted gene tree. However, for various reasons related to the
specificities of phylogenetic software, the considered evolutionary models or errors in the
multiple alignments, constructed trees are usually not fully satisfactory. Consequently, most
tree construction methods integrate measures of statistical support obtained by bootstrapping
or jackknifing [3], reflecting the confidence we have on the prediction. A strong support on a
branch reflects a strong support on the clade (in case of a rooted tree) or the bipartition (in
case of an unrooted tree) represented by this branch. Results coming out from bioinformatics
pipelines should then be analyzed in light of this uncertainty in the considered trees.

© Nadia El-Mabrouk and Aïda Ouangraoua;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 8; pp. 8:1–8:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.WABI.2017.8
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

8:2 A General Framework for Gene Tree Correction

Alternatively, trees may be corrected before carrying on with the biological analysis. Due
to the fact that standard gene tree databases, such as Ensembl [15], are known to be error
prone, gene tree correction methods are frequently used upstream to obtain better trees for
gene families (c.f. for example NOTUNG [2], TreeFix [16], ProfileNJ[10], MowgliNNI [9],
ecceTERA [4], MRL [8]). Most are based on minimizing a reconciliation distance with
a given species tree, some including horizontal gene transfer. In this paper, we restrict
ourselves to the duplication-loss reconciliation distance that we simply call the reconciliation
distance. Moreover, we focus on polytomy-based and supertree-based correction methods
that cover a large set of correction methods, although not all (for example, TreeFix [16] relies
on exploring a space surrounding an initial tree, and cannot be categorized as a polytomy or
supertree-based correction method.)

Polytomy-based correction methods rely on contracting branches with weak support,
leading to a non-binary tree, and then resolving multifurcated nodes (polytomies) in a binary
way minimizing the reconciliation distance with the species tree [2, 5, 10, 12, 17]. The most
efficient algorithm for resolving a non-binary tree is linear in the size of the tree [5, 17].
Such a polytomy resolution approach preserves the subtrees in terms of topology and gene
content. In other words, the exhibited monophily of input gene clusters is not challenged by
a polytomy resolution method.

Other methods rather stand on amalgamating “trusted” partial trees into a single one
for the whole family [8, 14]. Such partial trees may be obtained by constructing them
independently for partial sets of orthologs, or by removing weakly supported branches of an
initial tree. In [6, 7], we have formalized this approach in terms of a supertree method for
gene trees. The defined SuperGeneTree (SGT) problem consists in constructing, from a set of
partial trees, a tree containing them all and minimizing the reconciliation distance. A simplest
version considering the duplication distance has been shown NP-hard [6]. Conceptually, the
supertree-based correction method is more general than the polytomy-based one, as only
the topology of initial trees should be preserved in the former case, while the latter requires
also to preserve the clades. Although it may be relevant to challenge the monophiletic
nature of input partial gene trees, SGT may lead to a drastic reorganization giving rise to a
tree grouping genes that are far apart in the original tree. To avoid this problem, we also
introduced the Triplet Respecting Supergenetree (TRS) problem [7], asking for a supertree
displaying all input subtrees, while preserving the topology of any triplet of genes taken from
three different subtrees (clades).

The polytomy-based and supertree-based models of gene tree correction have been
developed separately, considering separate assumptions and constraints. Some assumptions
are actually questionable such as the one considering upper branches as the ones that should
be removed in the case of a polytomy resolution, or alternatively kept in the case of TRS. In
fact, support can be strong or weak on any branch of the tree. Moreover, in the absence
of a unifying model, the conservative or permissive nature of each method with respect to
another one can only be tested empirically. Here, we show that all these methods can in
fact be considered in a unifying way, as special cases of a more general gene tree correction
problem taking as input a 0-1 edge-labelling derived from edge statistical supports.

In Section 3, we introduce the Label Respecting GeneTreeCorrection (La-
belGTC) Problem whose input includes a 0-1 edge-labelled gene tree to be corrected. We
show that the polytomy related and supertree related correction problems are all special cases
of this problem. In Section 4, we then define Triplet Respecting GeneTreeCorrection
(TripletGTC) Problem, a more general problem whose input includes a set of gene triplets
that should be preserved in the corrected tree. We show that LabelGTC is a special case of

N. El-Mabrouk and A. Ouangraoua 8:3

a1 b1 c2 d1 e1 c1 d2 d3 e2 e3

0"

1" 1"

1"

1"

0"

0"

a1 b1 c2 d1 e1

β

γ

α

δ

δ

d2 d3 e2 e3 c1

δ

δ

ββ
δ 0"

T
LabelGTC"

a b c d e

S

α
γ

δ
β

α
γ βδ

δ
γ

T’

Figure 1 Left. A species tree S for Σ = {a, b, c, d, e}, a reconciled 0-1 edge-labelled gene
tree T for Γ = {a1, b1, c1, c2, d1, d2, d3, e1, e2, e3} where each leaf xi denotes a gene belonging to
species x, and a covering set T of subtrees for T indicated by circles around each subtree. Square
nodes are duplications and circular nodes are speciations. Internal nodes are labelled according to
corresponding ancestral species in S. Dotted lines are losses. Right. A supertree for T of minimum
reconciliation cost (cost of 5) respecting the edge labelling of T .

TripletGTC. As these problems include the SGT problem as a sub-problem, they are both
NP-hard for the duplication distance. In Section 5, we then exhibit a recursive algorithm for
LabelGTC and show how it can be used to define a heuristic algorithm for TripletGTC.
Finally, a variant of the LabelGTC Problem, allowing for an extended labelling, is presented
in Section 6. Developed algorithms have the same exponential time-complexity as the one
previously developed for the SGT problem [7], that is a particular case of the new problems
studied here. All missing proofs are given in Appendix.

2 Preliminaries on gene tree correction methods

Notations on trees: All considered trees are rooted. A tree is binary if each internal node
(all nodes except the leaves) has exactly two children, and non-binary otherwise. When
not mentioned explicitly, all trees are considered binary (except for the polytomy resolution
problem; we mention it explicitly in this case).

A tree T with leafset L(T) = X is called a tree for X. If X is a set of species, then T is
a species tree. We denote by V (T) the node set and by E(T) the edge set of T . An edge of
E(T) is written as a pair (x, y) of two adjacent nodes, where x is the closest to the root. A
node x is an ancestor of y if it is on the path from y to the root (excluding y). In this case,
y is called a descendant of x. Similarly, an edge (x′, y′) is an ancestor of an edge (x, y) if it
is on the path from (x, y) to the root. Given a node x, T [x] is the subtree of T rooted at x

and L(x) the leafset of T [x]. Two subtrees T [x] and T [y] are separated in T iff x 6= y and
none of x or y is an ancestor of the other. It follows that L(x) ∩ L(y) = ∅.

The lowest common ancestor of L′ ⊆ L(T), denoted lcaT (L′), is the ancestor common
to all leaves in L′ that is the most distant from the root. T |L′ is the tree with leafset L′

obtained from the subtree of T rooted at lcaT (L′) by removing all leaves that are not in L′,
and then all internal nodes of degree 2, except the root of this tree. Let T ′ be a tree such
that L(T ′) = L′ ⊆ L(T). We say that T displays T ′ iff T |L′ is label-isomorphic to T ′. In
this case, we also say that T preserves the topology of T ′.

A set T of trees, with possibly overlapping leafsets, is consistent if there is a tree T ′ on
the union of their leafsets displaying them all. Such a tree T ′ is called a supertree for T . For
example, in Figure 1, the tree T ′ is a supertree for the set of subtrees of T circled in blue
color.

Gene tree and reconciliation: A gene family is a set of genes Γ accompanied with a mapping
function s : Γ→ Σ from each gene to its corresponding species in a set of species Σ. Consider
a gene family Γ where each gene x ∈ Γ belongs to a species s(x) of Σ. The evolutionary

WABI 2017

8:4 A General Framework for Gene Tree Correction

a b c d e

S

α
γ

δ
β

a1 b1 c2 d1 e1 c1 d2 d3 e2 e3

δ

β

γ

γ

α
γ

δ
δ

δ

a1 b1 c2 d1 e1

c1

d2 d3 e2 e3

β

γ

α

δ
δ

δ

a1 b1 c2 d1 e1 c1 d2 d3 e2 e3

δ

β

γ

γ

α
γ

δ β

ββ

ed

ed

a1 b1 c2 d1 e1

β

γ

γ

α

δ

δ

d2 d3 e2 e3

ββc1

δ
β β

β

T
TRS"

Figure 2 Top left. Species tree S for Σ = {a, b, c, d, e}, gene tree T for Γ =
{a1, b1, c1, c2, d1, d2, d3, e1, e2, e3} with a covering set T of subtrees for T as in Figure 1 (without
the 0-1 labelling of edges). Bottom left. A polytomy resolution supertree for T of minimum
reconciliation cost (cost of 3). Bottom right. A supertree for T of minimum reconciliation cost
(cost of 3). Top right. A triplet respecting supertree for T of minimum reconciliation cost (cost of
5). Note that the three optimal supertrees for the TRS, SGT and PolyRes problems differ from
the optimal supertree for the LabelGTC problem depicted in Figure 1, because the implicit 0-1
edge-labellings differ from the one in Figure 1.

history of Γ can be represented as a gene tree T for Γ. Each internal node of T refers to an
ancestral gene at the moment of an event, either speciation (Spec) or duplication (Dup). Let
S be a species tree for Σ. The mapping s is extended to be defined from V (T) to V (S) as
follows: if x is an internal node of T , then s(x) = lcaS({s(x′) : x′ ∈ L(x)}).

When the type of event is known for each internal node, the gene tree T is said labelled.
Formally, a labelled gene tree for Γ is a pair (T, evT), where T is a tree for L(T) = Γ,
and evT : V (T) \ L(T)→ {Dup, Spec} is a function labelling each internal node of T as a
duplication or a speciation node.

The lca-reconciliation (or simply reconciliation for short) of a gene tree T with a species
tree S is the labelled tree (T, evT) obtained by labelling each internal node x of T with
children xl and xr as Spec iff s(xl) and s(xr) are separated in S, and as Dup otherwise. The
mapping function s and the node labelling also induce gene loss events on branches of the
gene tree (see Figures 1 and 2 for examples of lca-reconciliations of gene trees with species
trees, and the induced loss events). The reconciliation cost of a labelled tree (T, evT) is its
number of duplication nodes and induced loss events.

We end this section with a final definition. Let T and T ′ be two trees on Γ. If (x, y) is
an edge of E(T) and there is an edge (x′, y′) in E(T ′) such that L(y) = L(y′), we say that
T ′ preserves the edge (x, y) of T .

3 A unifying view on gene tree correction problems

In the remaining of the paper, S is a species tree on a species set Σ and T is a gene tree for
a gene set Γ.

The correction problem asks for a “better tree” T ′ for Γ according to the reconciliation
cost. The various versions of the problem differ on the flexibility we have on modifying T .
Which parts of T should be preserved ? The most natural way to do is to preserve all well
supported branches, according to a given statistical support, and be allowed to modify all
weakly supported branches. Notice that the support on a branch (x, y) reflects the confidence
we have on the fact that L(y) represents a separate clade in the gene family.

N. El-Mabrouk and A. Ouangraoua 8:5

The underlying representation is a 0-1 edge labelling of T edges, where 0 indicates a low
support and 1 a high support according to a certain threshold.

In addition, if the tree T contains a set of separated subtrees whose topologies are
“trusted”, they should be considered as an additional parameter. Such trusted topologies
may, for instance, be those obtained separately for different orthology groups agreeing with
the species tree, and used to build T .

Accordingly, the most general gene tree correction problem is formulated below, where a
covering set of subtrees T for T is a set of separated subtrees of T , T = {T [x1], T [x2], . . . , T [xn]}
such that ∪n

i=1L(xi) = L(T), and a 0-1 edge labelling for T is a function l defined from the
set of edges E(T) to {0,1}. In the following formulation, edge labels are ignored for the trees
of T (see Figure 1 for an illustration of the LabelGTC Problem).

Label Respecting GeneTreeCorrection (LabelGTC) Problem:
Input: A species tree S, a gene tree T , a covering set of trees T for T and a 0-1 edge labelling
l for T .
Output: A supertree T ′ for T of minimum reconciliation cost such that: if (x, y) ∈ E(T)\E(T)
is such that l(x, y) = 1, then there is an edge (x′, y′) in E(T ′) such that L(y) = L(y′).

Notice that if no information on “trusted” separated subtrees is available, then each tree
of T is simply restricted to a leaf of T , in which case T simply refers to the leafset of T .

The above formulation is not the one actually considered in the literature. Some special
cases of the LabelGTC problem where the input covering set of trees T is the leafset of
T were considered in [2, 5, 10, 12] under the name of Polytomy Resolution problems, and
in [6, 7, 8, 14] under the name of Supertree problems. In the following paragraphs, we
recall these polytomy related and supertree related correction problems (see Figure 2 for an
illustration of the problems). We will show later that they are all special cases of the general
LabelGTC formulation.

The polytomy resolution problem

The general version of the problem consists in contracting all weakly supported internal
branches of the input gene tree T , leading to a non-binary tree denoted by T nb, and then
finding a binary refinement of T nb minimizing the reconciliation cost. Formally, given a
non-binary gene tree T nb, a binary tree T ′ is a binary refinement of T nb if for any node x of
T nb, there exists a node x′ in T ′ such that L(x) = L(x′).

The simplest form of a non-binary tree is a polytomy defined as a set of leaves L, all
being adjacent to the root. Given a non-binary gene tree T nb, it has been shown that a
refinement of minimum cost for T nb can be obtained by a depth-first procedure iteratively
solving each polytomy T [x], for each internal non-binary node x of T nb. This is the reason
for the name given to the general problem formulated below. The restriction to a single
polytomy is formulated afterwards. It is also required in the main Theorems 1 and 6 of the
paper.

Mutiple Polytomy Resolution (M-PolyRes) Problem:
Input: A species tree S and a 0-1 edge-labelled gene tree T .
Output: A binary refinement of T nb minimizing the reconciliation distance.

As stated above, the simplest form of the problem is a single polytomy. It consists in
having a single non-binary node in T nb, the root, such that the subtrees rooted at the children

WABI 2017

8:6 A General Framework for Gene Tree Correction

of the root are “trusted” partial trees that should remain rooted subtrees of the final tree
(see the tree obtained from PolyRes in Figure 2).

Polytomy Resolution (PolyRes) Problem:
Input: A species tree S, a gene tree T and a covering set of trees T for T .
Output: A supertree T ′ for T of minimum reconciliation cost such that for any tree Ti ∈ T ,
T ′|L(Ti) = Ti.

The supertree resolution problem

The above formulation of the polytomy resolution problem is a special case of the more
general supertree problem, where the constraint of preserving the monophily of input “trusted”
partial trees is relaxed. In [6], the SuperGenetree correction problem is formulated as follows.

SuperGenetree (SGT) Problem:
Input: A species tree S, a gene tree T and a covering set of trees T for T .
Output: A supertree T ′ for T of minimum reconciliation cost.

The triplet-respecting supertree problem

To avoid having a supertree grouping genes that are far apart in the original tree, we
introduced, in [7], an alternative problem allowing to restrict the output space to supertrees
preserving the topology of any triplet of genes taken from three different input subtrees of T .
The triplet-based constrained supertree problem is the following.

Triplet-Respecting SuperGeneTree (TRS) Problem:
Input: A species tree S, a gene tree T and a covering set of trees T for T .
Output: A supertree T ′ for T of minimum reconciliation cost respecting the following
property: for any triplet (a, b, c) where a, b and c are genes of Γ being leaves of three different
trees of T , T ′|{a,b,c} = T|{a,b,c}.

For example, the tree which is a solution of the SGT Problem in Figure 2 is not a solution
of the TRS problem as the triplet (a1, c1, c2), where each gene belongs to a separate subtree
of the covering set T of T , has the topology (a1, (c1, c2)) in this tree while it has the topology
((a1, c1), c2) in T .

A unifying view

The following Theorem shows that the polytomy related and supertree related problems are
in fact special cases of the general LabelGTC problem. Given a covering set of subtrees T
for T , we call a terminal edge an edge of E(T) \ E(T) which is adjacent to a tree of T . All
other edges of E(T) \ E(T) are called non-terminal edges (see Figure 3 for an illustration).

I Theorem 1. Let T be a 0-1 edge-labelled gene tree and T be a covering set for T . Then
the LabelGTC Problem is reduced to:
1. the M-PolyRes Problem if T = L(T); Otherwise:
2. the PolyRes Problem if all non-terminal edges are labelled 0, and all terminal edges are

labelled 1;
3. the SGT Problem if all non-terminal and terminal edges are labelled 0;
4. the TRS Problem if all non-terminal edges are labelled 1, and all terminal edges are

labelled 0.

N. El-Mabrouk and A. Ouangraoua 8:7

0"

0"0"
1" 1" 1" 1"

1"
0"

1"1"

0"

0"

0"0"
0" 0" 0" 0"

0"
0"

0"0"

0" 1"

1"1"
0" 0" 0" 0"

0"
1"

0"0"

1"

0"

1"0"
0" 1"

0" 1"

0"

TRS"

PolyRes"

SGT"

0"

1"0"
0" 1" 0" 0"

0" 1"
1"0"

0"LabelGTC"

y1" y2"

y3"
y4"

y5"

y1"
Y*"

Y*" y4" Y*"
2"

3" 5"

Figure 3 Top left. A gene tree T with a covering set T composed of 7 subtrees indicated as
triangles. The set E(T) \ E(T) contains 7 terminal edges (dotted lines) and 5 non-terminal edges
(solid lines). Four 0-1 edge labelling corresponding to: Top right. the PolyRes problem ; Middle
left. the SGT problem ; Middle right. the TRS problem ; Bottom left. a general input of
the LabelGTC problem. In all four cases, the largest covering set of edges of E(T) that have no
ancestral edge labelled 1 are indicated with thicker red lines. Bottom right. The tree T ∗ built at
step 2.b.) of the LabelGTC algorithm (Theorem 8) for the general input (Bottom left).

Proof. The problem LabelGTC on {T,L(T)} is reduced to:
1. M-PolyRes if T = L(T), because there is a bijection between the edges of E(T) labelled

1 and the set of nodes (excluding the root node) of the non-binary tree T nb obtained
from T by contracting all edges labelled 0 : an edge (x, y) of T labelled 1 corresponds
to a node y′ of T nb such that L(y) = L(y′). So a tree T ′ preserves the edges of E(T)
labelled 1 iff it is a binary refinement of T nb.

2. PolyRes if all non-terminal edges are labelled 0 and all terminal edges are labelled 1,
because a supertree T ′ of T preserves the terminal edges of E(T) iff for any tree Ti ∈ T ,
T ′|L(Ti) = Ti.

3. SGT if all non-terminal and terminal edges are labelled 0, because the set of edges to be
conserved by LabelGTC is empty in this case.

4. TRS if all non-terminal edges are labelled 1 and all terminal edges are labelled 0, because
any triplet (a, b, c) of genes belonging to three different trees of T can be associated to
a non-terminal edge of E(T) as follows: suppose that a and y = lca(b, c) are separated
w.l.o.g. and let x be the parent node of y, then the edge (x, y) of T is a non-terminal
edge of E(T) because b and c belong to two different trees of T and (a, b, c) belongs to
Trp(x, y) (Definition 2). Now, it suffices to notice that a supertree T ′ for T preserves a
non-terminal edge (x, y) of T iff it preserves the topology of all triplets of Trp(x, y). J

4 Relating gene tree correction problems to triplets

So far, the TRS Problem is the only one that was defined in terms of triplets. However, as a
rooted tree is fully determined by the topology of its set of leaf triplets, TRS can be seen
as a special case of a very natural general gene tree correction problem, that we formulate
below.

WABI 2017

8:8 A General Framework for Gene Tree Correction

We first need to introduce some definitions. Generalizing the notion used for the TRS
problem, a triplet of genes is a triplet (a, b, c) of distinct genes of Γ. By convention and
without loss of generality, we consider that a and lca(b, c) are separated in T . Let T and T ′

be two trees for Γ and Trp be a set of triplets. We say that T ′ is triplet respecting for Trp

as compared to T iff T ′ displays the same topology as T for each triplet of Trp. The general
gene tree correction problem is formulated as follows.

Triplet-Respecting GeneTreeCorrection (TripletGTC) Problem:
Input: A species tree S, a gene tree T , a covering set of trees T for T and a set Trp of
triplets;
Output: A supertree T ′ for T of minimum reconciliation cost respecting Trp.

The set Trp can be restricted to triplets with genes belonging to at least two different
trees of T , as the other triplets are necessarily displayed by a supertree for T . We call
TripletGTCleaves the TripletGTC problem in the special case where T = L(T).

The following theorem makes the link between the LabelGTC problem and the Triplet-
GTC problem. First, we formally define the set of triplets associated to an edge and that
associated to a rooted subtree.

I Definition 2. Let (x, y) be an edge of E(T). The set of triplets Trp(x, y) contains all the
triplets (a, b, c) such that a and y are separated and lca(b, c) = y.

I Definition 3. Let Ti be a subtree of T . The set of triplets Trp(Ti) contains all the triplets
(a, b, c) such that a, b and c are leaves of Ti.

For example, in the gene tree T depicted in Figure 1, if (x, y) is the non-terminal edge
such that L(y) = {d2, d3, e2, e3}, then Trp(x, y) = {(a, b, c) |a ∈ Γ\{d2, d3, e2, e3}and(b, c) ∈
{d2, d3} × {e2, e3}}, and = Trp(T [y]) = {(d2, d3, e2), (d2, d3, e3), (d2, e2, e3), (d3, e2, e3)}.

Note that a tree T ′ for L(T) preserves an edge (x, y) of E(T) \ E(T) iff it preserves the
topology of all triplets in Trp(x, y). Similarly, it preserves the topology of a subtree Ti of T

iff it preserves the topology of all triplets in Trp(Ti).

I Theorem 4. Let T be a 0-1 edge-labelled gene tree, T be a covering set for T and Trp be
a set of triplets. Then, the TripletGTC Problem is reduced to the LabelGTC Problem iff
Trp = {Trp(x, y) | (x, y) ∈ E(T) \ E(T) and l(x, y) = 1}.

We now make the link between the various gene tree correction problems and the
TripletGTCleaves problem by analyzing the output of TripletGTCleaves depending on
the input set of triplets Trp. With respect to the set of initial subtrees T , a triplet (a, b, c) of
genes can either be included in a single subtree or distributed among two or three subtrees.
We formally define these three possibilities of triplet-respecting trees in the next definition.

I Definition 5. Let T be a gene tree and T be a covering set for T . Each of the following
sets of triplets contains all the triplets (a, b, c) where a, b and c are disjoint genes satisfying
the corresponding property:

Trp1: a, b, c all belong to the same tree of T ;
Trp2: a, b, c belong to two different trees of T ;
Trp3: a, b, c all belong to different trees of T .

The following theorem extends the result of Theorem 4.

I Theorem 6. Let T be a tree, T be a covering set of subtrees for T and Trp be a set of
triplets. Then the TripletGTCleaves Problem is reduced to:

N. El-Mabrouk and A. Ouangraoua 8:9

1. the Identity if Trp = Trp1 ∪ Trp2 ∪ Trp3 (no modification of the input tree); Otherwise:
2. if Trp = Trp1 ∪ Trp2, the PolyRes Problem;
3. if Trp = Trp1 ∪ Trp3, the TRS Problem;
4. if Trp = Trp2 ∪ Trp3, the M-PolyRes Problem with:

(a) all non-terminal and terminal edges labelled 1 and,
(b) all other edges (in E(T)) labelled 0;

5. if Trp = Trp1, the SGT Problem;
6. if Trp = Trp2, the M-PolyRes Problem with:

(a) all terminal edges labelled 1;
(b) all other edges (non-terminal and in E(T)) labelled 0.

7. if Trp = Trp3, the M-PolyRes Problem with:
(a) all non-terminal edges labelled 1 and,
(b) all other edges (terminal and in E(T)) labelled 0.

5 Algorithm for the LabelGTC Problem

In this section, we describe an algorithm for the LabelGTC problem in the general case of a
0-1 edge labelling that does not correspond to a pre-defined gene tree correction method, as
pointed out by Theorem 1. We will show later that it leads to a heuristic algorithm for the
more general TripletGTC problem.

The idea behind the algorithm for reconstructing the new tree T ′ from the input tree T is
the following. For any edge (x, y) in E(T) \E(T) such that l(x, y) = 1, by definition of the
LabelGTC Problem, there exists a node y′ of T ′ such that L(y′) = L(y). So the subtree
T ′[y′] of T ′ for the subset L(y) can first be constructed independently from the remaining of
the tree, and then grafted at the appropriate location in a way minimizing the reconciliation
cost. This leads to a recursive algorithm reconstructing and amalgamating iteratively, in
a bottom-up order, the subtrees of T ′ for subsets L(y) corresponding to the edges (x, y) in
E(T) \ E(T) verifying l(x, y) = 1. The root r(T) of T is associated to a dummy edge (s, r)
such that l(s, r) = 1.

A covering set of edges for T is a set of separated edges E = {(x1, y1), (x2, y2), · · · , (xn, yn)}
such that E ⊆ E(T) \ E(T) and ∪n

i=1L(yi) = L(T).
Lemma 7 describes a property of covering sets that will be useful for a formal description

of the algorithm solving LabelGTC.

I Lemma 7. Let (x, y) be an edge in E(T) \E(T) such that l(x, y) = 1, and E be the largest
covering set of edges of E(T [y]) that have no ancestral edge in E(T [y]) labelled 1. Then, any
edge of E labelled 0 is a terminal edge.

Given an edge (x, y) in E(T) \E(T) such that l(x, y) = 1, to compute the subtree T ′[y′]
of T ′ for L(y), first we look for the largest covering set of edges E for T [y] such that any
edge in E has no ancestral edge in E(T [y]) labelled 1 (see Figure 3 for illustration). Next, we
distinguish two possible cases. If all edges in E are labelled 0, then T ′[y′] can be obtained by
applying the SGT algorithm [7] (designed as SGT in Algorithm 1) on the set of subtrees
of T belonging to T [y]. Otherwise, E contains edges that are labelled 1. In this case, we
compute each of the subtrees of T ′[y′] corresponding to these edges labelled 1, yielding a set
of subtrees T′ and then we build T ′[y′] using the SGT algorithm again with the constraint
that the trees in T′ should remain unmodified.

I Theorem 8. Algorithm 1 solves the LabelGTC problem on an instance {S, T, T , l} in
time O(4k.(n + 1)k.k) where n = |Γ| and k = |T |.

WABI 2017

8:10 A General Framework for Gene Tree Correction

Algorithm 1 LabelGTC(S, T, T , l)
E = {(x1, y1), (x2, y2), · · · , (xn, yn)} is the largest covering set of edges for T in E(T)\E(T)
that have no ancestral edge labelled 1.
(Stop condition)
if all edges of E are labelled 0 then

return (SGT (S, T, T))
end if
(Iterative step)
for (xi, yi) ∈ E such that l(xi, yi) = 1 do

T ′[y′i] = LabelGTC(S, T [yi], T|L(yi), l|E(T [yi]));
end for
T ∗ is obtained from T by contracting each subtree T [yi] such that (xi, yi) ∈ E and
l(xi, yi) = 1 to a single leaf node y∗i ;
T ∗ is the set of separated subtrees {T [yi] : (xi, yi) ∈ E and l(xi, yi) = 0} ∪ {y∗i : (xi, yi) ∈
E and l(xi, yi) = 1} of T ∗;
T ′∗ = SGT (S, T ∗, T ∗);
return (the tree obtained from T ′∗ by replacing each leaf node y∗i by T ′[y′i]);

Heuristic algorithm for TripletGTC

A natural heuristic algorithm for the TripletGTC problem on a gene tree T with a covering
set T and a set of triplet Trp consists in first giving the label 1 to any edge (x, y) of
E(T) \ E(T) such that there exists a triplet (a, b, c) in Trp belonging to the set Trp(x, y).
Next the LabelGTC algorithm is applied to the obtained edge labelled tree. The corrected
tree resulting from this algorithm will preserve all triplets of Trp, but more largely all triplets
of the set {Trp(x, y) | (x, y) ∈ E(T) \ E(T) and l(x, y) = 1}, which includes Trp.

6 Accounting for the 0-1 edge labelling in partial subtrees

In the formulation of the LabelGTC problem, the 0-1 edge labels are ignored for the trees
of T , and only edges in E(T) \ E(T) labelled 1 have to be preserved. A natural extension
would be to preserve also the edges of T labelled 1.

This can be done by mean of Algorithm 1, but replacing the call to the SGT algorithm
by an algorithm solving the following problem.

Label SuperGenetree (LabelSGT) Problem:
Input: A species tree S, a gene tree T , a covering set of trees T for T and a 0-1 edge labelling
l for T .
Output: A supertree T ′ for T of minimum reconciliation cost such that: if (x, y) ∈ E(T) is
such that l(x, y) = 1, then there is an edge (x′, y′) in E(T ′) such that L(y) = L(y′).

Before describing an algorithm solving the above LabelSGT problem, we first recall
some useful definitions and the algorithm described in [7] for the SGT problem.

Given a gene tree T and a species tree S, cost(T) denotes the reconciliation cost of T with
S. If the root x of T has two children node, one of the subtree of T rooted at a child of x is
arbitrarily denoted by Tl and the other one by Tr. Given a set of gene subtrees {t1, . . . , tk}
and a bipartition (Ll, Lr) of

⋃k
i=1 L(ti), if T ′l and T ′r are two trees for Ll and Lr respectively,

then (Tl, Tr) denotes the tree T such that Tl = T ′l and Tr = T ′r. In this case, cost(Ll, Lr)

N. El-Mabrouk and A. Ouangraoua 8:11

t1lt2l ! t1rt2r ! t1lt2r ! t1rt2l ! t1lt2 ! t1r ! t1l ! t1rt2 !

t1t2l ! t2r ! t2l ! t1t2r! t1 ! t2 !

Figure 4 The 7 bipartitions of a set B(t1, t2). The first 4 bipartitions are those in which L(t1l)
and L(t1r) are separated.

denotes the local reconciliation cost at the root x of the tree (Tl, Tr) counting the number of
losses on the two edges linking x to Tl and Tl, plus 1 if x is a duplication node.

IDefinition 9 (Reformulation of Property 1 from [7]). Given a set of gene subtrees {t1, . . . , tk},
B(t1, . . . , tk) denotes the set of bipartitions (Ll, Lr) of

⋃k
i=1 L(ti) such that each subtree

ti, 1 ≤ i ≤ k, satisfies either: 1) L(ti) ⊆ Ll; or 2) L(ti) ⊆ Lr; or 3) L(til
) ⊆ Ll and

L(tir
) ⊆ Lr; or 4) L(til

) ⊆ Lr and L(tir
) ⊆ Ll.

B(t1, . . . , tk) contains exactly 4k

2 − 1 bipartitions. For example, for k = 2 subtrees, the 7
bipartitions are depicted in Figure 4.

The following is the recurrence formulae of the dynamic programming algorithm described
in [7] for the SGT problem.

I Lemma 10 (Reformulation of Lemma 3 from [7]). The following algorithm solves the SGT
problem on an instance {S, T, T } such that T = {t1, . . . , tk} in time O(4k.(n + 1)k.k) where
n = |

⋃k
i=1 L(ti)|.

1. (Stop condition) If |
⋃k

i=1 L(ti) | = 1, then SGT (t1, . . . , tk) is the gene tree composed of
the corresponding single node;

2. Otherwise, SGT (t1, . . . , tk) = (T ′l , T ′r) where T ′l = SGT (t1|Ll
, . . . , tk|Ll

) and T ′r =
SGT (t1|Lr

, . . . , tk|Lr
) such that:

(Ll, Lr) = argmin
(Ll,Lr)∈B(t1,...,tk)

{cost(Ll, Lr) + cost(T ′l) + cost(T ′r) .}

Let T be a 0-1 edge-labelled gene tree, and T be a covering set of subtrees for T . In
order to preserve the edges in T labelled 1, it suffices to consider, at each step of the
above algorithm, only the bipartitions that do not separate L(til

) and L(tir
) for any subtree

ti, 1 ≤ i ≤ k such that ti = Tj [y] and (x, y) is an edge of E(Tj) labelled 1, unless k = 1. For
example in Figure 4, if t1 is such a subtree, then the four first bipartitions that separate
L(T1l

) and L(T1r) are discarded.
Given a set of gene subtrees {t1, . . . , tk} of T , we define BLabel(t1, . . . , tk) as the subset

of B(t1, . . . , tk) containing all bipartitions that do not separate any subtree ti, 1 ≤ i ≤ k such
that ti = Tj [y], Tj is a tree of T and (x, y) is an edge of E(Tj) labelled 1.

I Theorem 11. The algorithm described in Lemma 10 in which any set B(t1, . . . , tk) is
replaced by the set BLabel(t1, . . . , tk) solves the LabelSGT problem on T with the same time
complexity as the initial algorithm, i.e. in time O(4k.(n + 1)k.k).

7 Conclusion

This paper provides a unifying view allowing to reconcile apparently heterogeneous gene
tree correction methods. The general LabelGTC and TripletGTC approaches have the

WABI 2017

8:12 A General Framework for Gene Tree Correction

advantage of not being dependent upon particular assumptions on trees. We present the
first general algorithm allowing to correct a tree according to an arbitrary 0-1 edge-label, or
more generally to an arbitrary set of triplets whose topology should be preserved. These
algorithms have the same exponential time-complexity as the one previously developed for
the SGT problem [7], which has been proved NP-hard for the duplication distance. Although
no proof of complexity for the more general reconciliation distance exists, it is unlikely that
adding losses makes the problems more tractable. We conjecture the SGT problem, and
more generally the LabelGTC and TripletGTC problems, remain NP-hard in this case.

The 0-1 edge-labelling considered in this paper can be seen as a first step towards integ-
rating knowledge on edge statistical support in a gene tree correction algorithm. Generalizing
the edge-labelling function l to an arbitrary domain would require a complete reformula-
tion of the problems. It may be more intuitive in this case to use a heuristic algorithm
exploring a tree space around the input tree, and among statistically equivalent trees, take
the one minimizing a combination of values accounting for both sequence alignment cost
and reconciliation cost. Several such methods using species tree information in addition to
sequence information, have been developed (e.g. TreeBeST [13], TreeFix [16], PhylDog [1],
SPIMAP [11], ProfilNJ [10]). However, a formal conceptual framework, as the one developed
in this paper, remains to be developed for the gene tree correction problem with a non-binary
edge-labelling function.

References
1 B. Boussau, G.J. Szöllősi, L. Duret, M. Gouy, E. Tannier., and V. Daubin. Genome-scale

coestimation of species and gene trees. Genome Research, 23:323-330, 2013.
2 K. Chen, D. Durand, and M. Farach-Colton. Notung: Dating gene duplications using gene

family trees. Journal of Computational Biology, 7:429–447, 2000.
3 J. Felsenstein. Phylogenies from molecular sequences: Inference and reliability. Ann. Review

Genet., 22:521–565, 1988.
4 E. Jacox, C. Chauve, G.J. Szollosi, Y. Ponty, and C. Scornavacca. ecceTERA: compre-

hensive gene tree-species tree reconciliation using parsimony. Bioinformatics, 32(13):2056-
2058, 2016.

5 M. Lafond, E. Noutahi, and N. El-Mabrouk. Efficient non-binary gene tree resolution
with weighted reconciliation cost. In Combinatorial Pattern Matching, LIPIcs-Leibniz In-
ternational Proceedings in Informatics, volume 54. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2016.

6 M. Lafond, A. Ouangraoua, and N. El-Mabrouk. Reconstructing a supergenetree minimiz-
ing reconciliation. BMC-Genomics, 16:S4, 2015. Special issue of RECOMB-CG 2015.

7 N. El-Mabrouk M. Lafond, C. Chauve and A. Ouangraoua. Gene tree construction and
correction using supertree and reconciliation. In Asia Pacific Bioinformatics Conference,
2017. soon in IEEE/ACM TCBB.

8 N. Nguyen, S. Mirarab, and T. Warnow. MRL and SuperFine+MRL: new supertree meth-
ods. J. Algo. for Mol. Biol., 7(3), 2012.

9 Thi Hau Nguyen, Vincent Ranwez, Stéphanie Pointet, Anne-Muriel Arigon Chifolleau, Jean-
Philippe Doyon, and Vincent Berry. Reconciliation and local gene tree rearrangement can
be of mutual profit. Algorithms Mol Biol, 8(1):12, 2013. doi:10.1186/1748-7188-8-12.

10 E. Noutahi, M. Semeria, M. Lafond, J. Seguin, L. Gueguen, N. El-Mabrouk, and E. Tannier.
Efficient gene tree correction guided by genome evolution. Plos.One, 11(8), 2016.

11 M.D. Rasmussen and M. Kellis. A bayesian approach for fast and accurate gene tree
reconstruction. Molecular Biology and Evolution, 28(1):273- 290, 2011.

http://dx.doi.org/10.1186/1748-7188-8-12

N. El-Mabrouk and A. Ouangraoua 8:13

12 Jamal S.M. Sabir, Robert K. Jansen, Dhivya Arasappan, Virginie Calderon, Emmanuel
Noutahi, Chunfang Zheng, Seongjun Park, Meshaal J. Sabir, Mohammed N. Baeshen,
Nahid H. Hajrah, Mohammad A. Khiyami, Nabih A. Baeshen, Abdullah Y. Obaid, Ab-
dulrahman L. Al-Malki, David Sankoff, Nadia El-Mabrouk, and Tracey A. Ruhlman. The
nuclear genome of Rhazya stricta and the evolution of alkaloid diversity in a medically
relevant clade of apocynaceae. Nature Scientific Reports, 6(33782), 2016.

13 F. Schreiber, M. Patricio, M. Muffato, M. Pignatelli, and A. Bateman. Treefam v9: a
new website, more species and orthology-on-the-fly. Nucleic Acids Research, 2013. doi:
10.1093/nar/gkt1055.

14 C. Scornavacca, L. van Iersel, S. Kelk, and D. Bryant. The agreement problem for unrooted
phylogenetic trees is FPT. Journal of Graph Algorithms and Applications, 18(3):385 - 392,
2014.

15 A. J. Vilella, J. Severin, A. Ureta-Vidal, L. Heng, R. Durbin, and E. Birney. EnsemblCom-
para gene trees: Complete, duplication-aware phylogenetic trees in vertebrates. Genome
Research, 19:327-335, 2009.

16 Y.C. Wu, M.D. Rasmussen, M. S. Bansal, and M. Kellis. TreeFix: Statistically informed
gene tree error correction using species trees. Systematic Biology, 62(1):110- 120, 2013.

17 Y. Zheng and L. Zhang. Reconciliation with non-binary gene trees revisited. In Lecture
Notes in Computer Science, volume 8394, pages 418-432, 2014. Proceedings of RECOMB.

A Proofs

Proof of Theorem 4. Let T be a 0-1 edge-labelled gene tree, T be a covering set of subtrees
for T and Trp be a set of triplets. If Trp =

⋃
{Trp(x, y)|(x, y) ∈ E(T)\E(T)andl(x, y) = 1},

then the TripletGTC problem on {T, T , T rp} is reduced to LabelGTC because a supertree
T ′ of T preserves an edge (x, y) of E(T) \E(T) iff it preserves the topology of all triplets in
Trp(x, y). J

Proof of Theorem 6. The proof follows directly from the following three equalities:
1. Trp1 =

⋃
{Trp(Ti) | Ti ∈ T } ;

2. Trp2 = {Trp(x, y) | (x, y) is a terminal edge of T} ;
3. Trp3 = {Trp(x, y) | (x, y) is a non terminal edge of T}.
So a tree T ′ for L(T) preserves the topology of all trees Ti ∈ T iff it preserves Trp1 ; It
preserves all terminal edges of E(T) iff it preserves Trp2 and it preserves all non-terminal
edges of E(T) iff Trp3. The combination of the inclusion or exclusion of Trp1, Trp2 and
Trp3 in Trp (except the case where Trp = ∅) results in the 7 cases of the theorem. J

Proof of Lemma 7. Let (x, y) be an edge in E(T) \ E(T) such that l(x, y) = 1, and E be
the largest covering set of edges of E(T [y]) that have no ancestral edges in E(T [y]) labelled
1. Suppose that E contains an edge (s, t) labelled 0 that is not a terminal edge and denote
by tl and tr the two children of the node t. Then the edges (t, tl) and (t, tr) belong to
E(T) \E(T) and satisfy the condition that they have no ancestral edges in E(T [y]) labelled
1. So (E ∪ {(t, tl), (t, tr)}) \ {(s, t)} is also a covering set of edges of E(T [y]) that have no
ancestral edges in E(T [y]) labelled 1, which contradicts the assumption that E is the largest
such covering set of edges. J

Proof of Theorem 8. Let T be a 0-1 edge-labelled gene tree, T be a covering set of subtrees
for T and E = {(x1, y1), (x2, y2), · · · , (xn, yn)} be the largest covering set of edges for T that
have no ancestral edge labelled 1.

WABI 2017

8:14 A General Framework for Gene Tree Correction

1. If all edges of E are labelled 0, then by Lemma 7, all the edges of E are terminal edges.
Since E covers T , then all edges of E(T) \ E(T) are labelled 0. So, by Theorem 1, the
problem is reduced to SGT.

2. Otherwise, let T ′ = LabelGTC(S, T, T , l), and for any edge (xi, yi) of E labelled 1 and pre-
served in T ′, let y′i be the node of T ′ such that L(y′i) = L(yi). Since T|L(yi) is a complete
subtree of T , then T ′[y′i] is also a complete subtree of T ′ that can be constructed inde-
pendently of the remaining of the tree T ′ as T ′[y′i] = LabelGTC(S, T [yi], T|L(yi), l|E(T [yi]))
(computed at Step 2.a. of the algorithm). Next, the obtained subtrees must be adequately
grafted on branches of a supergenetree of the remaining trees {T [yi] ∈ T | (xi, yi) ∈
E and l(xi, yi) = 0}. In this case, the problem is also reduced to the SGT problem on
T ∗ = {T [yi] : (xi, yi) ∈ E and l(xi, yi) = 0} ∪ {y∗i : (xi, yi) ∈ E and l(xi, yi) = 0} where
each tree T ′[y′i] computed at Step 2.a. is contracted into a single leaf node y∗i associated
to the leafset L(T ′[y′i]) (computed at Steps 2.b. to 2.e. of the algorithm).

The worst case of the algorithm is the stop case where it is directly reduced to the SGT
algorithm whose time complexity is in O(4k.(n + 1)k.k). J

Proof of Theorem 11. The algorithm described in Lemma 10 solves the SGT problem by
exploring the set of all possible supergenetrees for T . The set of supergenetrees is explored by
considering all possible bipartitions (Ll, Lr) for each set

⋃k
i=1 L(ti) where each ti is a subtree

of a tree of T . So, replacing any set B(t1, . . . , tk) by the set BLabel(t1, . . . , tk) will only discard
the bipartitions (Ll, Lr) that prevent the preservation of an edge of E(T) labelled 1. So the
modification of the algorithm will return a supergenetree for T of minimum reconciliation
cost preserving all edges of E(T) labelled 1. The time complexity of the modified algorithm
remains the same as that of the initial algorithm. J

Towards Distance-Based Phylogenetic Inference in
Average-Case Linear-Time∗

Maxime Crochemore1, Alexandre P. Francisco2, Solon P. Pissis3,
and Cátia Vaz4

1 Department of Informatics, King’s College London, London, UK
2 INESC-ID and Instituto Superior Técnico, Universidade de Lisboa, Lisbon,

Portugal
3 Department of Informatics, King’s College London, London, UK
4 INESC-ID and Instituto Superior de Engenharia de Lisboa, Instituto

Politécnico de Lisboa, Lisbon, Portugal

Abstract
Computing genetic evolution distances among a set of taxa dominates the running time of many
phylogenetic inference methods. Most of genetic evolution distance definitions rely, even if indir-
ectly, on computing the pairwise Hamming distance among sequences or profiles. We propose
here an average-case linear-time algorithm to compute pairwise Hamming distances among a set
of taxa under a given Hamming distance threshold. This article includes both a theoretical ana-
lysis and extensive experimental results concerning the proposed algorithm. We further show how
this algorithm can be successfully integrated into a well known phylogenetic inference method.

1998 ACM Subject Classification E.1 Data Structures, F.2.2 Nonnumerical Algorithms and
Problems

Keywords and phrases computational biology, phylogenetic inference, Hamming distance

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.9

1 Introduction

The evolutionary relationships between different species or taxa are usually inferred through
known phylogenetic analysis techniques. Some of these techniques rely on the inference of
phylogenetic trees, which can be computed from molecular sequences or from profiles built
by sequencing specific regions, e.g., housekeeping genes for a given species. Phylogenetic
trees are also used in other contexts, such as to understand the evolutionary history of gene
families, to allow phylogenetic foot-printing, to trace the origin and transmission of infectious
diseases, or to study the co-evolution of hosts and parasites [11, 23].

In most cases, the process of phylogenetic inference starts with a multiple alignment of
the sequences under study; and then tree-building methods are used. These methods rely on
some distance-based analysis of sequences or profiles [24].

Distance-based methods for phylogenetic analysis rely on a measure of genetic evolution
distance, which is often defined directly or indirectly from the fraction of mismatches at
aligned positions, with gaps either ignored or counted as mismatches. A first step of these
methods is to compute this distance between all pairs of sequences. The simplest approach

∗ This work was partly supported by the Royal Society International Exchanges Scheme, and by na-
tional funds through FCT – Fundação para a Ciência e Tecnologia, under projects BacGenTrack
(TUBITACK/0004/2014), PRECISE (SAICTPAC/0021/2015) and UID/CEC/500021/2013.

© Maxime Crochemore, Alexandre P. Francisco, Solon P. Pissis, and Cátia Vaz;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 9; pp. 9:1–9:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.WABI.2017.9
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

9:2 Towards Distance-Based Phylogenetic Inference in Average-Case Linear-Time

is to use the Hamming distance, also known as observed p-distance, defined as the number of
positions at which two aligned sequences differ. Note that the Hamming distance between
two sequences underestimates their true evolutionary distance and, thus, a correction formula
based on some model of evolution is often used [11, 24]. Although distance-based methods
not always produce the best tree for the data, usually they also incorporate an optimality
criterion into the distance model for getting more plausible phylogenetic reconstructions,
such as the minimum evolution criterion [5], the least squares criterion [22] or the clonal
complexes expansion and diversification [7].

Most of the distance-based methods are agglomerative methods. They start with each
sequence being a singleton cluster and, at each step, they join two clusters. The iterative
process stops when all sequences are part of a single cluster. A phylogenetic tree is obtained
within this process. At each step the candidate pair is selected taking into account the
distance among clusters as well as the optimality criterion chosen to adjust it.

The computation of a distance matrix (2D array containing the pairwise distances between
the elements of a set) is a common first step for distance-based methods, such as eBURST [8],
goeBURST [9], Neighbor Joining [25] and UPGMA [26]. This particular step dominates
the running time of most methods, taking Θ(md2) time in general, d being the number of
sequences or profiles and m the length of each sequence or profile. For large-scale datasets
this running time may be quite problematic.

However, depending on the underlying model of evolution and on the optimality criterion,
it may not be strictly necessary to be aware of the complete distance matrix. There are
methods that continue to provide optimal solutions without a complete matrix. For such
methods, one may still consider a truncated distance matrix and several heuristics, combined
with final local searches through topology rearrangements, to improve the running time [22].
The goeBURST, our use case in this article, is an example of a method that can work with
truncated distance matrices by construction, i.e., one needs only to know which pairs are at
Hamming distance at most k.

Our results. We propose here an average-case O(md)-time and O(md)-space algorithm to
compute the pairs of sequences, among d sequences of length m, that are at distance at most
k, when k < (m−k−1)·logσ

logmd , where σ is the size of the sequences alphabet. We support our
result with both a theoretical analysis and an experimental evaluation on synthetic and real
datasets of different data types (MLST, cgMLST, wgMLST and SNP). We further show that
our method improves goeBURST.

Structure of the article. We describe and analyze the proposed algorithm in Section 2.
The goeBURST use case is presented in Section 3. The experimental evaluation using both
synthetic and real datasets is presented in Section 4.

2 Closest pairs in linear time

Let P be the set of profiles (or sequences) each of length m, defined over an integer alphabet
Σ, (i.e., Σ = {1, . . . ,mO(1)}), with d = |P | and σ = |Σ|. Let also H : P × P → {0, . . . ,m}
be the function such that H(u, v) is the Hamming distance between profiles u, v ∈ P . Given
an integer threshold 0 < k < m, the problem is to compute all pairs u, v ∈ P such that
H(u, v) ≤ k, and the corresponding H(u, v) value, faster than the Θ(md2) time required to
compute naïvely the complete distance matrix for the d profiles of length m.

M. Crochemore, A. P. Francisco, S. P. Pissis, and Cátia Vaz 9:3

Table 1 Data structures used in our approach for each step.

Profile indexing Candidate profile pairs enumeration Pairs verification

Suffix array Binary search Naïve
LCP based clusters RMQLCP

We address this problem by indexing all profiles P using the suffix array (denoted by
SA) and the longest common prefix (denoted by LCP) array [16]. We rely also on a range
minimum queries (RMQ) data structure [1, 2] over the LCP array (denoted by RMQLCP).
The problem is then solved in three main steps:
1. Index all profiles using the SA data structure.
2. Enumerate all candidate profile pairs given the maximum Hamming distance k.
3. Verify each candidate profile pair by checking if the associated Hamming distance is no

more than k.
Table 1 summarizes the data structures and strategies followed in each step. Profiles are
concatenated and indexed using SA. Depending on the strategy to be used, we further process
the SA and build the LCP array and pre-process it for fast RMQ. This allows for enumerating
candidate profile pairs and computing distances faster.

In what follows, we detail the above steps and show how the data structures are used to
improve the overall running time.

2.1 Step 1: Profile indexing
Profiles are concatenated and indexed in an SA in O(md) time and space [12, 14]. Let us
denote this string by s. Since we only need to compute the distances between profiles that are
at Hamming distance at most k, we can conceptually split each profile into k non-overlapping
blocks of length L = b m

k+1c each. It is then folklore knowledge that if two profiles are within
distance k, they must share at least one such block of length L. Our approach is based on
using the SA of s to efficiently identify matching blocks among profile pairs. This lets us
quickly filter in candidate profile pairs and filter out the ones that can never be part of the
output.

2.2 Step 2: Candidate profile pairs enumeration
The candidate profile pairs enumeration step provides the pairs of profiles that do not differ
in more than k positions, but it may include spurious pairs. Since SA is an ordered structure,
a simple solution is to use a binary search approach. For each block of each profile, we can
obtain in O(L log n) time, where n = md, all the suffixes that have that block as a prefix. If
a given match is not aligned with the initial block, i.e. it does not occur at the same position
in the respective profile, then it should be discarded. Otherwise, a candidate profile pair is
reported. This searching procedure is done in O(dkL logn) = O(n logn) time.

Another solution relies on computing the LCP array: the longest common prefix between
each pair of consecutive elements within the SA. This information can also be computed
in O(n) time and space [13]. Since SA is an ordered structure, for the contiguous suffixes
si, si+1, si+2 of s, with 0 ≤ i < n− 2, we have that the common prefix between si and si+1
is at least as long as the common prefix of si and si+2. By construction, it is possible to get
the position of each suffix in the corresponding profile in constant time. Then, we cluster the
corresponding profiles of contiguous pairs if they have an LCP value greater than or equal to
L and they are also aligned. This clustering procedure can be done in O(kd2) time.

WABI 2017

9:4 Towards Distance-Based Phylogenetic Inference in Average-Case Linear-Time

2.3 Step 3: Pairs verification
After getting the set of candidate profile pairs, a naïve solution would be to compute the
distance for each pair of profiles by comparing them in linear time, i.e., O(m) time. However,
if we compute the LCP array of s, we can then perform a sequence of O(k) RMQ over the
LCP array for checking if a pair of profiles is at distance at most k. These RMQ over the
LCP array correspond to longest common prefix queries between a pair of suffixes of s. Since
after a linear-time pre-processing over the LCP array, RMQ can be answered in constant
time per query [1], we obtain a faster approach for computing the distances. This alternative
approach takes O(k) time to verify each candidate profile pair instead of O(m) time.

2.4 Average-case analysis
Algorithm 1 below details the solution based on LCP clusters; and Theorem 1 shows that
this algorithm runs in linear time on average using linear space. We rely here on well-known
results concerning the linear-time construction of the SA [12, 14] and the LCP array [13], as
well as the linear-time pre-processing for the RMQ data structure [2].

In what follows, LCP[i], i > 0, stores the length of the longest common prefix of suffixes
si−1 and si of s, and RMQLCP(i, j) returns the index of the smallest element in the subarray
LCP[i . . . j] in constant time [2]. We rely also on some auxiliary subroutines; let L = b m

k+1c:

Aligned(i). Let ` = i mod m, i.e., the starting position of the suffix si within a profile.
Then this subroutine returns `/L if ` is multiple of L, and −1 otherwise.

HD(pi, pj, `). Given two profiles pi and pj which share a substring of length L, starting
at index `L, this subroutine computes the minimum of k and the Hamming distance
between pi and pj . This subroutine relies on RMQLCP to find matches between pi and
pj and, hence, it runs in O(k) time since it can terminate after k mismatches.

I Theorem 1. Given d profiles of length m each over an integer alphabet Σ of size σ > 1
with the letters of the profiles being independent and identically distributed random variables
uniformly distributed over Σ, and the maximum Hamming distance 0 < k < m, Algorithm 1
runs in O(md) average-case time and space if

k <
(m− k − 1) · log σ

logmd .

Proof. Let us denote by s the string of length md obtained after concatenating the d profiles.
The time and space required for constructing the SA and the LCP arrays for s and the RMQ
data structure over the LCP array is O(md).

Let us denote by B the total number of blocks over s and by L the block length. We
set L = b m

k+1c and thus we have that B = dbmL c. Let us also denote by C a maximal set of
indices over x satisfying the following:
1. the length of the longest common prefix between any two suffixes of s starting at these

indices is at least L;
2. both of these suffixes start at the starting position of a block;
3. and both indices correspond to the starting position of the ith block in their profiles.

This can be done in O(md) time using the LCP array (lines 7–17). Processing all such sets
C (lines 21–27) requires total time

PROCi,j × Pairs

M. Crochemore, A. P. Francisco, S. P. Pissis, and Cátia Vaz 9:5

Algorithm 1: Algorithm using LCP clusters.
1 Input: A set P of d profiles of length m each; an integer threshold 0 < k < m.
2 Output: The set X of distinct pairs of profiles that are at Hamming distance at

most k, i.e., X = {(u, v) ∈ P × P | u < v and H(u, v) ≤ k}.
3 Initialization: Let s = s[0 . . . n− 1] be the string of length n = md obtained after

concatenating the d profiles, and L = b m
k+1c. Construct the SA S for s, the LCP

array for s and RMQLCP. Initialize a hash table H to track verified pairs.
4 Candidate pairs enumeration:
5 X := ∅; `p := −1; Ct := ∅, for 0 ≤ t ≤ k
6 foreach 1 ≤ i < n do
7 ` := LCP[i]
8 if ` ≥ L then
9 pi := bS[i]/mc

10 x := Aligned(i)
11 if x 6= −1 then
12 Cx := Cx ∪ {pi}
13 if `p = −1 then
14 pi−1 := bS[i− 1]/mc
15 x := Aligned(i− 1)
16 if x 6= −1 then
17 Cx := Cx ∪ {pi−1}

18 `p := `

19 else if `p 6= −1 then
20 Pairs enumeration:
21 foreach Ct, with 0 ≤ t ≤ k do
22 foreach (p, q) ∈ Ct × Ct : p < q do
23 if (p, q) /∈ H then
24 H := H ∪ {(p, q)}
25 δ := HD(p, q, t)
26 if δ ≤ k then
27 X := X ∪ {(p, q)}

28 `p := −1; Ct := ∅, for 0 ≤ t ≤ k

29 Finalize: Return the set X.

where PROCi,j is the time required to process a pair i, j of elements of a set C, and Pairs
is the sum of |C|2 over all such sets C. We have that PROCi,j = O(k) by using RMQ over
the LCP array. Additionally, by the stated assumption on the d profiles, the expected value
for Pairs is no more than Bd

σL
: we have B blocks in total and each block can only match at

most d other blocks by the conditions above. Hence, the algorithm requires on average the
following running time

O(md+ k · Bd
σL

).

WABI 2017

9:6 Towards Distance-Based Phylogenetic Inference in Average-Case Linear-Time

Let us analyze this further to obtain the relevant condition on k. We have the following:

k · Bd
σL

=
k · b m

bm/(k+1)cc · d
2

σb
m
k+1 c

≤
k · (m

bm/(k+1)c) · d
2

σ
m
k+1−1 .

Since 0 < k < m by hypothesis, we have the following:

k · (m
bm/(k+1)c) · d

2

σ
m
k+1−1 ≤ (md)2

σ
m
k+1−1 .

By some simple rearrangements we have that:

(md)2

σ
m
k+1−1 = (md)2

(md)
log σ

logmd (m
k+1−1)

= (md)2− (m−k−1) log σ
(k+1) logmd .

Consequently, in the case when

k <
(m− k − 1) · log σ

logmd

the algorithm requires O(md) time on average. The extra space usage is clearly O(md). J

3 Use case: goeBURST algorithm

The distance matrix computation is a main step in distance-based methods for phylogenetic
inference. This step dominates the running time of most methods, taking Θ(md2) time, for d
sequences of length m, since it must compute the distance among all sequence pairs. But for
some methods, or when we are only interested in local phylogenies for sequences or profiles of
interest, one does not need to know all pairwise distances for reconstructing a phylogenetic
tree. The problem addressed in this article was motivated by the goeBURST algorithm [9],
our use case. goeBURST is one of such methods for which one must know only the pairs of
sequences that are at Hamming distance at most k. The solution proposed here can however
be extended to other distance-based phylogenetic inference methods, that rely directly or
indirectly on Hamming distance computations. Note that most methods either consider the
Hamming distance or its correction accordingly to some formula based on some model of
evolution [11, 24]. In both cases we must start by computing the Hamming distance among
sequences, but not necessarily all of them [22].

The underlying model of goeBURST is as follows: a given genotype increases in frequency
in the population as a consequence of a fitness advantage or of random genetic drift, becoming
a founder clone in the population; and this increase is accompanied by a gradual diversification
of that genotype, by mutation and recombination, forming a cluster of phylogenetic closely-
related strains. This diversification of the “founding” genotype is reflected in the appearance
of genetic profiles differing only in one housekeeping gene sequence from this genotype – single
locus variants (SLVs). Further diversification of those SLVs will result in the appearance of
variations of the original genotype with more than one difference in the allelic profile, e.g.,
double and triple locus variants (DLVs and TLVs).

The problem solved by goeBURST can be stated as a graphic matroid optimization
problem and, hence, it follows a classic greedy approach [21]. Given the maximum Hamming
distance k, we can define a graph G = (V,E), where V = P (set of profiles) and E = {(u, v) ∈
V 2 | H(u, v) ≤ k}. The main goal of goeBURST is then to compute a minimum spanning
forest for G taking into account the distance H and a total order on links. It starts with
a forest of singleton trees (each sequence/profile is a tree). Then it constructs the optimal

M. Crochemore, A. P. Francisco, S. P. Pissis, and Cátia Vaz 9:7

forest by adding links connecting profiles in different trees in increasing order accordingly
to the total order, similarly to what is done in the Kruskal’s algorithm [15]. In the current
implementation, a total order for links is implicitly defined based on the distance between
sequences, on the number of SLVs, DLVs, TLVs, on the occurrence frequency of sequences,
and on the assigned sequence identifier. With this total order, the construction of the tree
consists of building a minimum spanning forest in a graph [15], where each sequence is a node
and the link weights are defined by the total order. By construction, the pairs at distance δ
will be joined before the pairs at distance δ + 1.

4 Experimental evaluation

We evaluated the proposed approach using both real and synthetic datasets. We used
real datasets obtained through different typing schemas, namely wide-genome multi-locus
sequence typing (wgMLST) data, core-genome multi-locus sequence typing (cgMLST) data,
and single-nucleotide polymorphism (SNP) data. Table 2 summarizes the real datasets used.
We should note that wgMLST and cgMLST datasets contain sequences of integers, where
each column corresponds to a locus and different values in the same column denote different
alleles. Synthetic datasets comprise sets of binary sequences of variable length, uniformly
sampled, allowing us to validate our theoretical findings.

We implemented both versions described above in the C programming language: one based
on binary search over the SA; and another one based on finding clusters in the LCP array.
Since allelic profiles can be either string of letters or sequences of integers, we relied on https:
//github.com/y-256/libdivsufsort and http://www.larsson.dogma.net/qsufsort.c
libraries, respectively. For RMQ over the LCP array, we implemented a fast well-known
solution that uses constant time per query and linearithmic space for pre-processing [1].

All tests were conducted on a machine running Linux, with an Intel(R) Xeon(R) CPU
E5-2630 v3 @ 2.40GHz (8 cores, cache 32KB/4096KB) and with 32GB of RAM. All binaries
where produced using GCC 5.3 with full optimization enabled.

4.1 Synthetic datasets
We first present results with synthetic data for different values of d, m and k. All synthetic
sequences are binary sequences uniformly sampled. Results presented in this section were
averaged over ten runs and for five different sets of synthetic data.

The bound proved in Theorem 1 was verified in practice. For k satisfying the conditions
in Theorem 1, the running time of our implementation grows almost linearly with n, the size
of the input. We can observe in Fig. 1 a growth slightly above linear. Since we included the
time for constructing the SA, the LCP array and the RMQ data structure, with the last one
in linearithmic time, that was expected.

We also tested our method for values of k exceeding the bound shown in Theorem 1. For
d = m = 4096 and a binary alphabet, the bound for k given in Theorem 1 is no more than
bm/(2 logm)c = 170. For k above this bound we expect that proposed approaches are no
longer competitive with the naïve approach. As shown in Fig. 2, for k > 250 and k > 270
respectively, both limits above the predicted bound, the running time for both computing
pairwise distances by finding lower and upper bounds in the SA, and by processing LCP
based clusters, becomes slower than the running time of the naïve approach.

In Fig. 3 we have the running time as a function of the number d of profiles, for different
values of m and for k satisfying the bound given in Theorem 1. The running time for
the naïve approach grows quadratically with d, while it grows linearly for both computing

WABI 2017

https://github.com/y-256/libdivsufsort
https://github.com/y-256/libdivsufsort
http://www.larsson.dogma.net/qsufsort.c

9:8 Towards Distance-Based Phylogenetic Inference in Average-Case Linear-Time

0

20

40

60

80

100

120

140

0 20 40 60 80 100 120 140

t (
s)

n = d*m (#/106)

Binary search

0

20

40

60

80

100

120

0 20 40 60 80 100 120 140
t (

s)

n = d*m (#/106)

LCP based clusters

Figure 1 Synthetic datasets, with σ = 2 and k = bm/(2 logm)c according to Theorem 1. Running
time for computing pairwise distances by finding lower and upper bounds in the SA, and by processing
LCP based clusters, as function of the input size n = dm.

Table 2 Real datasets used in the experimental evaluation. (*)Dataset provided by the Molecular
Microbiology and Infection Unit, IMM.

Dataset
Typing Profile Number of

Reference
method length distinct elements

Campylobacter jejuni wgMLST 5446 5669 (*)
Salmonella enterica wgMLST 3002 6861 [6]
Salmonella typhi SNP 22143 1534 [20]
Streptococcus pneumoniae cgMLST 235 1968 [4, 3, 19]

pairwise distances by finding lower and upper bounds in the SA, and by processing LCP
based clusters. Hence, for synthetic data, as described by Theorem 1, the result holds.

4.2 Real datasets
For each dataset in Table 2, we ranged the threshold k accordingly and compared the
approaches discussed in Section 2 with the naïve approach that computes the distance for all
sequence pairs. Results are provided in Table 3.

In most cases, the approach based on the LCP clusters is the fastest up to two orders
of magnitude compared to the naïve approach. As expected, in the case when data are not
uniformly random, our method works reasonably well for smaller values of k than the ones
implied by the bound in Theorem 1. As an example, the upper bound on k for C. jejuni
would be around 200, but the running time for the naïve approach is already better for k = 64.
We should note however that the number of candidate profile pairs at Hamming distance at
most k is much higher than the expected number when data are uniformly random. This
tells us that we can design a simple hybrid scheme that chooses a strategy (naïve or the

M. Crochemore, A. P. Francisco, S. P. Pissis, and Cátia Vaz 9:9

0

50

100

150

200

250

300

350

400

450

500

2 3 4 5 6 7 8 9

t (
s)

d (#/103)

Binary search

k=170
k=190
k=210
k=230
k=250
k=270
k=290
k=310
k=330
Naive

0

50

100

150

200

250

300

2 3 4 5 6 7 8 9

t (
s)

d (#/103)

LCP based clusters

k=170
k=190
k=210
k=230
k=250
k=270
k=290
k=310
k=330
Naive

Figure 2 Synthetic datasets, with σ = 2 and m = 4096. Running time for computing pairwise
distances by finding lower and upper bounds in the SA, and by processing LCP based clusters, as
function of the number d of profiles and for different values of k.

proposed method) depending on the nature of the input data. It seems also to point out
clustering effects on profile dissimilarities, which we may exploit to improve our results. We
leave both tasks as future work for the full version of this article.

We incorporated the approach based on finding lower and upper bounds in the SA in the
implementation of goeBURST algorithm, discussed in Section 3. We did not incorporate the
approach based on the LCP clusters as the running time did not improve much as observed
above. Since running times are similar to those reported in Table 3, we discuss only the
running time for C. jejuni. We need only to index the input once. We can then use the index
in the different stages of the algorithm and for different values of k. In the particular case
of goeBURST, we use the index twice: once for computing the number of neighbors at a
given distance, used for untying links according to the total order discussed in Section 3,
and a second time for enumerating pairs at distance below a given threshold. Note that the
goeBURST algorithm does not aim to link all nodes, but to identify clonal complexes (or
connected components) for a given threshold on the distance among profiles [9]. In the case
of C. jejuni dataset, and for k = 52, the running time is around 36 seconds, while the naïve
approach takes around 115 seconds, yielding a three-fold speedup.

In this case we get several connected components, i.e., several trees, connecting the most
similar profiles. We provide the tree for the largest component in Fig. 4, where each node
represents a profile. The nodes are colored according to one of the loci for which profiles in
this cluster differ. Note that this tree is optimal with respect to the criterion used by the
goeBURST algorithm, not being affected by the threshold on the distance. In fact, since this
problem is a graphic matroid, the trees found for a given threshold will be always subtrees of
the trees found for larger thresholds [21]. Comparing this tree with other inference methods
is beyond the scope of this article; the focus here was on the faster computation of an optimal
tree under this model.

WABI 2017

9:10 Towards Distance-Based Phylogenetic Inference in Average-Case Linear-Time

0

5

10

15

20

25

30

35

40

45

0 2 4 6 8 10 12 14 16

t (
s)

d (#/103)

m=256

Naive
Bin search

LCP clusters

0

10

20

30

40

50

60

70

80

90

0 2 4 6 8 10 12 14 16

t (
s)

d (#/103)

m=512

Naive
Bin search

LCP clusters

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10 12 14 16

t (
s)

d (#/103)

m=1024

Naive
Bin search

LCP clusters

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16

t (
s)

d (#/103)

m=2048

Naive
Bin search

LCP clusters

0

100

200

300

400

500

600

700

0 2 4 6 8 10 12 14 16

t (
s)

d (#/103)

m=4096

Naive
Bin search

LCP clusters

0

200

400

600

800

1000

1200

1400

0 2 4 6 8 10 12 14 16

t (
s)

d (#/103)

m=8192

Naive
Bin search

LCP clusters

Figure 3 Synthetic datasets, with σ = 2 and k = bm/(2 logm)c according to Theorem 1. Running
time for computing pairwise distances naïvely, by finding lower and upper bounds in the SA, and by
processing LCP based clusters, as a function of the number d of profiles.

M. Crochemore, A. P. Francisco, S. P. Pissis, and Cátia Vaz 9:11

Figure 4 The tree inferred for the largest connected component found with k = 52 for the C.
jejuni dataset. Image produced by PHYLOViZ [18].

WABI 2017

9:12 Towards Distance-Based Phylogenetic Inference in Average-Case Linear-Time

Table 3 Time and percentage of pairs processed for each method and dataset.

Dataset k
Naïve Binary search LCP clusters

t (s) pairs (%) t (s) pairs (%) t (s) pairs (%)

C. jejuni

8 108.59 100 0.22 0.06 0.17 0.06
16 109.30 100 0.48 0.32 0.34 0.32
32 108.60 100 3.52 5.45 2.67 5.45
64 108.60 100 231.05 99.98 162.36 99.98

S. enterica

8 89.85 100 1.04 2.37 0.95 2.37
16 87.26 100 7.16 12.69 6.73 12.69
32 85.36 100 36.29 33.22 30.76 33.22
64 84.63 100 254.45 82.44 187.15 82.44

S. typhi
89 28.83 100 16.63 91.48 12.02 91.48
178 28.32 100 46.98 99.91 32.03 99.91
890 30.04 100 113.57 100 129.14 100

S. pneumoniae

8 0.56 100 0.02 0.93 0.02 0.93
16 0.57 100 0.05 1.71 0.04 1.71
32 0.56 100 0.20 4.42 0.15 4.42
64 0.58 100 5.63 73.36 5.01 73.36

In many studies, the computation of trees based on pairwise distances below a given
threshold, usually small compared with the total number of loci, combined with ancillary data,
such as antibiotic resistance and host information, allows microbiologists to uncover evolution
patterns and study the mechanisms underlying the transmission of infectious diseases [10].

5 Concluding remarks

Most distance-based phylogenetic inference methods rely directly or indirectly on Hamming
distance computations. The computation of a distance matrix is a common first step for such
methods, taking Θ(md2) time in general, with d being the number of sequences or profiles
and m the length of each sequence or profile. For large-scale datasets this running time may
be problematic; however, for some methods, we can avoid to compute all-pairs distances [22].

We addressed this problem when only a truncated distance matrix is needed, i.e., one
needs to know only which pairs are at Hamming distance at most k. This problem was
motivated by the goeBURST algorithm [9], which relies on a truncated distance matrix
by construction. We proposed here an average-case linear-time and linear-space algorithm
to compute the pairs of sequences or profiles that are at Hamming distance at most k,
when k < (m−k−1)·logσ

logmd , where σ is the size of the alphabet. We integrated our solution in
goeBURST demonstrating its effectiveness using both real and synthetic datasets.

We must note however that our analysis holds for uniformly random sequences and, hence,
as observed with real data, the presented bound may be optimistic. It is thus interesting to
investigate how to address this problem taking into account local conserved regions within
sequences. Moreover, it might be interesting to consider in the analysis null models such as
those used to evaluate the accuracy of distance-based phylogenetic inference methods [24].

The proposed approach is particularly useful when one is interested in local phylogenies,
i.e., local patterns of evolution, such as searching for similar sequences or profiles in large
typing databases. In this case we do not need to construct full phylogenetic trees, with tens
of thousands of taxa. We can focus our search on the more similar sequences or profiles,

M. Crochemore, A. P. Francisco, S. P. Pissis, and Cátia Vaz 9:13

within a given threshold k. There are however some issues to be solved in this scenario,
namely, dynamic updating of the data structures used in our algorithm. Note that after
querying a database, if new sequences or profiles are identified, then we should be able to
add them while keeping our data structures updated. Although more complex and dynamic
data structures are known, a technique proposed recently for adding dynamism to otherwise
static data structures can be useful to address this issue [17]. This and other challenges
raised above are left as future work.

References

1 Michael A. Bender and Martín Farach-Colton. The LCA problem revisited. In LATIN
2000: Theoretical Informatics: 4th Latin American Symposium, volume 1776 of Lecture
Notes in Computer Science, pages 88–94. Springer, 2000. doi:10.1007/10719839_9.

2 Michael A Bender, Martín Farach-Colton, Giridhar Pemmasani, Steven Skiena, and Pavel
Sumazin. Lowest common ancestors in trees and directed acyclic graphs. Journal of
Algorithms, 57(2):75–94, 2005. doi:10.1016/j.jalgor.2005.08.001.

3 Claire Chewapreecha, Simon R. Harris, Nicholas J. Croucher, Claudia Turner, Pekka Mart-
tinen, Lu Cheng, Alberto Pessia, David M. Aanensen, Alison E. Mather, Andrew J. Page,
Susannah J. Salter, David Harris, Francois Nosten, David Goldblatt, Jukka Corander,
Julian Parkhill, Paul Turner, and Stephen D. Bentley. Dense genomic sampling iden-
tifies highways of pneumococcal recombination. Nature Genetics, 46(3):305–309, 2014.
doi:10.1038/ng.2895.

4 Nicholas J Croucher, Jonathan A Finkelstein, Stephen I Pelton, Patrick K Mitchell,
Grace M Lee, Julian Parkhill, Stephen D Bentley, William P Hanage, and Marc Lipsitch.
Population genomics of post-vaccine changes in pneumococcal epidemiology. Nature Ge-
netics, 45(6):656–663, 2013. doi:10.1038/ng.2625.

5 Richard Desper and Olivier Gascuel. Fast and accurate phylogeny reconstruction algorithms
based on the minimum-evolution principle. Journal of Computational Biology, 9(5):687–705,
2002. doi:10.1089/106652702761034136.

6 EnteroBase. Enterobase.warwick.ac.uk. URL: http://enterobase.warwick.ac.uk.
7 Edward J. Feil, Edward C. Holmes, Debra E. Bessen, Man-Suen Chan, Nicholas P. J. Day,

Mark C. Enright, Richard Goldstein, Derek W. Hood, Awdhesh Kalia, Catrin E. Moore,
et al. Recombination within natural populations of pathogenic bacteria: short-term em-
pirical estimates and long-term phylogenetic consequences. Proceedings of the National
Academy of Sciences, 98(1):182–187, 2001. doi:10.1073/pnas.98.1.182.

8 Edward J. Feil, Bao C. Li, David M. Aanensen, William P. Hanage, and Brian G. Spratt.
eBURST: inferring patterns of evolutionary descent among clusters of related bacterial
genotypes from multilocus sequence typing data. Journal of Bacteriology, 186(5):1518–
1530, 2004. doi:10.1128/JB.186.5.1518-1530.2004.

9 Alexandre P Francisco, Miguel Bugalho, Mário Ramirez, and João Carriço. Global optimal
eBURST analysis of multilocus typing data using a graphic matroid approach. BMC
Bioinformatics, 10(1), 2009. doi:10.1186/1471-2105-10-152.

10 Alexandre P. Francisco, Cátia Vaz, Pedro T. Monteiro, José Melo-Cristino, Mário Ramirez,
and Joao A. Carriço. PHYLOViZ: phylogenetic inference and data visualization for se-
quence based typing methods. BMC Bioinformatics, 13(1):87, 2012. doi:10.1186/
1471-2105-13-87.

11 Daniel H. Huson, Regula Rupp, and Celine Scornavacca. Phylogenetic networks: con-
cepts, algorithms and applications. Cambridge University Press, 2010. doi:10.1017/
CBO9780511974076.

WABI 2017

http://dx.doi.org/10.1007/10719839_9
http://dx.doi.org/10.1016/j.jalgor.2005.08.001
http://dx.doi.org/10.1038/ng.2895
http://dx.doi.org/10.1038/ng.2625
http://dx.doi.org/10.1089/106652702761034136
http://enterobase.warwick.ac.uk
http://dx.doi.org/10.1073/pnas.98.1.182
http://dx.doi.org/10.1128/JB.186.5.1518-1530.2004
http://dx.doi.org/10.1186/1471-2105-10-152
http://dx.doi.org/10.1186/1471-2105-13-87
http://dx.doi.org/10.1186/1471-2105-13-87
http://dx.doi.org/10.1017/CBO9780511974076
http://dx.doi.org/10.1017/CBO9780511974076

9:14 Towards Distance-Based Phylogenetic Inference in Average-Case Linear-Time

12 Juha Kärkkäinen, Peter Sanders, and Stefan Burkhardt. Linear work suffix array construc-
tion. Journal of ACM, 53(6):918–936, 2006. doi:10.1145/1217856.1217858.

13 Toru Kasai, Gunho Lee, Hiroki Arimura, Setsuo Arikawa, and Kunsoo Park. Linear-
time longest-common-prefix computation in suffix arrays and its applications. In An-
nual Symposium on Combinatorial Pattern Matching, pages 181–192. Springer, 2001.
doi:10.1007/3-540-48194-X.

14 Pang Ko and Srinivas Aluru. Space efficient linear time construction of suffix arrays. In
Annual Symposium on Combinatorial Pattern Matching, volume 2676 of Lecture Notes in
Computer Science, pages 200–210. Springer, 2003. doi:10.1016/j.jda.2004.08.002.

15 Joseph B. Kruskal. On the shortest spanning subtree of a graph and the traveling salesman
problem. Proceedings of the American Mathematical Society, 7(1):48–50, 1956. doi:10.
2307/2033241.

16 Udi Manber and Gene Myers. Suffix arrays: a new method for on-line string searches.
SIAM Journal on Computing, 22(5):935–948, 1993. doi:10.1137/0222058.

17 J. Ian Munro, Yakov Nekrich, and Jeffrey Scott Vitter. Dynamic data structures for docu-
ment collections and graphs. In Proceedings of the 34th ACM Symposium on Principles of
Database Systems, pages 277–289. ACM, 2015. doi:10.1145/2745754.2745778.

18 Marta Nascimento, Adriano Sousa, Mário Ramirez, Alexandre P. Francisco, João A. Car-
riço, and Cátia Vaz. PHYLOViZ 2.0: providing scalable data integration and visualiz-
ation for multiple phylogenetic inference methods. Bioinformatics, 33(1):128–129, 2017.
doi:10.1093/bioinformatics/btw582.

19 National Center for Biotechnology Information. GeneBank. URL: ftp://ftp.ncbi.nih.
gov/genomes/archive/old_genbank/Bacteria/.

20 Andrew J. Page, Ben Taylor, Aidan J. Delaney, Jorge Soares, Torsten Seemann, Jac-
queline A. Keane, and Simon R. Harris. SNP-sites: rapid efficient extraction of SNPs from
multi-FASTA alignments. Microbial Genomics, 2(4), 2016. doi:10.1099/mgen.0.000056.

21 Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Optimization: Algorithms
and Complexity. Prentice-Hall, Inc., 1982.

22 Fabio Pardi and Olivier Gascuel. Distance-based methods in phylogenetics. In
Encyclopedia of Evolutionary Biology, pages 458–465. Elsevier, 2016. doi:10.1016/
B978-0-12-800049-6.00206-7.

23 D. Ashley Robinson, Edward J. Feil, and Daniel Falush. Bacterial population genetics in
infectious disease. John Wiley & Sons, 2010. doi:10.1002/9780470600122.

24 Naruya Saitou. Introduction to evolutionary genomics. Springer, 2013. doi:10.1007/
978-1-4471-5304-7.

25 Naruya Saitou and Masatoshi Nei. The neighbor-joining method: a new method for
reconstructing phylogenetic trees. Molecular Biology and Evolution, 4(4):406–425, 1987.
doi:10.1093/oxfordjournals.molbev.a040454.

26 Robert R. Sokal. A statistical method for evaluating systematic relationships. Univ Kans
Sci Bull, 38:1409–1438, 1958.

http://dx.doi.org/10.1145/1217856.1217858
http://dx.doi.org/10.1007/3-540-48194-X
http://dx.doi.org/10.1016/j.jda.2004.08.002
http://dx.doi.org/10.2307/2033241
http://dx.doi.org/10.2307/2033241
http://dx.doi.org/10.1137/0222058
http://dx.doi.org/10.1145/2745754.2745778
http://dx.doi.org/10.1093/bioinformatics/btw582
ftp://ftp.ncbi.nih.gov/genomes/archive/old_genbank/Bacteria/
ftp://ftp.ncbi.nih.gov/genomes/archive/old_genbank/Bacteria/
http://dx.doi.org/10.1099/mgen.0.000056
http://dx.doi.org/10.1016/B978-0-12-800049-6.00206-7
http://dx.doi.org/10.1016/B978-0-12-800049-6.00206-7
http://dx.doi.org/10.1002/9780470600122
http://dx.doi.org/10.1007/978-1-4471-5304-7
http://dx.doi.org/10.1007/978-1-4471-5304-7
http://dx.doi.org/10.1093/oxfordjournals.molbev.a040454

Yanagi: Transcript Segment Library Construction
for RNA-Seq Quantification∗

Mohamed K. Gunady1, Steffen Cornwell2, Stephen M. Mount3,
and Héctor Corrada Bravo4

1 Department of Computer Science, University of Maryland, College Park, MD,
USA; and
Center for Bioinformatics and Computational Biology, University of Maryland,
College Park, MD, USA
mgunady@cs.umd.edu

2 School of Engineering and Applied Science, University of Pennsylvania,
Philadelphia, PA, USA

3 Center for Bioinformatics and Computational Biology, University of Maryland,
College Park, MD, USA; and
Department of Cell Biology and Molecular Genetics, University of Maryland,
College Park, MD, USA
smount@umd.edu

4 Department of Computer Science, University of Maryland, College Park, MD,
USA; and
Center for Bioinformatics and Computational Biology, University of Maryland,
College Park, MD, USA
hcorrada@umiacs.umd.edu

Abstract
Analysis of differential alternative splicing from RNA-seq data is complicated by the fact that
many RNA-seq reads map to multiple transcripts, and that annotated transcripts from a given
gene are often a small subset of many possible complete transcripts for that gene. Here we describe
Yanagi, a tool which segments a transcriptome into disjoint regions to create a segments library
from a complete transcriptome annotation that preserves all of its consecutive regions of a given
length L while distinguishing annotated alternative splicing events in the transcriptome. In this
paper, we formalize this concept of transcriptome segmentation and propose an efficient algorithm
for generating segment libraries based on a length parameter dependent on specific RNA-Seq
library construction. The resulting segment sequences can be used with pseudo-alignment tools
to quantify expression at the segment level. We characterize the segment libraries for the reference
transcriptomes of Drosophila melanogaster and Homo sapiens. Finally, we demonstrate the utility
of quantification using a segment library based on an analysis of differential exon skipping in
Drosophila melanogaster and Homo sapiens. The notion of transcript segmentation as introduced
here and implemented in Yanagi will open the door for the application of lightweight, ultra-fast
pseudo-alignment algorithms in a wide variety of analyses of transcription variation.

1998 ACM Subject Classification I.1.2 Algorithms

Keywords and phrases RNA-Seq, Genome Sequencing, Kmer alignment, Transcriptome Quan-
tification, Differential Alternative Splicing

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.10

∗ This work was partially supported by NSF grant ABI 1564785 to SMM and MKG, and NIH grants
HG005220 and GM114267 to HCB, MKG and SC.

© Mohamed K. Gunady, Steffen Cornwell, Stephen M. Mount, and Héctor Corrada Bravo;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 10; pp. 10:1–10:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.WABI.2017.10
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

10:2 Yanagi: Transcript Segment Library Construction for RNA-Seq Quantification

1 Introduction

Messenger RNA transcript abundance estimation from RNA-Seq data is a crucial task in
studies that seek to describe the effect of genetic or environmental changes on gene expression.
Differential expression analysis over either genes or transcripts is used to find the set of genes
or transcripts with different expression levels between conditions. Although there are many
tools that can provide satisfying results at the gene level, transcript level analysis still faces
major challenges that make the problem of transcript expression quantification harder.

Over the years, various approaches have addressed the joint problems of (gene level)
transcript expression quantification and differential alternative RNA processing. Much effort
in the area has been dedicated to the problem of efficient alignment of reads to a genome or
a transcriptome, since this is typically a bottleneck in the analytical processes that start with
RNA-Seq reads and yield gene-level expression or differentially expressed transcripts. Among
these approaches are alignment techniques such as bowtie [6], Tophat [16, 5], and Cufflinks
[17], and newer techniques such as sailfish [10], RapMap [13], Kallisto [2] and Salmon [9],
which provide efficient strategies that are much faster, but maintain comparable, or superior,
accuracy.

In order to achieve faster alignment and quantification, the newer methods introduced
novel approaches, such as alignment-free k-mer based quantification [Sailfish], quasi-mapping
[RapMap], pseudo-alignment [Kallisto], or lightweight alignment [Salmon]. These methods all
simplified the expected outcome of the alignment step, finding only sufficient read-alignment
information required by the quantification step, utilizing k-mer counting to be the sufficient
statistic built from the alignment step. In other words, given a transcriptome reference, an
index of kmers is created and used to find a mapping between reads and the list of compatible
transcripts based on each approach’s definition of compatibility. The next step would be to
resolve the ambiguity in reads that were mapped to multiple transcripts. Multi-mapping reads
are common even assuming error free reads, due to shared regions produced by alternative
splicing. The ambiguity in mapping reads is resolved using probabilistic models, such as the
EM algorithm, to produce the abundance estimate of each transcript [8].

The presence of sequence repeats and paralogous genes in many organisms also creates
ambiguity in the placement of reads. Moreover, the fact that alternatively spliced transcripts
share most of their genomic region, greatly increases the portion of reads coming from
these shared regions and consequently reads being multi-mapped becomes more frequent
when aligning to enumerated transcripts. In fact, local splicing variations can be joined
combinatorially to create a very large number of possible transcripts from many genes. An
extreme case is the Drosophila gene Dscam, which can produce over 38,000 transcripts by
joining less than 50 exons [19]. More generally, long-read sequencing indicates that although
there are correlations between distant splicing choices [15], a large number of possible
combinations is typical. Thus, standard annotations, which enumerate only a minimal subset
of transcripts from a gene (e.g. [3]) are inadequate descriptions. Furthermore, short read
sequencing, which is likely to remain the norm for some time, does not provide information
for long-range correlations between splicing events.

In this paper, we propose a novel strategy that aims at constructing a set of segments that
can be used in the read-alignment-quantification steps instead of the whole transcriptome
without loss of information. Such a set of segments (a segment library) can fully describe
individual events (primarily local splicing variation, but also editing sites or sequence variants)
independently, leaving the estimation of transcript abundances as a separate problem. Here
we introduce and formalize the idea of transcriptome segmentation, propose and analyze an

M.K. Gunady, S. Cornwell, S.M. Mount, and H. Corrada Bravo 10:3

algorithm for transcriptome segmentation, and present a tool called Yanagi, which implements
this segmentation algorithm to build a segment library from a reference transcriptome based
on the possible splicing variations. We show results from the application of Yanagi to
reference transcriptomes of Drosophila melanogaster and Homo sapiens that characterize
the resulting segment libraries. Since the segment libraries are amenable for usage with
lightweight pseudo-alignment methods for segment quantification, we illustrate the utility
of the segmentation approach using the differential analysis of exon skipping events across
samples from two conditions of interest. We use simulation studies in Drosophila melanogaster
and Homo sapiens and show that this is a promising approach for this type of analysis.

2 Methodology

Exonic regions of a messenger RNA precursor can be combined differently through alternative
splicing (AS) to form distinct isoforms. Alternative transcripts can be generated by AS proper
(including exon skipping, mutual exon exclusion, intron retention, and alternative splice
site use), alternative transcription start sites, and alternative 3’ termini (sites of cleavage
and polyadenylation). Combinations of these allow more complex events. A comprehensive
treatment of the different types of splicing events can be found in [18]. Over 95% of human
genes with multiple exons undergo AS [18]; consequently a majority of the coding genomic
region is spliced into more than one isoform.

The goal of our approach is to segment the transcriptome into a set of disjoint regions
(where disjointness is parameterized by a specific read length) without losing any possible
transcriptome sub-sequence that may be sequenced in a given RNA-Seq experiment. Af-
terwards, we can pseudo-align reads into the set of segments and quantify abundance at
the segment level for use in further downstream analysis. Consequently, our quantification
pipeline can use available kmer-based pseudo-mapping or pseudo-alignment techniques over
the set of segments generated by Yanagi from the transcriptome reference and generate
counts for segments. The rest of this section describes Yanagi’s algorithm for generating
the segment library. We later discuss how it can be used for quantification purposes using
differential analysis of exon skipping events as an illustrative use case.

2.1 Transcriptome Segments Properties
I Definition 1 (Segment). A segment seg(Exs, loc, w) is a genomic region of width w

beginning at genomic location loc and spanning the sequence of consecutive exonic regions
Exs. Exonic regions are considered consecutive if they are consecutively joined into at least
one possible isoform.

I Definition 2 (L-disjoint property). The set of segments S is L-disjoint if and only if

width[overlap(segi, segj)] < L;∀segi, segj ∈ S, i 6= j

That restricts any pair of L-disjoint segments to have an overlap region shorter than
parameter L, corresponding to the read length of a specific RNA-Seq experiement. In other
words no read of length at least L can be mapped to both segments of an L-disjoint segment
pair, assuming error-free reads.

Given a reference transcriptome, a naive approach to generating such L-disjoint segments
would be to use the set of exonic regions and junctions defined in the transcriptome and
generate segments spanning each exonic region and junction. Specifically, a junction segment
would be formed by spanning L − 1 positions from both sides of the junction and exon

WABI 2017

10:4 Yanagi: Transcript Segment Library Construction for RNA-Seq Quantification

Figure 1 An example of naive segments based on exons and junctions. Two cases are shown, each
is represented using a splicing graph of two transcripts, along with a set of possible RNA-seq reads
and the generated segments following the naive approach. The first case (left) shows a simple case
where the naive approach successfully generates segments spanning all possible reads. The second
case (right) shows a case of two short exons (E2, E3 of width k < L) where the naive approach fails
to span the given read.

segments would simply include the genomic sequence of the exon that does not overlap any of
the junction segments. Figure 1 (left) shows a simple exon skipping event using splicing graph
representation [4] and the corresponding generated segments following that naive approach.
This approach would successfully generate segments capturing all possible sequences required
to map any read to the transcriptome. However this naive approach faces a few challenges.

First, exons that are shorter than parameter L are problematic. For instance, around
30% of the exons in the UCSC hg38 genome are shorter than 100bp (Illumina’s common
paired-end read length). These short exons will make junction segments miss reads that span
more than two of such short exons. Consider the example in Figure 1 (right) where the two
exons E2, E3 of width k are both shorter than L, no segments will capture a read that span
E1, E2, and E3 for instance.

Another related challenge is that the annotated exons are not strictly disjoint in the
reference itself. Some annotated exons overlap due the use of alternative transcription start
and end sites. Such challenges indicate that more careful choice of segments is necessary to
guarantee the L-disjointness property, so we formalized an additional segment property.

First, denote Txs(exs) as the set of annotated transcripts splicing exons exs ∈ Exs,
and Txs(seg) as the union of Txs(exs) for exons exs included in segment seg. We can
define a subsumption relationship between segments as seg1(Exs, loc, w) � seg2(Exs, loc, w)
if Txs(seg1) = Txs(seg2) and width(seg1) > width(seg2). With this relationship we can
define the following property of a segment library.

I Definition 3 (Max-spanning property).

seg1(Exs, loc, w) � seg2(Exs, loc, w)⇒ seg2(Exs, loc, w) /∈ S,∀seg1(Exs, loc, w) ∈ S .

Thus a segment is the longest common sequence of genomic regions starting at loc, such
that these regions are spliced similarly, i.e. the entire sequence belongs to the same set of
transcripts. That means the three junctions J1, J2, J3 shown in 1 (right) will be concatenated
into one segment which captures any read of length L spanning any of these junctions.

2.2 Segmentation Algorithm Overview
Given the transcriptome annotation (GTF format file) and the transcript sequences (FASTA
format files) as input, Yanagi generates the set of segments and its sequences (as a FASTA
file) as the output of the segmentation process. Figure 2 illustrates an example of how Yanagi

M.K. Gunady, S. Cornwell, S.M. Mount, and H. Corrada Bravo 10:5

perform transcriptome segmentation given the splicing graph of a complex AS event studied
in [18]. Recall, that in splicing graphs, nodes represent genomic regions and edges represent
how the regions are spliced, while paths represent possible transcripts.

The transcriptome segmentation process can be summarized into three steps: (1) Prepro-
cessing the transcriptome annotation in order to obtain disjoint transcriptome regions, (2)
Constructing a Segments Graph (SgG), and finally (3) Generating the segment library. Each
transaction in Figure 2 represents one of these three steps.

2.3 Preprocessing
In our algorithm, exons and junctions serve as initial candidates for segment generation.
We apply a preprocessing step to eliminate exon overlaps present in the transcriptome
reference from events involving alternative 3’/5’ splice sites, or transcription start/end sites.
This step ensures that any splicing event is occurring either at the beginning or the end
of a genomic segment, which makes the process of generating L-disjoint and max covering
segments easier. The preprocessing step is independent from the parameter L, so it can be
done only once per transcriptome reference. We implemented the preprocessing step based
on the GenomicRanges package in R, specifically the disjoin function, which takes less than
a few seconds to run on the human genome.

2.4 Segments Graph
Currently Yanagi builds a separate segment graph for each gene, since there are no alternative
splicing events between transcripts of different genes. However, future work may use segment
graphs that connect different genes sharing regions of identical sequence length L or greater,
but we have yet to address this.

I Definition 4 (Segment Graph). A segment graph G is an acyclic directed graph defined by
the pair (N,E), where N is a set of nodes representing segments, and E is the set of directed
edges between the nodes. An edge e : (ni, nj) ∈ E is created if the segment corresponding to
node ni directly precedes the segment corresponding to node nj in some transcript.

I Definition 5 (Segment Node). A segment node n is a node in segment Graph G that
represents an L-disjoint and max-spanning segment segn(Exsn, locn, wn), such that wn ≥ L.

While full details of the algorithm are given in Appendix A, here we present a high-level
description. For a given gene, the algorithm iterates over the set of annotated transcripts in
that gene. A cursor loc starting at the beginning of a transcript slides over the sequence of
genomic regions forming that transcript. Given the current cursor location locn, a seed of the
node n is initiated. Then a refinement step, explained further in the next paragraph, is used
to handle cases involving exons shorter than L. The segment node is then added to the graph
with the key pair (exsn, locn) as the node identifier, and the cursor loc is advanced to the
new location. It should be noted that the out-degree of each segment node corresponds to
the number of upcoming alternative splices. The final step is generating the actual segments.
Any segment with an out-degree greater than one is a candidate start of a segment. Each
possible path beginning at a start-segment node till the following start-segment node (or a
leaf node) produces an output segment. See Figure 2 and Appendix A for the full details
of the segmentation algorithm. It is worth mentioning that a segment graph may look like
a de Bruijn graph (DBG) that is commonly used in assembly problems. However, a path
of nodes in DBG represents a sequence of k-mer components while a path of nodes in SgG
represents a sequence of genomic regions spliced into an isoform. As a result, the DBG built

WABI 2017

10:6 Yanagi: Transcript Segment Library Construction for RNA-Seq Quantification

from the list of transcripts and the DBG built from the list of segments should be identical,
since both graphs represent the same sequences of nucleotides.

Back to the issue of short regions which raises the possibilities of generating segment
nodes of length L spanning more than two exonic regions. Once the key pair (exsn, locn)
is determined, the node refinement step determines the extent of that node and how the
cursor loc should be advanced in order to preserve the L-disjointness constraint. Figure 3
shows a diagram of how a segment node is refined. The logic behind the refinement step is
aggregating the sequence of nodes expected to be created spanning the same set of regions
exsn; since it is guaranteed that there are no splicing events occurring between the start and
end of region Exn, the next necessary segment node would be the node spanning part of
Exn+1. Consequently, the new location of the cursor loc would be the location where the first
segment spanning Exn+1 starts. That aggregation improves the time and space complexity
of the algorithm as it reduces the number of generated nodes, and avoids shredding the
genome in dense areas of short exons which may impose a problem in the quantification step
as discussed in next subsection. In fact, the refinement step ensures that for every distinct
value of exs, there is a maximum of two segment nodes generated and that reduces the
algorithm complexity by factor of L.

As an attempt to analyze the complexity of the algorithm, we can estimate a loose upper
bound of the number of segment nodes N in G. Consider a gene with Tg transcripts and Eg

disjoint genomic regions (obtained by the preprocessing step), where the maximum width of
such a region is wmax. Recalling the property mentioned in the previous paragraph, that a
maximum of two nodes can be generated for the same set of regions, a segmentation iteration
for a transcript that spans Et ≤ Eg regions can generate 1 < o(Et−

⌈
L

wmax

⌉
) < o(Et) segment

nodes. That gives the upper bound of o[
∑

Tg
(Et −

⌈
L

wmax

⌉
)] or o[Tg.(Eg −

⌈
L

wmax

⌉
)] for N .

That means the time and space complexity of the graph construction increases when using
lower values of parameter L, or with organisms of longer and more complex transcriptome
structure. Table 1 shows time and memory analysis for constructing the segments library
for two organisms used in our later analysis. The results shows that running Yanagi is an
efficient and fast process that does not add a burden in terms of time and space requirements.

2.5 Quantification Analysis
After the transcriptome segmentation stage, Yanagi provides the set of generated segments
in FASTA format. The segment sequences are accompanied by headers specifying metadata
of how each segment was formed, including: gene ID, the set of exonic regions exs included
in the segment, start and end locations in the first and last spanned regions, and the set
of transcripts corresponding to the segment. The quantification stage starts afterwards
by supplying the segment sequences to the preferred kmer-based pseudo-alignment tool,
e.g. kallisto, sailfish or RapMap. For single end reads we can obtain segment counts from
these tools. In the paired end case, we obtain pseudo alignments from either kallisto or
RapMap as a BAM file for each read in the read pair independently. The two generated
BAM files are then processed together to obtain segment-pair read counts. A read r1 is
counted toward a pair of segments < seg1, seg2 > if the first end is mapped to seg1 and the
second end to seg2 while both seg1 and seg2 have at least one transcript in common. This
latter condition ensures that the counts reflects only annotated transcripts, although this
condition can be relaxed in principle in favor of identifying unannotated transcripts.

After the segment quantification stage, a count tables for each sample is prepared to be
used in the downstream analysis. In this paper we illustrate a workflow based on Yanagi

M.K. Gunady, S. Cornwell, S.M. Mount, and H. Corrada Bravo 10:7

Figure 2 The process of generating segments using the splice graph for an example of a complex
splicing event. Each transition represents one of the three main steps of the transcriptome segment-
ation process. Assuming no short exons for simplicity. Step two and three are cropped to include
only the beginning portion of the graph for brevity.

using the problem of differential analysis of exon skipping events across samples from two
conditions of interest. By providing the list of annotated splicing events, Yanagi maps
each exon skipping event with its corresponding set of segments and sums their counts.
For example, an exon skipping event is defined by three exons as in Figure 1 (left). Two
segment-level counts are calculated: one from segments spanning the inclusion junction and
another from the segments spanning the skipping junction. Note that although segments are
L-disjoint, if the skipped exon is shorter than L we can have more than one segment spanning
the inclusion junctions. Figure 4 illustrates a full workflow based on Yanagi, assuming
paired-end reads and targeting AS quantification.

3 Experiments

3.1 Segment Analysis
To analyze the outcome of the segmentation stage, we used Yanagi to build segment libraries
for the fruit fly and human genomes: Drosophila melanogaster (UCSC dm6) and Homo
sapiens (UCSC hg38) genome assemblies and annotations respectively. These organisms show
different genome characteristics, e.g. the fruit fly genome has longer exons and transcripts
than the human genome, while the number of transcripts per gene is much higher for human
genome than the fruit fly. A summary of the properties of each genome is found in [12].

WABI 2017

10:8 Yanagi: Transcript Segment Library Construction for RNA-Seq Quantification

Figure 3 Diagram illustrates the node refinement step, for a node spanning n genomic regions.
The step determines the extent of the node and how the cursor loc should advance in each of the
two candidate cases.

Since L is the only parameter value required by the segmentation algorithm, we tried
different values of L to understand the impact of that choice on the generated segments
library. Recall that the choice of L is based on the expected read length of the sequencing
experiment. For this analysis we chose the set L = (40, 108, 1000, 10000).

Figure 5 shows the histogram of the lengths of the generated segments compared to the
the full lengths of the transcripts, for each value of L, for both fruit fly (left) and human
(right) genomes. It should be noted that the generated segments should be of at least length
L. However, there are the exceptions of segments hitting the end of the transcript where the
remaining portion of transcript is shorter than L. The figure shows the expected behavior
when increasing the value of L; using small values of L tends to shred the transcriptome
more (higher frequencies for small sequence lengths), especially with genomes of complex
splicing structure like the human genome. While with high values of L, such as L = 10, 000,
the minimum segment length required tends to be higher than the length of most transcripts,
ending up generating segments such that each segment represents a whole transcript.

Figure 6 shows how the number of generated segments in a gene is compared to the number
of the transcripts in that gene, for each value of L, for both fruit fly (left) and human (right)
genomes. A similar behavior is observed while increasing the value L, as with the segments
length distribution. The fitted line included in each scatter plot provides indication of how
the number of target sequences grows compared to the original transcriptome. For example
when using L = 108, which is a suitable value with Illumina reads, the number of target
sequences per gene, which will be the target of the subsequent pseudo-alignment steps, almost
doubles. It is clear from both figures the effect of the third step in the segmentation stage.
It is important not to shred the transcriptome so much that the target sequences become
very short leading to resulting complications in the pseudo-alignment and quantification
steps, and not to increase the number of target sequences leading to increasing the processing
complexity of these steps.

3.2 Use Case: Differential Exon Skipping

We use the analysis of differential exon skipping events across samples from two conditions
of interest as a use case of how to apply segment-level quantification in downstream analysis.

M.K. Gunady, S. Cornwell, S.M. Mount, and H. Corrada Bravo 10:9

Yanagi Yanagi-Based Workflow

Figure 4 Yanagi-based workflow for alternative splicing analysis, based on paired-end RNA-Seq
reads. Dotted blocks are components introduced to assist Yanagi.

L=1000 L=10000

L=40 L=108

4 8 12 16 4 8 12 16

0

5000

10000

15000

0

5000

10000

15000

Sequence Length (log scale)

F
re

qu
en

cy

Transcripts Segments

(dm6 genome)

L=1000 L=10000

L=40 L=108

5 10 15 5 10 15

0e+00

1e+05

2e+05

3e+05

0e+00

1e+05

2e+05

3e+05

Sequence Length (log scale)

F
re

qu
en

cy

Transcripts Segments

(hg38 genome)

Figure 5 Histogram of transcripts lengths vs. segments lengths for both fruit fly (left) and human
(right) genomes, with different values of L (40, 108, 1000, 10,000). Dotted vertical line represents
the used value of L during the transcriptome segmentation.

Datasets. The experiments are based on the simulation data provided by [12] for both
fruit fly and human organisms (dm3 and hg37 assembly versions, respectively). Each dataset
consists of samples from two conditions. Each condition has three replicates. The reads for
the replicates are simulated from real RNA-seq samples, to get realistic expression values,
after incorporating a variance model and the change required between conditions. The
simulation is restricted to only protein-coding genes in the primary genome assembly. The
difference in transcripts usage across conditions was simulated in 1000 genes randomly
selected from genes with at least two transcripts and high enough expression levels. For each
of these 1000 genes, the expression levels of the two most abundant transcripts is switched
across conditions. Refer to [12] for full details of the preparation procedure of the dataset.

Differential Splicing Model. Recall that the outcome of the alternative splicing quantifica-
tion workflow (as in figure 4) is two counts per exon skipping event for each sample: the
inclusion count and the exclusion count. The count matrix is then used in a linear model for

WABI 2017

10:10 Yanagi: Transcript Segment Library Construction for RNA-Seq Quantification

●
●● ● ●

●●
●

●

●●●●●
●

●●●●●
●●●●●●●●

●

●●●●●
●

●●●
●●

●

●

●

●

●

●●

● ●●● ●●●● ●● ●
●

●
●●●

●

●
●●●

●

●
●

●●●

●
●●●●
●●●

●●
●

●

●

●

●
●●●●●●●●●

●
●

●

●●●

●

●
●●

●
●●●●
●●●●●●●●●●
●

●●

●
●●
●

●
● ●●● ●●●

●
●
●

●

●

●●●

●

●
●●

●●●

●

●●

●

●● ●●●●●
●

●●●●●

●
●

●

●●

●

●●●
●●●●●●

●
● ●

●

●●●

●
●●

●●●●●
●●

●●
●●●

●●
●●

●●
●●

●

●
●

●

●
●

●●
●●●●●●●●

●
● ●●●●

●
●

●
●● ●●●

●

●●●●

●

●
●●

●

●●● ●

●

●
●

●●●●●
●

●●●●●●●●●●●
●

●●
●

●
●

●
●●●●●

●
●●●

●
●

●

●

●●
●●

●●●
●●●●

●
●●●● ●
●●
●

●

●●

●●●●●●●●
●

●●●

●

●

●

●●●●●●
●

●●●
●

●●

●

●●●●●
●●

●
●●

●

●
●●●

●

●
●

●●
●●●●● ●
●●●●●●●●●●●●●

● ●
●●●●●●●

●●
●●●●●

●
●●●●

●
●

●●●
●

●

●● ●●●●●●●
●

●
●

●
●●●●●●●●● ●●●●●●●

●

●●●●●●●
●●

●

●

●●●●●
●

●●●
●

●●●●●●
●

●●●●●●●
●●●

●
●

●●●
●●●●●●●●

●
●●●●●●

●

●

●●
●●

●●
●●●●●

●
●●●● ●

●
●

●

●
● ●●●●

●●
●●

●

●●●●● ●●

●

●

●

●●●●●●●●●●●
●

●

●●
●

●●●●●●●●●●

●

●●●●●
●

●

●

●●●●●●

●

● ●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●
●●●●●●

●

●●●●●

●

●

●
●

●●●

●
●

●
●●●●●
●●●●●●

●●

●

●

●
● ●

●●●●●● ●
●●

●

●●●●

●
●

●

●

●●
●

●●●
● ●

●●●●●●●●●●
●●●●●●●●●●●●●●

●
●

●
●

●●
●

●●

●

●●●●●●●●●●●

●

●●●
●

●●●●●●●●●
●

●●
●●●

●
●

● ●●

●

●

●

●●●●●●
●

●
●●●●●●●●●●●

●●●●
●

●
●

●● ●
●

●●

●●
●

●
●

●● ●●●●● ●● ●
●

●●●

●
●●●●●●●●●●●●●●

●

●
● ●
●

●●●

●

●●●●● ●
●●●●●
●● ●
●●●●●

●

●●●●●●●

●

●

●

●
●

●

●●● ●●●●●
●

●●
●

●

●

●●

●

●●

●

●●●
●

●●●●●●●●

●
●●●

●●

●

●●●●●●●●
●

●
●

●●●
●

●●●●

●
●
●●

●
●●

●

●

●
●●●●●

● ●

●
●

●● ●
●

●●
●

●
●●●●

●

●
●●●● ●

●

●

●

●
●

●
●●●●●●●●
●●● ●●●

●

●

●

● ●●

●

●●
●

●● ●● ●●

●

●
● ●

●
●

●
●●

●●●●●●●●●
●●
●

●●●●●●●●
●●

●●●
●

●● ●●●●● ●●●●
● ●●

●●●●
●●● ●●●

●

●●●

●

●● ●●●●●

●●
● ●

●
●

●●●

●

●●●●●
●

●

●

●
●

●●●●
●

●●

●
●●●●●●●●●●
●

●●●
●

●●
●●

●

●●●●●●●●●

●
●

●●●●
●

●●

●●●
●●●

●

●

●
●
●

●
●●

●● ●●●●●● ●●●●●

●

●●
●

●●●●●

●

● ●●

●●

●●●
●

●

●●

●● ●

●

●

●●●●●
●

●

●

●
●

●●
●

●●●●●●●● ●

●

●●●
●●●●● ●●●●●

●
●●●

●
●●●●●●●● ●

●●● ●●
●

●
●

●
●

●
●●●

●●
●●●

●

●●

●

●

●●●

●

●
●

●
●●●●●● ●●●●●●●

●

●●●●●
●

●●
●●

●

● ●●●
●

●
●

●●●●●●●●●

●
●●● ● ●●

●●
●

●
●

●
●

●

●

●

●●●●●●●●

●

●● ●●

●

●

●●●●●● ●●●●●

●

●

●

●
●●●

●

●
●

●●
●●●

●

●●●

●

●
●

●● ● ●
●●●●●●●●●●

●
● ●●

●

●●●●●●

●

● ●●
●

●●
●●

●●●●●●
●●●● ●

●
●

●

●
●

●
●
●

●● ●●●●●●●●

●

●●●●
●

●●●●●●●● ●●
● ●●● ●

●
●●●

●●●●●●● ●● ● ●
● ●●●●●●●●●●●

●
●

●

●●

●

●●●●
●

●●●
●●●●

●
●●●●●●● ●●●

●
●●●●●●

●

●●●●●●●●●●
●

●
●

●●●
●

●
●

●
●

●●
●

●●

●

●● ●●
●

●●●●
●

●●●●●●●

●

●

●

●●●●
●●●●●●●●
●●●●

●
●

●
●

●
●●

●●●●●●
●●●●

●

●●●●●●●●●

●●
●●●

●
●●●●

●
●

●●
●

●

●
● ●●●●

●
●

●
●

●●

●
●●●●

●
●

●●●●●●●●●●

●

●
●●●
●

● ●
●

●
●●●

● ●
● ●
●

●

●●
●●

●

●
●

●●

●

●
●

●●●●●
●●

●● ●●●●●● ●●●● ●●●●
●

●
●

●
●

●
●●●
●

●●●●●●●
●

●●●●●

●

●
●

●
●

●●
●●●

●
●

●
●

●●
●●●●●

●

●

●●
●

●
●

●
●

●

●

●●
●●●●●

● ●●●

●

●

●

●●●●
●●●

●●

●
●●●

●

●

●

●●●
●

●
●

●
●

●●
●●

●●

●

●
●●●●●●●●●●●●

●
●● ●●

●●●
●

●●●●●●
●●●●●●●●

●

●●●
●

●●●●●●●●●●●●●● ●●

●

●●●
●

●●
●●●●

●

●●●
●

● ●●●

●
●

●●
●

●
●●

●●●

●

●
●

●●●●●
●

●●●●
●●●●●
●●
●●● ●

●
●

●●● ●●

●

●
●

●●
●

●●
●

●●
●

●●●●●●
●

●

●

●
●

●
●●●●

●

●●
●

●●●● ●●●●
●

●●●
●●●●●●●

●
●●●●●

●
●●

●

●●●●
●●●●●●
●●●●

●●

●

●
●●●●●●●

●

● ●●●●●
●● ●●

●

●●●●●● ●●
●

●
●●● ●●●

●●●●
●●●● ●●●●
●

●●
●●●

●●●●●
●●

●●

●
●

●
●●●●●●●●●

●
●●

●
●

●
●●●

●

●●●●
●

●●
●

●●●●●●●●●●● ●●●●●● ●● ●●●● ●●●●●●● ●●
●●

● ●● ●●●● ●●●●●
●

●
●

●●●
● ●
●●●●●●●●●●●

●

●●
●●
●

●
●

●
●●●

●
●

●

●●
●●●●●

●
● ●

●●●
●●

●●

●

●
●●

●
●●

●

●●

●

●●●

●

●

●

●●●●●●●●
●

●●●●●●●

●

●
●●●●●●●●●●●

●

●●●

●

● ●●●
●●●
●

●
●●

●

●●●●
●

● ●

●

●●●
●

●●●●●●● ●
●

●

●●●●
●

●

●

●
●●

●
● ●●

●●●●●

●

●●●●●●●●●
●

●
●

●●●●

●

●
●

●

●●●●●●●●●●●●●●●●●

●

●●● ●●●●

●

●
●●

●●●
●●
●●

●
●●●●●●●●●●●●

●

●● ●
●

●

●
●●●●● ●
●●●●●●●●●●●●●●
●● ● ●●●●●●●●●●●

●
●

●●
●

●
●●●●●

●●●
●●●●●

●●●
●

●●●

●

●●●●●●●
●●

●
●

●●●
●

●●●●●●
●●●●●

●

●●●●●
●

●●●
●●●●●●
●●●

●
●●●●●●●●

●●●●●
●

●●●●●●●●
●

●●●

●

●●●●●●●●●●●●
●

● ●
●

●●●
●

●
●●

●
●

●

●
●

●

●

●●
●●

●●●

●

● ●●●●●●●

●

●●
●

●●●
●●●

●

●●●●●●

●
●●●●● ●●●●●●●●●●

●

●●
●

●
●●

●
●

●●●

●

●●●

●

●

●

●
●●●● ●●● ● ●
●

●

●

●

●●●
● ●

●●●
●●●

●
●●

●
●●●●●●●●●●●●●●
●●●●

●

● ●●●●●●
●

●
●●

●● ●●●
●

●●●●●
●

●●●●●●●
●●●●●●
●
●●

●
●●●●●●●

●

●

●

●●

●

●●●●
●

●●●●●●●●●●●

●

●●●●●●●
●

●●●●●●

●
●●

●●

●●
●

●

●●●●●●●●●●●●●●●●●●● ●●● ●●

●

●●●●●●
●●

●

●
●●●
●

●●●●●●●●●●●●●●●●●●●●●
●

●●●●●● ●●●
●●●●●●●●●●●
● ●●●●●●

●●●●●●●●●●●●●●●●●
●

●●●
●

●●●
●

●
●●●

●
●●●●●●●●●●

●

●
●●●●●
●●●
●●

●
●

●●●●●● ●●●●

●
●●●

●●
●

●●●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●●●●
●●

●
●●●●●● ●● ●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●

●

●

●●●●

●

●●●●●●●●●●●●●●●●

●

●
●

●●
●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●
●●●● ●

●● ●
●

●
●●●●●●●

●●
● ●●●●●

●
●● ●●●● ●●

●

●

●
●

● ●●●●
●

●●●●●●●●●●●●●●●●●●●●●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●
●

●●
●

●●●●●●●●●●●●●● ●
●

●●●●●
●

●●● ●
●

●●●●

●

● ●
●

●●●
●

●●
●

●●
●

●●●●●
●●● ●●●

●

●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●
●

●●●●●●●●●●●

●

●●●
●

● ●●●● ●●●●●●
●

●●●●●●●●
●●

●●●●●●● ●●●●
●●

●●●●●●

●

●●●●
●●●●●●●●●●●

●
●●●●●●●● ●●

●
●●●●●●●●

●
●
●

●●

●

●●●●
●●

●●●●●●●●●●●

●

●●●●● ●●●●●
●

●●
●

●●●●●●●●●●●●●
●

●●●●
●

● ●●●●●●

●

●
●

●●●●●●●● ●●●●●●●●● ●●●● ●● ●●●●●●●●

●
●●●●●● ●●

●●●
●

●●●●
●

●

●

●●
●

● ●●
●

●●●
●

●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●
●

●●
●

●●●●

●
●

●●●●●●
●

●●●●●●●●●●●●
●

●●●

●

●●● ●●●●●●●●●●
●

●●
●

●●●●● ●
●●●●●●●●●●●●●●●●●●●

●
●

●●●●●●●
●

●●●●●
●

●●●●
●

●

●
●

●
●●●●●
●

●
●

●

●●●●
●

●●●●
●

●

●●●●●●
●●●●

●●
●●●●

●

● ●●●●●
●

●●●●●●

●

●●●●●●●●●●●
●●●

●●●●●●●●●
●●

●
●●●●

●
●●●●●●●●●●●

●
●●●

●●
●

●●●●●●●●
●

●●
●●●
●●

●

●

●●●●
●

●●●●●
●

●●
●

●●
●

●●●●●●●●●●●●
●

●●●●●
●●●●●●●●●●●●●●●●● ●●●●●●●

●
● ●●●●●●

●
●●●●●●●●●● ●●●●●●
●●●●●●●●●

●
●●●

●

●●●●
●

●

●

●●●●●
●●●

●●● ●●●
●

● ●●●●●●●●● ●●●●●●
●

●
●●●

●●●
●

●●●●
●●●

●●●●● ●●
●●●●●●●●●●

●
●

●
●

●
●●

●
●●●●●
●

●●●●
●

● ●● ●●●●

●

●●●●

●

●●●●●●
●

●

●

●
●

●

●

●
●

●●●
●

●
●

●●●●

●

●●

●

●●●●● ●●● ●
●

●●●
●●●●●●●
●

●●●●
●

●●●●●●

●

●●●●●●●
●

●●●●●●
●●●●●●●●
●

●●●●●●
●●●●

●

●●
●

●●●●●●● ●
●●

●●●●●
●

●●●●●●●

●

●●●●●●
●

●●●●
●

●
●●●●
●

●●●●●●
●

●●●●
●

●
●●●●●●●●●
●●●●●●●●

●
●●●
●

●●●●●●● ●●●●●●●●●●●●
●●●●●●●●●
●

●●●●●
●●●●●●●●●●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●●●

●

●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●● ●●●

●

●●●●●●
●

●●●●●●●●●●●●●
●

● ●
●

●
●●●
●●
●
●●● ●●●●● ●●
●

●●
●

●●●●●●●●

●

●●●●
●●●●●●●●

●
●

●●●●●

●
●

●
●●●●●●●●
●

● ●
●●●

●●●●
●●

●●●●
●

●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●
●
●●
●●●●

●

●●●●●

●
●●

●●●●● ●●●● ●●●● ●●
●

●

●

●
●●●
●●●
●

●

●●●●●● ●●●●
●

●

●
●●●●●●●●●

●
●●●●●●

●●●
●

●●●●●
● ●

●●●●
●●●●●●●●●●●

●
●
●

●
●

●●●●●●●●

●

●

●

●●●●●●●●●●●●● ●
●●●●●

●

●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●●●●

●
●

●
●●●●

●
●●●
●

●●●●●●●●●

●

●●

●

●●●●●●●●●
●●
●

●●●●●●●●●●●●●●●●●
●

●●●●
●

●●●●●
●●

●● ●●●●●●●
●●●●●●
●

●●●●●●●●
●

●
●●●●●

●
●●●
●●●●●●●●●●●●●●●●●●●
●●●●●

●
● ●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●

●

●●●●
●

●
●

●●●●●●●● ●●● ●●●●●●
●

●
●

●●●●
●

●●●●●●●●●●●●●
●

●●●●●●●
●●●●●

●
●●●●●●●●

●

●●●●
●
●●●● ●●

●●●
●●●

●
●

●
●●●●●●●●●●●
●
●●●●●●●●●

●
●● ●●●●●●●●●●●●●●●●
●

●●●●
●●

●●
●

●●●●

●

●●●●●●
●

●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●
●

●●●●●
●

●●●●●●●
●

●●●●●
●●●●●

●●●●●●●●●
●●●
●

●
●

●● ●●
●●●●● ●●●●●●

●
●●●●●●●

●
●●●●●●●
●●

●●●●
●●●

●●●●●●●●● ●
●●●

●
●●●●●●

●
●●

●
●●●●

●
●

●●●
●

●●●●●●●●●●●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●
●

●

●●●
●

●●●●●●●●●●●●●●

● ●

●●

●

●
●●
●

●
●●●●●●●●●●●●●●
●●● ●●●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●

●
●●●●●●

●

●●●●
●●●●● ●●
●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●

●●● ●●●●●
●

●●●●
●

●●●●●
●

●●●●●●●●●●

●

●
●●●
●●●

●
●●●●

● ●●●●●●
●

●●●●
●

●
●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●

●●●●●●●●
●●●●

●
●●●●●●●●●●●●●●●●

●●
●●
●●●
●

●●
●●

●●●●●●●●
●

●●●
●

●●●●●●●●●●●●
●

●● ●●●●●●● ●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●

●
●

●●●●● ●
●●●●

●

●●
●

●
●

●

●

●● ●●●●
●

●●● ●
●●●●

●
●●●●●

●

●●●●●●●●● ●●●
●●●●●●●●
●●

●
●●●●●●●●●●●●●●●●●
●
●●

●● ●●●●●●●
●

●
●

●

● ●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●
●

●●●
●

●
●

●●●●● ●●●●●
●

●●●●●●●●●●●●●
●

●●●●
●●

●●●●●●●
●

●●●●● ●
●●●●●

●

●●●●●●●●●● ●
●●●

●●
●●

●
●●●●●●●●●●
●

●●●●●●●●●
●●

●●●●
●

●●●●●●●●●●●●●●

●

●●●●●●●●●
●

●●
●

●●●

●

●●●●●●● ●
●●●●●●●● ●●●●●●●

●
●●●●●●● ●●●●●
●

●●●
●

● ●
●●●●●●●●●
●

●● ●
●

●●
●

●●
●

●●●
●

● ●●●●

●

●●●●●●●●●●● ●●●●

●

●●●
●●

●
●

●

●

●●●●●●●●●●●●●●
●
●●

●
●

●

●●●●●●●●

●

●
●

●●●●●●●●●●●●●●●●●
●

●●●●●●●●
●

●

●
●

●
●

●●●●
●

●●●●●●
●

●●●●●●●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●
●●● ●
●●●●● ●●●●●
●

●●●●●●● ●●●●●●●●●●●●

●

●●●●● ●●●●●●●● ●●●
●●●●●●●●●

●
●●●●●●●●●●●

●

●●●●●●●●●●
●

●● ●●●●●●●●●●
●●

●●●●●●●●●●●●●●
●

●●●
● ●●

●

●

●●●●●●●●● ●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●● ●●● ●●●●
●

●
●

●●●●●●●●●●●●●●
●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●

●
●●●●●●
●●●

●
●●●●●●●●
●●●●●●●●

●
●●●●●●●●●●●●●●●●●● ●●●●●●●●●

●●
●

●●●●● ●●●
●●●●●●● ●● ●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●
●

●
●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

● ●●●●●●●●●●●●●●●●●
●

●●
●
●

●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●● ●●●
●

●
●●●

●
●● ●●●●●●
●●●

●
●●

●
●●●

●

●●●●●●●●●●●●● ●●●

●

●●●●
●

●●●●●●●●●●●●
●●

●
●

●●●
●

●●●●
●

●●●●● ●●●●
●●●●●●
●●●
● ●

●
●

●
●●

●●●●●●●●●●

●

●●●●●●
●

●●●●●●●●
●●

●●●●●●●●●●
●

●●●●●
●

●●●●●●●●●●●●●●●
● ●●●

●
●●●●●●●●

●
●●

●●●●● ●
●

●● ●
●●
●●●●●●●
●

●

●●●●●●●●●●
●●●●●●●●●●●●●●
●

●●●●●●●
●

●●●●●●●●
●

●●●●●
●

●
●

●●●●
●

●
●●

●
●● ●
●●●●

●
●●●●●●●●

●
●

●

●

●

●●●●●●
●

●●●●●●●

●

●
●●●●

●
●

● ●
●

●●●●●●●●
●

●●●●●●●●●●●●●
●

●●
●

●●●
●●●

●●●●●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●●●

●

●●
●

●● ●●●●●●●● ●
●●●●●●●●●●●●●●●●●●
●●●●● ●●●●

●
●●●●●●

●

●●●●●●●
●

●● ●●●●
●●

●●
●
●●●●●●●●●●●●●●●●●
●●
●

●●●●●
●

●●●●●●●●●●●●●● ●
●

●
● ●
●

●
●

●
●●

●●●●●●●
●

●●●●●●●● ●●
●

●●●●●●●●● ●●
●

●●●●●●●
●

●●●●●●

●

●●
●

●●
●

●●●●●● ●●●●●●●●●●●●●
●●●●●●

●

●●
●●●●●●●●●●●●●●●●●●●●●
●

●●
●●●●●●●

●
●●●●●

●
●●

●

●●●●●●●●●●●
●●

●●●
●

●●●●●●●●●●●
●

● ●●
●

●●●
●

●

●
●

●
●

●●●
●

●●
●

●
●

●●●●●●●
●●●●●●●●●●●
●

●●●●●
●

●●●●●
●

●

●

●
●
● ●
●●●

●
●●●●●●●●●●●●
●

●●●●●
●●●●●●●●●

●
● ●●●●●●●●●●

●

●●●●●●
● ●

●●●●●●●●●●●●●●●●●●●●
●●●●

●
●●●●●●●
●●●●

●
●●●●●●●●●●

●
●●●●
●

●●●●●●●●●●●●●●●
●●

●●●●●●●
●

●●●●●●●● ●●●●●
●

●●●● ●● ●●●
●

●●●●
●●

●●●●● ●●
●

●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●

●

●●
●

●

●●●●●●●●●●●
●

●●●● ●●●●●●●●●●●
●

●●●●●●
●●

●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●
● ●

●●●●●●●●●●●
●

●●●●●●●●●●●●●

●

●●●
● ●

●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●

●●●●
●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●
●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●
●●

●●●●●●●●●●
●

●●●●●●●
●

●●●
●●

●●●
●

●●
●

●●
● ●

●
●

●●●●●● ●●●●●●●●●●●●●●●
●

●●●●●●●
●

●●●●●●●●●
●

●● ●●● ●●●
●●

●●●●
●

●●●●●●● ●
●●●●

●

●●●●●●●●●
●●●●●

●
●●●●

●●●●●●●●●●●●●●
●

●●●●●●
●

●●●●●
●

●●●●●
●

●●●●

●●●●
●●●●
●

●
●●●●●●● ●

●●●
●●●●●●●●●●●●●●●●●●●●●

●
●●

●

●●●
●

●●●●

●
●●●●
●

●●●●●●●●●●●●●●●●●●●●
●

●●
●

●●●●
●

●●●●●●●●
●●●●●●●

●●●●
●

●

●●●●●● ●●

●

●●●
●

●●●

●
●●
●●●●●●
●

●●●●

●
●

●
●

●●●●●●●●●●●●●
●●

●●●●●●●●●
●

●●● ●●●
●●●●●●●●●●●●●●●●●●●●● ●●

●
●●●●●●●

●

●●● ●●●●●●●●●●●
●

●●
●

●
●

●
●

●● ●●●●●●●

●

●●
●
●

●●●●
●

●●●●●●●

●●
●●●●●

●
●

●
●●●●●●●●●●

●●●
●●●●●●●●●●●●●● ●●●
●

●
●●

●
●●●●●●
●●●●●●●●●●●●●●●●●

●
●●●●●●●

●● ●
●● ●●●●●●

●
●●

●
● ●●●●●●●●●●●●●● ●●●●●●●●●● ●

●
●

●●●

●

●●●●●●●●
●

●
●● ●

●
●

●●●●●●●●●●
●●●●●●●●●●●●●●●●● ●●●●●●

●

●

●●
●●●

●●
●

●●●●
●

●●●●●●●●●
●●●●●●●● ●

●●
●

●●●●●●●●●●●●●●● ●●●● ●●●●●●●
●●●●
●●●●●●● ●●●

●●●●●●
●●

●● ●
●●●●●●

●
●●

●
●●

●
●●●●●●●●●●●●●
●

●●
●●

●●●
●

●●●●●
● ●

●
●

●
●

●●●●●●●
●

●●●●
●

●●
●

●
●

●●●●●●●●●●●●
●●●
●

●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●
●

●●●●●●●●●●●●●●●●●●●●
●●

●●●●
●

●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●
●

●●●●●●●●●●●
●

●●●
●●

●●●●●●●
●

●
●

●●●●●●●●●●●●
●●
●
●●●●●●●●●●●●

●●
●●●●

●
●●

●●
●●●●●
●

●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●
●●●

●
●●●●●●●

●

●●●
●

●●●● ●●●●●●●
●

●●●●●●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●●

●

●
●

● ●●●●●●●●●●
●

●●
●

●

●

●●●●●●
●

●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●

●

● ●●●●●●● ●●●●●●●●
●

●●●●●
●●

●●●●●
●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●
●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●
●●●●●●●●

●
●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●

●●●● ●●●●●●●●●●
●

●●●●●● ●●●●●●●●●●
●

●●●●●●●●●●
●

●

●

●●●
●●●

●
●

●
●

●
●

●●●●●●● ●●●●●●●●●●●●●●●●
●

●●●●●
●

●●●●●●●●●●●●●●
●

●●●●●

●

●●●●●●
●

●●●●●●●●●●
●●

●●
●

●●●●●●

●

●
●●

●

●●

●●
●

●
●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●

●
●
●

●●●●●●● ●●●●●

●

●●●●●● ●●●●
●
●●
●

●●●●●●●●●
●

●
●

●●●●●●●●●●
●●● ●●

● ●
●●●●

●

●●●●●●●
●

●●●●●●●●●●●●●●●●●●● ●
●●●●●● ●
●●●●●●●

●●●●● ●●●●●●●

●

●●●●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●

●●● ●●●●●
●

●
●

●●●
●

●●●●●●●●●●●●
●

●
●

●●●●●●●●●●●●●●●●●
●●●●●
●

●●●● ●●●●●●●
●●

●
● ●

●
●●●● ●●●●●●●●

●

●●●
●●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●● ●
●

●●
●●●●●●●●

●●
●

●
●●●●

●
●●●

●
●●● ●●●●●●

●
●

●●
●●●

●
●●●●

●

● ●● ●●●
●

●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●● ●●●●●●●
●●

●
●

●
●

●●
●●●●●

●
●●●●●●●●

●
●

●●●●●●●●●● ●●●●
●●●●●●●●●●●●

●
●●●●●●●●●●●●

●●●●●●●●●● ●●
●

●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●
●

●●●●●●●●●●●●●●
●

●●

●

●●
●

●●●●●●●●
●

●●●●●●●●●●
●

●●●●●●●●●

●
●

●●●●

●

●●●●●●●●●●
●

●●●●●●●●●
●

●
●

●
●

●● ●●●●●

●

●●●●●●●●●●●
●●

●●●●●●●●●●●
●●●●●●●
●

●

●

●●●●●●●● ●●●●●● ●
●

●●●●●
●

●●●●
●●

●●●
●

●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●
●

●●●●●
●

●● ●●●

●

●●●●●●●●
●●●●● ●●●●●●●●● ●●●●

●●
●●●●●●●

●●
● ●●●●●●●●

●
●●
●

●
●

●●●●●●●●●●
●

●
●

●

●

●●
● ●

●

●

●
●

●

●

●

●●●●●
●

●●●
●●●

● ●●
●

●
●

●●
●

●
●

●

● ●
●●●

●
●

●
●●● ● ●

●

●
●

●

●●●

●
●●●●
●

●●●●
●

●●●●
●

●●●●●●
●

●●●●●●●●●●●
●●●●● ●●●

● ●●●●●●
●

●●●●●●●●● ●●●●
●

●●●●●●
●●●●

●

● ●
●

● ●
●

●
●

●
●

●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●● ●●●●●
●

●
●●● ●
●●●

●
●

●
●●●●●

●
●

●
●●●●●●●●●●●●●●●●●

●
●●●● ●

●●●●
●●● ●●●

●●●●●
●

● ●● ●●●
●

●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●● ●●
●

●
●
●

●●●●●●●●●●
●

●●●●●●
●

●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●● ●●●

●

●

●

●

●

●●●●●

●

●

●

●●● ●●● ●
●

●
● ●●

●
●●●

●
●

●

●●●●●●●●●●●●●●●
●

●●●●●●●●●
●

●●●
●

●●

●

●●●●●●●●●
●●●●●

●
●●●●●●●●

●

●

● ●

●●●●
●

●●●●●●●● ●●●●●●●●●
●

●●

●

●
●

●●
●●●
●

●●●

●

●●
●

●●●●●●●●●●
●

●

●
●●●●●●●●●●●

●
●●

●

●
●●●●●●●●●●●●●●●●●●●●●

●
●●●●

●

●●●

●

●●●
●

●●●
●

●●●●

●

●
●

●
●● ●●●●●●●● ●●●●●

●
●

●
●●●●●●●●●●●●●●●●●

●
●●●●●●● ●● ●●

●

●
●●

●●●● ●●● ●
●●●●●●●●●●

●
●●●●●

●

●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●

●●
● ●

●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●
●●

●●
●

●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●● ●●●●●
●

●●●
●

●
●●●●●●●●●●●●
●

●

●●●●●●●●●●●●●●
●

●●●●●●●●
●●

●
●●●●●●●

●
●●●●●●●●●●●●●

●
●●●●●●●●● ●●●●●●
●

●●●●●●
●

●
●

●●●●●
●

●●●●
●

●●● ●●●

●

●●
●

●●●●●●●●●●●●●●●●●●●
●

●
●

●●●●●●
●

●●●●●●●●●●●●●●●●●●

●

●●
●

●●●●
● ●

●●●●
●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●
●

●●●●●●●

●

●●●

●

●●

●

●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●

●
●

●●●●●●●●●●●●●●●●
●

●●●●●●●●
●

●●●●●●●●●●
●

●●●●
●●●●●●●●●●●

●

●●●●●

● ●

●●●●●

●

●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●
●

●●●●●●●●
●

●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●●●●●

●

●●●
●

●●●
●●●●●

●

●
●●●

●●
●●●●● ●●●●●●●●
●

●●●●●●●●●●
●●●●

●

●●
●

●●●
●

●●●
●●●●●●●●
●●

●
●●●●●

●

●●●●●●●●●●●●●
●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●
●●●●●●●

●

●
●●●●

●

●
●
●

●

●●●●
●

●●●●●●●●●●●●●●●
●●

●●

●

●●●●●●●●●●●●
●

●●●●●●●●●●
●

●●●●●●
● ●

●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●
●

●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●
●

●●●●●●●●●
●

●●●
●●●●

●

●
●

●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●

●●●●●
●

●●●
●●

●
●●●

●
●●●●●●●● ●●●
●

●●●●●●●●●
●

●●●●●●
●

●●

●

●●●

●
●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●

●

●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●● ●●
●

●

●

●●●
●

●●●●

●

●●
●●

●
●●●●●●●
●●●●●●●●●●
●

●●
●

●●

●
●

●●●●● ●●●●●

●

●●●

●

●●
●

●●●● ●●●
●

●●●●●●●●
●

●●●●●
●

●
●

●

●●●●●● ●●●●
●

●●
●

●
●●●● ●●●

●

●
●● ●●

●
●

●●●●●
●

●

●●●●●●●●●●

●
●

●●●●
●

●●●● ●
●●●●●
●●

●
●

●

●

●
●●●●●

●

●●●●●●

●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●●
●

●●●●●●●●●●●●●●●●●
●●●●●●
●●●
●

●●●●●●●●●●●●●

●

●
●

●●
●●

●●●●●●●●●●●●●●

●

●
●●●●●

●

●●●●●●●

●

●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●
●

●●●●

●

●
●

●

●●
●

●
●●●●●●●●● ●●●

●
●●

●●●●●●●●● ●
●

●●
●

●●●●●
●

●●●●●
●●

●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●

●

●
●●

●●●●●●
●●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●
●

●

●
●●●●●●●●●●

●
●

●

●
●

●●●
●

●●●
●●●●●
●●●●●

●

●●

●

●●●●●
●

● ●●●●
●

●
●

●● ●●
●●●●●●

●
●

●
●
●●

●●●
●

●●●●
●

●●●●● ●
●●●●● ●●● ●●●●●●●●●
●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●
●

● ●●●●●●●●●●●
●

●●●●●●●●●●●

●

●●
●

●●
●●●
●
●

●●
●

●●●●●●
●●
●●●
●●

●

●
●

●●
●●●●

●

●●
●

●

●●●

●

●

●

●

●

●●

●

●

●

●

●

●
●●●●●●●●●●●●●●●● ●

●●●●●●●

●

●
●●●●●●●● ●●●●●●●●●●●●●●●●
●

●●●●● ●●●
●

●●
●●● ●●●●
●

●● ●●●●●

●

●●●●●●

●

●●●●●●●●● ●●●●●● ●●●●●●●

●
●
●

●●●
●

●●●●●●●●●●●●●●●●●●

●
●

●
●● ●●
●● ●

●

●●●●
●●●●

●
●

●
●

●

●

●
●●

●
●

●
●●●●

●

●
●●

●

●●
●

●
●

●●●
●

●

●●

●●
●●
●

●●●●●●●●

●

●● ●●

●

●●
●
●●●●

●●●
●

●

●

●●●

●

●●●● ●●●●●●●
●●
●

●●●●
●

●●●●●● ●●
●

● ●●●●
●

●
●●

●
●

●●
●●●

● ●

●●
●

●
●

●

●●●●●●●

●

●●● ●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●
●

●
●●

●●

●

●

●

● ●
●●

● ●
●●

●

●●● ●
●

●●
●

●●●

●
●

●

●

●●
●●●●●●

●

●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●

●●●
●

●●

●

●
●●

●
●●
●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●
●●●

●●
●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●
●●●●● ●●

●

●●●●

●

● ●
●●

●

●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●
●

●●●●●●●●●●

●

●●

●

●●●●
●

●●●●●
●

●●●●
●

●●●●● ●
●●●●●●●●

●

●●
●

● ●
●

●

●●●●●●●

●
● ●

●

●●●●●
●

●
●

●●

●

●●
●●

●
●

●●●●●
●●●●●●●●●●●●●
●● ●

●

●●●●●●●
●

●●●●●●●●●●●●
●

●●

●

●
●●

●

●

●

●

●●●●● ●●
●

●
●●●●
●●●●●●●●

●●●●●
●
●

●●●

●●

●

●

●●●●●●●●●●
●●●●●●●●●

●

●

●
●

●

●●

●
●●●
●

●●
●

●●●
●●●

●
●

● ●●
●

●●●●●●
●

●●●●●●●●●●●●
●●

●
●●

●●●
●

●●●
●●●●●
●

●

●●

●

●●●●●●
●

●●●●●●●●●●

●
●

●●●
●

●●●●●●●● ●● ●
●

●

●

●

●
●

●
●

●
●●
●

●
●

●●●

●

●

●

●
●●●●●●●●

●● ●
●

●
●●●●●●

●

●●●●●

● ●

●

●

●●●●●●●●●●●●

●
●●
●
● ●

●
●●●●●●

●
●

●

●●● ●●
●●
●

●

●
●●

●●●

●

●●●●

●●
●

●●●

●

●●
●●●

●●
●●●●

●
●

●●
●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●● ●●●

●

●●

●

●●●
●

●●
●

●●

●

●●
●

●

●●●●●●●●
●

●●
●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●

●

●●●●●●●

●

●●
●●●

● ●

●

●●

●●●
● ●

●●
●

●●●●●●●●●
●

●●●
●

● ●●
●●

●

●●●●●●●

●

●●●●

●
●

●

●

●●●
●

●●
●●

●
●

●

●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●

●

●●

●

●●●●

●

●●●●●●●●●●●●●●●

●

●

●

● ●●●●●●
●

●●●●●●●●●●●●●●
●

● ●●
●

●●
●●●●

●
●

●

●

●

●●●
●

●●

●●●●●
●●●●●●
●

●●●●●
●

●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●

●
●●

●

●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●

●

●

●
●●●● ●●
●●●●●●
●

●●●●●●●●●●●●

●

●
●●

●●●●●●●● ●●●●●●●●●
●

●●●●●
●

●●●

●
●

●

●●●●●●●●●●●●●●●●●●●

●

●●

●

●
●

●

●

●●
● ●●

●

●●
●

●

●●
●

●

●
●

●●●●●●●●●●●● ●●

●
●

●●●●●
●

●●●●●●●●●
●●
●●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●

●

●
●

●● ●
●●●●
●

●●●●●●●●●●

●

●
●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●
●●●

●●

●

●●●●
●

●●●●

●
●●●●●●●●●
●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●
● ●

●●●

●
●●●●●●●●● ●●●●●●●

●
●●●●●●●

●

●●
●

●●
●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●

●

●● ●●●●●
●

●●●●●

●

●●●●●
●

●●

●

●

●

● ●●
● ●

●

●●

●

●●

●

●● ●●●

●

●
●

●

●

●
●

●●●●●●●●

●

●
●●

●●●●●●●●●●
●●

●●●
●

●●●●●●●●●●●●●●
●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●
●●●●●●●●

●●

●

●●●●●●●
●●●●●●●●●●●●●●●●

●
●

●●●●●

●

●●●●●
●

●●●●●●●●●●●●●●●●● ●● ●

●

●
●●●

●
●

●●●
●

●●●●●●●●●●●●●●●●●●● ●
●●●●●●●●●●●● ●●●

●

●●●●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●●●●

●

●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●● ●● ●●
●●●●●●●

●
●●

●
●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●● ●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●
●

●●

●

●●●●●●
●

●●●●●●●
●

●●
●

●●●●●●●●●●●●●
● ●
●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●
●●●

●
●

●

●

●●●●●●●●●●●●●●●●
●●●●●●●●
●

●● ●

●

●

●

●●
●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●● ●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●
●

●●●●●●

●

●●●●●

●

●●● ●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●
●●●●●●●●●●●● ●●●●●●●

●

●
●●

●●
●

●●●●●●● ●●
●

●●●●●●●●●●●●●●●●●

●

●●

●●
●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●
●

●●●●●●●●●●●●●

●

●●●●●●

●

●

●

●●
●

●
●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●
●●●●●●●●●● ●●

●

●●●●●●●

●

● ●
●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●

●●

●

●●●●●
●

●●●●●●●●●●●●●●●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●
●●●●●

●

●

●●●●●●●●●●●●●●●●●●●
●

●
●●● ●●●●●

●●●●●●●● ●●●
●

●
●●

●●●●●●●●

●

●●

●●

●●
●

●●●●

●

●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●
●

●
●● ●

●

●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●

●

●●
●

●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●

●

●●● ●●●●●●●●
●

●●

●

●
●●

●
●

●● ●●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
● ●

●●
●

●●
●

●●●●●●
●

●●●●●●●●●●●●●●●●●●
●

●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●
●

●●

●
●●●

●

●
●● ● ●

●●
●

●

●●●●●
●

●●●●● ●●●●●●●●

●
●●●●●

●
●●●

●●
●

●

●

●

●

●
●

● ●●● ●●●● ●● ●●●
●●●

●

●●
●●●

●

●
●●●

●
●●●●●●●

●●
●

●

●

●

●
●●●●●●●●●

●
●

●

●
●●

●
● ●●

●●●●● ●●●●●●●●●● ●●●
●

●●●
●● ●●● ●●●

●
●●●

●
●●●

●

●
●●●●●

●

●●

●

●● ●●●●●
●

●●●●●

●
●●

●●

●
●●●
●●●●●● ●● ●

●

●●●

●
●●

●●●●●
●●

●● ●●●
●●

●●●●
●●

●

● ●●

● ●
●

●●●●●●●●●
●

● ●●●●
●

●
●

●●
●

●●

●

●●●●

●

●●●
●

●●● ●

●

●
●

●●●●● ●
●●●●●●●●●●● ●

●
●●

●●
●

●●●●● ●●●●
●●

●

●
●●●● ●●●●●●● ●●●●● ●

●●
●

●

●
●

●●●●●●●●
●

●●●

●

●
●

●●●●●●
●

●●●
●

●●

●

●●●●●
●●

●
●

●

●
●

●●●
●

●
●●●●●●●● ●●●●●●●●●●●●●●
● ●

●●●●●●● ●●●●●●● ●●●●● ●●
●●
●●
●

●● ●●●●●●● ●●●● ●●●●●●●●● ●●●●●●●

●

●●●●●●●
●●●

●

●●●●●
●

●●●
●

●●●●●●●
●●●●●●●

●●●

●
●

●●● ●●●●●●●●
●

●●●●●●

●

●
●●

●●
●●

●●●●●
●●●●● ●●

●
●

●
● ●●●●

●●
●●

●

●●●●● ●●

●

●

●

●●●●●●●●●●●
●

●

●●●●●●●●●●●●●

●

●●●●●
●

●

●

●●●●●●

●

● ●●●
●

●

●
● ●●

●

●

●

●

●

●

●
●

●● ●●●●●●

●

●●●●●

●
●

●
●

●●●
● ●● ●●●●● ●●●●●●

●●
●

●

●
● ●●●●●●● ●

●●

●

●●●●
●●

●

●

●●
●

●●● ● ●
●●●●●●●●●●

●●●●●●●●●●●●●●●●
●

●

●●
●

●●
●

●●●●●●●●●●●

●

●●●
●

●●●●●●●●● ●
●● ●●●

●
●● ●●

●

●

●

●●●●●●
●

●
●●●●●●●●●●●

●
●●●

●

●●

●● ●●
●●

●
●
●

●
●

●● ●●●●● ●● ●
●

●●●
●

●●●●●●●●●●●●●●

●

●
● ●●●●●

●

●●●●● ●●●●●●●● ●●●●●●

●

●●●●●●●

●

●

●

●●

●

●●● ●●●●●
●

●●
●

●

●

●●

●

●●

●

●●●●
●●●●●●●●

●
●●●

●●

●

●●●●●●●●●● ●
●●●

●
●●
●

●

●
●
●●

●
●●

●

●
●

●●●●●

● ●

● ●●● ●
● ●●

●

● ●●●●

●

●●●●● ●

●

●

●

●
●

●●●●●●●●● ●●● ●●●

●

●
●

● ●●

●

●●
●

●● ●● ●●

●

●● ●●
●

●
●●

●●●●●●●●● ●●●
●●●●●●●●

●●●●●
●

●● ●●●●● ●●●●● ●●
●●

●●
●●● ●●●

●

●●●

●

●● ●●●●●

●●
●

●
● ●●●●

●

●●●●●●

●
●

●●

●●●●
●

●●
●

●●●●●●●●●● ●●●● ●●● ●●

●

●●●●●●●●●

●●
●●●●

●

●●

●●●
●●●●

●

●
●
●

●
●● ●● ●●●●●● ●●●●●

●
●●

●
●●●●●

●

● ●●

●●

●●●
●

●
●
●

●● ●

●

●

●●●●●●●

●

●
● ●● ●
●●●●●●●● ●

●

●●●●●●●● ●●●●● ●●●●
●

●●●●●●●● ●
●●● ●●●●●

●
●

●
●●●

●●●●●

●

●●

●
●

●●●
●

●
●

● ●●●●●● ●●●●●●●
●

●●●●●
●

●● ●●
●

● ●●●
●

●
●

●●●●●●●●●

●
●●● ● ●●

●●●
●

●●●

●

●
●

●●●●●●●●

●

●● ●●

●
●

●●●●●● ●●●●●

●

●

●

●●●●

●

●
●

●●●●●

●

●●●

●

●
●

●● ●
●

●●●●●●●●●● ●● ●●

●

●●●●●●
●

● ●●
●

●●
●●

●●●●●●
●●●● ●

●
●

●

●

●
●
●●

●● ●●●●●●●●

●

●●●● ●●●●●●●●● ●●● ●●● ●
●

●●● ●●●●●●● ●● ● ●
● ●●●●●●●●●●●

●● ●

●●

●

●●●● ●
●●●

●●●●
●

●●●●●●● ●●● ●●●●●●●

●

●●●●●●●●●●
●

●
●●●● ●●

●

●
●

●●
●

●●

●

●● ●● ●
●●●●
●

●●●●●●●

●

●

●

●●●●
●●●●●●●●
●●●●

●
●

●
●

●
●●

●●●●●●
●●●●

●

●●●●●●●●●
●●●●●

●
●●●●

●
● ●● ●
●

●● ●●●●
●●

●
●

●●

●
●●●●

●●
●●●●●●●●●●

●

●
●●●●● ●

●
●

●●●
●

●

●
●●

●

●●
●●

●

●
●●●
●

● ●●●●●● ●●●● ●●●●●● ●●●● ●●●●● ●●
●●

● ●●●●●●●●●●●
●

●●●●●
●

●●
●●

●●●●●
●

●
●

●
●●●●●●●

●

●

●●
●

●

●

●
●

●

●

●●
●

●●●●
●

●

●●

●

●

●

●●●● ●●●●●
●

●●●

●

●

●

●●●

●
●●

●●
●●●● ●●

●

●
●●●●●●●●●●●●

●
●● ●●●●● ●●●●●●● ●●●●●●●●

●

●●●●●●●●●●●●●●●●●● ●●

●
●●●

●
●●

●●●●
●

●●● ●● ●●●

●●
●●

●
●●

●
●●●

●

●●●●●●● ●●●●●●●●●●●
●

●●● ●
●

●
●●● ●●

●

● ●●●
●

●●
●

●●
●

●●●●●● ●●

●

●
●

●
●●●●

●

●●
●

●●●● ●●●●
●

●●● ●●●●●●●
●

●●●●●
●●●

●

●●●● ●●●●●●
●●●●

●●

●

●
●●●●●●●

●

● ●●●●●●● ●●
●

●●●●●● ●●
●

●
●●● ●●● ●●●● ●●●● ●●●●

●
●●

●●●●●●●●
●●

●
●●●
●

●●●●●●●●●
●

●● ●●
●

●●●

●

●●●● ●
●
●

●
●●●●●●●●●●● ●●●●●● ●● ●●●● ●●●●●●● ●●●●

● ●● ●●●● ●●●●●
●

●●●●●● ●●●●●●●●●●●●
●

●●
●●
●

● ● ●
●●●

●
●

●
●● ●●●●●

●
● ●●●● ●●●●

●

●●● ●●●

●

●●
●

●●●
●

●
●

●●●●●●●● ●●●●●●●●

●

●●●●●●●●●●●●

●
●●●

●

● ●●●
●●● ●

●

●●

●

●●●● ●● ●

●

●●●
●

●●●●●●● ●
●

●

●●●●
●

●

●

●
●●

●● ●●
●●●●●

●

●●●●●●●●●●●
●

●●●●

●

●
●

●

●●●●●●●●●●●●●●●●●
●

●●● ●●●●

●
●

●●
●●● ●●●●

●
●●●●●●●●●●●●

●

●● ●
●

●

●
●●●●● ●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●

●●
●●

●
●

●●●●● ●●●●●●●● ●●●
●

●●●

●

●●●●●●●
●●

● ●

●●●●●●●●●●
●●●●●

●
●●●●●

●●●●
●●●●●●
●●● ●

●●●●●●●●
●●●●●

●
●●●●●●●●

●
●●●

●

●●●●●●●●●●●●
●

● ●
●

●●● ●
●

●●
● ●●

● ●

●

●

●●
●●

●●●

●

● ●●●●●●●

●

●● ●●●●
●●●

●
●●●●●●

●
●●●●● ●●●●●●●●●●

●

●●
●

● ●●●
●

●●●

●

●●●

●

●
●

●
●●●● ●●● ● ●
●

●

●
●

●●●● ●
●●●●●●

●
●●

●
●●●●●●●●●●●●●●●●●●

●

● ●●●●●● ●●●●
●● ●●●

●
●●●●●

●
●●●●●●●●●●●●●

●●●●●●●●●●●

●

●

●

●●

●

●●●●
●

●●●●●●●●●●●

●

●●●●●●●
●

●●●●●●
●●●

●
●

●●
●

●

●●●●●●●●●●●●●●●●●●● ●●● ●●
●

●●●●●● ●●●

●

●●● ●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●● ●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●
●●●● ●●●●

●
●

●●● ●
●●●●●●●●●●

●

●●●●●●
●●● ●●

●
●

●●●●●● ●●●●

●
●●●●●●●●● ●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●
●●

●
●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●
●●●●

●

●●●●●●●●●●●●●●●●

●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●● ●● ●●●●●●●●
●●

● ●●●●●
●

●● ●●●● ●●

●

●

●
●

● ●●●●
●

●●●●●●●●●●●●●●●●●●●●●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●

●●
●● ●●●●●●●●●●●●●●● ●●

●●●●●
●

●●● ●●
●●●●

●
● ●

●
●●● ●●● ●

●●
●

●●●●●
●●● ●●●

●

●

●

●●●●●●●●●●●●●●●●●
●

●●●●●●●●●
●

●●●●●●●●●●●

●

●●●
●

● ●●●● ●●●●●●
●

●●●●●●●●
●●

●●●●●●● ●●●●●●●●●●●●
●

●●●● ●●●●●●●●●●●
●

●●●●●●●● ●● ●●●●●●●●●
●

●●●●

●

●●●●
●●

●●●●●●●●●●●

●

●●●●● ●●●●● ●●●
●

●●●●●●●●●●●●● ●●●●●
●

● ●●●●●●

●

●
●●●●●●●●● ●●●●●●●●● ●●●● ●● ●●●●●●●●

●
●●●●●● ●●

●●● ●●●●●
●

●

●

●●●● ●●
●

●●●
●

●●●●●● ●
●●●●●●●●●●●●●●●●●●●●●● ●●●

●
●●●●

●●●●●●●● ●●●●●●●●●●●●●
●

●●●

●

●●●
●

●●●●●●●●●
●

●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●
●

●●●●● ●●●●●
●

●
●●●

●●●●● ●● ●
●

●●●●
●

●●●●
● ●

●●●●●●
●●●● ●●

●●●●
●

● ●●●●● ●●●●●●●

●

●●●●●●●●●●●
●

●●●●●●●●●●●
●●

●
●●●●

●
●●●●●●●●●●●

●●●●
●●

●

●●●●●●●●
●

●●
●●●
●●

● ●●●●●
●

●●●●●
●

●●
●●●

●
●●●●●●●●●●●● ●●●●●●
●●●●●●●●●●●●●●●●● ●●●●●●● ●● ●●●●●●●
●●●●●●●●●● ●●●●●●●●●●●●●●●
●●●●

●
●●●● ●●

●

●●●●● ●●●
●●● ●●● ●● ●●●●●●●●● ●●●●●● ●● ●●●●●●
●

●●●●●●●
●●●●● ●

●
●●●●●●●●●● ●● ●

●

●
●●

●
●●●●● ●●●●●●● ●● ●●●●

●
●●●●

●
●●●●●●

●●

●

●●
●

●

● ●
●●● ●●

●
●●●●

●

●●
●

●●●●● ●●● ●●
●●● ●●●●●●●

●●●●● ●●●●●●●

●

●●●●●●●
●

●●●●●●
●●●●●●●●
●

●●●●●●●●●●
●

●● ●●●●●●●● ●
●

●●●●●●●
●●●●●●●

●

●●●●●●
●

●●●●●
● ●●●●

●
●●●●●●

●●●●●
●

● ●●●●●●●●● ●●●●●●●●

●
●●●
●

●●●●●●● ●●●●●●●●●●●●
●●●●●●●●●
●

●●●●●
●●●●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
● ●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●
●

●●●●●● ●●●●●●●●●●●●●●
●

● ●
●●●●●

●●●●●● ●●●●● ●●●
●●

●
●●●●●●●●

●
●●●● ●●●●●●●●
●

●●●●●●
●

●● ●●●●●●●● ●● ●
●●●●●●●

●●
●●●●

●
●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●

●●●●
●

●●●●●

●
●●●●●●● ●●●● ●●●● ●●

● ●
●

●
●●●●●●●

●
●●●●●● ●●●●

●
●

●
●●●●●●●●● ●

●●●●●● ●●● ●
●●●●● ● ●

●●●●●●●●●●●●●●● ●
●
●

● ●●●●●●●●●

●

●

●

●●●●●●●●●●●●● ●●●●●●

●

●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●

●
●

●●●●
●

●●●
●

●●●●●●●●●

●

●●

●

●●●●●●●●●
●

●
●

●●●●●●●●●●●●●●●●● ●●●●●
●●●●●●
●●

●● ●●●●●●● ●●●●●●
●

●●●●●●●●●
●

●●●●●
●

●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●

●

●●●●
●

●●●●●●●●●● ●●● ●●●●●●
●

● ●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●
●

●●●●●●●●

●

●●●●●●●●● ●●
●●●●●●

●
● ●●●●●●●●●●●●●●●●●●●●●●

●
●● ●●●●●●●●●●●●●●●●●●●●●

●●
●●
●

●●●●

●

●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●
●

●●●●●●●
●●●●●●●●●●● ●●●●●●●●● ●●●
●

●●●● ●●●●●●● ●●●●●● ●●●●●●●●
●

●●●●●●●●●
●●●●●●●
●●●●●●●●●
●

●●●
●

●●●●●●
●

●●
●

●●●●
●
●

●●● ●●●●●●●●●●●●
●

●●●
●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●

●●●
●

●●●●●●●●●●●●●●

● ●

●●
●

●
●●
●

●
●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●

●
●●●●●●

●
●●●● ●●●●● ●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●

●●● ●●●●●
●

●●●●
●

●●●●●
●

●●●●●●●●●●

●

●●●●●●●
●

●●●●● ●●●●●●
●●●●●

●
●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●●●●

●
●●●●●●●●●●●●●●●●

●●
●●
●●● ●●●

●●
●●●●●●●●

●●●●
●

●●●●●●●●●●●● ●
●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●●●●● ●
●●●●

●

●● ●●
●●

●

●● ●●●● ●●●● ●
●●●●

●
●●●●●

●
●●●●●●●●● ●●●●●●●●●●
●

●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●● ●

●

● ●
●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●

●
●●●●●●●●●●●●●

●
●●●●●●

●●●●●●●
●

●●●●● ●
●●●●●

●
●●●●●●●●●● ●
●●●

●●●●●●●●●●●●●●● ●●●●●●●●●●
●●●●●●
●

●●●●●●●●●●●●●●
●

●●●●●●●●●
●

●● ●●●●
●

●●●●●●● ●●●●●●●●● ●●●●●●●
●

●●●●●●● ●●●●●●●●●
●

● ●
●●●●●●●●●●●● ●●●●

●
●●●●●●

●
● ●●●●

●

●●●●●●●●●●● ●●●●

●

●●● ●●
●

●
●

●

●●●●●●●●●●●●●●●●●
●

●

●

●●●●●●●●
●

●
●

●●●●●●●●●●●●●●●●●
●

●●●●●●●●
●

●
●

●● ●●●●●
●

●●●●●●
●

●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●
●●● ●
●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●

●
●●●●● ●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●

●

●●●●●●●●●● ●●● ●●●●●●●●●●
●

●●●●●●●●●●●●●●●
●

●●● ● ●●●

●

●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●● ●●● ●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●
●

●●●●●●●●●
●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●
●●

●
●●●●● ●●●●●●●●●● ●● ●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●

●

●
●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

● ●●●●●●●●●●●●●●●●●
●

●● ●
●

●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●● ●●●
●

●●●●●●● ●●●●●●●●●
●

●●
●●●●

●

●●●●●●●●●●●●● ●●●
●

●●●●
●

●●●●●●●●●●●● ●●
●

●●●●
●

●●●● ●●●●●● ●●●●
●●●●●●●●●● ●

●
●

●●●●●●●●●●●●●

●

●●●●●●
●

●●●●●●●● ●●
●●●●●●●●●● ●●●●●●

●
●●●●●●●●●●●●●●●● ●●●
●

●●●●●●●●

●
●●

●●●●● ●●●● ●●●●●●●●●● ●
●

●●●●●●●●●●
●●

●●●●●●●●●●●●
●

●●●●●●●
●

●●●●●●●●
●

●●●●● ●● ●●●●● ● ●
●●

●
●● ●●●●● ●●●●●●●●●

●
●

●

●

●

●●●●●●
●

●●●●●●●
●

●
●●●●●
●● ●

●
●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●

●
●● ●●●●●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●●●

●

●● ●●● ●●●●●●●● ●
●●●●●●●●●●●●●●●●●●●●●●● ●●●●

●
●●●●●●

●

●●●●●●●
●

●● ●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●
●

●●●●●
●

●●●●●●●●●●●●●● ●
●

●
● ●●

●
●

●
●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●● ●●

●●●●●●●● ●●●●●●●

●

●●
●

●●
●

●●●●●● ●●●●●●●●●●●●●
●●●●●●

●

●● ●●●●●●●●●●●●●●●●●●●●●
●

●●
●●●●●●●

●
●●●●● ●●●

●

●●●●●●●●●●●
●●●●● ●●●●●●●●●●●● ●● ●● ●●●●
● ●

●
●

●●●●●
●

●●
●

● ●●●●●●●● ●●●●●●●●●●●
●

●●●●●

●
●●●●● ●●

●

●
●● ●
●●● ●
●●●●●●●●●●●●●●●●●● ●●●●●●●●●
●

● ●●●●●●●●●●

●

●●●●●●● ●
●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●
●●●●

●
●●●●●●●●●●

●
●●●●
●

●●●●●●●●●●●●●●●
●●●●●●●●●

●
●●●●●●●● ●●●●●

●
●●●● ●
● ●●●●●●●●

●●
●●●●● ●● ●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

● ●
●●●●●●●●●●●

●
●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●

●●●●●●●●●●●●●●
●

●●●
● ●

●●●●●●●●
●

● ●●●●●●●●●●●●●●●●●●●●● ●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●
●●●●●●●●●●●●●

●

●●●●●●●●

●

●●● ●●●●●●●●●●●●●●●●●●●● ●●●●
●

●●●●
●

●● ●●●● ●●
●

●●●●●● ●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●
●● ●●● ●●● ●●
●●●● ●●●●●●●● ●●●●●

●
●●●●●●●●●●●●●●

●
●●●●

●●●●●●●●●●●●●●
●

●●●●●●
●

●●●●●●●●●●● ●●●●●
●●●●●●●●●
●●

●●●●●● ●●●● ●●
●●●●●●●●●●●●●●●●●●●

●
●●

●

●●●
●

●●●●
●

●●●● ●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●● ●●●●●●●●● ●●●●
●●●●●●● ●

●
●●●●●● ●●

●
●●●

●
●●●

●
●●●●●●●●
●

●●●●
●●

●●
●●●●●●●●●●●●● ●●
●●●●●●●●●

●
●●● ●●●
●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●

●

●●● ●●●●●●●●●●●
●●●
●

●
●

● ●●● ●●●●●●●
●

●●
●●●●●●

●●●●●●●●
●●●●●●●
●

●
●

●●●●●●●●●●
●●●●●●●●●●●●●●●●● ●●●●●
●●● ●●●●●● ●●●●●●●●●●●●●●●●●

●
●●●●●●●●● ●●● ●●●●●● ●●●

●
● ●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●

●

●●●●●●●● ●●
●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●

●

●●
●●●

●●

●

●●●●
●

●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●
●●●●●●● ●●●●●●●●● ●
●

●●
●

●●●●●● ●●●
●

●● ●●●●●●●●●●●●●●●●●●●
●●● ●●●●●●

● ●
●

●
●●

●●●●●●● ●●●●●
●

●● ●●
●

●●●●●●●●●●●●
●●●
●

●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●
●

●●●●●●●●●●●●●●●●●●●● ●
●

●●●●
●

●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●
●●●● ●●●●●●●●● ●●

●
●●●●●●●●●●●●

●● ●●●●●●●●●●●●●●●●●●●
●

●●
●

●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●
●

●●●●●●●
●

●●●
●

●●●● ●●●●●●●
●

●●●●●●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●●
●

●
●

● ●●●●●●●●●● ●●●
●

●
●

●●●●●●
●

●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●
●

● ●●●●●●● ●●●●●●●●
●

●●●●●
●●●●●●● ●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●● ●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●
●

●

●

●●●
●●●

●●
● ●●

●
●●●●●●● ●●●●●●●●●●●●●●●●

●
●●●●●
●

●●●●●●●●●●●●●●
●

●●●●●

●

●●●●●●
●

●●●●●●●●●●
●●

●● ●●●●●●●
●

● ●●

●

●●
●●

●
●

●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●● ●●●●●

●

●●●●●● ●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●● ●●● ●●●
●

●●●●
●

●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●
●●●●●● ●●●●●●●●●●●●● ●●●●●●●

●

●●●● ●
●●

●
●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●
●●● ●●●●● ●●●●●● ●●●●●●●●●●●●●
●

●
●

●●●●●●●●●●●●●●●●● ●●●●● ●●●●● ●●●●●●● ●●● ● ●
●

●●●● ●●●●●●●●

●

●●● ●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●● ●
●

●●●●●●●●●●
●●●
●●●●●
●

●●●
●

●●● ●●●●●●
●

● ●●●●●
●

●●●●
●

● ●● ●●●
●

●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●● ●● ●
●

● ●●●
●●●●● ●●●●●●●●●

●
●

●●●●●●●●●● ●●●●●●●●●●●●●●●● ●
●●●●●●●●●●●● ●●●●●●●●●● ●●

●
●●●●●●●● ●●●●●●●●●●●●●

●●●●●●●●●
●

●●●●●●●●●●●●●●
●

●●
●

●● ●●●●●●●●● ●
●●●●●●●●●● ●●●●●●●●●●

●
●●●●●

●

●●●●●●●●●● ●●●●●●●●●●
●

● ●● ●●● ●●●●●
●

●●●●●●●●●●● ●●
●●●●●●●●●●●●●●●●●●
●

●
●

●●●●●●●● ●●●●●● ●
●

●●●●●●●●●● ●●●●●
●

●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●
●●●●● ●●● ●●●

●

●●●●●●●●●●●●● ●●●●●●●●● ●●●●
●●

●●●●●●●
●●

● ●●●●●●●●
●

●●
●

●
●

●●●●●●●●●●
●

● ●●

●

●●●
●

●

●
●●

●

●

●

●●●●●●
●●● ●●
●● ●●

● ●●
●

●●
●●

●
● ●

●●● ●●
●

●●● ● ●
●

●
●

●
●●●

●
●●●●
●

●●●●
●

●●●● ●●●●●●● ●●●●●●●●●●●●
●●●●● ●●●

● ●
●●●●●
●

●●●●●●●●● ●●●● ●●●●●●●●●●●

●

● ●
●

● ●●
●

● ●●
●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●● ●●●●●

●
●
●●● ●●●●

●
●

●
●●●●●

●
● ●

●●●●●●●●●●●●●●●●●
●

●●●● ●●●●●●●● ●●● ●●●●●
●

● ●● ●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●● ●●● ●●●●●●●●●●●●● ●●●●●●●
●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●

●

●

●

●

●

●●●●●

●

●

●

●●● ●●● ●
●

●
● ●●

●
●●●

●
●

●

●●●●●●●●●●●●●●● ●●●●●●●●●●
●

●●● ●
●●

●

●●●●●●●●●
●●●●● ●●●●●●●●●

●

●

● ●

●●●● ●●●●●●●●● ●●●●●●●●●
●

●●
●

●
●

●●●●●●●●●

●

●● ●●●●●●●●●●●
●

●

●
●●●●●●●●●●● ●●●

●

● ●●●●●●●●●●●●●●●●●●●●●
●

●●●●
●

●●●

●

●●●●●●● ●●●●●

●

●
● ●●● ●●●●●●●● ●●●●●

●
● ●

●●●●●●●●●●●●●●●●● ●●●●●●●● ●●
●●

●
●

●●
●●●● ●●● ●
●●●●●●●●●● ●●●●●●

●

●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●

●●
● ●

●●
●●

●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●
●

●●● ●● ●●●●●●●●●●●●
●

●

●●●●●●●●●●●●●●●●●●●●●●● ●●
●

●●●●●●●
●

●●●●●●●●●●●●●
●

●●●●●●●●● ●●●●●● ●●●●●●●
●

● ●●●●●●
●

●●●● ●●●● ●●●

●

●●
●

●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●
●

●●●●●●●●●●●●●●●●●●
●

●●
●

●●●● ● ●
●●●●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●
●

●●●
●

●●●●●●●

●

●●●
●

●●

●

●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●
●●●●●●● ●● ●●●●●●●●●●●●●●●●● ●

●●●●●●●●
●

●●●●●●●●●● ●●●●
●

●●●●●●●●●●●

●

●●●●●
● ●

●●●●●

●

●●●●●●●●●●●●●●●●●●● ●●
●●●●●●●●●●●●●●●●●

●
●●●●●●●●

●
●●●●●●●●●●●●●●●

●
●

●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●

●

●●●●●●●●●●●●
●

● ●●●
●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●

●●●
●

●●●
●●●●●●●●
●● ●●●●●●

●
●●●●●●●●●●●●● ●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●

●

●●●●●

●

●●●

●

●●●●
●●●●●●●●●●●●●●●●

●●
●●

●

●●●●●●●●●●●● ●●●●●●●●●●●
●

●●●●●●● ●
●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●● ●●●●●●●●●●
●

●●●
●●●●

●

● ●●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●
●

●●●●●
●

●●●

●
●●●●●●●● ●●●
●

●●●●●●●●●
●

●●●●●●
●

●●

●

●●●

●●
●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●
●

●●●●

●

●●●●●●●●●● ●●
●

●

●

●●●
●●●●●

●
●●

●● ●●●●●●●●●●●●●●●●●●●●●
●

●●

●
●

●●●●● ●●●●● ●●●●

●

●●
●

●●●● ●●●
●

●●●●●●●●●●●●●● ●● ●

●

●●●●●● ●●●● ●●●●
●●●●● ●●●
●

● ●● ●●
● ●●●●●●

●
●

●●●●●●●●●●
●

●●●●●
●●●●● ●

●●●●●●● ●●
●

●
●

●●●●●

●

●●●●●●

●

●●
●

●●●●●●●●●●●●●
●

●
●

●●●●
●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●●
●

●●●●●●●●

●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●
●

● ●●

●●
●

●
●●●●●●●●● ●●●

●
●●

●●●●●●●●● ● ●
●●

●
●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●

●

● ●●●●●●●●
●●

●●●● ●●

●

●●●●●●●●●●●●●●●
●

●
●

●●●●●●●●●●
●

●

●

●
●●

●
●●●●●●●●●●●●●

●
●●

●

●●●●●
●

● ●●●●
●

●
●

●● ●●●●●●●● ●●
●

●●●●●● ●●●●● ●●●●●● ●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●● ●●●●●●●●●●●●
●

●●
●

●●
●●●●●

●
●

●
●●●●●●●●

●●●●●

●
●

●
●●●●●●

●
●●
●

●

●●●

●

●

●

●

●

●●
●

●

●

●
●

●
●●●●●●●●●●●●●●●●

●
●●●●●●●

●

● ●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●● ●●● ●
●●● ●●● ●●●●●

●

●●●●●●

●

●●●●●●●●● ●●●●●● ●●●●●●●
●●●●●●
●

●●●●●●●●●●●●●●●●●●
●

●
●

●● ●● ●● ●

●

●●●●
●●●●

●
●

●
● ●

●

●
●●

●
●

●
●●●●

●

● ●●

●

●● ●●
●

●●●
●

●

●●
●●

●● ●●●●●●●●●

●

●● ●●
●

●●
●
●

●●●
●●●

●
●

●

●●●

●

●●●● ●●●●●●● ●● ●●●●● ●●●●●●● ●● ●
● ●●●● ●
●

●●●
●

●●
●●●

● ●

●●
●

●
●●

●●●●●●●

●

●●● ●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●
●

● ●●

●●

●

●

●
● ●

●●

●
●

●●

●

●●● ●
●

●● ●●●●

●

●

●

●

●●
●●●●●●

●
●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●● ●●●

●

●
●● ●

●●●●●●

●

●●●
●

●●●●● ●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●

●●●●● ●●

●

●●●●

●

● ●
●● ●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●● ●

●●●●●●●●●●
●

●●

●

●●●●
●

●●●●●
●

●●●●
●

●●●●●
●

●●●●●●●●

●
●●

●● ●
●

●

●●●●●●●

●● ●

●

●●●●● ●●
●●●

●

●●
●●

●
●

●●●●● ●●●●●●●●●●●●●
●● ●

●

●●●●●●●●●●●●●●●●●●●●
●

●●

●

●
●

●
●

●
●

●

●●●●● ●●●
●

●●●●
●●●●●●●●

●●●●●
●●

●●●
●●

●

●

●●●●●●●●●● ●●●●●●●●●
●

●

●

●
●

●
●

●
●●
●●

●●
●●●●
●●●● ●

● ●● ●●●●●●● ●●●●●●●●●●●●●
●●

●●●●●●
●

●●●
●●●●● ●

●

●●

●

●●●●●●
●

●●●●●●●●●●
●●

●●●
●

●●●●●●●● ●● ●
●

●
●

●

●
●

●
●

●
●● ●

● ●

●●●

●

●

●

●●●●●●●●●
●

● ●●
●●●●●●●

●
●●●●●

●
●

●

●

●●●●●●●●●●●●

●
●●
●

●
●

●
●●●●●● ●●

●

●●● ●●
●●●●

●
●●●●●

●

●●●●

●
●●

●●●

●

●●
●●●

●●
●●●●

●●

●● ●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●● ●●●

●

●●

●

●●●

●
●●
●

●●

●

●●
●
●

●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●● ● ●

●●●●●●●

●

●● ●●●

● ●

●

●
●

●●●
● ●

●●

●

●●●●●●●●●
●

●●●
●

● ●●
●●

●

●●●●●●●

●

●●●●

●
●

●

●

●●●●●●
●●

●●

●

●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●

●

●●

●

●●●●

●

●●●●●●●●●●●●●●●

●

●

●

● ●●●●●●
●

●●●●●●●●●●●●●●
●

● ●●
●

●●
●●
●●

●
●

●

●

●

●●●

●

●
●

●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●

●
●●

●
●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●
●

●

●●●●● ●●●●●●●●
●

●●●●●●●●●●●●
●

● ●●●●●●●●●● ●●●●●●●●●
●

●●●●●
●

●●●
●
●

●

●●●●●●●●●●●●●●●●●●●

●

●●

●

●
●

●

●
●●

● ●●

●

●●●

●

●●
●

●

●●●●●●●●●●●●●● ●●

●
●

●●●●● ●
●●●●●●●●●

●●
●●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●● ●
●●●●●●●●●●●●●●●

●

●
●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●

●

●●●●
●

●●●●
●

●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●
● ●

●●●
●●●●●●●●●● ●●●●●●●●●●●●●●●

●

●●
●

●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●

●

●● ●●●●●
●

●●●●●

●

●●●●●
●●●

●

●

●

● ●
●

● ●

●

●●

●

●●

●

●● ●●●

●

●
●●

●

●●●●●●●●●●

●

● ●
●

●●●●●●●●●●
●●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

●●●●●●● ●●●●●●●●●●●●●●●●

●
●●●●●●

●

●●●●● ●●●●●●●●●●●●●●●●●● ●● ●

●

●
●●●

●
●

●●●
●

●●●●●●●●●●●●●●●●●●● ●
●●●●●●●●●●●● ●●●

●

●●●●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●●●●

●

●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●● ●●
●●

●●●●●●●●●●
●

●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●● ●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

● ●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●
●

●●

●

●●●●●● ●●●●●●●● ●●● ●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●
●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●

●

●

●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●● ●●●●●●●

●

●●●●●
●

●●● ●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●

●

●

●
●

●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●

●

●●

●
●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●
●

●●●●●●●●●●●●●

●

●●●●●●

●

●

●

●●●● ●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●● ●●
●

●●●●●●●

●

● ● ●
●●●●●●●

●● ●●●
●

●●●●●
●

●●●●●●●●●●●●●●●
●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●●●●● ●
●

●●●●●●●●●●●●●●●●●●●
●

●
●●● ●●●●●●●●●●●●● ●●●●

●●●
●●●●●●●●

●

●●

●

●
●●●

●●●●

●

●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●● ●● ●

●

●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●

●
●●
●

●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●● ●●●●●●●● ●●●

●

●●●
●

●
●● ●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●

● ●
●● ●
●●●●●●●●●●●●●●●●●●

●
●●●●●●●●

●

●●●
●

●●●●●●●●●●●●●●●●●●●● ●●●
●

●●●
●

●
●● ● ●

●●
●

●

●●●●●
●

●●●●● ●●●●●●●●

●

●●●●●
●●●●

●●
●

●

●

●

●

●●

● ●●● ●●●● ●● ●
●

●
●
●●

●

●●
●●

●

●

●
●●●

●
●●●●
●●●

●●
●

●

●

●

●
●●●●●●●●●

●
●

●

●●●

●

●
●●

●
●●●●
●●●●●●●●●●
●

●●

●
●●
●

●
● ●●● ●●●

●
●
●

●

●

●●●

●

●
●●

●●●

●

●●

●

●● ●●●●●
●

●●●●●

●
●
●

●●

●

●●●
●●●●●●

●
● ●

●

●●●

●

●●
●●●●●

●●
●●

●●●

●●
●●

●●
●●

●

●
●

●

●
●

●●
●●●●●●●●

●
● ●●●●

●
● ●
●● ●●●

●

●●●●

●

●●●
●

●●● ●

●

●
●

●●●●●
●

●●●●●●●●●●● ●
●●

●
●

●

●

●●●●●
●

●●●
●

●

●

●

●●
●● ●●●
●●●● ●●●●● ●
●●
●

●

●●

●●●●●●●●
●

●●●

●

●

●

●●●●●●
●

●●●
●

●●

●

●●●●●
●●

●
●●

●

●
●●●

●

●
●

●●
●●●●● ●
●●●●●●●●●●●●●

● ●
●●●●●●●

●●
●●●●●

●
●●●● ●●

●●●
●

●

●● ●●●●●●●
●

●●● ●●●●●●●●● ●●●●●●●

●

●●●●●●●
●●●

●

●●●●●
●

●●●
●

●●●●●●
●

●●●●●●●
●●●

●
●

●●●
●●●●●●●●

●
●●●●●●

●

●
●●

●●
●●

●●●●●
●
●●●● ●●

●
●

●
● ●●●●

●●
●●

●

●●●●● ●●

●

●

●

●●●●●●●●●●●
●

●

●●
●

●●●●●●●●●●

●

●●●●●
●

●

●

●●●●●●

●

● ●
●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●
●●●●●●

●

●●●●●

●

●

●
●

●●●

●
●

●
●●●●●
●●●●●●

●●

●

●

●
● ●

●●●●●● ●
●●

●

●●●●

●
●

●

●

●●
●

●●● ● ●
●●●●●●●●●●

●●●●●●●●●●●●●●●●
●

●

●●
●

●●

●

●●●●●●●●●●●

●

●●●
●

●●●●●●●●●
●

●● ●●●

●
●

● ●●

●

●

●

●●●●●●
●

●
●●●●●●●●●●●

●●●●
●

●
●

●● ●●
●●

●●
●

●
●

●● ●●●●● ●● ●
●

●●●
●

●●●●●●●●●●●●●●

●

●
● ●
●

●●●

●

●●●●● ●
●●●●●
●● ●
●●●●●

●

●●●●●●●

●

●

●

●
●

●

●●● ●●●●●
●

●●
●

●

●

●●

●

●●

●

●●●
●

●●●●●●●●

●
●●●

●●

●

●●●●●●●●●●
●

●●●
●

●●●●

●
●
●●

●
●●

●

●
●

●●●●●

● ●

●
●

●● ●
●

●●
●

●
●●●●

●

●
●●●● ●

●

●

●

●
●●

●●●●●●●●
●●● ●●●

●

●

●

● ●●

●

●●
●

●● ●● ●●

●

●● ●
●

●
●

●●
●●●●●●●●●

●●
●

●●●●●●●●
●●●●●
●

●● ●●●●● ●●●●● ●●

●●●●
●●● ●●●

●

●●●

●

●● ●●●●●

●●
● ●

●
●

●●●

●

●●●●●●

●

●

●●

●●●●
●

●●

●
●●●●●●●●●●
●

●●●
●

●● ●●

●

●●●●●●●●●

●
●

●●●●
●

●●

●●●
●●●●

●

●
●
●

●
●●

●● ●●●●●● ●●●●●

●

●●
●

●●●●●

●

● ●●

●●

●●●
●

●

●●

●● ●

●

●

●●●●●
●

●

●

●
●

●●
●

●●●●●●●● ●

●

●●●
●●●●● ●●●●●

●
●●●

●
●●●●●●●● ●

●●● ●●
●●

●
●

●
●

●●●

●●
●●●

●

●●

●

●

●●●
●

●
●

●
●●●●●● ●●●●●●●

●

●●●●●
●

●●
●●

●

● ●●●
●

●
●

●●●●●●●●●

●
●●● ● ●●

●●●
●

●
●
●

●

●

●

●●●●●●●●

●

●● ●●

●

●

●●●●●● ●●●●●

●

●

●

●
●●●

●

●●
●●

●●●

●

●●●

●

●
●

●● ● ●
●●●●●●●●●●

●
● ●●

●

●●●●●●

●

● ●●
●

●●
●●

●●●●●●
●●●● ●

●
●

●

●
●

●
●
●

●● ●●●●●●●●

●

●●●●
●

●●●●●●●● ●●
● ●●● ●

●
●●●

●●●●●●● ●● ● ●
● ●●●●●●●●●●●

●●

●

●●

●

●●●●
●

●●●
●●●●

●
●●●●●●● ●●● ●●●●●●●

●

●●●●●●●●●●
●

●
●

●●●
●

●
●

●
●

●●
●

●●

●

●● ●●
●

●●●●
●

●●●●●●●

●

●

●

●●●●
●●●●●●●●
●●●●

●
●

●
●

●
●●

●●●●●●
●●●●

●

●●●●●●●●●
●●

●●●
●

●●●●
●

●
●●
●

●

●
● ●●●●

●
●

●
●

●●

●
●●●●

●
●

●●●●●●●●●●

●

●
●●●●● ●

●●
●●●

● ●
● ●
●

●

●●
●●

●

●
●

●●

●

●
●

●●●●●
●●

●● ●●●●●● ●●●● ●●●●
●

●
●

●
●

●
●●●●●●●●●●●

●
●●●●●

●

●
●

●
●

●●●●●
●

●
● ●
●●

●●●●●
●

●

●●
●

●
●

●
●

●

●

●●
●●●●●

● ●●●

●

●

●

●●●●
●●●●●

●
●●●

●

●

●

●●●
●●

●
●

●
●●

●●
●●

●

●
●●●●●●●●●●●●

●
●● ●●

●●●
●

●●●●●●
●●●●●●●●

●

●●●
●

●●●●●●●●●●●●●● ●●

●

●●●
●

●●
●●●●

●

●●●
●

● ●●●

●
●

●●
●

●
●●

●●●

●

●
●

●●●●● ●●●●●
●●●●●
●●●●● ●

●
●

●●● ●●

●

●
●

●●
●

●●
●

●●
●

●●●●●●
●

●

●

●
●

●
●●●●

●

●●
●

●●●● ●●●●
●

●●●
●●●●●●●

●
●●●●●

●●●

●

●●●●
●●●●●●
●●●●

●●

●

●
●●●●●●●

●

● ●●●●●●● ●●
●

●●●●●● ●●
●

●
●●● ●●●

●●●●
●●●● ●●●●
●

●●
●●●

●●●●●
●●

●●

●
●

●
●●●●●●●●●

●
●●

●
●

●
●●●

●

●●●●
●

●●
●

●●●●●●●●●●● ●●●●●● ●● ●●●● ●●●●●●● ●●
●●

● ●● ●●●● ●●●●●
●

●
●

●●●
● ●
●●●●●●●●●●●

●
●● ●●

●

●
●

●
●●●

●
●

●

●● ●●●●●

●
● ●

●●●
●●●●

●

●
●●

●
●●

●

●●

●
●●●

●

●

●
●●●●●●●● ●●●●●●●●

●

●●●●●
●●●●●●●

●

●●●

●

● ●●●
●●●
●

●
●

●

●

●●●● ●● ●

●

●●●
●

●●●●●●● ●
●

●

●●●●
●

●

●

●
●●

●
● ●●

●●●●●

●

●●●●●●●●●●●
●

●●●●

●
●

●

●

●●●●●●●●●●●●●●●●●

●

●●● ●●●●

●

●
●●

●●●
●●●●

●
●●●●●●●●●●●●

●

●● ●
●

●

●
●●●●● ●
●●●●●●●●●●●●●●
●● ● ●●●●●●●●●●●

●
●

●●
●

●
●●●●● ●●●●●●●●

●●●
●

●●●

●

●●●●●●●
●●

●
●

●●●
●

●●●●●●
●●●●●

●

●●●●●
●

●●●
●●●●●●
●●●

●
●●●●●●●●

●●●●●
●

●●●●●●●●
●

●●●

●

●●●●●●●●●●●●
●

● ●
●

●●●
●

●
●●

●
●

●

●
●

●

●

●●
●●

●●●

●

● ●●●●●●●

●

●●
●

●●●
●●●

●
●●●●●●

●
●●●●● ●●●●●●●●●●

●

●●
●

●
●●

●
●

●●●

●

●●●

●

●

●
●

●●●● ●●● ● ●
●

●

●

●

●●●
● ●

●●●
●●●

●
●●

●
●●●●●●●●●●●●●●
●●●●

●

● ●●●●●●
●

●
●●

●● ●●●
●

●●●●●
●

●●●●●●●
●●●●●●
●●●

●
●●●●●●●

●

●

●

●●

●

●●●●
●

●●●●●●●●●●●

●

●●●●●●●
●

●●●●●●

●
●●

●●

●●
●

●

●●●●●●●●●●●●●●●●●●● ●●● ●●

●

●●●●●●
●●

●

●
●●●
●

●●●●●●●●●●●●●●●●●●●●●
●

●●●●●● ●●●
●●●●●●●●●●●
● ●●●●●●

●●●●●●●●●●●●●●●●●
●

●●●
●

●●●
●

●
●●● ●
●●●●●●●●●●

●

●●●●●●
●●●
●●

●
●

●●●●●● ●●●●

●
●●●

●●●
●●●

●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●
●●

●
●●●●●● ●● ●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●

●
●

●●●●

●

●●●●●●●●●●●●●●●●

●

●
●

●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●
●●
●●●● ●

●● ●
●

●
●●●●●●●

●●
● ●●●●●

●
●● ●●●● ●●

●

●

●
●

● ●
●●●

●

●●●●●●●●●●●●●●●●●●●●●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●
●

●●
●

●●●●●●●●●●●●●● ●
●

●●●●●
●

●●● ●
●

●●●●

●

● ●
●

●●●
●

●●
●

●●
●

●●●●●
●●● ●●●

●

●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●
●

●●●●●●●●●●●

●

●●●
●

● ●●●● ●●●●●●
●

●●●●●●●●
●●

●●●●●●● ●●●●
●●

●●●●●●

●

●●●●
●●●●●●●●●●●

●
●●●●●●●● ●●

●
●●●●●●●●

●
●
●

●●

●

●●●●
●●

●●●●●●●●●●●

●

●●●●● ●●●●● ●
●●
●

●●●●●●●●●●●●●
●

●●●●
●

● ●●●●●●

●

●
●

●●●●●●●● ●●●●●●●●● ●●●● ●● ●●●●●●●●
●

●●●●●● ●●
●●●

●
●●●●

●
●

●

●●
●

● ●●
●

●●●
●

●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●
●

●●
●

●●●●

●
●

●●●●●●
●

●●●●●●●●●●●●
●

●●●

●

●●● ●●●●●●●●●●
●

●●
●

●●●●● ●
●●●●●●●●●●●●●●●●●●●

●
●

●●●●●●●
●

●●●●● ●
●●●●
●

●

●
●

●
●●●●●
●

●
●

●

●●●●
●

●●●●
●

●

●●●●●●
●●●●

●●
●●●●

●

● ●●●●●
●

●●●●●●

●

●●●●●●●●●●●
●●●

●●●●●●●●●
●●

●
●●●●

●
●●●●●●●●●●●

●
●●●

●●
●

●●●●●●●●
●

●●
●●●
●●

●

●

●●●●
●

●●●●●
●

●●
●

●●
●

●●●●●●●●●●●●
●

●●●●●
●●●●●●●●●●●●●●●●● ●●●●●●●

●
● ●●●●●●

●
●●●●●●●●●● ●●●●●●
●●●●●●●●●

●
●●●

●

●●●●
●

●

●

●●●●●
●●●

●●● ●●●
●

● ●●●●●●●●● ●●●●●●
●

●
●●●

●●●
●

●●●●
●●●

●●●●● ●●
●●●●●●●●●●

●
●

●
●

●
●●

●
●●●●●
●

●●●●
●

● ●● ●●●●

●

●●●●

●

●●●●●●
●

●

●

●
●

●

●

●
●

●●●
●

●
●

●●●●

●

●●

●

●●●●● ●●● ●
●

●●● ●●●●●●●
●

●●●● ●●●●●●●

●

●●●●●●●
●

●●●●●●
●●●●●●●●
●

●●●●●●
●●●●

●

●●
●

●●●●●●● ●
●●

●●●●●
●

●●●●●●●

●

●●●●●●
●

●●●●
●

●
●

●●●
●

●●●●●●
●

●●●●
●

●
●●●●●●●●●
●●●●●●●●

●
●●●
●

●●●●●●● ●●●●●●●●●●●●
●●●●●●●●●
●

●●●●●
●●●●●●●●●●
●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●●●

●

●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●● ●●●

●

●●●●●● ●
●●●●●●●●●●●●●

●
● ●

●
●

●●●
●●
●
●●● ●●●●● ●●
●

●●
●

●●●●●●●●

●

●●●●
●●●●●●●●

●
●

●●●●●

●
●

●
●●●●●●●●
●

● ● ●●●
●●●●

●●
●●●●

●
●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●

●
●●
●●●●

●

●●●●●

●
●●

●●●●● ●●●● ●●●● ●●
●

●

●

●
●●●
●●●●

●

●●●●●● ●●●●
●

●
●

●●●●●●●●●
●

●●●●●●
●●●

●

●●●●●
● ●

●●●●
●●●●●●●●●●●

●
●
●

●
●

●●●●●●●●

●

●

●

●●●●●●●●●●●●● ●
●●●●●

●

●●●●●●●●●●
●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●●●●

●
●

●
●●●●

●
●●●
●

●●●●●●●●●

●

●●

●

●●●●●●●●●
●●
●

●●●●●●●●●●●●●●●●●
●

●●●●
●●●●●●
●●

●● ●●●●●●● ●●●●●●
●

●●●●●●●●
●

●
●●●●●

●
●●●
●●●●●●●●●●●●●●●●●●●
●●●●●

●
● ●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●

●

●●●●
●

●
●

●●●●●●●● ●●● ●●●●●●
●

●
●

●●●●●●●●●●●●●●●●●●
●

●●●●●●●
●●●●●

●
●●●●●●●●

●

●●●●
●
●●●● ●●

●●●●●●
●

● ●●●●●●●●●●●●
●●●●●●●●●●

●
●● ●●●●●●●●●●●●●●●●
●

●●●●
●●

●●
●

●●●●

●

●●●●●●
●

●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●
●

●●●●●
●

●●●●●●●

●
●●●●●
●●●●●

●●●●●●●●●
●●●
●

●
●

●● ●●
●●●●● ●●●●●●

●
●●●●●●●

●
●●●●●●●
●●

●●●●
●●●

●●●●●●●●● ●
●●●

●
●●●●●●

●
●●

●
●●●●

●
●

●●●
●

●●●●●●●●●●●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●
●

●

●●●
●

●●●●●●●●●●●●●●

● ●

●●

●

●
●●
●

●
●●●●●●●●●●●●●●
●●● ●●●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●

●
●●●●●●

●
●●●●

●●●●● ●●
●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●

●●● ●●●●●
●

●●●●
●

●●●●●
●

●●●●●●●●●●

●

●
●●●
●●●

●
●●●●● ●●●●●●

●
●●●●
●

●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●●●●

●
●●●●●●●●●●●●●●●●

●●
●●
●●●
●

●●
●●

●●●●●●●●
●

●●●
●

●●●●●●●●●●●●
●

●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●●●●● ●
●●●●

●

●●
●

●
●

●

●

●● ●●●●
●

●●● ●
●●●●

●
●●●●●

●

●●●●●●●●● ●●●
●●●●●●●●
●●

●
●●●●●●●●●●●●●●●●●
●●●●● ●●●●●●●

●
●

●

●

● ●
●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●● ●●●●●
●

●●●●●●●●●●●●●
●

●●●●
●●

●●●●●●●
●

●●●●● ●
●●●●●

●

●●●●●●●●●● ●
●●●

●●
●●

●
●●●●●●●●●●
●

●●●●●●●●●
●●

●●●●
●

●●●●●●●●●●●●●●

●
●●●●●●●●●

●
●●

●
●●●

●

●●●●●●● ●
●●●●●●●● ●●●●●●●

●
●●●●●●● ●●●●●●●●●

●
● ●

●●●●●●●●●
●

●● ●●●●
●

●●
●

●●●
●

● ●●●●

●

●●●●●●●●●●● ●●●●

●

●●●
●●

●
●

●

●

●●●●●●●●●●●●●●
●
●●

●
●

●

●●●●●●●●

●

●
●

●●●●●●●●●●●●●●●●●
●

●●●●●●●●
●

●

●
●●
●

●●●●
●

●●●●●●
●

●●●●●●●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●
●●● ●
●●●●● ●●●●●
●

●●●●●●● ●●●●●●●●●●●●

●

●●●●● ●●●●●●●● ●●●
●●●●●●●●●

●
●●●●●●●●●●●

●

●●●●●●●●●●
●

●● ●●●●●●●●●●
●

●●●●●●●●●●●●●●●
●

●●●
● ●●●

●

●●●●●●●●● ●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●● ●●● ●●●●
●

●
●

●●●●●●●●●●●●●●
●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●

●
●●●●●●
●●●

●
●●●●●●●●
●●●●●●●●

●
●●●●●●●●●●●●●●●●●● ●●●●●●●●●

●●
●

●●●●● ●●●
●●●●●●● ●● ●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●
●

●
●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

● ●●●●●●●●●●●●●●●●●
●

●● ●
●

●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●● ●●●
●

●
●●●

●
●● ●●●●●●
●●●

●
●●

●
●●●

●

●●●●●●●●●●●●● ●●●

●

●●●●
●

●●●●●●●●●●●●
●●

●
●

●●●
●

●●●●
●

●●●●● ●●●●
●●●●●●
●●●
● ●

●
●

●●●
●●●●●●●●●●

●

●●●●●●
●

●●●●●●●●
●●

●●●●●●●●●●
●●●●●●

●
●●●●●●●●●●●●●●●● ●●●
●

●●●●●●●●
●

●●
●●●●● ●

●
●● ●

●●
●●●●●●●
●

●

●●●●●●●●●●
●●●●●●●●●●●●●●
●

●●●●●●●
●

●●●●●●●●
●

●●●●●
●

● ●●●●● ●
●

●●
●

●● ●●●●●
●

●●●●●●●●
●

●

●

●

●

●●●●●●
●

●●●●●●●

●

●
●●●●

●
●

● ●
●

●●●●●●●●
●

●●●●●●●●●●●●●
●

●●
●

●●●
●●●

●●●●●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●●●

●

●●
●

●● ●●●●●●●● ●
●●●●●●●●●●●●●●●●●●
●●●●● ●●●●

●
●●●●●●

●

●●●●●●●
●

●● ●●●●
●●

●●
●
●●●●●●●●●●●●●●●●● ●●

●

●●●●●
●

●●●●●●●●●●●●●● ●
●

●
● ●
●

●
●

●
●●

●●●●●●●
●

●●●●●●●● ●●
●

●●●●●●●●● ●●
●

●●●●●●●
●

●●●●●●

●

●●
●

●●
●

●●●●●● ●●●●●●●●●●●●●
●●●●●●

●

●●
●●●●●●●●●●●●●●●●●●●●●
●

●●
●●●●●●●

●
●●●●●

●
●●

●

●●●●●●●●●●●
●●●●●

●
●●●●●●●●●●●
●

● ●●
●

●●●
●

●

●
●

●
●

●●●
●

●●
●

●
●

●●●●●●●
●●●●●●●●●●●
●

●●●●●
●

●●●●●
●

●

●

●
●
● ●
●●●

●
●●●●●●●●●●●●
●

●●●●●
●

●●●●●●●●
●

● ●●●●●●●●●●

●

●●●●●●
● ●

●●●●●●●●●●●●●●●●●●●●
●●●●

●
●●●●●●●
●●●●

●
●●●●●●●●●●

●
●●●●
●

●●●●●●●●●●●●●●●
●●

●●●●●●●
●

●●●●●●●● ●●●●●
●

●●●● ●● ●●●
●

●●●●
●●

●●●●● ●●
●

●
●●●●●●●●●●●●●●●●●●●
●●●●●●●●
●●●●●●●●●

●

●●
●

●

●●●●●●●●●●●
●

●●●● ●●●●●●●●●●●
●

●●●●●●
●●

●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●
● ●

●●●●●●●●●●●
●

●●●●●●●●●●●●●

●

●●●
● ●

●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●
●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●
●●●●●●●●●●●●●

●

●●●●●●●●
●

●●●
●●

●●●●●●●●●●
●

●●●●●●●
●

●●●
●●

●●●
●

●● ●
●●
● ●●

●
●●●●●● ●●●●●●●●●●●●●●●

●
●●●●●●●
●

●●●●●●●●●
●

●● ●●● ●●●
●●

●●●●
●

●●●●●●● ●
●●●●

●

●●●●●●●●●
●●●●●

●
●●●●

●●●●●●●●●●●●●●
●

●●●●●●
●

●●●●●
●

●●●●●
●

●●●●

●●●●
●●●●
●

●
●●●●●●●
●

●●●
●●●●●●●●●●●●●●●●●●●●●

●
●●

●

●●●
●

●●●●
●●●●●

●
●●●●●●●●●●●●●●●●●●●●

●
●●
●

●●●●
●

●●●●●●●●
●●●●●●●

●●●●
●

●

●●●●●● ●●

●

●●●
●

●●●

●
●●
●●●●●●
●

●●●●

●
●

●
●

●●●●●●●●●●●●● ●
●

●●●●●●●●●
●

●●● ●●●
●●●●●●●●●●●●●●●●●●●●● ●●

●
●●●●●●●

●

●●● ●●●●●●●●●●●
●●●
●

●
●

●
●

●● ●●●●●●●

●

●●
●
●

●●●●
●

●●●●●●●

●
●

●●●●●
●

●
●

●●●●●●●●●●
●●●

●●●●●●●●●●●●●● ●●●
●

●
●●

●
●●●●●●
●●●●●●●●●●●●●●●●●

●
●●●●●●●

●● ●
●● ●●●●●●

●
●●

●
● ●●●●●●●●●●●●●● ●●●●●●●●●● ●●

●

●●●

●

●●●●●●●●
●

●
●● ●

●
●

●●●●●●●●●●
●●●●●●●●●●●●●●●●● ●●●●●●

●

●

●●
●●●

●●
●

●●●●
●

●●●●●●●●●
●●●●●●●● ●

●●
●

●●●●●●●●●●●●●●● ●●●● ●●●●●●●
●●●●
●●●●●●● ●●●●●●●●●

●●
●● ●
●●●●●● ●●●

●
●● ●
●●●●●●●●●●●●●●●●●●
●●●

●
●●●●●

● ●
●

●
●
●

●●●●●●●
●

●●●●
●

●●
●

●
●

●●●●●●●●●●●●
●●●
●

●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●
●

●●●●●●●●●●●●●●●●●●●●
●●

●●●●
●

●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●
●

●●●●●●●●●●●
●

●●● ●●
●●●●●●●

●
●

●
●●●●●●●●●●●●

●●
●
●●●●●●●●●●●●

●●
●●●●

●
●●

●●
●●●●●
●

●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●
●●●

●
●●●●●●●

●

●●●
●

●●●● ●●●●●●●
●

●●●●●●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●●
●

●
●

● ●●●●●●●●●●
●

●●
●

●

●

●●●●●●
●

●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●
●

● ●●●●●●● ●●●●●●●●
●

●●●●●
●●

●●●●●
●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●
●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●
●●●●●●●●

●
●
●●●●●●
●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●

●●●● ●●●●●●●●●●
●

●●●●●● ●●●●●●●●●●
●

●●●●●●●●●●
●

●

●

●●●
●●●

●●
●

●
●

●
●●●●●●● ●●●●●●●●●●●●●●●●

●
●●●●●
●

●●●●●●●●●●●●●●
●

●●●●●

●

●●●●●●
●

●●●●●●●●●●
●●

●●
●

●●●●●●

●

● ●●

●

●●

●●
●

●
●●●●●●●●●

●●
●●●●●●●●●●●●●●●●●●●●●

●

●
●

●●●●●●● ●●●●●

●

●●●●●● ●●●●
●
●●
●

●●●●●●●●●
●

●
●

●●●●●●●●●●
●●● ●●●
●

●●●●
●

●●●●●●●
●

●●●●●●●●●●●●●●●●●●● ●
●●●●●● ●
●●●●●●●●●●●● ●●●●●●●

●

●●●●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●
●●● ●●●●●

●
●
●

●●●
●

●●●●●●●●●●●●
●

●
●

●●●●●●●●●●●●●●●●●
●●●●● ●

●●●● ●●●●●●● ●●
●

● ●
●

●●●● ●●●●●●●●

●

●●●
●●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●

●

●● ●
●

●●
●●●●●●●●

●●
●

●
●●●●

●
●●●

●
●●● ●●●●●●

●
●

●●
●●●

●
●●●●

●
● ●● ●●●

●
●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●

●●
●

●

● ●●●
●●●●●

●
●●●●●●●●

●
●

●●●●●●●●●● ●●●●
●●●●●●●●●●●●

●
●●●●●●●●●●●●

●●●●●●●●●● ●●
●

●●●●●●●●
●●●●●●●●●●●●●

●●●●●●●●●
●

●●●●●●●●●●●●●●
●

●●

●

●● ●●●●●●●●●
●

●●●●●●●●●●
●

●●●●●●●●●

●
●

●●●●

●

●●●●●●●●●● ●●●●●●●●●●
●

●
●

●
●

●● ●●●●●

●

●●●●●●●●●●● ●
●

●●●●●●●●●●●
●●●●●●●
●

●

●

●●●●●●●● ●●●●●● ●
●

●●●●●
●

●●●●
●●

●●●
●

●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●
●

●●●●●
●

●● ●●●

●

●●●●●●●●
●●●●● ●●●●●●●●● ●●●●

●●
●●●●●●●

●●
● ●●●●●●●●

●●●
●

●
●

●●●●●●●●●●
●

●
●

●

●

●●
● ●

●

●

●
●

●

●

●

●●●●●
●

●●●
●●
●● ●●

●
●

●
●●

●

●
●

●

● ●
●●● ●
●

●
●●● ● ●

●

●
●

●

●●●
●

●●●●
●

●●●●
●

●●●● ●●●●●●● ●●●●●●●●●●●●
●●●●● ●●●

● ●●●●●●
●

●●●●●●●●● ●●●●
●

●●●●●●
●●●●

●

● ●
●

● ●
●

●
● ●●

●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●● ●●●●●
●

●
●●● ●
●●●

●
●

●
●●●●●

●
●

●
●●●●●●●●●●●●●●●●●

●
●●●● ●

●●●●
●●● ●●●

●●●●●
●

● ●● ●●●
●

●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●● ●●
●

●
●
●

●●●●●●●●●●
●

●●●●●●
●

●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●● ●●●

●

●

●

●

●

●●●●●

●

●

●

●●● ●●● ●
●

●
● ●●

●
●●●

●
●

●

●●●●●●●●●●●●●●●
●

●●●●●●●●●
●

●●●
●

●●

●

●●●●●●●●●
●●●●●

●
●●●●●●●●

●

●

● ●

●●●●
●

●●●●●●●● ●●●●●●●●●
●

●●

●

●
●

●●
●●●
●

●●●

●

●●
●

●●●●●●●●●●
●

●

●
●●●●●●●●●●● ●●●

●

●
●●●●●●●●●●●●●●●●●●●●●

●
●●●●

●

●●●

●

●●●●●●● ●●●●●

●

●
●

●
●● ●●●●●●●● ●●●●●

●
●

●
●●●●●●●●●●●●●●●●●

●
●●●●●●● ●● ●●

●

●
●●

●●●● ●●● ●
●●●●●●●●●●

●
●●●●●

●

●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●

●●
● ●

●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●
●●

●●
●

●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●● ●●●●●
●

●●●
●

●
●●●●●●●●●●●●
●

●

●●●●●●●●●●●●●●
●

●●●●●●●●
●●

●
●●●●●●●

●
●●●●●●●●●●●●●

●
●●●●●●●●● ●●●●●●
●

●●●●●●
●

●
●●●●●●
●

●●●● ●●●● ●●●

●

●●
●

●●●●●●●●●●●●●●●●●●●
●

●
●

●●●●●●
●

●●●●●●●●●●●●●●●●●●
●

●●
●

●●●●
● ●

●●●●
●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●

●

●●●
●

●●●●●●●

●

●●●

●
●●

●

●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●
●●●●●●● ●● ●●●●●●●●●●●●●●●●●
●

●●●●●●●●
●

●●●●●●●●●●
●

●●●●
●●●●●●●●●●●

●

●●●●●

● ●

●●●●●

●

●●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●●●●●
●

●●●●●●●●
●

●●●●●●●●●●●●●●●

●
●

●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●●●●●●

●

●●●
●

●●●●●●●●

●

●
●●●

●●
●●●●● ●●●●●●●●
●

●●●●●●●●●●
●●●●

●

●●
●

●●●
●

●●●
●●●●●●●●
●●

●
●●●●●

●

●●●●●●●●●●●●●
●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●

●

●
●●●●

●

●
●
●

●

●●●●
●●●●●●●●●●●●●●●●

●●
●●

●

●●●●●●●●●●●●
●

●●●●●●●●●●
●

●●●●●●
● ●

●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●
●

●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●● ●●●●●●●●●●
●

●●●
●●●●

●

●
●

●●●●●●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●

●●●●●
●

●●●
●●

●
●●●

●
●●●●●●●● ●●●
●

●●●●●●●●●
●

●●●●●●
●

●●

●

●●●

●●
●●●●●●●

●

●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●

●

●●●●●●●●●●●

●

●●●●

●

●●●●●●●●●● ●●
●

●

●

●●●
●

●●●●

●

●●
●●

●
●●●●●●●
●●●●●●●●●●
●

●●
●

●●

●
●

●●●●● ●●●●●
●

●●●

●

●●
●

●●●● ●●●
●

●●●●●●●●
●

●●●●●
●

●
●

●

●●●●●● ●●●●
●

●●● ●
●●●● ●●●

●

●
●

● ●●
●

●
●●●●●

●

●

●●●●●●●●●●
●

●
●●●●

●
●●●● ●

●●●●●
●●

●
●

●

●

●
●●●●●

●

●●●●●●

●

●●●●●●●●●
●●
●●
●

●●●●●●●●●●●●●●●●●
●●●●●●
●●●
●

●●●●●●●●●●●●●

●

●
●

●●
●●

●●●●●●●●●●●●●●

●

●
●●●●●

●

●●●●●●●

●

●●●●●●●●

●

●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●
●

●●●●
●

●
●

●

●●
●

●
●●●●●●●●● ●●●

●
●●

●●●●●●●●● ●
●

●●
●

●●●●●
●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●

●

●
●●

●●●●●●
●●

●●●● ●●

●

●●●●●●●●●●●●●●●
●

●

●
●●●●●●●●●●

●
●

●

●
●

●●●
●

●●●
●●●●●
●●●●●

●

●●

●

●●●●●
●

● ●●●●
●

●
●

●● ●●
●●●●●●

●
●

●
●
●●

●●●
●

●●●●
●

●●●●● ●
●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
● ●●●●●●●●●●●

●
●●●●●●●●●●●

●

●●
●

●●
●●●
●
●

●●
●

●●●●●●
●●
●●●
●●

●

●
●

●●
●●●●

●

●●
●

●

●●●

●

●

●

●

●

●●
●

●

●

●

●

●
●●●●●●●●●●●●●●●● ●

●●●●●●●

●

●
●●●●●●●● ●●●●●●●●●●●●●●●●
●

●●●●● ●●
●●● ●●●● ●●● ●●●●●

●

●●●●●●

●

●●●●●●●●● ●●●●●● ●●●●●●●

●
●
●

●●●
●

●●●●●●●●●●●●●●●●●●

●
●

●
●● ●●
●● ●

●

●●●●
●●●●

●
● ●

●
●

●

●
●●

●
●

●
●●●●

●

●
●●

●

●●
●

●
●

●●●
●

●

●●

●●
●●
●

●●●●●●●●

●

●● ●●
●

●●
●
●●●●

●●●
●

●

●

●●●

●

●●●● ●●●●●●● ●● ●
●●●●

●
●●●●●● ●●

●
● ●●●●

●
●

●●●
●

●●
●●●

● ●

●●
●

●
●

●

●●●●●●●

●

●●● ●

●

●●

●

●

●

●●●●●●●●●●●●●●●●●●●●
●

●
●●

●●

●

●

●

● ●
●●

● ●
●●

●

●●● ●
●

●●
●

●●●

●
●

●

●

●●
●●●●●●

●

●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●
●

●●●
●

●●

●

●
●●

●
●●
●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●
●●●●●
● ●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●

●
●●●●● ●●

●

●●●●

●

● ●
●●

●

●●●●●●●●●●●●●●●●●●●
●●●●●●

●●●
●

●●●●●●●●●●

●

●●

●

●●●●
●

●●●●●
●

●●●●
●

●●●●● ●
●●●●●●●●

●

●●
●

● ●
●

●

●●●●●●●

●
● ●

●

●●●●● ●●
●

●●

●

●●
●●

●
●

●●●●●
●●●●●●●●●●●●●
●● ●

●

●●●●●●●
●

●●●●●●●●●●●●
●

●●

●

●
●●

●

●

●

●

●●●●● ●●
●

●
●●●●
●●●●●●●●

●●●●●
●
●

●●●
●●

●

●

●●●●●●●●●● ●●●●●●●●●

●

●

●

●
●

●●

●
●●●
●

●●
●

●●●
●●●

●
●

● ●●
●

●●●●●●
●

●●●●●●●●●●●●
●●

●
●●●●●
●

●●●
●●●●● ●

●

●●

●

●●●●●●
●

●●●●●●●●●●
●●

●●●
●

●●●●●●●● ●● ●

●

●

●

●

●
●

●
●

●
●●
●

●
●

●●●

●

●

●

●
●●●●●●●●

●
●

●
●

●
●●●●●●

●

●●●●●

●
●

●

●

●●●●●●●●●●●●

●
●●
●
●

●
●

●●●●●●
●

●

●

●●● ●●
●●
●

●

●
●●

●●●

●

●●●●

●●●

●●●

●

●●
●●●

●●
●●●●

●
●

●●
●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●● ●●●

●

●●

●

●●●
●

●●
●

●●

●

●●
●

●

●●●●●●●●
●

●●
●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●
● ●

●●●●●●●

●

●●
●●●

● ●

●

●●
●●●

● ●
●●

●
●●●●●●●●●

●
●●●

●
● ●●

●●

●

●●●●●●●

●

●●●●

●
●

●

●

●●●●●●
●●

●
●

●

●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●

●

●●

●

●●●●

●

●●●●●●●●●●●●●●●

●

●

●

● ●●●●●●
●

●●●●●●●●●●●●●●
●

● ●●
●

●●
●●●●

●
●

●

●

●

●●●
●

●●

●●●●●
●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●

●
●●

●

●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●
●●

●

●

●
●●●● ●●
●●●●●●
●

●●●●●●●●●●●●

●

●
●●

●●●●●●●● ●●●●●●●●●
●

●●●●●
●

●●●

●
●

●

●●●●●●●●●●●●●●●●●●●

●

●●

●

●
●

●

●

●●
● ●●

●

●●
●

●

●●
●

●

●
●

●●●●●●●●●●●● ●●

●
●

●●●●● ●
●●●●●●●●●

●●
●●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●

●● ●
●●●●
●

●●●●●●●●●●

●

●
●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●
●●●

●●

●

●●●●
●

●●●●
●

●●●●●●●●●
●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●
● ●

●●●

●
●●●●●●●●● ●●●●●●●

●
●●●●●●●

●

●●
●

●●
●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●

●

●●●

●

●● ●●●●●
●

●●●●●

●

●●●●●
●

●●

●

●

●

● ●●
● ●

●

●●

●

●●

●

●● ●●●

●

●
●

●

●

●
●

●●●●●●●●

●

●
●●

●●●●●●●●●●
●●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●
●●●●●●●●

●●

●

●●●●●●● ●●●●●●●●●●●●●●●●

●
●

●●●●●

●

●●●●●
●

●●●●●●●●●●●●●●●●● ●● ●

●

●
●●●

●
●

●●●
●

●●●●●●●●●●●●●●●●●●● ●
●●●●●●●●●●●● ●●●

●

●●●●●●●●●●●

●

●

●●●●●●●
●

●

●●●●●●●●●●●

●

●

●

●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●● ●● ●●
●●●●●●●

●
●●

●
●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●● ●

●

●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●
●

●●

●

●●●●●● ●●●●●●●●
●

●●
●

●●●●●●●●●●●●●
● ●
●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●

●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●● ●

●

●

●

●●
●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●● ●●●●●●●●●●●

●

●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●
●

●●●●●●

●

●●●●●

●

●●● ●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●
●●●●●●●●●●●● ●●●●●●●

●

●
●●

●●
●

●●●●●●● ●●
●

●●●●●●●●●●●●●●●●●

●

●●

●●
●

●●●
●

●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●
●

●●●●●●●●●●●●●

●

●●●●●●

●

●

●

●●●● ●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●● ●●

●

●●●●●●●

●

● ●
●

●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●

●●

●

●●●●●
●

●●●●●●●●●●●●●●●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●

●
●●●●●

●

●

●●●●●●●●●●●●●●●●●●●
●

●
●●● ●●●●●

●●●●●●●● ●●●●
●

●●
●●●●●●●●

●

●●

●●

●●
●

●●●●

●

●●●●●●●●●●●●●●●● ●
●●●●●●●●●●●●●●●●●

●
●

●● ●

●

●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●

●

●●
●

●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●

●

●●● ●●●●●●●●
●

●●

●

●
●●

●
●

●● ●●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
● ●

●●
●

●●
●

●●●●●●
●

●●●●●●●●●●●●●●●●●●
●

●●●●●●●●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●
●

●●

●
●●●

●

● ●● ●
●

●● ●
●

●●●●● ●●●●●● ●●●●●●●●
●

●●●●● ●●●● ●●● ●●
●

●
●●

● ●●● ●●●● ●● ●●●
●●● ●

●●●●●

●
●●●●
●●●●●●●● ●● ● ●

●
●

● ●●●●●●●●● ●●
●

●●● ●● ●● ●●●●● ●●●●●●●●●● ●●● ●●●●●● ●●● ●●● ●
●●●

●
●●● ●
● ●●●●● ●
●●

●

●● ●●●●● ●●●●●●
●●●

●●
●●●● ●●●●●● ●● ● ●

●●●
●●●●●●●● ●●●● ●●●
●●●●●● ●●

●
● ●●

● ●●●●●●●●●●● ●● ●●●● ●● ●●● ●●●
●

●●●●
●

●●● ●
●●● ●

●
● ●

●●●●● ●●●●●●●●●●●● ● ●●● ●● ●●●●●● ●●●●
●●●

●
●●●● ●●●●●●● ●●●●● ●●● ●●

●●●●●●●●●● ●●●●

●

● ●●●●●●● ●●●● ●●●
●

●●●●●
●●● ●●

●
●●●● ●● ●●●●●●●● ●●●●●●●●●●●●●● ● ●

●●●●●●● ●●●●●●● ●●●●● ●● ●●●● ●●● ●●●●●●● ●●●● ●●●●●●●●● ●●●●●●● ●
●●●●●●● ●●●

●
●●●●● ●●●● ●●●●●●●●●●●●●●● ●●●●

●
●●● ●●●●●●●● ●●●●●●●

●
● ●●●● ●●●●●●● ●●●●● ●●●

●
●● ●●●●●● ●●

●
●●●●● ●●

●
●

●
●●●●●●●●●●● ● ●
●●●●●●●●●●●●●

●

●●●●● ●●

●

●●●●●●

●

● ●●●●

●
●● ●● ●●

●
●

●

●

● ●●● ●●●●●●
●

●●●●●
●● ●●●●● ● ●● ●●●●● ●●●●●●

●
●●

●

● ● ●●●●●●● ●●●

●

●●●●
●

●●
●

●●
●

●●● ●
●

●●●●●●●●●● ●●●●●●●●●●●●●●●● ● ●●● ●●●
●

●●●●●●●●●●●

●

●●● ●●●●●●●●●● ●●● ●●●
●●● ●●

●

●

●

●●●●●● ● ●●●●●●●●●●●● ●●●●●
●●●● ●●●●

●●●● ●●● ●●●●● ●● ● ●●●● ●●●●●●●●●●●●●●●
●

●● ●●●●●
●

●●●●● ●●●●●●●● ●●●●●●
●

●●●●●●●
●

●
●

●● ●●●● ●●●●● ●●●
●●

●
●●

●

●●
●

●●●●●●●●●●●● ●●●●●●
●

●●●●●●●●●● ●●●● ●●●●●
●

●●●
●●●

●
●

●
●●●●●

● ●

● ●●● ●● ●● ●● ●●●●
●

●●●●● ●
●

●

●
● ●●●●●●●●●● ●●● ●●●

●

●
●

● ●●

●

●● ●●● ●● ●●

●

●● ●● ●● ●●●●●●●●●●● ●●●●●●●●●●● ●●●●● ●●● ●●●●● ●●●●● ●●
●●●●●●● ●●●

●
●●●

●
●● ●●●●● ●●● ●● ●●●● ●●●●●●●

●
●

●●
●●●● ●●●

●●●●●●●●●●● ●●●● ●●● ●●
●

●●●●●●●●●
●●●●●● ●

●●
●●● ●●●●

●
● ●●●●● ●● ●●●●●● ●●●●● ●●● ●●●●●●

●
● ●●

●●
●●● ●●

●●
●● ●

●

●
●●●●●●●

●●● ●● ●●●●●●●●● ●

●

●●●●●●●● ●●●●● ●●●● ●●●●●●●●● ●●●● ●●●●● ●● ●●●● ●●●●● ●
●●

●
●

●●● ●● ●● ●●●●●● ●●●●●●● ●
●●●●● ●●● ●●●● ●●● ● ●●
●●●●●●●●●

●●●● ● ●● ●●●● ●●●
●

●
●

●●●●●●●●
●

●● ●●
●●

●●●●●● ●●●●●

●

●
●

●●●●

●

●● ●●●●● ●
●●●

●

● ●●● ● ●●●●●●●●●●● ●● ●●
●

●●●●●●
●

● ●● ●
●● ●●●●●●●●●●●● ● ●●

●
●

●●●●●● ●●●●●●●●
●

●●●● ●●●●●●●●● ●●● ●●● ●●●●● ●●●●●●● ●● ● ●
● ●●●●●●●●●●●

●● ●
●●

●
●●●● ●●●● ●●●●●●●●●●●● ●●● ●●●●●●●

●
●●●●●●●●●● ●● ●●●● ●●

●
● ●●● ●●●

●
●● ●● ●●●●●●●●●●●●●

●
●

●
●●●● ●●●●●●●● ●●●●● ●● ●
● ●●●●●●●● ●●●●

●
●●●●●●●●●

●●●●● ●●●●● ●● ●● ●●
●● ●●●●●●● ●●●

●
●●●● ●●●●●●●●●●●●

●
●●●●●● ● ●●●●●

● ●
● ●● ●

●● ●●

●

● ●●● ●
● ●●●●●● ●●●● ●●●●●● ●●●● ●●●●● ●●●●● ●●●●●●●●●●● ●●●●●● ●●● ●●●●●●●● ●● ●●●●●●●● ●

●
●● ●● ●● ●●

●
●● ●●●●● ● ●●● ●

●
●

●●●● ●●●●●
●●●●

●
●

●

●●●
●●● ●● ●●●● ●●

●

●●●●●●●●●●●●● ●●● ●●●●● ●●●●●●● ●●●●●●●●
●

●●●●●●●●●●●●●●●●●● ●●
●

●●● ●●● ●●●●
●

●●● ●● ●●●
●●●● ●●●●●●●

●
●●●●●●● ●●●●●●●●●●●●●●● ●●

●
●●● ●● ●● ●●● ●●● ●●● ●●●●●●● ●●

●
● ●

● ●●●●
●

●● ●●●●● ●●●● ●●●● ●●●●●●● ●●●●●● ●●●
●

●●●● ●●●●●● ●●●● ●●
●

● ●●●●●●●
●● ●●●●●●● ●● ●

●●●●●● ●●●
●●●● ●●● ●●●● ●●●● ●●●●●●● ●●●●●●●● ●● ●●●●
●

●●●●●●●●● ●●● ●● ●●●●
●

●●●● ●●●● ●●●●●●●●●●● ●●●●●● ●● ●●●● ●●●●●●● ●●●●● ●● ●●●● ●●●●● ●●●●●●● ●●●●●●●●●●●●
●

●● ●● ●
● ●

●
●●●

●● ●●● ●●●●● ●● ●●●● ●●●●
●

●●● ●●●
●

●● ●●●● ●●
●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●
●●●●

●
● ●●● ●●● ●

●
●●

●

●●●● ●● ●
●

●●●●●●●●●●● ●● ●
●●●●● ●
●

●●●●● ●●●●●●● ●●●●●●●●●●●● ●●●●●
●●●
●

●●●●●●●●●●●●●●●●●
●

●●● ●●●●
●

● ●●
●●● ●●●● ●●●●●●●●●●●●● ●
●● ●●

●
●●●●●● ●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●

●●●● ●● ●●●●● ●●●●●●●● ●●● ●●●●
●

●●●●●●● ●● ● ●
●●●●●●●●●●●●●●● ●

●●●●● ●●●●●●●●●● ●●● ●●●●●●●●●●●●●● ●●●●●●●●● ●●●●
●

●●●●●●●●●●●●● ●
●

●●●● ●● ●●● ●●
● ●

●
●

●● ●●●●●

●

● ●●●●●●●

●
●● ●●●●●●●

●
●●●●●●

●
●●●●● ●●●●●●●●●●

●
●● ●● ●●● ●●●●

●
●●●

●
●

●
●●●●● ●●● ● ●

● ●●
●

●●●● ●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●
●

● ●●●●●● ●●●●●● ●●● ●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●
●

●
●

●●

●

●●●● ●●●●●●●●●●●●
●

●●●●●●● ●●●●●●●
●

●● ●●●● ● ●
●●●●●●●●●●●●●●●●●●● ●●● ●●

●
●●●●●● ●●●

●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●● ●●●● ●●●●● ●●●● ●●●●●●●●●●●
●

●●●●●●●●● ●●● ●●●●●●● ●●●● ●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●● ●●●●●●●●●●●●●●●●●
●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●● ●● ●●●●●●●● ●●● ●●●●●●●● ●●●● ●●
●

● ●● ● ●●●● ●
●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●● ●●●●●●● ●●●● ●●●●●●

●
● ● ●●●● ●●● ●●● ●●●●●● ●●● ●●●

●
●

●
●●●●●●●●●●●●●●●●●

●
●●●●●●●●● ●●●●●●●●●●●● ●●●● ●● ●●●● ●●●●●● ●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●

●
●●●● ●●●●●●●●●●● ●●●●●●●●● ●● ●●●●●●●●● ●●●●●

●
●●●● ●●●●●●●●●●●●●

●
●●●●● ●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●

●
● ●●●●●●●●● ●●●●●●●●● ●●●● ●● ●●●●●●●●

●●●●●●● ●●●●● ●●●●● ●●
●

●●●● ●● ●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●● ●●●●●●●● ●●●●●●●●●●●●● ●●●●
●

●●● ●●●●●●●●●● ●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●
●

●●●●● ●●●●● ●● ●●● ●●●●● ●● ● ●
●●●● ●●●●● ● ●●●●●●● ●●●● ●●
●●●● ●● ●●●●● ●●●●●●●

●
●●●●●●●●●●●

●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●● ●●●● ●● ●●●●●●●●● ●●●●●● ●●● ●●●●●
●

●●●●● ●●● ●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●● ●●
●

●●●●● ●●●●●● ●●● ●● ●●●●●●●●● ●●●●●● ●● ●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●● ●● ● ●● ●●
●

●●●●● ●●●●●●● ●● ●●●● ●●●●●●●●●●●● ●●
●

●● ● ●
● ●●●● ●● ●●●●●

●
●●

●
●●●●● ●●● ●●●●● ●●●●●●● ●●●●● ●●●●●●●

●
●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●● ● ●●●●●●●●●●●●●●●

●
●●●●●●

●
●●●●●● ●●●● ●●●●●●● ●●●●● ●● ●●●●●●●●● ●●●●●●●●

●
●●● ●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●● ●●●●●● ●●●●●●●●●● ●● ●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●

●●●●●● ●●●●●●●●●●●●●● ●● ● ●●●●●●●●●●● ●●●●● ●●●●● ●
●●●●●●●●

●
●●●● ●●●●●●●●● ●●●●●● ●●● ●●●●●●●● ●● ● ●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●● ●●●●

●
●●●●●

●
●●●●●●● ●●●● ●●●● ●●

● ● ●●●●●●●●● ●●●●●●● ●●●●
●

●
●

●●●●●●●●● ●●●●●●● ●●● ●●●●●● ● ●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●

●

●
●

●●●●●●●●●●●●● ●●●●●●
●

●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●● ●●●●● ●●●● ●●●●●●●●●● ●
●●

●
●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●● ●●●● ●●●●●●● ●●●●●● ●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●● ●●● ●●●●● ●●●●●●●●●●● ●●● ●●●●●● ●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●● ●●●●●●●●●

●

●●●●●●●●● ●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●
●●● ●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●
●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●● ●

●●●●●●● ●●●●●●●●●●● ●●●●●●●●● ●●● ●●●●● ●●●●●●● ●●●●●● ●●●●●●●● ●●●●●●●●●● ●●●●●●● ●●●●●●●●● ●●●● ●●●●●●● ●●●
●●●●● ●●●●● ●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●

●●● ●●●●●●●●●●●●●●●
● ●

●● ●●
●●
●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●

●●●●●●●
●

●●●● ●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●● ●●●● ●●●●● ●●●●● ●●●●●● ●●●●●●●●●●●
●●●●●●●●
●

●●●●● ●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●● ●●● ●●●●●●●●●● ●●●● ●●●●●●●●●●●●● ●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●
● ●●●●●● ●●●●●

●
●● ●● ●●

●

●● ●●●● ●●●● ●●●●● ●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●● ●●● ●
●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●● ●
●●●●●●●●●●●●●

●
●●●●●●●●●●●●● ●●●●●● ●●●●●●

●
●●●●●●●●●● ●●●●

●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●
●●●●●●●●●●
●●● ●●●●

●
●●●●●●● ●●●●●●●●● ●●●●●●● ●●●●●●●● ●●●●●●●●● ●● ●●●●●●●●●●●●● ●●●● ●●●●●●● ●● ●●●● ●●●●●●●●●●●● ●●●●

●

●●● ●●● ●●
●

●●●●●●●●●●●●●●●●● ●●
●

●●●●●●●●
●

● ●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●● ●●● ●●●●● ●●●●●●● ●
●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●● ●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●● ●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●

●
●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●● ● ●●●

●

●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●
●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●● ●●●●●● ●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●
●

●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●● ●●●●●●●●● ●●● ●●●●
●

●●●●●●●●●●●●● ●●● ●●●●● ●●●●●●●●●●●●● ●●
●

●●●● ●●●●● ●●●●●● ●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●
●

●●●●●● ●●●●●●●●● ●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●● ●●●● ●●●●●●●●●● ● ●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●● ●●●●●● ●● ●●●●● ● ●
●●

●
●● ●●●●● ●●●●●●●●● ●●

●

●
●

●●●●●● ●●●●●●●●
●

● ●●●●● ●● ● ●
●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●● ●●● ●●●●● ●●

●
●●●●●●●●●●●●●●●●●●●●●●●

●
●● ●●●●

●
●● ●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●

●
●●●●●●●

●
●● ●●●● ●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●● ●●●●●●●●●●●●●●● ●● ●● ●● ●
● ●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●● ●● ●●●●●●●● ●●●●●●●

●
●● ●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●

●
●● ●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●● ●●●●●● ●●●

●

●●●●●●●●●●● ●●●●● ●●●●●●●●●●●● ●● ●● ●●●● ● ●
● ●●●●●● ●●●

●
● ●●●●●●●● ●●●●●●●●●●● ●●●●●●

●
●●●●● ●●

●
●●● ●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●● ●●●●●●●●●●

●
●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●

●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●● ●●●●●
●

●●●● ●● ●●●●●●●● ●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ● ●
●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●● ● ●
●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●● ●●●●●●●●●●●●●

●
●●●●●●●●

●
●●● ●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●● ●●● ●●●● ●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●● ●●●●●● ●●●●●●●● ●●●●● ●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●● ●●●●●●●

●●●●●●●●●●●● ●●●●● ●●●●●●●●● ●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●
●

●●● ●●●●●
●

●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●● ●●●●●●●●●●● ● ●●●●●●● ●● ●●●● ●●●●
●●●●●●●●●●●●●●
●●

●
●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●

●
●●● ●●●●●●●●●●● ●●● ●● ●● ●●● ●●●●●●● ●●● ●●●●●● ●●●●●●●● ●●●●●●● ●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●● ●●● ●●●●●● ●●●●●●●●●●●●●●●●●

●
●●●●●●●●● ●●● ●●●●●● ●●● ●● ●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●

●

●●●●●●●● ●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●
●

●● ●●●●●
●

●●●●
●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●● ●●●●●●● ●●●●●●●●● ●●●● ●

●●●●●● ●●● ●
●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ● ●
● ●●●●●●●●●● ●●●●● ●●● ●●

●
●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●

●●●● ●●●●●●●●● ●● ●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●● ●●●
●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●
●

●●●
●

●●●● ●●●●●●● ●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●
●

● ●● ●●●●●●●●●● ●●● ●●
●

●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●
●

● ●●●●●●● ●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●● ●●
●

●●● ●●●
●

●● ●● ●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●● ●●●●●● ●●●●●●● ●●●●●●●●●●●
●●●● ●●●●●●●
●

● ●● ●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●
●●●●●●●●● ●●●●●

●

●●●●●● ●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●● ●●● ●●● ●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●● ●●●●●●●
●

●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●● ●●● ●●●●● ●●●●●● ●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●● ●●●●● ●●●●● ●●●●●●● ●●● ● ●● ●●●● ●●●●●●●●
●

●●● ●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●
●

●● ●
●

●●●●●●●●●● ●●● ●●●●● ●●●● ●●●● ●●●●●● ●● ●●●●●
●

●●●●
●

● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●● ●● ● ●
● ●●● ●●●●● ●●●●●●●●● ● ●
●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●● ●● ●
●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●

●
●●●●●●●●●●●●●● ●●● ●●● ●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●

●●●●●● ●●●●●●●●●●● ●●●●●●●●●● ●● ●● ●●● ●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●
●

●●●●●●●● ●●●●●● ●
●

●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●
●●●●● ●●● ●●●

●

●●●●●●●●●●●●● ●●●●●●●●● ●●●●
●●●●●●●●● ●●● ●●●●●●●● ●●● ●●●●●●●●●●●●● ●● ●●

●
●●● ●

●
●

●●●●
●

●●●●●●●●● ●●●● ●●● ●● ●●●
●

●● ● ●●●● ●● ●●●● ● ●● ●● ●●●●
●

●●●● ●●●●● ●●●●● ●●●●●●● ●●●●●●●●●●●● ●●●●● ●●●● ●●●●●● ●●●●●●●●●● ●●●● ●●●●●●●●●●●
●

● ● ●● ●● ●● ●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●● ●●●● ●● ●●●●●● ●● ●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●● ●●● ●●●●● ●● ●● ●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●● ●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●
●

● ●●
●

●●●●●
●

●
●

●●● ●●● ●● ●● ●● ●●●● ●●
●

●●●●●●●●●●●●●●● ●●●●●●●●●●
●

●●● ●●●

●

●●●●●●●●● ●●●●● ●●●●●●●●●
●

●
● ●

●●●● ●●●●●●●●● ●●●●●●●●● ●●● ●● ●●●●●●●●●●
●

●● ●●●●●●●●●●● ●
●

●●●●●●●●●●●● ●●●
●

● ●●●●●●●●●●●●●●●●●●●●●
●

●●●●
●

●●●
●

●●●●●●● ●●●●●
●●● ●●● ●●●●●●●● ●●●●● ●● ●●●●●●●●●●●●●●●●●● ●●●●●●●● ●● ●● ●

● ●●●●●● ●●● ●●●●●●●●●●● ●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ● ●
●●● ●●● ●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●● ●● ●●●●●●●●●●●● ●

●

●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●● ●●●●●●● ●● ●●●●●● ●●●●● ●●●● ●●●
●

●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●
●

●● ●●●●● ● ●●●●● ●●●●●●●●●●●●
●

●●●●●●●●●●●●●●
●

●●●●●●●●●●● ●
●●● ●●● ●●●● ●●●●

●
●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●● ●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●

●
●●●●● ● ●
●●●●●

●
●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●

●●
●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●
●

●●●●●●●●●●●● ●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●
●

●● ●●●● ●●●●●●●●●●●●●● ●●●●●●
●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●
●

●●●●● ●●●●
●

●●●● ●●●●●●●●●●●●●●●● ●●●●
●

●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●
●

● ●●●●●●●● ●●
●●●●●● ●●●●●●●●●●

●●●●●●●●● ●●● ●●●●●●●●●●
●

●●●●●● ●●●
●

●●●
●

●●●●●●●● ●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●● ●●●●●

●
●●●●●●●●●● ●●

●●●●●● ●●●●●
●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●● ●●●●

●
●● ●●●●● ●●● ●●●●●●●●●●●●●●● ●● ● ●
●●●●●● ●●●● ●●●● ●●●●● ●●● ●
● ●● ●●● ●●●●●● ●

●
●●●●●●●●●●

●●●●●● ●●●●● ●●●●●●●● ●●
● ●●●●●●●

●

●●●●●●

●

●● ●●●●●●●●●●●●●●
●

● ● ●●●●●●●●●●●●●●●●●●

●

●●●●●●

●

●●●●●●● ●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●
●

● ●● ●●● ●●●●●●●●●● ●●● ●●●●●●●●●●●● ● ●
●● ●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●●●●●● ●●●●●● ●●

●
●●●●●●●●●●●●●●● ●●

●●●●●●●●●●● ●●

●

●
●● ●●●●●●●●●●●●●● ●●● ●●●●●● ●● ●●●● ●● ●●● ●●●●●●●● ●● ●●●●●●● ●●●●● ●●●●●● ●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●● ●●●●●
●●●●●●●●● ●●● ●
●

●●●
●

●
●

● ●
●●

●
●

●

●

●
●●●●●●●●●●●●●●●●● ●●●●●●●●

●
● ●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●● ●●● ●●●● ●●● ●●●●●

●
●●●●●●

●
●●●●●●●●● ●●●●●● ●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●● ● ●●●● ●● ●● ●

●
●●●● ●●●●

●● ●● ● ●● ●●● ●● ●●●●
●

● ●●

●

●● ●●
●

●●●
●

●
●●●●●● ●●●●●●●●●

●

●● ●●
●

●● ●●●●●●●● ●● ●●●●

●
●●●● ●●●●●●● ●● ●●●●● ●●●●●●● ●● ●● ●●●● ●● ●●● ●●● ●●●

● ●
●● ●● ●●●●●●●●●

●
●●● ● ●

●●
●

●
●

●●●●●●●●●●●●●●●●●●●●●● ●● ●●
●

●
● ● ●

●
●● ●●●

●
●●● ● ●●● ●●●●

●
●

● ●●●●●●●●●
●

●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●● ●●● ●● ●● ●●●●●●●

●
●●●

●
●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●● ●●●●●● ●●

●
●●●●

●

● ●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●● ●●●●●●●●●●● ●●●
●

●●●● ●●●●●● ●●●●● ●
●●●●● ●●●●●●●●●

●
●● ●● ●

●
●

●●●●●●●
●

● ●
●

●●●●● ●● ●●●

●

●● ●●● ●●●●●● ●●●●●●●●●●●●● ●● ●
●

●●●●●●●●●●●●●●●●●●●● ●●●
●

● ●●●
●

● ●
●●●●● ●●● ●●●●● ●●●●●●●●●●●●● ●●●●● ●●● ●●●●●●●●●●● ●●●●●●●●●

●
●

●
●●

●●
● ●●●●●● ●●●● ●●●● ●● ●● ●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●● ● ●
●●

●

●●●●●● ●●●●●●●●●●● ●●●●●
●

●●●●●●●● ●● ●
●●●

●
●●

● ●
● ●● ●

● ●

●●●
●

●
●

●●●●●●●●● ●● ●● ●●●●●●●
●

●●●●●
● ●

●
●

●●●●●●●●●●●●
●●● ●● ●●●●●●●● ●●

●
●●● ●●●●●● ●●●●●●

●

●●●●
●●

●

●●●
●

●●●●●
●●●●●●

●
●●● ●●●●

●

●●●●●●●●●●●●●●●
●

●●●●●● ●●●

●

●●
●

●●●
●●● ●●●
●

●●
●●●●●●●●●● ●●● ● ●

●●●●●●●
●

●● ●●● ● ●
● ●●●●● ● ●

●● ●
●●●●●●●●● ●●●● ●● ●● ●●

●
●●●●●●●

●
●●●●

●
●

● ●●●●●●● ●●●●
●

●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●
●

●●
●

●●●●
●

●●●●●●●●●●●●●●●
●

●
●

● ●●●●●● ●●●●●●●●●●●●●●● ●● ●● ●●● ●●●●
●●

●
●

●
●●●●
●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ● ●●● ●

●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●

●

●●●●● ●●●●●●●● ●●●●●●●●●●●●●
●

● ●●●●●●●●●● ●●●●●●●●● ●●●●●● ●●●●●●

●

●●●●●●●●●●●●●●●●●●●
●

●●
●

● ●

●

●●● ● ●●
●

●●●
●

●● ●
●

●●●●●●●●●●●●●● ●● ● ●
●●●●● ●●●●●●●●●● ●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

● ●●● ●●●●●●●●●●●●●●●●

●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●
●●●●

●
●●●● ●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●
●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●

●●●
●

●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●
●

●●●
●

●● ●●●●● ●●●●●●

●

●●●●● ●●●
●

●
●

● ●●● ●

●

●● ●●●
●

●● ●●●
●

●●●

●

●●●●●●●●●●

●

● ●●●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●
●

●●●●● ●●●●●●●●●●●●●●●●●● ●● ●

●

● ●●●● ●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●
●

●●●●●●●●●●●

●
●

●●●●●●● ●
●

●●●●●●●●●●●

●

●

●

●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●● ●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●● ●

●

●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●
● ●

●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●
●

●●
●

●●●●●● ●●●●●●●● ●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●

●
●

●
●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●● ●●●●●●●

●

●●●●●●●●● ●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●
●

●
●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●

●
●●

●● ●
●●

●
●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●

●

●●●●●●

●

●
●

●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●● ●●
●

●●●●●●●

●
● ● ●

●●●●●●● ●● ●●● ●
●●●●● ●●●●●●●●●●●●●●●● ●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●● ● ●
●●●●●●●●●●●●●●●●●●● ●● ●●● ●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●

●
●●

●●
●●●●●●●

●
●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●● ●● ●

●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●● ●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●● ●●●●●●●● ●●●

●
●●● ● ●●● ●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ● ●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●

●
●●●

●
●●●●●●●●●●●●●●●●●●●● ●●● ●●●● ●

L=1000 L=10000

L=40 L=108

0 20 40 60 0 20 40 60

0

50

100

150

0

50

100

150

Number of Transcripts)

N
um

be
r

of
 S

eg
m

en
ts

(dm6 genome)

●●●●
●

●●●●
●

●
●

●●

●
●

●●
●●●

●●●●●
●

●
●●

●

●●
●

●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●● ●●●
●

●●●
●

●●●●
●

●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●

●
●

●●●●●●
●

●●●●
●

●●●●●●●●●●
●●●●●●●●●●

●
●●●●●●●●●●●

●
●●●●●●●●

●
●●●●●●●●●●●

●●●●●●●●●●●
●

●●●●
●

●●●●●●●●
●

●●●●●●●●●

●

●●●●●●●●●●●●●●
●

●
●

●
●●●●●●
●●●
●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●
●
●●●
●●●
●●

●
●●●●●●●●●

●
●

●●
●

●
●●●●●●●●●●●●

●
●●

●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●

●

●●●●●●●
●●●●

●
●●●

●
●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●● ●
●●

●
●●●●●●●●

●
●●●●●●●●●●●●●

●
●

●
●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●

●
●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●● ●●●

●
●●●●●● ●●●●●●●●●●●●●●●

●

●●●●●●●●●●●
●

●●●●● ●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●
●●●

●●●●●●●●●●●●●●●●●●●●
●

●

●

●●●●●

●

●●●●●●●●●●●●
●●●●●●●●

●

●
●

●●●●●●●●●●●●●●●●
●●●

●● ●●
●

●●

●

●●●●●●●●●●●●●●●●●●
●

●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●

●

●●●●
●

●●●●●●●●●
●

●●
●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●
●●

●●
●●

●
●●● ●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●

●●●
●●

●●
●●●●●●●
●●

●●●

●

●●●●
●

●●●

●

●● ●●●●●●
●

●●●●●●●●

●

●●●●●●●● ●●
●

●●
●

●●●
●●

●
●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●

●
●●●●●●●●●●●●●●●

●●
●●

●●●●●●●●●●●●●●
●

●●●●●●●●●
●

●●●●●●
●●●

●●
●

●●
●●●

●●●●●●●●●

●
●●

●
●●●●

●
●

●
●

●
●●●

●●●●

●

●●●
●●●●●

● ●
●●

●●●●●●●●●●●●●●●

●
●

●
●●

●●
●

●●●

●

●●●

●

●
●●● ●

●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●
●

●●
●

●●
●

●● ●

●

●●●●●●●●●●●●
●

●●●●●
●

●●
●

●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●

●●●

●

●●●
●

●●●
●

●●
●

●●●●
●

●●
●

●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●
●

●●●●●●●●●●
●

●●●●●●●●●●●●
●

●●

●

●
●

●●
●

●●●●●●●●
●

●●●●

●

●
●●●●

●●●●●●

●

●●●●●●●●●●
●●●●●●
●

●
●

●
● ●●●

●
●●

●●●
●

●●●
●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●
●●●
●

●●●
●

●●●●●●●●●●●●
●●

●●
●

●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●

●

●●●●
●●●●●●●●●●●●●●●●●●
●●●●

●
●

●●●

●●

●●●
●●●●●●●●

●

● ●
●

●●●●
●

●●●●
●

● ●●
●●●●

●
●●●●●●●

●●●●
●●●●●

●
●●●

●
●●●●

●●
●●●●
●●

●
●●●●●●

●
●●

●●
●●●●

●●
●●●

●
●●●●

●
●●

●
●●

●
●

●
●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●

●●
●

●●●
●

●●●●●●●●●
● ●

●
●●

●

●

●

●
● ●●

●

●●●
●

●●●●
●

●●
●●

●
●

●

●●●
●●

●
●

●●●●●●●●
●

●●
●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●

●
●●●●●

●
●

●
●●●●●●

●
●●●

●
●●

●
●●●●●
●●●

●
●

●
●●

●●●●●●●●●
●

●

●●●●● ●●
●●●●●

●●
●

●
●●

●
●

●
●●●●●●●

●

●●●●
●●●

●
●

●
●●

● ●●
●●●●●●
●●●●●

●
●

●●●
●●

●
●

●
●●

●
●●●

●

●●●●●●
●

●●●●●

●

●●●●●●●●●●●●●●●●●
●●●●●●

●
●●●●●

●●●
●

●
●

●●●
●

●

●
●●
●●●●

●

●
●●●●●●●●●●●●●

●●
●●●●●●●●●●●●●●●●

●
●●●●

●●●●●●
●

●●●●●●●●●●●
●●

●●
●

●
●●

●●●●
●●●●●●●

●●●●
●

●●●

●
●●

●●●●●●●

●

●●●●●●
●●

●●●●●●●●●
●●●

●●●●●●●●●●●●●
●

●●●●●●
●●

●●●●●
●

●
●●

●●●●●●●●●●●●
●●●

●●●●●●●●
●

●●●●●
●

● ●●
●

●

●
●

●
●

●
●●●

●
●●

●

●●
●●●●●

●
●●●

●
●

●●●●●

●

●●●
●●●

●
●●●●●●●●

●
●●●

●●
●●

●●
●●●●●

●●●●●●●

●

●
●●●●●●
●

●●●
●●●●●●●●●●●●●●●●●●
●

●●●●
●●●
●●●

●
●●●●●

●

●●●●

●
●●

●

●

●
●●●

●●●●●●

●
●●

●
●●●●●●●●

●
●

●
●●●●●●

●

●●●●●
●●●●●●●●●●●●
●●

●
●●

●
●●●●

●

●●
●

●
●●

●

●●●

●

●●●●
●

●
●●●

●●●●●●●
●

●

●
●●

●

●
●●●

●●●●●
●

●●●●●●●
●●●●●
●

●●
●●

●
●

●
●●●●
●●●

●●●

●

●●●
●●●●●●●●
●●●●

●●●●
●●●●

●
●●●●●●●

●
●

●
●●

●
● ●

●●●●●●●
●●●● ●●●●●●●

●
●●

●
●●●●●

●
●

●

● ●●●●
●●

●●
●●●●●●

●●●
●

●●●
●●

●
●

●●●
●

●●●●
●●●

●●●
●

●

●
●●●●
●●

●●
●●●
●●

●

●
●●●●●●
●●

●
●

●●
●●●●

●
●●●

●
●

●

●●●●●●●●●
●

●
●●●●●

●●
●●●●

●●●●● ●●●
●

●●
●●

●

●●

●

●
●

●●
●●●

●

●●
●●●●●

●●●
●

●
●

●●●●●●●●●●●●●
●●●●●

●●
●●●●●●●●●
●●●

●●●
●

● ●●●
●

●●●●
●●

● ●●● ●
●●●

●
●●●●●●●●●●●●●

●●
●●●

●
●●●

●● ●●●●●●●●●●●●●●●●
●

●●●
●●●●
●●●●

●
●●●●●●●●●●●●●●●●●●●●
●

●●
●●●●●●●●●
●

●●
●●

●●
●●●

●
●●●●●●●●●●●●●●●●

●

●●●

●

●
●●

●●
● ●
●

●
●

●●●●
●●●●●●●●●●●●

●
●●●●●

●
●

●●●●●
●

●●
●

●●●●●

●

●●●●●●●●●
●●●●●●●
●

● ●
●

●
●●●

●●●
●●●●

●
●●●●●●●●

●
● ●●●

●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●
●

●●●●●●●●●

●

●●●●●●●●●●●●●●●
●●●●●●●●●

●●
●●

●
● ●

●
●●●●●●●

●●●●
●●

●●●●
●

●●●●●●
●

●●●●●●
●●●●●
●

●

●

●●●●●●
●

●●●
●●●●●●●●●
●●●●●●
●●●●●●
●

●●●●
●

●
●●●
●

●
●

●●●●●●
●

●●●●
●

●●●●●●●
●

●●●●●

●
●

●●
●●

●
●

●●●●●
●●●●●●

●●
●●

●
●●●●●●

●●●●●●●●
●●●●

●●
●●●●

●●
●

●●
●●

●
●●●●

●
●●●●
●●●●● ●

●●●
●●●●●

●
●●●●●●●

●
●

●●●●●●
●

●●●●●●●●●
●●●
●

●●●●●●●●●●●
●

●●●●●●●●●●●●
●

●●
●

●
●●

●
●●●●

●●
●

●
●

●●
●

●●●

●

●●
●●
●

●●●
●●

●●●
●●●●●●●●●●●●●●●●●●●

●●●
●

●●●●●●●

●

●●
●●

●●●

●
●●●●●●●●

●●●●●●
●

●●●●●●●●●●●●

●

●●●●●
●

●●●

●
●

●●●●●●
●

●●●●●●●●●●●
●●●●●●●

●●
●

●●
●●●●●●●
●

●●●●●●●●●
●●●●●●●●●
●

●●●
●●

●
●●●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●
●●●●

●
●●

●
●●●●●●

●●●●●●●●●●●●●●●
●

●
●●●●●●●●●

●●●●● ●
●●●●●●●●●●●●●

●
● ●●●●● ●●●●●●●

●●●
●

●●●●●●●●●●●●●●●●●●
●

●
●●●●●●●●

●●

●

●●●●●
●

●●●●
●

●●
●●●●
●

●

●●●●●●●
●

●
●

●
●●●●●●●●

●●
●●●●●
●

●●
●

●●●●
●●●●●

●●●●●●●●
●●●
●●●●●●●●

●●●●●●●●●
●●●●●●
●●●●

●
●●

●●●●●●●●●
●●

●
●●●●●●●●

●
●

●●

●

●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●●●●●●●●●●●●●●●●●●
●●●

●
●

●●●●●●●●●●●●
●

●
●●●●●●●●●●●●●●
●●●
●

●●●●●●●●●●●●
●

●
●

●●●●●●●●●
●●

●
●●●

●
●●

●●
●

●
●

●
●

●●●
●●
●

●●
●●

●●●●●●●●●●●
●●●

●
●●

●
●

●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●
●●●
●●

●

●●●●●●●●●
●●●●●●●●●●●●●●

●
●●●●●

●●●●●●●●●●●●●●
●

●
●

●
●●●●●●●●●●●●●

●
●●

●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●● ●
●●●●●●●●

●
●●

●

●●●●
●●●●
●●●●●●●●

●

●●●●●●●●●●●●●●●
●●●

●
●

●●●
●●●●

●

●●●●●●●●●
●●

●●●●

●

●●
●

●●●●●●
●

●
●●●●●●●●●●●
●

●●●●●●●●●
●●●●●●●●
●●● ●

●●●●●●●
●

●
●

●
●●● ●●●●

●●●●●
●●

●●●
●

●
●●●

●●●●●●●●●●●●●
●

●●

●

●●●●
●● ●●
●
●

●●●●●●●●●●●●●●●●●
●

●●●●●●●●●
●●●●●●●●●●

●●●
●

●●●●
●

●●●●●●●
●

●●
●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●● ●●●●●●●●●●

●

●●●●●
●

●●●●●●●●●
●●●●●●●●●●●●
●

●●●●●●●●●
●●●●●

●●●●
●●● ●

●●●●●●●●●●●●
●

●●●●●●●●●
●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●

●●
●●●●

●

●
●

●●●●●●●
●

●●●●●●
●

●●●●●●●
●●

●●
●

●●●
●

●●●●
●

●●●●●●●●●
●

●●●
●

●●●●●●●●●
●

●●●●●●●
●

●●●●●
●●●●●●●

●

●●●●●●●●●●●●
●●●●●
●

●●●●●●
●

●
●

●●●
●

●
●●●●●

●●●●●●●●●●●●●●
●● ●●●

●
●●●●●●●●

●
●●●●●●●●
●●●●●●●
●●●●●●●●●●●

●●
●
●●●●
●●●
●

●●●
●

●●●●●●●●●●●●●●
●

●●
●

●●●●
●●●●

●●
●●●

●●
●●●
●

●●
●●●●●●●●●●
●

●●●●
●

●●●
●

●●●●●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●
●

●●● ●●
●

●
●●●●●●●●●●●●

●●●
●●●●●●●
●

●●
●●

●●●●●●
●●●

●●
●●

●●
●●●●
●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●

●
●●●●●●●●●●●●●

●
●●●●●●●

●

●●●●
●●●●●●●

●
●●●●●●●●

●●●●●
●●●●●●●●●

●●●●●
●

●

●

●●
●●●●

●●●●●

●

●●●●●●●●
●

●●●●●●●
●●
●●●●

●

●●●●●●
●●●●
●●

●●●●
●●●●●●●
●

●●●●●●●●●
●●●
●●●●●●
●

●●●
●●

●
●●

●●●●
●●●●●●●●
●●●●
●●●●●

●
●●

●●
●●

●
●●●●●●●●●●

●

●

●
●

●●●●●

●

●●
●

●
●●●●●●●●●●●●●●●●●●●●
●

●●●●
●

●

●
●●●●

●
●●●●●

●●●●

●

●●●●●
●

●●
●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●

●●●●●●●
●

●●●●●●●●●●●●●●●●●●
●

●●●●●●
●

●●●●●●●●●
●●●●●●

●
●●

●
●●●●

●●●

●

●●●●
●●●●●

●
●●●●

●
●●

●
●●●●●●●●●●●●
●●●●

●●●
●

●●●
●●

● ●●
●

●
● ●

●

●

●
●

●
●

●●●●●●●●
●

●●
●●

●

●●●●●●

●

●●●●●●
●●●

●●●
●

●
●

●●●
●

●
●

●

●●●●●●●
●●●●●●●●●

●●●●

●
●●●●●●●● ●●●●●

●
●●●●

●●

●●●●●●●●●●●●●●
●●
●

●●
●●●●●●

●●●●●
●

●
●● ●

●
● ●●●●●●●●●●●●●

●
●●

●●●●●●●●●
●●

●

●●●
●

●●●●●●●●
●

●●●●●
●

●●●●●
●●●●●

●
●●●

●
●●●

●
●

●
●

●●
●●●●●●

●●●●●●●●●●●●●

●

●●
●

● ●
●●●

●●●●●
●●

●

●
●

●

●● ●
●

●
●●

●●

●
●

●
●●

●

●●●
●

●
●●●●●●●●●

●

●●●
●

●●
●

●●●●●●●●●●
●●

●

●●
●●●●●●●●●
●

●●●●●●●●●●●●●
●

●
●

●●●●●
●●●

●

●●●●●●●
●

●●●●
●

●●●
●●

●

●●●●
●●●●
●

●

●●●●●●
●●

●
●

● ●
●●●

●
●●

● ●●●●●●●●
●●●

●
●●●●●●●●●●●
●●

●
●●●●

●
●●

●
●●●●●●●

●●
●

●●●
●●●●●●

●
●●●●

●

●●●●●●●●●●●●
●●●●●

●●●●●●
●

●

●
●

●●
●●●●●
●●●●●●●●

●●●●
●

●●●
●

●●●●●●
●●●●

●●
●

●●
●

●

●
● ●●

●

●●●●●●●●● ●●

●

●●
●● ●●●
●●●

●
●

●
●●●●●

●
●●
●●●●●

●
●●●●

●●

●
●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●

●●●●●●
●

●●
●●

●●
●●●
●

●●●●
●

●●●●●●●●●●●●●●●●●●●●
●

●●
●●●●●●●●●
●

●●●●●●●●
●●●●●

●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●
●●●●

●
●

●
●●●●●●

●
●●●

●
●●●●●●●●

●

●●●●●●●

●

●●●●●
●

●
●●●●

●●●●●●●●●●●●●
●

●●●●●●●●
●●

●
●●●●●●

●
●●●●●●●●●●●

●●●
●

●●●●●●●●

●

●●●●●
●

●●●●●
●

●
●●●●●●●●●●

●●●●●●●●●●●●●●●●
●

●●●●●●●●
●

●●●●●●●●●●
●●●●●●●●●●●●●
●●●

●
●●●

●
●

●
●●●

●
●●●●●●●●●●

●
●

●●●

● ●

●●
●●●●●●●

●
●●●
●●●●●●●●●●

●●●●●
●●

●●
●

●●
●

●●●●●●
●

● ●
●●●●●●

●
●●●● ●●●●●●●●

●
●●●●●●●

●

●●●●●●●●●
●

●●●
●●●●●●●●●

●
● ●

●●●

●
●●●

●●
●●●●●●●●
●●●●●●●●●●●●●●●

●

●●●●●
●

●●
●●

●●●
●●

●
●●●

●
●

●
●●

●
●●●●

●
●●●●

●●
●●●

●
●

●●

●

●
●

●●
●

●●●●
●

●●●●●

●

●
● ●●●●●●●

●
●●

●
●●●●●●●●

●●

●

●●●●
●

●
●

●

●
●●

●
●●

●●
●●

●
●●●●●
●●●●
●

●●
● ●
●

●
●●●●●●

●●●●●●●●
●

●
●●● ●

●●
●●

●●
●●●●●
●

●
●●

●
●

●●●
●

●
●

●

●●
●

●
●● ●

●●

●

●

●

●
●

●●●●●●

●
●

●●
●

●●●●●●
●

●●●
●

●
●●

●
●

●●
●●●●

●

●

●●●
●●

●
●●●●

●●●●●●●
●●●●●●●

●●
●

●
●●●●●●●

●

●●
●

●●●
●●●●

●
●●●●

●●●●●●●
●

●
●●

●●
● ●● ●

●
●●

●

●
●●

●●●●●●●●●
●●●●●●●
●● ●

●
●●

●
●

●●●
●

●●●
●

●●●●●
●●●●●●●

●●
●●● ●●

●

●●●
●

●●●●
●●●●●

●

●●
●

●●
●

● ●
●

●
●●●

●
●

●●●●●●●●
●

●●●●
●

●●●
●

●●●●
●●

●●●●●
●●●

●●
●●

●●●
●

●
●

●●●●●
●● ●●

●●
●●

●●●●●●

●

●
●

●●
●●

●●
●●

●●●●●●●●●●●●●●●●●●
●●

●
●●●●●●●

●

●●●●●●●●●
●●

●
●

●
●●●

●

●●
●

● ●
●

●●
●●●●●

●
●

●●
●●

●●
●

●
●●●
●●

●
●

●
●

●
●●●

●
●

●●●
●●●

●

●●●●●●●●●
●

●

●●●
●● ●

●●●●●●●●●●●●
●●●

●
●●

●●
●●●

●●
●●●●●●●

●●●
●●

●

●

●
●

●

●
●●● ●●

● ●●● ●
●●● ●●
●●
●

●
●

●
●●●●●●●
●

●●●●
●●●●●

●●●●●●
●●●●●●●
●

●●●

●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●
●●●●●●●
●●●●

●
●●●●

●
●●●

●●
●●

●●●●●●●●●●●●●●
●

●●
●●

●
●

●●●●
●

●
●●●●

●

●
●

●
●●

●●●●●●●
●●●
●

●●
●●● ●

●
●●

●
●●●●●●●●●●●
●●

●●●●●
●

●●●●●
●●●●

●
●●●●●●●●

●
●●●

●●
●●●●●●
●

●●●●

●

●●●●●●●●●
●●●●●●●●●●●●●
●●●● ●●●●●●●

●
●●●●●●●●●

●
●●●●

●
●●●

●●●●● ●●●●●●●●
● ●

●●●●●●
●●●

●●●
●

●
●
●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●

●●
●●●●●●●
●

●●●●●●
●●●

●
● ●

●
●

●●
●●

●●●●

●

●●●●●●●

●

●●●●●●●●●●
●

●●●●●●
●●
●

●
●●●●

●
●●

●
●

●●
●

●●●
●●●●●●
●

●●●

●
●●

●

●
●

●●●●●●
●

●
●●

●●

●

●● ●●
● ●●●●●

●

●
●

●
●●●●
●●●●

●
●

●●
●●●●●

●
●●●●

●●

●
●●●●●●●●●
●

●●
●●

●●●●●●●●●●●●●●●●●●●
●

●●●●●●
●●

●●
● ●●●●

●●●
●

●
●

●●●●●●●
●

●●●●●●●●●●●●
●

● ●
●●

●●●●●
●

●
●

●●
●

●
●●

●●●●●●●●●●●
●●

●
●●

●
●●

●●●●●●●●●●
●●●●●●

●●
●●

●

●●●

●
●

●
●●●

●

●●●●●●●
●

●●●
●

● ●●●●●
●●●●●

●
●

●

●●●●
●

●●●
●

●

●

●●
●

●●●●

●

●●●●
●

●

●
●●

●

●
●●

● ●●●●
●

●●●●●●●●
●●●●●●

●
●●●●●●●●

●●●●●
●●●●●●●●

●
●●●●

●
●

●
●

●●●●●●●●●●●●●
●●●●

●●●●●●
●●●

●
●

●●●
●

●●●●●●●●●●●
●

●
●

●●●●●
●●●●●●●●
●●●●●●●●●●
●●●

●

●●●●● ● ●
●

●
●●●●
●

●●●●●●●●●●●●●●●●
●

●●●●●●

●

●●●●●●

●

●●●●●
●

●
●

●●●●●●●
●●●●●●●●●●●●●●
●●

●
●●●

●
●●●

●

●●●●●●●●●
●

●●●●●●
●

●●●●●●●●

●

●●●
●●● ●

●●●●●●
●●●●
●

●●
●

●●
●●●●

●
●●●
●●●

●●
●

●●●
●

●
●

●●
●● ●

●
●

●●
●

●
●

●
●●

●●●
●

●
●

●●●
●

●●●●●●
●

●●●●●●●●●
●

●

●
●●●●●
●●●●●●●●

●
● ●●●

●●●
●

●●●●●●●●
●

●●
●

●
●

●●●●●
●●●●●●●●●●●●

●
●●●●●●

●●
●●

●
●●●●●

●●●●●
●

●●●●●
●●●
●●●●●●●●●●●●●●
●

●●●●● ●
●●●●●

●
●●

●
●●

●●
●

●

●
●●

●
●●●●

●

●●
●

●●●
●

●● ●●
●●●●●●●●●

●●●●
● ●
●●●●●●●

●
●●

●●
●●●●●●

●●●●●●●●●●●●
●

●
●●●

●

●●●●●●
●●●●●●●●●

●

●●●●●●●
●●
●●●●●●●●●
●

●
●●●

●

●

●

●
●●●●●

●●●●●●●●●●●●●
●●

●●●●●●●●●●●●●
●●●●●●●●●●●●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●
●

●
●

●●●●●●
●●●●●●●
●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●
●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●●●●●●●●●●●●

●
●●●●●●●●●●

●
●●

●●
●●●●●

●●
●●●●●●●●●

●

●●●
●

●●
●●●●●●
●

●●●●
● ●

●●●●●●●●●
●●

●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●●●●
●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●
●●●

●
●

●
●●●●●●●●●●●●

●●●●●●
●

●
●

●
●●

●●●●●●
●

●
●●●●●●●●●●●●●●

●
●●●●●●

●
●●●●●

●
●●●●●●●●●●●●●

●
●●●●●

●
●

●●
●

●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●

●●●●
●●●

●●
●●●

●
●●●●●●●●●●

● ●
●●●●

●●●●●●●●
●

●

●

●●●●●●●●
●

●●●

●
●●●●●●●
●

●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●● ●

●●●●●

●

●● ●●●
●●●●●●
●●●●●●●

●
●●

●

●●
●

● ●●●●
●●

●

●

●
●

●
● ●●●●●●●●

●
●●●●●●●●

●

●●●
●

●
●●●

●●●●
●●●

●●
●●●●●●●●●●
●●●●●●
●

●●●●●●●●●●●●●●
●

●
●

●●●●●●
●●●●
●

●

●●●●●
●

●
●

●●●

●

●●
●

●●
●●

●●●●●●●
●

●●●●
●●●●●●●●

●●●●●●●●
●●

●●●●●●●
●

●
●

●
●

●
●

●●●●●●●●●●
●●●●●●●●●●●●●

●
●

●●●
●

●
●●●●
●

●

●

●●●●●●
●

●●
●

●
●

●
●

●
●●●●●●●

●

●●
●●●●●

●●●
●

●●●●
●●●●●

●●●●●●
●

●●●●●●●
●

●
●

●
●●●●●

●
●

●●●●●●●●●●
●

●●●●
●

●●●●●●
●

●●
●●

●
●

●
●

●

●●●
●

●●●●●●●●●●●●●●●●●●●●

●

●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●

●

●●●
●

●●
●

●●●●●●●●
●

●
●●●●●
●

●●
●

●

●●●
●

●●●●●●●●
●

●●●●●●●● ●●

●

●●●

●●

●●
●

●●

●

●

●

●

●●●●

●
●●

●●●
●●

●

●

●

●●●●

●
●●●

●●●●
●●●●●●

●●
●●●

●
●●●●●●●●●●●●●●

●
●●●●●●

● ●
●●●

●
●

●

●

●●●
●

●●●
●●●●

●●●●●
●

●●●●●●●●●●●
●

●●
●

●●●●●●

●
●●●●●●●●●

●

●●●●●●●●●
● ●●●
●●

●●●●●
●

●
●●●●●●

●
●●●

●●
●

●
●●●●

●
●●●●●

●●
●

●

●●
●

●●●●●
●

●
●

●

●
●

●● ●●●●
●●●●●●●

●●

●
●●●●●●●●●●●●●●●●●●
●

●
●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●
●

●●●
●

●
●

●●●●●●●●●
●

●
●●●●

●
●

●●●●●●●●●●
●

●●●●●●●●●●●●
●

●●●
●

●●●●●●●●●● ●●●●●●●●
●●●

●●
●●●
●●●●●●●●●●
●

●●●●●●
●●

●
●●●

●
●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●

●●●●●●●●●●●●
●

●●●●
●

●●
●●●

●●●●
●

●●●●●●●
●

●●●●●

●

●●●●●●●●●●●●●●●●●●
●●

●●●●●●●●
●●

●●●
●●●●●●●●●●●●●●
●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●

●

●●●●●●●
●●●

●
●●

●
●

●
●●●
●●●●

●
●●●●

●
●

●●●●●●●
●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●
●

●●●●●
●●

●

●
●●

●
●●●●●●●●●●●●●●●●●
●

●●●●●●●

●

●●●●●●●●
●

●

●●
●●●

●●
●

●●●
●●●●●●●●●●
●

●
●●●●●●●●●●●●
●

●
●●●●
●

●●●●●●●●●●●●●●
●●●

●
●●●

●
●●●●●

●
●

●●●●●
●●●

●●●●●●●●
●

●●●●●●●●
●

●●●●●
●

●●●
●●

●
●●●●

●

●
●

●

●

●
●●●●●●
●●
●
●●●

●●●
●

●●●
●●

●●
●●●●●

● ●●●

●

●
●●●

●

●●
●●

●
●

●●●●
●●●●●●

●●●●●●●●●●●●●●●●
●

●●●●●●●●●●
●●●●
●●

●●
●●●●●●●●●
●

●
●● ●

●

●

●
●●●●●●●●

●
●●●●●●●●

●
●●

●
●●● ●
●●●●

●
●●●●●

●●●●●●●●●●●●
●

●●●●●●●
●

●●●●●●●●●
●●

●●●●●●●●●●
●

●●●●●●
●

●●●
●

●●●●●●
●

●●●●●●●●●
●

●●●●●
●

●●●●●●●●●●●●
●

●
●

●●●●●
●●

● ●

●●

●

●● ●●●
●●

●
●●●

●
●

●●●●●
●

●●
●

●
●●
●●●●●●●●
●

●

●●●●●●●●●
●●

●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●
●●●●●

●●●
●●●●●●
●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●
●●●●●

●
●●●

●
●●●●

●
●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●
●

●●●

●

●●●●
●

●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●●●●●●

●
●●●●●

●
●●●●●●●●●●●●●

●
●●

●
●●●●●●●●●●●●

●●●●●●●●●●●●● ●●●●
●●●●

●
●●
●●

●●●●●

●
●●
●●●●●● ●●●●●●

●●●
●

●
●

●●●●●●●
●

●
●●●●●

●●
●

●●
●●

●●
●●●●●●●

●

●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●
●

●
●

●

●●●●●●●
●

●●●
●

●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●●●

●

●
●●●●●●●●●
●●●●●●●●●●●●●●

●

●●
●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●
●

● ●
●●●●●●●●●●●

●
●●●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●
●

●●
●

●●●●●●●●●●●●●●●●
●

●●●●●●
●●

●●●●●
●●●●●●

● ●
●●●●●

●●
●●●

●
●●●

● ●● ●●●●
●

●●●●●
●●

●
●

●

●●●
●●●●●●
●

●●●●●●●●
●●●●●

●●●●●●●●●●
●

● ●●●●●●●●●●●●●●●●●●

●

●
●

●●●●●
●●

●

●

●●
●

●●●

●

●●●●●●●●●●●●●●●●●●●●●
●

●●
●

●
●

●●

●

●

●

●●●
●

●●●●
●

●●●●

●

●
●

●

●●●●●●
●

●● ●●●●●
●●

●
●●

●●●●
●●●●

●●
●●●●

●●●

●

●●●
● ●

●●
●●

●●
●

●●●●
●

●●●●●●
●

●●
●

●●●●●●
●

●●●
●●●●●●

●
●●●●●

●
●

●●
●

●
●

●●●
●●

●
●●

●
●

●
●

●● ●●
●●●●●●●●●●

●
●

●●●●●●
●●●●●●●●●●●

●

●

●
●●●●

●
●●

●●
●●

●
●●
●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●

●●●
●●●●●●●●●●●●●●● ●
●●

●●●●●●● ●
●

●●●●●
●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●
●

●
●

●●●●●●●
●

●●●●●●

●

●
●

●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●● ●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●

●

●

●●●
●

●
●●

●

●●●●●●●
●

●
●●●●●●●●●●●●●●

●
●●●

●
●●●

●

●●
●●

●
●

●
●●

●

●
●

●●●●

●
●

●●
●

●●
●

●
●

●●●●●●●
●●●●●●●●●●●●
●●

●

●●●●●●
●●

●
●●●●●●●●
●●●

●●●

●
●

●●●●
●

●●●
●

●●

●●

●

●
●

●● ●●●
●

●●●●●●●●●●
●

● ●●●●●

●
●●●● ●●
●

●
●

●●
●●●●●●

●
●●

●

●●●
●●●

●●
●

●

●●
●

●●●●●●●●●●
●

●●●●● ●●

●

● ●●●●

●
●●●
●

● ● ●
●

●
●●●●

●
●

●
●●●●●

●
● ●●●●●●

●

●●●●●●●●●●
●

●●
●

●●●●●●
●●●●●●●●●

●
●

●● ●

●
●

●
●●●●

●

●
●

●●●●●
●

●●
●●●●●

●
●●●●●●●●●

●
●

●●
●●

●●
●

●●●● ●
●●●●●●●

●
●●●●●●●●●

●●
●

●
●

●●
●

●●●
●

●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●
●●

●●
●●●●●●

●
●●

●
●●●

●
●●●●

●
●●●●●

●
●●●●●●●●● ●●

●
●●●●●●

●
●●●●●

●●●●●●
●●●

●●●
●

●●

●

●●●●●●
●

●●●●●●●●●●●●●
●

●●●●
●●

●
●●●● ●
●●●●●●●●

●
●●

●●
●●●●●●●
●●●●●●
●

●●●
●●

●●

●

●●●●●●
●

●

●●●●● ●
●

●
●

●
●

●
●

●●
●

●●●●●●●●●●●●●●
●●
●

●

●●●
●

●●
●

●
●

●

●●●●● ●●

●
●

●●●●
●

●●●●●
●

●●●●●
●●●●●

●●●●
●

●●●●
●●●●●●

●
●●●●●

●
●

●●
●●●
●

●●●●●
●●

●
●●●●●

●
●●●

●
●●●●●●●●●

●
●●●●
●

●●●●●
●

●●●●●
●●●●●

●
●●

●
●●●●

●●
●

●●
●

●●●●●●
●

●●●●●●●
●

●●
●●●●●●

●●
●●

●● ●
●●●

●●●●
●●●●
●

●●

●
●●

●●●
●

●●●
●

●●●
●●●●●●●●●●●

●●●
●●

●
●

●●
●●●●●●●

●
●●

●●●
●●

●●
●●●●●●

●
●●●●●

●●●●
●●●●●●●●●

●●●
●

●●●●●●●●
●●●

●

●

●

●●●●●

●
●●

●

●●
●●

●●●●
●●

●●
●●●●●●

●●●
●●●●●

●

●
●

●●
●●

● ●
●

●
●●●●●●●●●

●●●●
●

●●●●●●●●●
●●
●● ●●●●●●● ●

●●

●●●
●●●●●●●●●●

●
●●●●
●●●●

●●●●●
●

●
●●

●
●

●●●

●

●
●●●

●

●●●
●●

●●●●●●

●
●●●

●
●

●●●●●●●
●●
●●●●

●●●●●●●●●
●●●●● ●

●
●

●●
●●

●●
●●●●●

●
●●●

●
●●

●

●●●●●
●

●●●●●
●

●

●●●●

●

●
●

●
●●●

●

●●●
●

●
●

●●●●●●●●
●

●●
●●

●●●●●●●●●●●●●●●
●●●

●
●●●●●●●●

● ●●●●●●●●
●●
●

●●
●

●●●●●●●●
●

●
●●●●

●● ●●●●●●●●●●
●●●●●●●●

●
●● ●●●

●
●●●●●●●●●●●

●

●●
●

●●●
●●●●●●●●●●●●●

●●●
●●●●●●●●

●●●●●●
●

●●● ●●
●●●

●

●
●

●●
●●●●●
●●●●●●●
●

●●●●●●
●

●

●

●●●
●

●●●●

●

●●●●●●●●●●●●●
●●●

●
●●●●

●
●●
●

●●●
●●
●●●●●●●●●●

●

●

●●●

●
●●●●●●●●

●

●
●

●
●●●

● ●●●
●●●●●●●●●●●

●
●●●

●●●●●●
●

●●●●●●
●●●●●

●

●
●●

●
●

●●●
●

●●
●●●●●

●
●

●
●

●●●
● ●● ●

●●●
●●●

●●
●●●●●●●●●

●
●

●●●●●●
●●●●

●
●

●

●●●●
●●●
●●●●●●●

●
●

●
●●●●●●●●●

●
●●●

●
●●●●●●

●
●

●●●●●●●●
●●●●●●●●●●●●
●●●

●
●

●
●

●
●●●●●●●

●●
●

●●● ●●●●●
●●●●●
●

●●●
●

●●●●●●
●

●●●●●●
●●

●●●
●

●
●●●●●●
●

●●●●
●●

●●●
●●

●●●●●●●●●●●
●

●

●●●●●
●●●●●●●
●●●●
●●●●

●
●●●●

●●●●

●

●●
●

●●

●
●

●●●
●

●●●●●●●●
●

●●
●

●●●●●●●●●●●●
●

●●
●●

● ●

●●
●●

●●●●●●●●●●●●
●●●●

●
●●●●●●●

●
●

●
●●

●●●●●●●●
●

●●●●●●●●●
●

●●●●●
●●●●●

●●●●●
●●●

●

●
●●●●●●●●●●●● ●

●●●●
●

●
●

●
●

●
●

●●●
●●●●
●●●

●

●
●

●●●●

●

●●●●
●●●●

●●
●●

●

●●●

●
●●●●●●

●
●●●●

●●●
●

●

●
●

●
●

●
●

●●
●

●●●●●
● ●

●●
●●

●●●●
●●●
●●●●●●
●

●●●●
●

●●●
●

●●
●

●
●

●●
●●●
●●

●●●
●

●
●

●
●

●
●

●●●
●●●

●

●●●●
●

●●
●●●

●●●
●●●●●●●
●

●●●●●●●

●●
●

●

●●●●●

●●●●●●●●●●
●

●
●

●●●●●●●●●●●
●●●●

●●●
●●

●
●●

●
●●●●

●●●●●●●●●●●●●●●

●
●●

●●●
●

●●●●●
●●

●
●●●●●●
●

●●●●●●●●

●

●
●●●●●●●●●●●●●●●

●●
●

●●
●

● ●●●●●
●●

●●●●●●
●

●●●●●
●●

●
●●

●
●●●●●●●

●

●

●●
●●● ●

●●

●●●●
●●●●●

●●●●●●●●●●●●●●

●

●
●●

●●●●● ●●●●●●●
●

●●●
●

●●●
●

●●

●
●

●

●●

●

●●●

●
●

●●●●●
●

●●●
●●●●●

●
●●●●

●
●

●
●●●●●

●●
●

●●
● ●
●

●●
●

●

●●
●●●

●

●●
●●●
●●●●

●

●

●

●●●●
●

●
●

●●
●●

●
●

●●●●●●●●
●

●
●

●●●●

●
●●●●
●●●●

●
●●●●

●●
●

●●●●●
●

●●●●●●●
●●●

●
●●●●●●●

●
●● ●●●●●●●●●●●

●●●●●●
●●●●●●●●
●

●
●

●●
●●
●

●
●

●
●

●

●●●●●●●
●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●

●
●

●●●●●
●

●●●●●●●●●
●●●●●●●●●●●●●●

●

●

●●●●
●

●
●

●●
●

●
●●●●

●
●●

●●

●●●●●●●

●

●●●●●●●●
●●●●

●●
●●●

●●
●●●●

●
●●●●●

●
●●●●

●
●

●●●●
●

●●●●●●●●●
●●●

●

●
●

●●
●●●●●●
●

●
●●● ●

●
●●●●

●
●

●● ●●
●

●
●●

●●
●

●●●●●●
●●●

●●
●

●●
●●

●
●●●

●
●

●●
●●●●●
●●

●
●●

●●●●●●
●

●●●●
●

●●●

●
●

●●
●

●
●●

●●●●
●●●

●
●●

●

●●
●●

●●●●
●

●
●●
●

●

●

●●●●
●

●●●●●
●●
●

●●●●
●●●●●●●●●● ●
●●

●
●

●●
●

●
●●●
●

●●●●
●●

●●
●

●●●●●●
●●●

●●●
●

●●
●●●●

●●
●●

●
●

●
●●

●
●●

●

● ●
●●

●

●

●●

●
●

●●●
●

●
●

●
●

●●
●●●●●●

●
●

●●●●●●●
●

●● ●●
●

●
●

●
●●●●●●●●●●

● ●●●●●
●●●●●●

●●
●

●●
●●
●● ●●●
●●●●

●●●
●

●●●●●
●●
●

●●●
●

●●
●

●●
●

●

●
●

●
●●●●●●●

●●●●●●●●
●

●●
●●●●●●●●

●●
●●●●

●
●

●●
●

●
●

●●●●●
●●●●●●●●●●●●●●●●●●
●●●

●●
●

●●●
● ●

●●●●●

●

●●●●●●●●
●●●●●●●

●

●●●
●

● ●●●●●●●●
●

●
●●●●

●●●
●

●●
●●

●
●

●
●●●●●●●

●
●●●

●●●●●

●

●●●●
●

●●
●●● ●●●●●●
●

●●●●
●

●
●

●●
●●

●●
●●●●●●●
●

●
●●

●
●●

●●
●●●●●●●●●●

●

●●●
●

●●
●●●●●●

●

●●●●●
●

●

●●●●
●●

●
●●●

●●●●●●●●●●
●

●
●●

●

●●●●●●●●●
●

●●●●●
●●

●

●●
●●

●
●●

●●●●●●●
●●● ●●●●●●●●●●●●●●●●
●●●●●
●

●
●

●●●●●
●

●
●
●

●

●
●●●●●●●●●●●●●

●
●●●●●●●●●●●●

●●●●

●

● ●●●●●●●●
●

●●
●

●●
●●●●●●●

●
●

●●●●●●
●

●
●●●●●●

●
●●●

●

●●

●
●●

●●●
●●

●●●●●●●
●

●●●●●

●

●●●●●●●●
●

●●●●●●●●●●●●
●

●●
●●

●

●
●

●
●

●●●●●
●●●

●

●●●●●●●●●●
●

●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●
●

●●●●●●●●●●●●●●● ●●
●

●

●●●●●
●

●●●●●●●●●●
●

●●●●
●

●
●

●●●●
●

●●●●
●

●●
●●●●
●●●●●●●●●●●●●●●

●
●●●●

●
●●●●

●●●●●●
●

●●
●●●

●
●

●●●●●●●
●

●●
●

●●●●●●●
●

●
●

●●
●●●●

●●●
●●●●●

●
●

●●●●●●
●●●
●

●●●●●●●
●

●●
●●●●●
●

●
●

●
●

●●●
●

●●

●
●●●●●

●

●
●●●
●

●●●●●
●

●●
●●
●

●●●●●●●●●●●●●●●●●●●●
●●●●●

●
●

●●●
●

●●
●●●●●●●

●
●●●●●
●●

●●
●●

●
●●

●● ●●●●
●●●●
●

●
●●

●●●●●●

●

●●●●
●

●●
●

●●
● ●●

●●
●●
●●●

●

●●
●●

●●●●●●●
●●●●
●

●●
●

●●●●●
●●

●●●●
●

●

●●
●●●●

●
●

●●●●
●●

●●●●●●●●
●●●●●●●●●

●
●●●

●
●●

●
●●

●●●●●
●

●
●●

●●●●●●
●

●
●●●

●

●●●●

●

●●●●●●●●
●

●●●
●●

●
●●●●●

●

●●●● ●
●

●

●●●
●●●●

●●●●
●●●●●●●

●

●●
● ●

●●●●●
●

●●●●●●●●●
●●●●●●●

●
●●●●●

●●
●

●●
●●●
●●●●●

●●
●●●●

●●
●

●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●

●●●●●

●

●
●

●●●●●● ●●●
●

●●●

●

●●●
●

●●
●

●
●●●

●
●●●●

●
●●●

●●●●●●● ●●●●●●●●●●●
●

●●●●●●
●

●
●●●

●
●●●●●●

●

● ●
●

●●●●●
●●●●●●

●

●
●●●●

●

●●●●
●

●●●●
●●●

●●●
●●

●● ●●●
●

●●●●●●●
●●

●
●●●●●●●●●

●●
●● ●

●●●●●●●
●

●●●●
●

●
●

●
●

●
●●
●●●●
●

●●●●●
●●

●●
●●

●
●●●●●●●●●●●●●●●●●●●●●●

●
●●●

●

●●●●●●● ●●●
●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●●●●●●●●●● ●●●●●

●●

●

● ●●●●●●●●●●●●●
●●●
●●●●●

●
●●●
●

●

●●●●●●●●●●●●●●●●●●●
●

●●●●

●

●

●

●●●●●●●
●●●●●●●●●●●

●
●

●●●●●●●●●●●
●●●●

●●●●●

●
●●●

●●
●

●●●●●●●●●●●●●●
●

●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●
●●●

●●●
●●●●●●●●●●●●●●●●●

●●●
●

●

●●●●●●●●●●●●●

●●

●●●●●
●

●
●

●●
●●

●●
●

●●●●●●●●●●●●
●

●
●●●●●●

●
●

●
●●●●●●●●●

●
●●●●● ●●●●●●

●
●●

●
●●●●●●

●
●●● ●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●
●

●●
●

●
●●●●

●●●●●●●●
●●●

●

●●●
●

●●

●●
●

●

●
●

●●
●

●●
●

●●●●●●●●●

●

●●
●

●
●

●●
●●●
●

●●●●●●●●
●●

●
●

●●
●

●
●●●●●●

●
●

●
●●●●●●●

●●●●●●●●
●

●
● ●

●
●

●●
●

●

●●●●●●●●
●

●●●●●●●
●●

●
●●●●●●●●●●●●●

●●●●●●●●●● ●●
●

●●●●●●●●●
●●●●●
●●●

●●●●
●

●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●

● ●
●●

●●
●●●

●●●●●●●●●●●●

●

●●● ●●
●●

●●●●
●●●●●●●●●●●●●●
●●●●

●

●●●●
●

●

●

●●●

●
●

●●●●●●●
●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●
●●●●

●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●

●●●●●●●●●●●

●
●●

●
●●

●
●●

●

●

●●●●●●●●
●

●

●

●
●

●●
●●●●●●

●●
●●

●●●
●

●●●
●

●●●●
●● ●

●
●

●●●
●

●●
●

●
●

●●●●●●●●
●●

●
●●●●●

●●●
●●●●
●●

●●
●

●
●●●●●●●●

●
● ●●●●●●

●

●●
●●●●

●●
●

●
●●●●●●●●
●

●●
●

●●●●●●●●●●●●●●●●●●
●

●●●●

●

●
●●●●

●

●
●

●●
●

●● ●●
●
●●●●●

●
●●

●●●
●●●●●
●

●●●●
●●

●
●●●

●

●

●
●●●
●●● ●●●

●
●

●●●
●●●

●
●

●●
●

●

●●
●●●●●
●

●●●●●
●

●●●
●●●●●●●●●●●●●●●●●●●●
●

●
●●●●

●●●●●●●●●●
●

●●
●●

●
●

●
●

●●●●●●●●●●●●●●●●●●●
●

●
●

●●●●●●●●●
●

●●
●

●
●●●●
●●●●●●●●

●
●●

●
●●●●

●
●

●
●●●●●●● ●
●●

●●●●●
●

●●●●●●●●●●●●●

●

● ●●
●●●

●●●●●
●●●●●●●●●●●●●

●●
●

●

●
●●●

●

●●
●●

●

●
●●●●●●●●●●●●●●●●

●●●●●●●●
●

●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●

●

●●●●●●●

●

●●
●

●●●●●●●

●

●●●●●●
●●●●
●●

●
●●●●●●

●
●

●●●●●●●●
●●

●

●●
●●●●●

●●●
●

●
●●●

●●
●●

●
●●
●

●●●●
●●●●●●●●●●

●●

●

●●●●● ●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●● ●●●●●
●

●●
●

●●● ●●●●●●
●● ●

●●
●

●●
●●●●

●
●● ●
●

●●
●

●●●●●●●
●●●
●

●
●

●●●●●●●●●●●●●● ●

●

●●●●

●
●

●●●●
●

●
●●

●
●●●●●●●
●●

●
●

●

●
●●

●●●
●

●●

●

●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

● ●●
●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●●●
●

●
●●●●●

●
●

●
●

●

●●●
●

●●

●

●●●
●

●●●●●●●●

●
●●
●

●●●●●
●

●
●

●●●●●●●
●

●●●●
●●●

●
●●

●
●●●

●
●●●
●●

●
●●●
●

●
●●
●

●●●
●

●●●●
●

●
●●

●●
●●●●●●

●●
●●

●●
●●●

●●●●●●●
●●

●●●●●●
●

●

●
●

●●●
●●●●●●●●●●●●●
●

●●●●●
●

●

●
●

●●●
●

●

●
●

●●●
● ●●●
●

●●

●
●●●●

●

●

●

●
●

●
●●●●
●

●
●

●
●

●●
●●●●●●● ●

●

●●
● ●

●

●

●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●●●●

●●
●●

●

●
●●

●●●
●

●

●●●●●●●
●

●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●●

●
●●●●●●●

●●

●

●●●●
●●

●
●

●●●●

●

●●●

●

●
●●●●●●●●●●●●●●●●●●

●

●

●

●●●
●●

●●●●
●

●
●

●
●●●●●

●●
●

●
●

●●
●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●

●

●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●

●
●●●
●

●●●●●●●●●
●●
●●●●
●●●●●●●●

●

●●●●● ●
●●●

●
●

●

●
●●●●●●●●●
●●
●

●
●

●●
●

●

●●●●●●
●●●●●
●●●

●
●

●
●●●

●●
●

●●●
●●●●●●●●

●

●●
●●●●●●●●●●

●
●●●●●●●●

●
●●
●●●●●●●●
●●

●

●●
●

●●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●●
●

●
●
●

●●●●●
●

●●
●

●
●

●●●●●●●●●●●●
●

●
●

● ●●●●●●●●
●

●●
●

●
●●●●●●●●●●●●●

●
●●

●
●●●●●●●
●

●●●●●●
●

●

●
●●

●
●●●●●●●●●●●●

●
●

●●●●●●●●●
●●●●●

●●
●●●

●●●

●

●●
●●●●

●●
●●●●●●

●
●●●●●

●
●●●●●●●●●●

●
●●●●●●●●●●
●

●●●
●

●●
●●
●

●

●●
●

●
●

●●●●
●●

●
●

●
●

●
●

● ●
●●●●●●●●●●●●
●

●
●

●●
●●●●

●●●
●

● ●●●●
●

●
●●

●●
●

●●●●●●●●
● ●

●●●●●●
●

●
●●●

●
●●●●●●

●
●

●●●

●

●●●●
●

●
●●

●
●

●
●●●●●●●●●●●
●

●
●

●
●

●●
●

●
●●

●●●●
●

●●●
●

●●
●

●●● ●
●

●
●

●●● ●

●

●
● ●

●
●●●●

●
●●

●
●●

●

●●●

●
●

●

●●●●●●●●
●

●

●●
●●●

●

●●●

●

●

●●●
●

●●●
●

●●●●●●

●

●●●●●● ●●

●

●
●

●
●●●

●

●●●●● ●
●●●●●●●●●

●

●●●●
●●●●●●
●●●

●

●

●

●●●●●●●●

●

●
●

●
●●●●●●●●●●

●
●●●●

●●
●●●
●

●
●●●●

●
●●●●●●●●●

●●

●●●●●●●

●

●
●●

●●
●

●●●●●
●

●

●
●●●●●●●●●

●
●●●●
●

●
●●●
●

●●
●●●●

●
●●●●●●●●●●●●
●

●●●●●●●●●●

●
●●●

●●
●

●●
●●

●●

●●●●●●●●●●
●●
●

●●●●●●●●●●●●●●●●

●

●
●

●●●●
●●●●●
●●●●

●

●
●

●●
●

●●
●

●●●●●●●
●●●

●●
●●●●●●
●●

●●
●

●
●

●●
●

●●●●
●

●●●●●●●●●

●●

●●●●
●●●●●●

●
●●

●
●●●●●●

●
●

●
●

●

●
●

●●

●
●

●●●●●
●●

●●
●

●
●●●

●
●●

●●●
●

●
●

●
●●●●●●●

●
●●●●●●

●●●●●●●●●

●

●
●●●●●●●●●●●●●●●●●

●
●

●
●

●●●●●●●
●●

●●

●

●
●●

●

●

●●
●●

●
●●

●
●●●●● ●●
●●●●●●●●

●
●●●●●●
●●●●●●●●●●●●

●●●●
●●

● ●

●

●
●●●●

●●●
●

●●●●
●

●

●●●●
●●●
●●

● ● ●●●

●
●

●
●●●●

●●●●

●
●

●●●●●
●

●●●●●
●●●●

●●●●●●●●●

●

●
●●●●●●●●

●
●●●●●

●●●●●●●
●●●●

●●●●
●●●

●
●●●

●
●

●

●●●●
●

●●●●
●●

●
●●●●●●

●
●

●●●

●
●

●●●
●

●

●

● ●

●
●

●●

●●
●

●●●●●●●●●●●
●

●●●●●●●
●●●●●

●●●●●●●●●
● ●

●●●●●●●
● ●

●

●
●

●
●●●●

●
●●●●

●
●● ●●●●●●

●
●●●●● ●●●

●
●

●
●●●●●●●●

●
●●●●●●

●
●●●●●●●

●

●
●

●●●●
●●

●

●●●
●

●●●
●●

●●●●●●
●●●●●●
●●●●

●
●●●●

●●
●

●

●

●●●●●
●

●●●
●●

●
●●●●●●●

●●●●●●●
●●●

●●
●

●●●●●
●

● ●●●●●●
●●●

●●●
●

●●●●●
●●

●●●●
●

●●
●●●●●●●●●●●

●
●

●●●●●●●●●
●●

●●●●●●●●●
●●

●
●●●

● ●
●●●●

●

●
●●●●
●

●
●

●●
●●●●●●

●●●●●
●●●

●●●●●●
●

●●
●

●

●●●●●●
●●●●●

●
●●●●●●

●

●●●●●●●●
●

●●●●●●●●●
●

●●
●●

●●
●●

●

●
●

●●●
●●●●●

●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●
●●●● ●●●●●●

●
●

●●●●●
●

●
●●●●

●

●●●●●●●●●●●
●●●●●●●●●●

●
●●●●●

●●●
●

●
●●●●●●●●●●●●●●

●●
●●●●

●●
●

●●●●●
●

●●●●●●
●●●●●●

●
●●●●●●●

●
●●●

●
●●●●

●●●●●●●●●●
●

●
●

●●●●●●●●●●●●●●

●

●
●●●●●●

●
●●●●●

●

●
●

●●
●

●
●●●
●

●●●●●●●
●

●
●

●
●●

●●●●●●● ●●●●●●●●●●
●

●●●●●
●●●

●●
●●●

●
●●●●●●

●
●●●●●●●●●●●●

●●●●●●●
●●●●●●●

●
●

●●

●●●●
●●

●
●●●●●●●●●●●

●
●

●
●●●●●●●●●●
●●●●●●

●
●●●●

●●●●●●●●
●

●

●

●●
●

●

●
●

●●●●●●
●

●●● ●●●●●●●●●
●

●●●●●●●●●●
●●●●●

●
●●●●

●●
●

●●●●●●●●●●●●●●●●●●
●●●
●●
●

●●●
●

●●●●
●●●●●

●●●●●

●

●●
●

●
●●

●●●●●●●●●
●●●●
●

●●
●●●

●●●●●●●
●●●●●
●

●

●
●

●●
● ●

●
●●●●●●

●●●●●●●
●●

●●●●
●●●●●●●●●

●●
●●

●●●●●●●●
●

●
●●●●●●●●●

●
●

●●●● ●●●
●●

●●
●●●●●●●●●●●●●

●●●●
●

●●●●●●●●●
●●

●●●●●●●●
●

●●
●

●●●●●●●
●●●

●●
●

●●

●

●
●

●

●●●●●
●●●●●●
●

●●
●

●●
●●

●
●●●
●●●●
●

●●
●●●●●●●
●●●●●●

●●
●

●●●
●

●

●●● ●
●●

●●●
●●●●●●●●●●●●●

●●●●
●

●●●●
●●●●●

●
●●●●●●●●●●

●●
●●●

●
●

●
● ●
●●●●●●

●●
●●●●●●

●
●●●●●●

●●●●●●●●●●●●
●

●●
●●●
●

●●●
●

●

●

●●●●
●●●
●●

●●
●●

●
●●●●

●
●

●
●●●●

● ●

●●●●●●●

●
●

●
●

●

●

●
●

●●
●

●●●●●
●

●●●

●●●
●●●●●●●●●●●

●
●●

●●●●●
●

●●

●

●
●

●●●●
●

●●●●●●●
●●

●●
●●●

●
●●●●●●●

●
●●●

●●●●●●●●●●
●

●●●●●● ●●
●●●●●●●●●●● ●●

●
●●●●●●●●●●●

●●●●●●●●●●●
●●●●
●●●●●●●●●
●

●●●●●●●●●●

●
●●●

●●● ●●
●

●

●●●●
●

●●
●

●●
● ●●●

●●●●●●●
●

●● ●●●●●●●
●

●

●●●●●
●●●●●●●●●
●

●●●●●●●●
●

●

●
●●●●

●
●

●●●●●●●●●
●●●●
●●●●●●
●

●●
●

●
●

●

●●●●●●●●●●
●

●
●●

●

●
● ●●

●●
●

●
●

●●●
●●●●
●●

●
●●●
●●●●●●

●●

●

●●●●●●●
●●●●●●●

● ●●
●●●

●
●

●

●●●●

●
●

●●
●

●
●

●
●●●●●●
●●●●●●●

●
●●●●●●
●●●●●●●

●●●●●
●●●●

●
●●

●
●

●●●●●
●●●●●

●
●●●

●●
●

●●●●●●●●●●
●

●●●

●

●●●
●●
●●●●●
●

●
●

●
●

●●
●●●●

●●
●●●

●●
●●

●
●

●●●●●
●●●

●

●

●

●●●●
●

●●●
●●●

● ●●●
●●●●

●●●
●●●

●
●●

●

● ●
●

●●
●

●●●●
●●

●
●●●●

●
●●●

●●●●
●● ●

●●●●
●●●●●

●●
●●●●●

●

●

●

●●
●

●●●●●●●●●
●

●
●●

●
●

●
●

●

●

●●

●

●
●

●
●●●●●●●●

●
●

●●●●●●●●
●●●●

●

●●
●●●● ●

●●●
●●●
●●
●

●●●●●●●
●

●●●●●●
●●●●●●●●●
●●●●●●●●
●

●●●●●●●●
●●●●●
●●●●

●●
●

●●
●●●●●

●●●●
●●●
●

●●
●●●●●●●
●

●●
●●

●●●●●●●●●● ●●
●

●
●●●

●●
●●●
●●●

●●●●●●●●●●●●●●
●●●● ●●●●

●
●●

●●
●

●●●●●●
●

●
●

●
●

●●●●●
●

●●●●●●●●●

●●
●

●
●

●

●●●●●●
●● ●●●

●
●●●●

●●

●●●
●

●●●●●●●●●
●

●●●
●

●●●●●●●●●●
●●●

●
●●●●●●●●●●

●

●
●●●
●●●●●●●●

●●●●●●
●●

●
●

●●● ●●●●
●●●●
●●●●●●
●

●●
●

●●●●
●

●
●●

●●●●●●●●●●●●●●●

●
●

●
●●

●
●

●●
●●●●●

●
●●●

●
●●●

●
●●●●●●

●●●●●●●●
●

●
●●●●
●●●●●●●●●●●●●●●●●●

●
●

●

●●●●
●●●●

●●●
●● ●

●●●●●●
●●●●
●●

●
●●●●●●●

●●● ●●
●

●
●

●●●
●

●●
●

●●●●●

●

●
●

●
●●●●

●●●●●●●●●●
●

●●●●
●

●●●●
●●●●●●●●●

●●
●●●●

●
●

●
●

●
●●●

●
●

●●●
●●●

●
●●●●

●

●●

●
●

●●
●●

●

●
●

●
●

●

●●●●●●●●
●●

●●●●●●●
●

●●●●●●●●
●●●●●

●

●
●

●

●
●●

●●●
●

●●
●

●●●●●●●●
●

●
●●●●●

●

●●●

●
●●●●●●
●●

●

●●●●●●●●●

●

●
●

●●●●●
●●●
●●●
●

●●●●●●

●
●●●●
●

●●●
●

●●
●●●●●●●●●●

●
●●●

●
●●●●

●

●
●●

●

●●●●●●●●●●●●●●●●●
●●

●
●●●
●●

●
●●●●●●
●●●●●●●●●●●●

●
●

●
●●●●●●●●●●●●●●
● ●●
●●

●●
●●●●

●
●●●●●●●●●

●
●●
●●●●●●●

●

●
●

●●●●
●

●●●
●

●●●●●
●●●●●●● ●

●
●

●
●●●●

●●●●●●●●●
●

●●●●●●●●●
●

●●●
●●●●

●

●

●●●●●
●

●●●
●

●
●

●●●●

●

●●
●

●

●
●●●
●

●●●
●●●●

●
●

●●●●●●
●

●●●
●●●●

●
●●●●

●
●●

●
●●

●●
●●●●

●●●●●●
●

●●

●

● ●●●●●●●●●

●

●
●●

●●
●●●

●

●●
●●●

●
●●●●●
●

●
●●

●●●●●●●
●●

●

●●
●●

●

●●●
●●● ●●●

●

●

●

●

●●

●

●
●●●●

●

●●
●●

●●●
●●●●●

●
●

●●
●

●●●●●●
●

●●●●●●●
●

●

●
●

●●
●●●●

●
●

●
●

●
●●●●●●●
●

●
●●

●●●●
●

●
●●●●● ●●●●●
●

●
●

●●●
●●●●

●●●
●●

●●●●●●●●
●●

●●●●
●

●●
●

●
●

●●
●

●

●

●●

●

●
●

●

●

●
●●●

●
●

●●●●
●

●●●

●

●●
●

●●●●●
●●●●

●
●

●
●●●●
●●●

●●●●●●●●●
●●

●●

●
●

●
●

●

●
●

●
●●●●

●●
●

●
●●
●

●

●●

●

●
●

●●●
●●●●●●

●
●●●

●●●●●●●●
●

●

●
●●

●
●●●●

●
●●●

●●●●
●

●●
●●

●
●

●●●
●●

●
●●

●

●

●●

●

●●●●●●
●

●●●●●
●●●●
●

●●●
●

●
●

●●●●●●●●
●●●●

●●●●●
●●●

●
●●●●●●●●●

●●●●

●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●

●
●●

●
●●

●
●●

●
●● ●●●●●●●●●●●●●●●●●●●●●

●

●●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●

●●●
●

●●
●

●●
●

●●●
●

●●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●
●

●●●
●

●●
●

●● ●●
●

●●
●

●●●
●

●●●
●

●●
●

●● ●●●
●●
●

●●● ●●●
●

●●
●●

●
●●●

●
●●

●
●●●●●●●●●●●●●●●

●
●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●
●

●●● ●●
●

●● ●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●

●●●
●

●●
●

●●
●

●●
●

●●
●

●●
●

●●● ●●●
●

●●●●●●●●●●●●
●

●●

●

●●
●

●● ●●●
●

●●

●

●●●●●●●●●●●●●●●●●●●●●
●

●●
●

●●●
●

●●
●

●●●●●●●●●●
●

●●●
●

●●●●●
●●

●
●●

●
●●

●
●●●

●
●●●

●
●●● ●●

●
●●●●●●●●●●●●●●●●

●

●●
●

●●

●
●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●

●
●●

●
●●●●●●●●●●●●●●●●●●●●●

●
●●

●
●●

●●●●●●●
●

●●●●●●●●●●●●
●

●●
●

●●
●

●●●
●

●●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●

●● ●●●●●

●

●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●

●

●●●

●

●●
●

●●●●●●●●●●●●●●●●●●●●
●

●●●

●

●●● ●●●
●

●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●

●
●

●

●●
●

●

●

●
●

●●●●

●

●●
●

●

●
●

●●
●

●● ●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●

●

●●●●●●●●● ●●

●

●●●●●●●●●●●●●●●●● ●●● ●
●

●●●
●

●●●●●●●●●●●
●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●
●

●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

● ●●●●●●●●●●●●●●
●

●●●
●

●●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●

●●●●●●●●●●●●

●

●●●
●

●●●
●

●●
●

●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●●●
●

●●●
●

●●●
●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●

●●
●

●●●
●

●●
●

●●●
●

●●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●
●●●

●
●●● ●● ●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●

●●
●

●●
●

●●●
●

●● ●●● ●●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●

●●
●

●●●●●●●●●
●

●●●
●●●

●
●●●●●●●●●●●●●●

●
●●●

●
●●●

●
●●●

●
●● ●●● ●●●●●●●●●●●●●●●●●●●●

●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●
●

●●

●●●● ●●●●● ●●●
●●●● ●●●●●●●●● ●●●

●
●●●●●●●●●●●●●●●●●● ●●● ●●● ●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●

● ●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●●
●

●●●●●●●●● ●●●●●●●●●●●●●●● ●●●
●

●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●● ●●
●

● ●●●●●●●●●●●● ●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●
●

●●●●●●● ●●●● ●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●● ●● ●●● ●●●●●●● ●●●●●●●●●●●●●●●
●

●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●● ●● ●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●● ●●
●

●●●●●
●

●●●●●●●●●●●● ●●●●●●●●
●

● ●●●●●●●●●●●●●●●●●●●●●● ●● ●●●
●

●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●
●

●●●●●●●●●●●●●● ●●●●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●● ●●
●

●●● ●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●
●●●● ●● ●●●●● ●● ●●● ●●●●●● ●●●●●●●●●

●
●●●●●●●● ●● ●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●● ●●●●● ●●● ●●●●●●●●●●●● ●●● ●●●●● ●●

●
●

●●●● ●●●●
●

●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●● ●●●●●
●

●●●
●●●●

●
● ●●● ●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●● ●

●
●●●●●●●●●●●● ●●●●●● ●●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●● ●● ●● ●●● ●● ●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●● ●●●

●● ●●● ●●●●●●●●● ●
●●●●

●
●●●●● ●●●●●●

●
●●●●●●●●●●●●●●●●● ●● ●● ●●● ●● ●● ●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●● ●●● ●● ●●●●●●●●●●●●● ●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●

●●●●● ●●●●●●●●

●

● ● ●●●●● ●●●●●● ● ●●●●●●
●

●●●●●●● ●●●●●●●●●
●●●●

●●●●● ●●●●●●●● ●●●●●●●
●

●● ●●●●●● ●●●●●
●●●●● ●●● ●●● ●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●● ●●
●● ●

●
●●● ●● ●

●●● ●●●●●
●

●●●● ●●
●

●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●● ●● ●●●●●●● ●●●● ●●●
●●●●●● ●●●

●
●● ●●●●●●●●●●●●

●●●●●● ●●●●●●● ●●● ●●● ●● ●●●●●●●●
●

●●●●●●● ●●● ●●● ●● ●●●●●● ●●●●● ●●●●● ●●● ● ●●●
●

●●●●●● ●●●●●●
●

●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●● ●●●
●

●
●

●●● ●●
●

●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●● ●●● ●●●
●●●●●●●●●●● ●●●●● ●●● ●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●

●●●●●●● ●● ●●●●●●●●●●●●●● ●●●
●●●●●●●● ●●●●●● ●● ●●● ●● ●● ●● ●●●● ●●

●
●●●●●●● ●
●●● ●●●●●●●

●
●●● ●●● ●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●

●

●●●●●●●●
●●● ●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●

●●●●●● ●
●●●●

●●●●

●

●
●●●●●●●●● ●●● ●●●●●●●●● ● ●

● ●●●●●●
●

●●●●● ●●●●●●●●●●●● ●●● ●●● ●●●●

●

●●● ●●●
●●●●

●

●●●● ●●●●● ●●●●●●● ●●
●●●
●

● ●●●●●●●● ●●●●●●●●●●●●● ●●● ●●
● ●● ●●●● ●●●●●●

●
●●● ●●●●●●●● ●●●●●●●● ●●●●●●●●●●●● ●● ●●● ●● ●●●●●●●● ●●●● ●●●●●●●●●● ●●●●●●● ● ●
● ●●●● ●●●●●●●●●● ●●● ●●●●●● ●●●●● ●●●●●●●●●●●●●

●●●●●●● ●●●●●●●
●

● ●●●●●●●● ●● ●●●●●●●●●● ●● ●●●●●●●●●●● ●●●●●● ●●●●●● ●●●●● ●●●●●● ●●
●

●● ●
●●

●● ●●●
●

●●●●●●● ●●● ●● ●●●●●●●●●●●●●● ●●●●●
●● ●●●●●●●●● ●●●●●●●● ●●● ●●●●● ●●
● ●●● ●●●● ●●●●●●●●●●●●●● ●●●●●

●●●●●● ●●●●●●●●●●●●●●●●
●

●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●● ●●●● ●●●●●●●●●●●●●●●●●●●●
●

●●● ●● ●●●●● ●●● ●●●●● ●●●●●●●●●●●●●●●●●● ●● ●●●●● ●●● ●●●●●●
●

●●●●●●●●● ●●●●●●● ●● ● ●● ●●●
●

●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●● ●
● ● ●●●●●●●●●●●●

●●●●●● ●●●●●●●
●●●●●●● ●●●●● ●●

●
●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●● ●● ●●● ●●

●
●●●●●● ●●●●● ●●●●●●●● ●●●●●●

●● ●●●● ●
●

●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●● ●●●●●
●●●●●●●●●● ●●●● ●●●●● ●●●●●●●●● ●●●●●●● ●●●●●●●●●●
●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●● ●●●●●●● ●● ●●●●●●●

●
●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●

●
●●●●●●●

●
●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●● ●●●●
●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●● ●
●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●● ●●●●● ●●●●●●●●●●●●●● ●● ●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●

●
●●●●● ●●●●● ●●● ●●●● ●

●

●●●●●●●
●

●●● ●●●●●●●● ●●●●●●● ●●●
●●●●● ●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●● ●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●● ●●● ●● ●●●●●●●●●●●● ● ●

●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●●● ●●●●
●

● ●● ●●●●●● ●●● ●●●●●●●●●●●●●●●●● ●●
● ●●●●●

●
●●●●●●●●●

●
●●●●●●●●●●●●●●●●●

●
●●●●●●●● ●●● ●● ●
●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●● ●●

●●●●●●●●●●●●● ●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●● ●●●●●●●●● ●●●
●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●
●●●●● ●●●●

●
●●●●●●●●● ●●●●●●

●
●●

●
●●●●●● ●● ●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●● ●●● ●●●●●●●●● ●● ●●●● ●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●● ●●●

●
●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●● ●●●●● ●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●● ●●●●●●●●●●

●
●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●● ●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●● ●●●●
●

● ●●●●●●●● ●●●●●●● ●●●●●●●●
●●●●

●●●● ●●●●● ●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●● ●●●●●●● ●● ●●●●● ●●●●●● ●●●●●●●●●●●●●●●● ●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●● ●

●●●●●●●● ●●
●●●●● ●●● ●●●●●●●●●●●●● ●●●●●

●
●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●● ●● ●●

●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●

●

●●●●●●●●●●●
●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●

●
●●●●●●●●●●●

●
●●●●●●●●

●
●●●●●●●●●

●●●●
●

●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●● ●●● ●●●●●● ●●●● ●●●
●●●●●●●●●●●●●● ●●●● ●●●●● ●●● ●●●●
●

●●●●●●●●●●
●

● ●●●●●●●
●

●● ●● ●●●●●●●●●●●●●●●●●●●● ●●●●● ● ●
●●●●● ●●●●●● ●●●●

●
●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●● ●●●●● ●●●

●●●●●●●●●●
●

●●●● ●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●● ●● ●
●

●
●

●● ●●●●●●●●●
●

●●
●● ●

●●●●●●

●

●●●●●●●●● ●●● ●
● ●●●● ●

● ●

●

●●●●●●●●●●●●●●●● ●●●●
●●●●●●●●● ●●●●● ●●●●●

●●
●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●● ●●● ●●● ●●●●●●●●●●●●● ●●●●●●●●●●●● ●●

●

●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●● ●●●● ●●●●
●●●●●● ●●●●●●●●●●●●●●●●●●●
●●●●● ●●●●●●●●● ●● ●● ●

●
●● ● ●● ●●●●

●
●●●●
●

●●●● ●●●●●●●●●●
●

●●● ●●● ●●●●●●●●●●● ●●
●

●● ●●●●●●●●● ●●●●●●●●●●●●●● ●●
●

●●●●●●●●
●

●●●●●●● ●●●●● ●●●●●●

●

●●●●●●●●●

●

●●●●●● ●● ●● ● ●
●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●● ●●● ●●●●●●●● ●●●●●● ●●●●●●

●●●●●
●

●●●●●●●●●●●●●●●●● ●●●●●●
● ●

●●
●●●●●●●●●●●●●●●●●●●
●

●●● ●●●●●●●●●●● ●●● ●● ●
●

●● ●●●
●●●●●●●●● ●●

●
●● ●● ●●●●●●

●● ●●●●●●
●

●● ●●●●●
●

●●●●
●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●● ●●●●●●●●● ●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●
●

●●●●●● ●●●● ●●●●●●●●●

●

●●●●●●● ●
●●●●●

●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●
● ●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●

●
●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●
●●●●

●●●●●● ●●●●●●●●●●●● ●●●●
●

●
●●

●
●●●●●●

●●●● ●●●●●●●●●●
●●●●● ●●●● ●●● ●●●●●●●

●
● ●●●●●●● ●●●●● ●●●●●●●●

●●●●●●●●
●

●●●●●●●●●
●

●●●●●●●●●●●●
●● ●

●●●
●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●● ●●● ●●●●●●● ●●●●●● ●●● ●●●●●
●

●●●● ●●●●● ●●
●● ●

●● ●●●●●●● ●●●●●● ●
●● ●●●●●●●● ●● ●●●●●●●●● ●●

●
●●●● ●● ●

●
●

●● ●●● ●●●● ●●●●●● ●●●● ●●●● ●●
●

●●●●●● ●●●●●●●● ●● ●●● ●●● ●● ●
●

●●●●● ●
●●●

● ●●●●●
●●

●
●● ● ●●● ●●●

●
●

●
● ●●●●●●●

●
●●●●●●●●●● ●●●● ●● ●●● ●●● ●●●●●

●●●● ●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●
●●

●●●●●●●●
●

●●●●●●●●●●●● ●●● ●● ● ●● ●●●●
●

●
●●

●●●●●●●●● ●●●●●●● ●● ●●●●● ●●●● ●●●●
●

●●●●● ●●●●●●● ●●●●● ●●
●

●●●●●●●●●●●●●

●

●●
●

●●● ● ●● ●
●●●●●

●●●●●●●● ●●●●● ●●●●● ●●●●●●●●●●● ●●●●● ●●●●● ●● ●●●●●●●● ●●●● ●●●●●●●● ●● ●●●●● ●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●● ● ●
●●● ●

●● ●● ● ●●●●●●●●
●●●●●● ●●● ●●●● ●● ●● ●●

●●●● ●●
●●●●●●

●

●●●●●●●●●
● ●●●● ●● ●●●●●●●●●●●●● ●●● ●●●

●
●●●● ●●●●●●●●●

●●●●●● ●● ●● ●●●● ●●● ●●● ●●●● ●●●●●
●

● ●●●●●●●●●
●●●●●●●●● ●●●●●● ●●●●●●● ●●●●

●●●● ●●● ●●●●●●●●●●●● ●●●●● ●●●●●● ●●●●●●●●●●●●●●●● ●●● ●●● ●●●●●●●●●●● ●
● ●●●●●●●●●●● ●●● ●●● ●●● ●●

●●
●●●●●●●●●●●● ●●●●●●●

●
●●●●●●●●● ●●●●●●●●● ●●●●●● ●●●●●● ●●●●●

●

●●●●●●●●● ●●●●●●●●●●●●● ●●●● ●●●●●●● ●
●●●●●●●●●

●
●●●● ●●●●●●●●● ●●●●●●●●● ●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●

●
●● ●●●●●●● ●●●●●●●●●● ●● ●●● ●●●● ●●●●

●
●●●●●●●

●●●●●●●●●●● ●●●●●●● ●● ●●●●●●
●

●●●● ●●●●●●●●●●●● ●●●● ●●●
●

●
●●●●●●●
●

● ●●
●●

●
●● ●●● ●●●●●

●●● ●●●●●●●
●

● ●● ●●●●●●● ●●●●●
●●

●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●● ●●●
●

● ●●●●●●●●●●●●●●●●●●●●●● ● ●●● ●●●●● ●●● ●●● ●●● ●●●●●●●●●●● ●●
● ●●● ●●●●●●●●●●●●●●●●●● ●●●●

●
●●● ●●●●●● ●●●●●●●● ●●●●● ● ●●●●●●●●●●●●

●
●●●●

●
●●● ●
●

●
●● ●●●●●

●
●●●●●● ●●● ●
● ●●● ●●●● ●●●●●●●●● ●●●●●●

●●●●●●●●●
●●●●●●●●●●●●● ●●●●● ●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●
●●● ●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●● ● ●● ●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●

●●●●●●●
●

●●●●● ●● ●●●●●●●● ●●●●●●●●●●●●●● ●● ●●●● ●●●●
●

●●●●●●●●● ●
●●●●●● ●●●●●●●●●

●
●● ●●●●●●● ●●●● ●●●● ●●●●●●

●●●● ●●●●● ●●●●●●●●● ●● ●
● ●●● ●● ●● ●●●●● ●

●
●●●● ●●●●●●●
●

●●●●●●●●● ●●
●●●●●● ●●●●●●●● ●● ●●● ●●● ●●●●●●●●● ●●●●●

●●●●●●
●●●●●●●●●●●●

●
●●●●●● ●●●● ●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●

●
●● ●●●●● ●

●●●● ●●●●●
●

●● ●●●●●●● ●●●●●●●●●●● ●●●●● ●●●●●●●● ●●● ●●●●●●●● ●●●●●●●●●●●●●● ●●●
●

●●●●●●●●●●●●●●●
●

●●●●●●● ●●●●●●●●●●● ●● ●●● ●
●

●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●● ●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●● ●●●●●●● ●●●●●●●●●●●

●

●●●●●●●●●●●● ●●●●● ● ●
●●●●●●●●●●● ●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●

●
●●●

●
●●●●●●●●●● ●●●●●●

●●●●●●●●●●●●● ●●●●●● ●● ●
●●●●●●●●●● ●●●●●●●●●●●●●●●

●●●●●●● ●●●●●● ●●●●●●●●●●●●●● ●●●●●●
●

●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●● ●●●●●●●● ●●●●●●●●●●●●●●●● ● ●●●●● ●●●●●●●● ●●

●

●●●●●●●● ●●●●
●

●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●
●

●● ●● ●●●●●●
●

●● ●●●●●●●●●●●●●●●●●●● ●●● ●● ●●●●●●●
●

●●●● ●●●●●●●●
●

●●●●●●●●

●

●●● ●
● ●●●●●●● ●●● ●● ●●●●●●●●●●

●●●●●● ●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●● ●●●●●● ●● ●●●●
●●● ●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●● ●● ● ●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●

●
●●●●● ●●●●●●

●
●●●●●● ●●● ●●●●● ●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●● ●●●●●● ●●●●●●●● ●● ●●●●●●●● ●●●●●●●●●●● ●●●●● ●●●●●●● ●●●●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●

●
● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●

●
●●● ●●● ●●●●●●●●● ●● ●●●●● ●●● ●

●
●●●

●
●●●●●●●● ●●●●●●●●● ●●

●
●●●

●
●

●
●●

●●
●●

●●
●●●● ●●●●●● ●● ●

●
●

●●●●
●●●● ●●●●●●●●●●

●●
●●● ●●●●●●●●●●●●●●● ●●●●●●●● ●●●●

●
●●

●
●●● ●●●●●●●● ●●●●● ●●●●●●●●●●●●

●
●● ●●●●●●●

●
●●●●●●●●●

●
●●●●●●●●● ● ●●● ●●●●●●● ●●

●●●●●● ●●●● ●●● ●●●●● ●●●●●●
●●● ●

●● ●●●●●●●● ●●
●●●● ●●●● ●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●
●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●● ●●●●●● ●●●●●●●●●●● ●●●●● ●● ●●●●●●●●●● ●●●●●●●●●●●●● ●●●● ●●●●●●●●●●● ●●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●● ●●
●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●
●●●● ●●●●●●●●●● ●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●● ●●● ●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●

●
●●●●●●●●●● ●●● ●● ●●●● ●●●●

●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●● ●●●
●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●● ●● ●●●●● ●●
●

●●●
●●●●●●●●●● ●● ●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●

●●●●
●

●●●●●
●

● ●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●● ●●●● ●●● ●●●●
●

● ●●
●

● ●●●●●●●●●●●●
●●● ●●●● ●●●●●●●●●● ●●● ●●●●●

●
●●

●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●● ●● ● ●
●

●●●●●●●●●
●

●●●●●●●●
●

●● ●●●● ●●●●● ●●●●●● ●●●●●●●●●●●● ●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●
●

●●●●●●●●●
●

●●●●● ●●●●●●●●●●●●● ●● ●●●●●● ●●
● ●

●● ●
●● ●●●

●●●●●● ●●●●●●● ●●●
●

● ●●●●●●●●●● ● ●
●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●

●
●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●
●

● ●●●●●●●
●●●●●● ●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●
●

●● ●●●●●●●
●●●●●●●●● ●●●●●● ●●●●
●●●●●●●●●● ●●●●●●●● ●●● ●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●● ●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●● ●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●
●

●●●●●● ●●●●●●● ●●●●●●● ●●●●●● ●●●●●
●

●●●● ●● ●●●●
●●●●●●●● ●●

●
●●● ●●●●●●●●● ●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●

●
● ●●●●●● ●●●

●
●●

●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●●● ●●

●●● ●●

●

●●● ●●●●● ●
●●●●

●
●

● ●
●●●●●● ●●● ●●●●● ●●● ●●
●●●● ●●●●

●●●●●●
●●●

●
●●●●

●
●● ●●
●● ●●●●● ●●●●●●● ●●● ●
●●●●●●

●●●● ●●●●●●
●●●●●●

● ●
●●● ●●●●● ●●● ●●● ●

●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●

●

●●●●●
●

●● ●●●● ●●● ●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●● ● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●

●

● ●●●●●●●● ●●● ●●●●●●● ●●●●●● ●
●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●

●

●
●●●● ●●● ●●●●●●●● ●●
●●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●● ●●●

●
● ●●●●●

●
●●●● ●●

●

●
●

●●●●●●● ●●●●●●●●●●●● ●●
●

●●●●●● ●●● ●●●●●●●● ●●●●●●
●

● ●●●● ●●●●● ●●
●●

●
● ●

●● ●●●
●

●●●●●●●●●●
●● ●●●●●

●
●●●● ●● ●● ●●● ●●●●●● ●●● ●●●● ●●●●●● ●

●● ●●●●●●●●●●● ●●●●●● ●●
●

● ●●●●
●●●●●● ●

●
● ●●●●●● ●● ●●●●●

●
● ●●●●●●

●
●●●●●●●●●● ●●●

●
●●●●●● ●●●●●●●●●

●●●● ●
●

●

●
●●●●

●
● ●●●●●●● ●●●●●●● ●●●●●●●●●● ● ●
●●

●●●●●●●●● ●●●●●●●● ●
●●●●●●●●● ●●

●
● ●●● ●

●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●
●

●● ●●●●●●●● ●●● ●●●● ●●●●● ●●●●●●
●

●●●●●●●●● ●● ●●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●
●

●●●●●● ●●●●● ●●●●●●●●● ●●● ●●●●●●●●●●●●●●●● ●●●●●●●
●

●●●●●● ● ●
●●●●● ●

●
● ●● ●● ●●●

●
●●●●●●●●●●●●●●●●●

●
●●●

●
●● ●●

● ●
●●●●● ●●

●●●●●● ●
●●●●●●●●●●●

●●●●●●●●● ●●●●● ●●●●●● ●●●●●● ●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●
●

●●●● ●●●●●●
●●●●●● ●●●●● ●●●
●

●●●●●● ●●● ●●●●●●● ●●●●●●●● ●●● ●●●●●●●●●● ●● ●●●● ●●●● ●●●● ●●● ●●● ●●● ●●●● ●●●●●●●●●●●●●●●
●●● ●●● ● ●●●●●●●●● ●●●●●● ●●

●● ●●●●●●
●●●●●● ●●●● ●●●●●●●●●●●● ●

●●●●●●●● ●●●
●

●
●

●●●●●
●●●

●
●● ●●●●●● ●●●● ●●●●●●●●● ●●●●● ●● ●●● ●●● ●● ●●●●●●●●●● ●●●● ●●●●●●●●●●●●●● ●●●●●●● ●●●

●●●●●●●●●●●●● ●●●●●●●●● ●●●●● ●● ●● ●●●●●
●

●●●● ●●●● ●●●●●●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●● ●●●●●●●
●

●●● ●●● ●●●●●●
●

●●●●● ●
●

●●●●
●

● ●● ●●●
●

●●● ●● ●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●● ●●●●●●●● ●● ●●●
●●●●●●●●● ●● ●●●●●● ●●●●●●●●●●●●●●●●●●

●●● ●●● ●●●●●●●●●●●● ●●● ●●●● ●●●●●●●●●●●●●
●●●●●●●●●●● ●●●●●● ●●●● ●● ●●● ●●● ●●●●●●●●●●●●●● ●●●●●●● ●●

●●●● ●●●●●
●

●●●●●●●●●●●●●●●●●●●●● ●●● ●●●● ●● ●●●●●●●●●●●
●

●●●
●●●●●●●●●

●
● ●● ●●●● ●●●●●●●●●●●●●● ●●●● ●●●●●● ●●●●●●●●●●●● ●
● ●● ●● ●●● ●●● ●●●●● ●● ●●●●●●

●
● ●●●●●●● ●●●●●●●●●●● ●

● ●●●●●●●●●●● ● ●
●●●● ●●●●●●●●●● ●● ●●●●●●●●●●

●●●● ●●●●●●● ● ●
●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●● ●●●●● ●●●●● ●●●●●●●●●●● ●●●●●●● ●●●●●●● ●●●●●● ●●●●● ●●●●●●●●

●●●●●●●●●● ● ●
●●●●● ●●●●●●● ●●●● ●●●●

●
●●●●●●●●

●

●●●●●
●

●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●● ●●●●●
● ●

●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●● ●●●●●●●●
●

●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●
●

●●●●●●●●●●●●● ●●●●● ●● ●● ●● ●●●●●●●● ●●● ●●●●●●●
●

●●●● ●●●●
●●

●●
●

●●●
●●●●●●●

●●●●●●●●●●
●● ●● ●●
●● ●

●●●●●● ●●●
●

●●●●●●●● ●●●●●●
●

●●●●● ●●● ●●● ●●
●

●● ●●● ●●●●● ●● ●
● ●● ●●●● ●●● ●
●●●●

●●● ●●● ●●● ●●●●●●●●●●●●●●●
●●●

●
●●●●● ●●●●●●●●●● ● ●●●●●●●●●●●●●●●●● ●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●

●
●●●●● ●●●●●● ●●● ●●●●●●●●●●●●●●●

●● ●●●●●●●●●●●●●●●●● ●●● ●● ●●●●●●
●

●●●●●● ●●●●●●●●
●

●●●●●●●●●●
● ●●●●●● ● ●●●●●● ●●●●● ●●●●●●●●●●●●●● ●● ●●●●●●● ●●●●●●●● ●●

●
● ●●●●●●

●● ●●●
●

●●●
●●●●●●●●●●●●●●●● ●●●●● ●● ●●●●●● ●● ●●● ● ●●●●

●
●

●●●●● ●
●● ●●● ●●●● ●●

●
●●●● ●●

●
●● ●●● ●●●●●●●●● ●
● ●●●●●

●●●●●●●●●●●●●● ●●● ●●●●● ●●●●●●●●●●● ●●●●●●●● ●●● ●●●●●●●●●●● ●●●●●● ●●●●●●●● ●● ●●●●●●● ●● ●
●

●●●●●●● ●●●●●●
●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●

●●●●● ●● ●●●●
●●●●●

●●●
●●

●●●●●●●
●

●●●●●●●●
●●●●

●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●●
●

●●●●●●●●●●●●

●

● ●
●● ●●●●●● ● ●●●● ●● ●●●● ●

● ●● ●●● ●●● ●●●●●●●●● ●●●●●
●

●● ●● ●●●● ● ●●●●●●●●●
●

●
●●●●●●●● ●

●●●●
●

●●●
●●●●● ●●●

●●●●●●● ●●●
●

●●
●●●●●● ●● ●●●●

●
●●●●

●
●●●●●●●●

●●●●●●●●●●●●●● ●●● ●●
●●● ●●●●●●●●● ●●●●●●●●●●● ●●● ●●● ●●●●●●● ●●●● ●● ●●● ●●● ●

● ●●●●
●

●● ●●●●●● ● ●●● ●●●●●●●●●
●

●●●●●●● ●●● ●● ●● ●● ●●●●●●●●●●● ●●●●●●●●●●● ●●
●

●●●● ●● ●●● ●●● ●●●●●●
●

●
●

●●● ●●● ●●●
● ●

●● ●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●● ● ●●● ●● ●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●● ●●●●

● ●
●●●●●

●

●●●●●●●● ●●●●●●● ●●●● ●● ●●●●●●●●● ●●●●● ●●●● ●●●● ●● ●●●●●●●● ●●●● ●●●●●
●

●●●● ●●● ●●● ●●●●●●●●●●● ●
● ●●● ●●●● ●●●●●●● ●● ●●● ●● ●●●●●●●●●●●●

●
●●●

●
●● ●●●●●●

●●●●●●● ●
●●●●●● ●●●●●●●●●●●●●● ● ●●● ●●●●●●●●●● ●

●●●●● ●●●
●●●●● ●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●● ●●
●●●●●● ●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●

●

● ●●●●●●●● ●●● ●●● ●●●●●●●●● ●●●●●●
●

● ●●●●●● ●
●●● ●●●

●
●●●●● ●●●●●●●●●

●●●●●●

●

●●●●●●●●
●

●●●●●●●●●●●● ●●● ●●
●

● ●● ●●●

●

●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●
●

●

●●●●● ●●●●●●●●●●● ●●●●●● ●● ●●●● ●●●●●
●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●

●●●●
●

●●●●●
●●● ●●●● ●

●●●●●●●●●● ●●●●●●●●
●

●
●

●●●●●●●●●●●●●●
●

● ●●●●●●●●●●●●●●●●●
●

●● ●●●●●● ●●●●●●● ●●● ●●●●●● ●
● ●●● ●●●●●●

●
●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●● ●●●●●●●●●● ●●● ●●●● ●●●● ●●●● ● ●●●●●●●●● ●●●●● ●●●

●
●●

● ●●
●● ●●●●●

●
●●●● ●●●●●●● ●●●● ●●● ●●●●●● ●●

●●●●● ●●● ●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●
●

●●●●●● ●●● ●●●●● ●● ●●
●●●●●● ●● ●●●

●
●●●●

●

●●●●●●●●●●●●
●●● ●●●●●

●
●●●● ●●

●●●●●●●●●●●● ●●●●●●●
●

●●
● ●

●●●●● ●●●●●●●●●●●●●●●●● ●●●●●● ●● ●●●●●●●●●●● ●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●
●

●● ●●●●●● ●●●● ●●●
●

●●● ●●● ●● ●●●
●

●●●●
●

●●● ●●●●●●● ●●●●●●●●●●● ●
●●●●●● ●● ●●● ●●●●●●●

●

● ● ●●●●●●●●●●●● ●● ●●●●

●

●●●● ●
●●●●●●●●●● ●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●

●●●● ●●●●●●●● ●●●●● ●● ●● ●● ●● ●●●● ●●●●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●● ●● ●
● ●●●●●●●●●●●●● ●●● ●●●●●

●
●●●●

●
●●●●●●●●●●●●●●●●●●● ●●●●●

●

●

●
●●●●●●● ●●●●●●●●●●●

●●●●●●●●●●●●●●●●● ●●●●●
●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●● ●●● ●●●
●●●●●●●●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●

●●●●●●● ●● ●●●●●
●●● ●●●●●●●●●●●●●●●●●●●● ●●
●

●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●● ●●●●●● ●●● ●● ●●●●●●●●●●●●●●● ●●●● ●●● ●●●
●

● ●●● ●●● ●●●●●●●●●●
●

●● ●● ●●●●●● ●●●●●●●●● ●●● ●●● ●●●●●●●● ●●
●

●●●●●●●●●●●●●●● ●● ● ●●●●● ● ●
●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ● ●●● ●●●●●●●●●●●●●●●●●

●
●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●
●

●●●
●

●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●
●

●●●●●●●●●●●
●

●●●●●●●● ● ●
●●●●●●●●●● ●
●

●●● ●●●●●● ●● ●●●●●●●●●
●

●●●●●● ●●●●●● ●●● ● ●●●●●●●●●● ●● ●●●●●● ●●● ●●●●
●●●●● ●●●●●●●●● ●● ●●●●●●

●
●● ●●●●

●●●
●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●●● ●●●●●

●

● ●●●●
●

●●●● ●●● ●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●
●

●
●●●● ●●● ●●● ●●

●
●●●●● ●●
●●●

●
●● ●●●●● ●
●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●● ●●●●●● ●● ●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●● ●●● ●●●●●●

●●●●●●●●●●●
●●●●● ●● ●

●●●●●●● ●●● ●●●●● ●●●●●●●●●●●●●●
●

●
●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●

●

●● ●● ●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●
●

●●●●●●●

●
●● ●●●●●●●●

●●●●●●●●●●●●● ●●●●●●●● ●
●●●●●●●● ●●

●
●●●●●●●●●● ●● ●●●●● ●● ●●● ●●●●●●●●●●●●●●● ●●

●
●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●● ●●●●● ●●● ●●●● ●●●●●● ●● ●●● ●●● ●●●● ●●● ●●●● ●●●●●●●● ●●●●● ●●●●●●●●●●●●●●● ●

●
●●●●

●●
●●●●● ●●● ●●●●●●●● ●● ●

● ●

● ●●●●● ●●● ●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

● ●●●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●● ●●●●●●●
●● ●● ●

●●●●●●
●

●●● ●●●●●●●●●
●●●●●●●●● ●● ●●●●●●●●

●
●●●● ●●●●●● ●●●● ●●●● ●● ●●●● ●●●●●●●● ●●●●● ●● ●●●●●●●●●● ●● ●●●● ●

●●
●●●●●●● ●●●●●●●● ●● ●●●●● ●●●●●●●●●●●●● ●●●●●● ● ●● ●●●●

●
●

●
●●●● ● ●●●●●●

●●●●●
●

●

●

●●●
●●●● ●● ●● ●●●●●●●●●● ●

●
●● ● ●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●
●● ●●

●●● ●●
●●●●●●● ●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●● ●●●●●●●● ●● ●●●●●●●● ●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●

●
●

●
●●●

●● ●●●● ●●
●

● ●●●●●●● ●● ●●● ●●●●●
●

●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●● ●● ●●●●●●●●●●●●
●●●●●● ●●●● ●● ●●●●●●●●●●● ●●●●

●
●●● ●
●●●●●● ●●●●● ●●●● ●●●●●●● ●●●●●●●●●●●●

●
●●●●●●●●●●●● ●

●●●●●●●● ●●●●●●●●●●●●●
●

●● ●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●
●●●● ●●●●●●●●●●

●● ●● ●●●●●●●●●●●●● ●● ●● ●●●●●●●●●●● ●● ●●●●●●●●●●●●● ●●● ●●●●●●●●
●●●●●●● ●● ●

●● ●●●●●●●●●●●●● ●● ●●●●●●●●● ●●●●●●●●●●●●●

●

●●
●●●●●● ●●●●●●

●●
●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●● ●

●

●●●● ●●●●● ●●● ●●●
●

● ● ●●●●●●●●●●●●●●●● ●●
●●●● ●●● ●● ●●●● ●● ●●●● ●●●●●●●●●●

●
●●●●●● ●●●●●

●
●●●●●● ●● ●●●

●
●●●● ●●●●

●
● ●●●●●●●●●●●●●

●
● ● ●●●

●● ●●●●●● ●●●● ●●● ●●●● ●● ● ●●●● ●

●

● ● ●●●●●● ●●● ●●●

●

●●● ●●

●

●●●●●●●●●

●

●●●●●

●

●●●

●
●

●●● ●●●● ●●●●●●●

●

●●●●●● ●●

●

●● ●●●●
●●●●●● ●●●●●●●●●●

●
●●●● ●●●●●● ●●●

●
●

●
●●●●●●●●

●
● ●●●●●●●●●●●● ●●●●●

●●●●●● ●●●●● ●●●●●●●●●● ●●●●●●●●● ●● ●●●●
●

●●●●● ●●
●●●●●●●●●● ●●●●●●● ●●●● ●●●●●●

●●●●●●●●●●●●● ●●●●●●●●●●●
●●●● ●●●●●●● ●●

●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●
●

● ●●●●● ●●●●●●●●● ●● ●
●● ●●● ● ●●●●●●● ●●●●● ●●●●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●

●●●●●● ●●●●●●
●●● ●●●●●●● ●● ●

●
●

● ●●● ● ●
●●●●●●●●●● ●●●● ●●●●●● ●● ●●●●●●●●● ●●●●●●●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●
●

●● ●●●●●●●● ●●●● ●
●●● ●

●
●●●● ●

●●
●

●●●●● ●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●● ●●●● ●●● ●
●

●●●●●●●● ●●●●● ●
●

●●●● ●●●●●● ● ●●●
●● ●●●●●●●●● ●●●●●●●● ●●●●● ●●●● ●●●●●●●●●

●
●●●●●●●●● ●●●●●● ●●●●●●● ●●●●●●●●●●● ●●●● ●●

●
●●●●●

●●●●
●●●●●●●●● ●●●●●

●●●●● ●●

●
●

●

● ●
●●

●● ●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●● ● ●●●●●●●●● ●

●
●

●●
●●●●● ●●●●●●● ●●●●●● ●●●●●● ●●● ●● ●●●●●●●●● ●●●●●●● ●●●●●●●●

●● ●●●●●●● ●●●●● ●●● ●●●●●●●● ●●●●●● ●●●● ●●●●●●●●●
●

●●●●● ●●●●●●● ●●●●●●●●●●●●●●
●●●●● ●●●●●● ●

● ●●●●●●●●●●●● ●●●●●● ●●●●●● ●●● ●●●●●●●●●●● ●●
●●●●●●●●● ●●

●●●●●●●●● ●●● ●●●● ●●●●●
●

● ●●●● ●●
●●●●●●●●●●●●●● ●●● ●●●●●● ●

●● ●

●

●●●●●●●●●●●●●●●●●●
●

●●●●●●●● ●●●●●●●●●● ●●● ●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●● ●●●●●●
●●●●●●● ●●

●●●●
●

●●●●●●●●●●● ●●●●●●●●●● ●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●● ●●●●●●●● ●●●● ●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●● ●
● ●●●●●●● ●●●●● ●●● ●●●

●●●●●●●●●●●●
●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●● ●●

●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●
●● ●●

●●●●
●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●● ●●

●
●● ●●

●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●● ●● ●●●●● ●●●● ●●●●●●●●●●
●

●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●● ●●●● ● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●● ●● ●●●● ●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●● ●●●●●

●
●●

●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●
●

●●●●
●

●●● ●●● ●●●●●●●●●●●●●●●● ●●●●
●

●●●●●●●●● ●●●●●●●●●●● ●● ●●●● ●● ● ●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●●●●●
●

●●●●●●●●● ●●●● ●●●●●●● ●●●●●
● ●

●●●●●●●
●

●● ●●
●

● ●
●● ●●●●●●● ●●●●●● ●●●●●●●●●●● ●●●●●●●● ●●●

●
● ●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●● ●●

●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●
●●●● ●●● ●●

●
●●●●

●
● ●●●

●
●● ●●● ●●●●●●● ●●● ●●●●●●●

● ●
●●●●● ●●●●●●●●● ●●●●●●●●● ●● ●●●●●

●
● ●●●●●●●●● ●●●●●●●●●●●
●● ●● ● ●●●●●●●●●●● ●●●●●

●● ●●●● ●● ●●●● ●●●● ●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●● ● ●●●●● ●● ●
●●●● ●● ●●●

●
●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●

●
●● ●● ●●●●●
●●●●●

●●●● ●●● ●●●●●●●●●● ●●●●

●

●●●●●●●●●●● ●
● ●● ●●●●●● ●●●●● ●●●● ●● ●●●●●●●●

●
●

●●●●●●●●●
●

●● ● ●●●●●●● ●●● ●●●●●●
●

● ●●●● ●●●●● ●● ●●●●● ●●●●
●●●● ●● ●

●●●●●●●●● ●●●●●●● ●●

●
●● ●●●●●●●●●● ●●

●●● ●
●

●● ●●● ●● ●
●●●●●●●●● ●●●●●●●●●●

●●●●
●

●●●●●● ●●●● ●●● ●● ●●●●●●●●
●

●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●● ●●● ●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●● ●●●● ●●●● ●●●●●● ●●●●●● ●●
●●

●●●●●●●●●●●●●●●● ●●● ●
●

●●●●●●●●● ●●● ●●●●● ●●
●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●

●
● ●●● ●●●●●●●●●●●●●●●●● ●●●● ●●●● ●●●● ●●●●●● ●●● ●●●●●●● ●●●●●●●●●●●●●●●●●

●●●
●●● ●●● ●●●●●●●●● ●●●●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●● ●●●●●●●●● ●●●●●●●●●●● ●● ●●●●●●●● ●●● ●● ●● ●●●●
●

●● ●●●●●●
●● ●● ●●●●●●●●●●●●●●●●●●●

●●●●● ●●●●●●●●● ●●●●●● ●● ●● ●●●● ●● ●●●●●● ●●●●●
●

●● ●●●● ●●● ●● ●●

●

●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●
●

●● ●
● ●●●●● ●●● ●●●●●●●●● ●● ●●●●● ●●●●

●
●●●●●● ●● ●●●●●●●●●●

●● ●●●●●●●●● ●●●●●●●●●●
●●●●● ●●●●

●
●●●●●●●●●●●●●●●●

●
●●●●

●

●●●

●
●●●●●●●●●●●●●●●●● ●●

●
●●● ●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●

● ●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●

●
●● ●●●● ●●●●

●
●●●●●●●●●●●● ●●●● ●●●● ●●●●●●●●● ●

●●●●●●●●●●●●●
●●●●●

●
●●●●● ●●●● ●● ●●●●● ●●● ●● ●●●● ●●●● ●●●● ●●●●●●●●●●●● ●●●●

●●●●● ●●●
●●● ●●●●●● ●●●●●●●

●●
●

● ●●●●●●●●●
●●●● ●●●●●●

●●●●● ●●●●●●●●
●●

●●●●●●● ●●
●

●● ●●
●

●●●●●● ●
●
●● ●●

●
●●

●
●●●●●

●
●●●● ●●●●●●●●

●●●●
●

●●●●●● ●●●●●●●●●●
●●

●●●●●●●
●●● ●●●●●●●● ●● ●●●●●● ●●
●●●●● ●●●●●●●●●●● ●●●● ●●● ●●●●●●●●●● ●●●●●●●●●● ●● ●●
●

●
●

●●
●

● ●●
●

● ●●●●
●●●●● ●●●●

●
●● ●●●●●● ●●●●

●●
● ●●●●●●●●●●●●●●●● ●●●●

●
●●●

●
● ●● ●●●●●●● ●●●●

●
●●

●●
●●●● ●●●●●●● ●●●●●●●●●●●

●
● ●●●

●●●●● ●●●● ●●●●●●● ●●●
●●●● ●●● ●●● ●●●
●

●●●●●●●●●●●● ●●●● ●●●● ●● ●●●●●●●●● ●●●●●●●●●●●●
●●●●●●●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●● ●●● ●●● ●●● ●●●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●

●
●● ●●● ●●● ●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●●● ●● ●●

●
●● ●●● ●●● ●● ●● ●●● ●●● ●● ●● ●●● ●●●●●●●●●●●●●●●● ●●●

●
●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●● ●●● ●●● ●●● ●● ●●● ●●●●●●●●●●●●● ●●● ●●● ●●● ●●● ●●● ●●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●●● ●●●●●●●●●●● ●● ●●● ●●● ●● ●● ●●● ●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●●● ●●●●●●● ●●●●●●●●●●●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●

●
●● ●●●●●●●●●●●●●●●●●●●●● ●●

●
●●● ●●● ●●●●●●●●●●●●

●
●●●●●●●● ●●●●

●

●
●

●

●●
●

●

●

●
●

●●●●

●

●●
●

●

●
●

●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●
● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●
●●●●●●●●● ●●

●

●●●●●●●●●●●●●●●●● ●●● ● ●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●● ●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●● ●● ●● ●●●●●
●

●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●● ●● ●●● ●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●● ●●● ●● ●● ●●● ●●●
●

●● ●●● ●● ●●● ●●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●● ●● ●●● ●●●●●●●●●●●●●●● ●● ●● ●● ●●● ●●● ●●●●●●●●●●●●●●●●●●●● ●●●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●

●●●●
●

●●●●
●

●
●

●●

●
●

●●
●●●

●●●●●
●

●
●●

●

●●
●

●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●● ●●●
●

●●●
●

●●●●
●

●●●●●
●●●●●●●●●

●●●●●●●●●●●●●●

●
●

●●●●●●
●

●●●●
●

●●●●●●●●●●
●●●●●●●●●●

●
●●●●●●●●●●●

●
●●●●●●●●

●
●●●●●●●●●●●

●●●●●●●●●●●
●

●●●●
●

●●●●●●●●
●

●●●●●●●●●

●

●●●●●●●●●●●●●●
●

●
●

●
●●●●●●
●●●
●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●
●
●●
●●
●

●
●●

●

●
●●●●●●●●●●●●

●
●●

●
●●● ●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●

●

●●●●●●● ●●●●
●

●●●
●

●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●● ●
●●

●
●●●●●●●●

●
●●●●●●●●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●
●

●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●
●●●●●● ●●●●●●●●●●●●●●●

●

●●●●●●●●●●●
●

●●●●● ●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●● ●●●●●●●●
●●●●

●●●●●●●●●●●●●●●●●●●●
●●

●

●●●●●

●

●●●●●●●●●●●●
●●●●●●●●

●

● ●●●●●●●●●●●●●●●●●
●●●

●● ●●
●

●●

●

●●●●●●●●●●●●●●●●●●
●

●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●

●

●●●●
●

●●●●●●●●●
●

●●
●

●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●
●●

●●
●●

●
●●● ●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●
●●●

●●●
●●

●●
●●●●●●●
●●

●●●

●

●●●●
●

●●●

●

●● ●●●●●●
●

●●●●●●●●

●

●●●●●●●● ●●
●

●●
●

●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●●●

●
●●●●●●●●●●●●●●● ●●

●●
●●●●●●●●●●●●●●

●
●●●●●●●●●

●
●●●●●●

●●●●●
●

●●
●●●●●●●●●●●●

●

●●
●

●●●●
●

●
●

●

●
●●●

●●●●

●

●●●
●●●●●

● ●
●●

●●●●●●●●●●●●●●●

●
●

●
●●

●●
●

●●●

●

●●●

●

●
●●●

●
●●●●●●●●●●●●●●

●●
●

●●●●●●●●●●●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●

●
●●

●
●●

●
●● ●

●

●●●●●●●●●●●●
●

●●●●●
●

●●
●

●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●

●●●
●

●●●
●

●●●
●

●●
●

●●●
●

●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●
●

●●●●●●●●●●
●

●●●●●●●●●●●●
●

●●

●
●

●
●●

●
●●●●●●●●

●
●●●●

●

●
●●●●

●●●●●●

●

●●●●●●●●●●
●●●●●●
●

●●
●

●
●

●●

●
●●

●●● ●●
●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●
●●●
●

●●●
●

●●●●●●●●●●●●
●●

●●
●

●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●
●●●

●●

●●●
●●●●●●●●

●

●
●

●
●●●●

●
●●●●●
● ●
●

●●●●

●
●●●●●●●

●
●●●●●●●●

●
●●●

●
●●●●

●●●●●●●●
●

●●●●●●
●

●●
●●

●●●●
●●●●●

●
●●●●

●
●●

●
●●

●
●

●
●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●

●●
●

●●●
●

●●●●●●●●●● ●
●

●●
●

●

●

●
● ●●

●
●●●

●
●●●●

●
●●

●●
●

●

●

●●●
●●

●
●

●●●●●●●●
●

●●
●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●

●
●●●●●

●
●

●
●●●●●●

●
●●●

●
●●

●
●●●●●
●●●

●
●

●
●●

●●●●●●●●●
●

●

●●●●● ●
●

●●●●●
●●

●
●

●●
●

●
●

●●●●●●●

●

●●●●
●●●

●●
●

●●
● ●●

●●●●●●
●●●●●

●●
●●●

●●
●

●
●

●●
●

●●●

●

●●●●●●
●

●●●●●

●

●●●●●●●●●●●●●●●●●
●●●●●●

●
●●●●●

●●●
●

●
●

●●●
●

●
●

●●
●●●●

●

●
●●●●●●●

●●●●●●
●●

●●●●●●●●●●●●●●●●

●
●●●●

●●●●●●
●

●●●●●●●●●●●
●●

●
●

●
●

●●
●●●●
●●●●●●●

●●●●
●

●●●
●

●●
●●●●●●●

●

●●●●●●
●●●●●●●●●●●

●●●
●●●●●●●●●●●●●

●
●●●●●●

●●
●●●●●

●
●

●●●●●●●●●●●●●●
●●●

●●●●●●●●
●

●●●●●
●

● ●●
●

●

●
●

●
●

●
●●●

●
●●

●

●●
●●●●●

●
●●●

●
●

●●●●●

●

●●●
●●●

●
●●●●●●●●

●
●●●

●●
●●

●●
●●●●●●●●●●●●

●

●
●●●●●●
●

●●●
●●●●●●●●●●●●●●●●●●
●

●●●●
●●●
●●●

●
●●●●●

●

●●●●

●
●●

●

●

●
●●

●
●●●●●●

●
●●

●●●●●●●●●
●

●

●
●●●●●●

●

●●●●●
●●●●●●●●●●●●
●●

●
●●●

●●●●

●

●●
●

●
●●

●

●●●

●

●●●●
●

●
●●●

●●●●●●● ●
●

●
●●

●

●
●●●

●●●●●
●

●●●●●●●
●●●●●
●

●●
●●

●
●

●
●●●●
●●●

●●●

●

●●●
●●●●●●●● ●●●●

●●●●
●●●●

●
●●●●●●●

●
●

●
●●

●
● ●

●●●●●●●
●●●● ●●●●●●●

●
●●

●
●●●●●

●
●

●

● ●●●●
●●

●●
●●●●●●

●●●
●

●●●●●
●

●
●●●

●
●●●

●
●●●

●●●
●

●

●
●●●●
●●

●●●●●
●●

●

●
●●●●●●
●●

●
●

●●
●●●●

●
●●●

●
●

●

●●●●●●●●●
●

●
●●●●●

●●
●●●●

●●●●● ●●●●
●●

●●

●

●●
●

●
●

●●
●●●

●

●●
●●●●●

●●●

●
●

●

●●●●●●●●●●●●●
●●●●●

●●
●

●●●●●●●●
●●●

●●●
●

● ●●●
●

●●●●
●●

● ●●● ●
●●●

●
●●●●●●●●●●●●●

●●
●●●

●
●●●

●● ●●●●●●●●●●●●●●●●
●

●●●
●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●

●
●●
●●

●●
●●●

●
●●●●●●●●●●●●●●●●

●

●●●
●

●
●●●●● ●
●

●
●

●●●●
●●●●●●●●●●●●●●●●●●

●
●

●●●●●
●

●●
●●●●●●

●

●●●●●●●●●
●●●●●●●
●

● ●
●

●
●●●

●
●●

●●●●
●

●●●●●●●●
●

● ●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●
●●●●●●
●

●●●●●●●●●
●

●●●●●●●●●●●●●●●
●●●●●●●●●

●● ●●
●

● ●
●

●●●●●●●
●●●●

●●
●●●●

●
●●●●●●

●
●●●●●●

●●●●●
●

●

●

●●●●●●
●

●●●
●●●●●●●●●
●●●●●●
●●●●●●
●

●●●●
●

●
●●●
●

●
●

●●●●●●
●

●●●●
●

●●●●●●●
●

●●●●●

●
●

●●
●●

●

●

●●●●●
●●●●●●

●●●●
●

●●●●●●
●●●●●●●●

●●●● ●●
●●●●

●●
●

●●
●●

●
●●●●

●
●●●●
●●●●● ●

●●●
●●●●●

●
●●●●●●●

●
●

●●●●●●
●

●●●●●●●●●
●●●
●

●●●●●●●●●●●
●

●●●●●●●●●●●●
●

●●
●●

●●
●

●●●●●●
●

●
●

●●
●

●●●

●

●●
●●
●

●●●
●●

●●
●

●●●●●●●●●●●●●●●●●●●
●●●

●
●●●●●●●

●

●●
●●

●●●

●
●

●●●●●●●●●●●●●
●

●●●●●●●●●●●●

●

●●●●●
●

●●●

●
●

●●●●●●
●

●●●●●●●●●●●●●●●●●●
●●
●

●●
●●●●●●●
●

●●●●●●●●●
●●●●●●●●●
●

●●●
●●

●
●●●

●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●
●●●●

●
●●

●
●●●●●●

●●●●●●●●●●●●●●●
●

●
●●●●●●●●●

●●●●●
●

●●●●●●●●●●●●●
●● ●●●●● ●●●●●●●●●●

●
●●●●●

●●●●●●●●●●●●●
●

●
●●●●●●●●

●●

●

●●●●●
●

●●●●
●

●●
●●●●
●

●

●●●●●●●
●

●
●

●
●●●●●●●●

●●
●●●●●
●

●●
●

●●●●
●●●●●

●●●●●●●●
●●● ●●●●●●●●

●●●●●●●●●
●●●●●●
●●●●

●
●●

●●●●●●●●●
●●●

●●●●●●●●
●

●
●●

●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●

●●●●●●●●●●●●●●●●●●
●●●

●
●

●●●●●●●●●●●●
● ●

●●●●●●●●●●●●●●
●●●
●

●●●●●●●●●●●●
●

●
●

●●●●●●●●●
●●

●
●●●

●
●●

●●
●

●
●

●
●

●●●●● ●●●
●●

●●●●●●●●●●●●●●
●

●●
●

●
●●●●

●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●● ●●●
●●

●

●●●●●●●●●
●●●●●●●●●●●●●●

●
●●●●●

●●●●●●●●●●●●●●
●

●
●

●
●●●●●●●●●●●●●

●
●●

●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●● ●
●●●●●●●●

●
●●

●

●●●●●●●●
●●●●●●●●

●

●●●●●●●●●●●●●●●
●●●

●
●●●●
●●●●

●

●●●●●●●●●
●●

●●●●

●
●●

●
●●●●●●

●
●

●●●●●●●●●●●
●

●●●●●●●●●
●●●●●●●●
●●● ●

●●●●●●●
●

●
●

●
●●● ●●●●

●●●●●
●●

●●●
●

●
●●●●●●●●●●●●●●●●
●

●●

●

●●●●
●● ●●
●
●

●●●●●●●●●●●●●●●●●
●

●●●●●●●●●
●●●●●●●●●●

●●●
●

●●●●
●

●●●●●●●
●

●●
●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●●●
●● ●●●●●●●●●●

●

●●●●●
●

●●●●●●●●●
●●●●●●●●●●●●
●

●●●●●●●●●
●●●●●

●●●●
●●● ●

●●●●●●●●●●●●
●

●●●●●●●●●
●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●

●●
●●●●

●

●
●

●●●●●●●
●

●●●●●●
●

●●●●●●●
●●

●●
●

●●●
●

●●●●
●

●●●●●●●●●
●

●●●
●

●●●●●●●●●
●

●●●●●●●
●

●●●●●
●●●●●●●

●

●●●●●●●●●●●●
●●●●●
●

●●●●●●
●

●
●

●●●
●

●
●●●●●

●●●●●●●●●●●●●●
●● ●●●

●
●●●●●●●●

●
●●●●●●●●
●●●●●●●
●●●●●●●●●●●

●●
●●●●●

●●●
●

●●●
●

●●●●●●●●●●●●●●
●

●●
●

●●●●●●●●
●●

●●●
●●
●●●
●●●
●●●●●●●●●●
●

●●●●
●

●●●
●

●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●
●

●●● ●●
●

●
●●●●●●●●●●●●●●●

●●●●●●●
●

●●
●●

●●●●●●
●●●●●
●●

●●
●●●●
●●●●●●●● ●●●●●●●

●●●●●●●●●●●●●
●

●●●●●●●●●●●●●
●

●●●●●●●

●

●●●●
●●●●●●●

●
●●●●●●●●

●●●●●
●●●●●●●●●●●●●●

●
●

●

●●
●●●●

●●
●●●

●

●●●●●●●●
●

●●●●●●●
●●●●●●

●

●●●●●●
●●●●
●●

●●●●
●●●●●●●
●

●●●●●●●●●
●●●
●●●●●●
●●●●
●●

●
●●

●●●●
●●●●●●●●
●●●●
●●●●●

●
●●

●●
●●

●
●●●●●●●●●●

●

●

●
●

●●●●●

●

●●
●

●
●●●●●●●●●●●●●●●●●●●●
●

●●●●
●

●

●●●●●
●

●●●●●
●●●●

●

●●●●●
●

●●
●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●

●●●●●●●
●

●●●●●●●●●●●●●●●●●●●
●●●●●●

●
●●●●●●●●●

●●●●●●
●●●
●

●●●● ●●●
●

●●●●
●●●●●

●
●●●●

●
●●

●●●●●●●●●●●●●
●●●●

●●●
●

●●●
●●

● ●●
●

●● ●
●

●
●

●●
●

●●●●●●●●
●

●●
●●

●
●●●●●●

●

●●●●●●●●●
●●●
●

●
●

●●●
●

●
●

●

●●●●●●●
●●●●●●●●●

●●●●

●
●●●●●●●● ●●●●●

●
●●●●

●●

●●●●●●●●●●●●●●
●●
●

●●●●●●●●
●●●●●

●
●

●● ●
●

● ●●●●●●●●●●●●●
●
●●

●●●●●●●●●
●

●

●

●●●
●●●●●●●●●
●●●●●●
●

●●●●●●●●●●
●

●●● ●
●●●

●●
●

●
●●

●●●●●●
●●●●●●●●●●●●●

●

●●
●

●
●

●●●
●●●●●
●●

●

● ●
●

●● ●
●

●
●●

●●

●●
●

●●

●

●●●
●

●
●●●●●●●●●

●

●●●
●

●●
●

●●●●●●●●●●
●●

●

●●
●●●●●●●●●
●

●●●●●●●●●●●●●
●

●
●

●●●●●
●●●

●

●●●●●●●
●

●●●●
●

●●●
●●

●

●
●●●

●●●●
●

●

●●●●●●
●●

●
●

● ●
●●●

●
●●

●
●

●●●●●●●●●●
●

●●●●●●●●●●●
●●

●
●●●●

●
●●

●
●●●●●●●

●●●●●●
●●●●●●

●
●●●●

●

●●●●●●●●●●●●
●●●●●

●●●●●●
●

●

●
●

●●
●●●●

●
●●●●●●●●●●●●

●

●●●
●

●●●●●●
●●●●

●●●
●●

●
●

●
● ●●

●
●●●●●●●●● ●●

●

●●
●● ●●●
●●●

●
●

●
●●●●●

●
●●
●●●●●

●
●●●●

●●
●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●

●●●●●●
●

●●
●●

●●
●●●
●

●●●●
●

●●●●●●●●●●●●●●●●●●●●
●

●●
●●●●●●●●●
●

●●●●●●●●
●●●●●

●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●

●
●●●●

●
●

●
●●●●●●

●
●●●

●
●●●●●●●●

●

●●●●●●●

●

●●●●●
●

●
●●●●

●●●●●●●●●●●●●
●

●●●●●●●●
●●

●
●●●●●●

●
●●●●●●●●●●●

●●●
●

●●●●●●●●

●

●●●●●
●

●●●●●
●

●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●
●●●●●●●●

●
●●●●●●●●●●

●●●●●●●●●●●●●
●●●

●
●

●●

●
●

●
●●●

●
●●●●●●●●●●●

●
●●●

●
●

●●
●●●●●●●

●
●●●
●●●●●●●●●●

●●●●●
●●

●●
●

●●
●

●●●●●●
●

● ●
●●●●●● ●
●●●● ●●●●●●●●

●
●●●●●●●

●

●●●●●●●●●
●

●●●
●●●●●●●●●

●
● ●

●●●

●

●●●
●●

●●●●●●●●
●●●●●●●●●●●●●●●

●

●●●
●●

●
●●

●●●●●●●
●

●●●
●

●
●

●●

●
●●●●

●
●●●●

●●
●●●

●
●

●●

●

●●
●●

●
●●●●

●●●●●●

●

●
● ●●●●●●●

●
●●

●
●●●●●●●●

●●

●

●●●●
●●
●

●

●
●●

●
●●

●●
●●

●
●●●●●
●●●●
●

●●
● ●
●

●
●●●●●●

●●●●●●●●
●

●
●●● ●●●
●●

●●
●●●●●
●

●
●●

●
●

●●●
●

●
●

●

●●
●

●
●● ●

●●

●

●

●

●
●

●●●●●●
●

●
●●

●
●●●●●●

●
●●●

●
●

●●
●

●
●●

●●●●
●

●
●●●

●●
●

●●●●
●●●●●●●

●●●●●●●

●●
●

●
●●●●●●●

●

●●
●

●●●
●●●●

●
●●●●

●●●●●●●●
●

●●
●●
● ●● ●

●
●●

●

●
●●

●●●●●●●●●
●●●●●●●
●

● ●
●

●●
●

●
●●●

●
●●●

●
●●●●●

●●●●●●●
●●

●●● ●●

●

●●●
●

●●●●●●●●●

●

●●
●

●●
●

●
●

●
●

●●●
●

●
●●●●●●●●
●

●●●●
●

●●●
●

●●●●
●●

●●●●●
●●●

●●
●●

●●●
●

●
●

●●●●●
●● ●●

●●
●●

●●●●●●

●

●
●

●●
●●

●●●●
●●●●●●●●●●●●●●●●●●

●●
●

●●●●●●●

●

●●●●●●●●●
●●

●
●

●
●●●

●

●●
●

● ●
●

●●
●●●●●

●
●

●●
●●

●
●

●

●
●●● ●●

●
●

●
●

●
●●●

●
●

●●●
●●●

●

●●●●●●●●●
● ●

●●●
●● ●

●●●●●●●●●●●●
●●●

●
●●

●●
●●●

●●
●●●●●●●

●●●●●
●

●

●
●

●

●
●●● ●●

● ●●● ●●●● ●●
●●●

●
●

●
●●●●●●●
●

●●●●
●●●●●

●●●●●●
●●●●●●●
●

●●●

●
●

●●
●

●●
●

●●●●●●●
●●●●

●
●●●●

●
●●●●●

●●
●●●●●●●●●●●●●●

●
●●

●●
●

●
●●●●

●
●

●●●●
●

●
●

●●●
●●●●●●●

●●● ●
●●

●●● ●●
●●

●
●●●●●●●●●●●
●●●●●●●

●
●●●●●

●●●●
●

●●●●●●●●
●

●●●
●●

●●●●●●
●

●●●●

●

●●●●●●●●●
●●●●●●●●●●●●●
●●●● ●●●●●●●

●
●●●●●●●●●

●
●●●●

●●●●
●●●●● ●●●●●●●●

● ●
●●●●●●

●●●
●●●

●
●

●●
●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●
●●

●●●●●●●
●

●●●●●●
●●●

●
● ●

●
●

●●
●●

●●●●

●

●●●●●●●

●

●●●●●●●●●●
●

●●●●●●
●●
●

●
●●●●

●

●●
●

●
●●●●●●

●●●●●●
●

●●●

●
●●

●

●
●

●●●●●●
●

●
●●

●●

●

●● ●●
● ●●●●●

●

●
●

●
●●●●●●●● ●●

●●
●●●●●

●
●●●●

●●

●●●●●●●●●●
●

●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
● ●●●●

●●●
●

●
●

●●●●●●●
●

●●●●●●●●●●●●
●

● ●
●●

●●●●●
●

●
● ●●●

●
●●

●●●●●●●●●●●
●●

●
●●

●
●●

●●●●●●●●●●
●●●●●●

●●
●●

●

●●●

●
●

●
●●●

●
●●●●●●●

●
●●●

●
● ●●●●●

●●●●●
●

●
●

●●●●
●

●●●
●

●

●

●●
●

●●●●

●

●●●●
●

●
●

●●
●

●
●●

● ●●
●

●
●

●●●●●●●●
●●●●●●

●
●●●●●●●●

●●●●●
●●●●●●●●

●●●●●
●

●

●
●●●●●●●●●●●●●●

●●●●
●●●●●●

●●●
●

●

●●●
●

●●●●●●●●●●●
●

●
●

●●●●●
●●●●●●●●
●●●●●●●●●●●●●

●

●●●●● ● ●
●

●
●●●●
●●●●●●●●●●●●●●●●●

●
●●●●●●

●

●●●●●●

●
●●●●●

●
●

●
●●●●●●●

●●●●●●●●●●●●●●
●●

●
●●●

●
●●●

●

●●●●●●●●●
●

●●●●●●
●

●●●●●●●●

●

●● ●●●●●●●
●●●●
●●●

●

●●
●●●●

●
●●●
●●●

●●
●

●●●
●

●●
●●

●● ●
●

●
●●

●
●

●
●

●●
●●●

●
●

●
●●●

●
●●●●●●

●
●●●●●●●●● ●

●

●
●●●●● ●●●●●●●●
●

●
●●●
●●●

●
●●●●●●●●
●

●●
●

●
●

●●●●● ●●●●●●●●●●●●
●

●●●●●●
●●

●●
●

●●●●●
●●●●●

●
●●●●●

●●●●●●●●●●●●●●●●●
●

●●●●●
●

●●●●●
●

●●
●

●●●●
●

●

●
●●

●
●●●●

●

●● ●●●●
●

●● ●●
●●●●●●●●●

●●●●● ●
●●●●●●●

●
●●

●●
●●●●●●

●●●●●●●●●●●●●
● ●●●

●

●●●●●●
●●●●●●●●●

●

●●●●●●● ●●
●●●●●●●●●
●

●
●●●

●
●

●

●
●●●●●

●●●●●●●●●●●●●
●
●

●●●●●●●●●●●●● ●●●●●●●●●●●●
●●
●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●
●●●●●●●●●
●

●
●

●●●●●●
●●●●●●●
●

●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●
●●●●●●●●●●●●●●●●●●●●●●

●

●●●
●●●●●●●●●●●●

●
●●●●●●●●●●

●
●●

●●
●●●●●

●●
●●●●●●●●●

●

●●●
●

●●
●●●●●●
●

●●●●
● ●

●●●●●●●●●
●●

●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●

●

●●●●
●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●

●
●●●

●
●

●
●●●●●●●●●●●●

●●●●●●
●●

●
●

●●
●●●●●●
●

●
●●●●●●●●●●●●●●

●
●●●●●●

●
●●●●● ●●●●●●●●●●●●●●

●
●●●●●

●●
●●

●
●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●
●

●●●●
●●●

●●
●●●

●
●●●●●●●●●●

● ●
●●●●

●●●●●●●●
●

●

●

●●●●●●●●
●

●●●

●
●●●●●●●
●

●●●●●●●●●
●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●● ●

●●●●●

●

●● ●●●●●●●●●
●●●●●●●

●●●
●

●●
●

● ●●●●
●●●

●

●
●●

● ●●●●●●●●
●

●●●●●●●●

●

●●●
●

● ●●●
●●●●

●●●
●●

●●●●●
●●●●●

●●●●●●
●

●●●●●●●●●●●●●●
●

●
●

●●●●●●
●●●●●

●

●●●●●
●

●
●

●●●

●
●●

●
●●

●●
●●●●●●●

●
●●●●

●●●●●●●●
●●●●●●●●

●●
●●●●●●●

●
●

●

●
●

●
●

●●●●●●●●●●
●●●●●●●●●●●●●

●
●

●●●●●
●●●●
●

●

●

●●●●●●
●

●● ●
●

●●
●

●
●●●●●●●

●

●●
●●●●●

●●●
●

●●●●
●●●●●

●●●●●●
●

●●●●●●●
●●

●●
●●●●●

●
●

●●●●●●●●●●
●

●●●●
●

●●●●●●
●

●●
●●

●
●

●●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●

●

●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●

●●

●

●●●
●

●●
●

●●●●●●●●
●

●
●

●●●●
●

●●
●

●

●●●
●

●●●●●●●●
●

●●●●●●●● ●●

●

●●●

●
●

●
●

●

●●

●

●

●

●

●●●●

●●●

●●●
●●

●

●

●

●●●●

●

●●●
●

●●●●●●●●●

●
●

●●●
●

●●●●●●●●●●●●●●
●

●●●●●●●
●

●●●

●
●

●

●

●●●
●

●●●
●●●● ●●●●●

●
●●●●●●●●●●●

●
●●

●
●●●●●●

●
●●●●●●●●●

●

●●●●●●●●●
● ●●● ●●

●●●●●
●

●
●●●●●●

●
●●●

●●
●

●
●●●●

●
●●●●●

●
●

●

●

●●
●

●●●●●●●
●

●

●
●

●● ●●●●
●●●●●●●

●●

●
●●●●●●●●●●●●●●●●●●●●

●
●●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●
●

●●●
●

●
●

●●●●●●●●●
●

●
●●●●

●
●

●●●●●●●●●●
●

●●●●●●●●●●●●
●

●●●
●

●●●●●●●●●● ●●●●●●●●●●●
●●

●●●
●●●●●●●●●●
●

●●●●●●
●●

●
●●●

●
●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●
●●
●

●●●●●●●●●●●●
●

●●●● ●
●●

●●●
●●●●

●
●●●●●●●

●
●●●●●

●

●●●●●●●●●●●●●●●●●●
●●

●●●
●●●●●●●●●●●●●●
●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●

●

●●●●●●●●●●
●

●●
●

●
●

●●●
●●●●

●
●●●●

●
●

●●●●●●●
●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●
●

●●●●●
●●

●
●

●●
●

●●●●●●●●●●●●●●●●●
●

●●●●●●●

●
●●●●●●●●

●
●

●●
●●●

●●
●

●●●
●

●●●●●●●●●
●

●
●●●●●●●●●●●●●

●
●●●●
●

●●●●●●●●●●●●●●
●●●

●
●●●

●
●●●●●

●
●

●●●●●
●●●

●●●●●●●●
●●●●●●●●●
●

●●●●●
●

●●●
●●

●
●●

●●
●

●
●

●

●

●
●●●●●●
●●●●

●●
●●●

●
●●●

●●
●●

●●●●●
● ●●●

●

●
●●●

●

●●
●

●
●

●
●●●●●●●●●●

●●●●●●●●●●●●●●●●
●

●●●●●●●●●●
●●●●
●●

●●●●●●●●●●●
●

●
●

●
●

●

●

●
●●●●●●●●

●
●●●●●●●●

●
●●

●
●●● ●
●●●●

●
●●●●●

●●●●●●●●●●●●
●●●●●●●●

●
●●●●●●●●●

●●
●●●●●●●●●●

●
●●●●●●

●
●●●

●
●●●●●●

●
●●●●●●●●●

●

●●●●●
●●●●●●●●●●●●●
●

●
●

●●●●●
●●

● ●

●●

●

●● ●●●
●●

●
●●●

●
●●●●●●
●

●●
●

●
●●
●●●●●●●●
●

●

●●●●●●●●●
●●

●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●
●●●●●

●●●
●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●
●●●●●

●
●●●

●
●●●●

●
●●●●●●●●●●●●●

●
●●●

●
●●

●
●●●●●●●●●●●●●●
●

●
●

●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●●●●
●

●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●
●

●
●●●●●●●

●
●●●●●

●
●●●●●●●●●●●●●

●
●●

●
●●●●●●●●●●●●

●●●●●●●●●●●●● ●●●●
●●●●

●
●●
●●

●●●●●

●
●●
●●
●●●● ●●●●●●

●●
●

●

●
●

●●●●●●●
●

●
●●●●●

●●
●

●●
●●

●●
●●●●●●●

●
●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●

●
●●

●

●●●
●

●●●●●●●●●●●●●●●●●●
●●●●●

●●●●●●●

●

●
●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●
●

● ●●●●●●●●●●●●
●

●●●
●●●●●●●●●

●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●
●

●●
●

●●●●●●●●●●●●●●●●

●

●●●●●●
●●●●●●●
●●●●●●● ●

●●●●●
●●

●●●
●

●●●
● ●● ●●●●

●●
●●●●
●●

●
●

●

●●●
●●

●●●●
●

●●●●●●●●
●●●●●●●●●●●●●●●
●

● ●●●●●●●●●●●●●●●●●●

●

●
●

●●●●●
●●

●

●

●●
●

●●●

●

●●●●●●●●●●●●●●●●●●●●●
●

●●
●

●
●

●●

●

●

●

●●●
●

●●●●
●

●●●●

●

●
●

●

●●●●●●
●

●● ●●●●●
●●●

●●
●●●●

●●●●
●●

●●●●
●●●

●

●●●●
●

●●
●●

●● ●
●●●●

●
●●●●●●

●●●
●

●●●●●●
●●●●
●●●●●●

●
●●●●●

●
●

●●
●

●
●

●●●
●●

●
●●

●
●

●
●

●● ●●
●●●●●●●●●●

●
●

●●●●●●
●●●●●●●●●●●

●

●

●
●●●●

●
●●

●●
●●

●
●●
●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●
●●●●●●●●●●●●●●● ●
●●

●●●●●●● ●
●

●●●●●
●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●

●
●●●●●●●

●
●●●●●●

●

●
●

●●●●●●●
●●● ●●●●●●● ●●●●●● ●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●

●

●

●●●
●

●
●●

●

●●●●●●●
●

●
●●●●●●●●●●●●●●

●
●●●

●
●●●

●

●●
●●

●
●

●
●●

●

●
●

●●●●

●
●●●

●
●●

●
●

●

●●●●●●●
●●●●●●●●●●●●
●●

●

●●●●●●
●●

●
●●●●●●●●
●●●

●●●

●
●

●●●●
●

●●●
● ●●

●●

●

●
●

●● ●●●
●

●●●●●●●●●●
●

● ●●●●●

●
●●●● ●●
●

●
●

●●
●●●●●●

●●●
●

●●●
●●
●

●●●

●

●●
●

●●●●●●●●●●
●

●●●●● ●●

●

● ●●●●
●

●●●
●

● ● ●
●

●
●●●●

●
●

●
●●●●●

●
● ●●●●●●

●

●●●●●●●●●●
●

●●
●

●●●●●●
●●●●●●●●●

●
●

●● ●

●
●

●
●●●●

●

●
●

●●●●●
●

●●
●●●●●

●
●●●●●●●●●

●
●

●●
●●

●●
●

●●●●
●

●●●●●●●
●

●●●●●●●●●
●●

●
●

●
●●

●
●●● ●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●
●●

●●
●●●●●●

●
●●

●
●●●

●
●●●●

●
●●●●●

●
●●●●●●●●● ●●

●
●●●●●●

●
●●●●●

●●●●●●
●●●

●●●
●

●●

●

●●●●●●●●●●●●●●●●●●●●
●

●●●●●●
●

●●●● ●
●●●●●●●●

●
●●

●●
●●●●●●

●
●●●●●●
●

●●●
●●

●●

●

●●●●●●
●

●

●●●●● ●
●

●
●

● ●
●

●
●●

●
●●●●●●●●●●●●●●

●●
●

●

●●●
●

●●
●

●
●

●

●●●●● ●●

●
●●●●●

●
●●●●●●
●●●●●

●●●●●
●●●●

●
●●●●

●●●●●●
●

●
●●●●

●
●

●●
●●●
●

●●●●●
●●

●
●●●●●

●
●●●

●
●●●●●●●●●

●
●●●●
●

●●●●●
●

●●●●● ●●●●●
●

●●

●
●●●●

●●
●

●●
●

●●●●●●
●

●●●●●●●
●

●●
●●●●●●●●

●●
●● ●

●●● ●●●●
●

●●●
●●●

●
●●

●●●
●

●●●
●

●●●●●●●●●●●●●●
●●●

●●
●

●
●●

●●●●●●●
●

●●
●●●

●●
●●

●●●●●●
●

●●●●●
●●●●

●●●●●●●●●
●●●

●

●●●●●●●●
●●●

●

●

●

●●●●●

●
●●

●

●●
●●

●●●●
●●

●●
●●●●●●●●●
●●●●●

●

●
●

●●
●●● ●

●
●

●●●●●●●●●
●

●●●
●

●●●●●●●●●
●●
●● ●●●●●●● ●

●●

●●●
●●●●●●●●●●

●
●●●●
●●●●

●●●●●
●

●
●●

●
●

●●●

●
●●●●

●

●●●
●●

●●●●●●

●
●●●

●
●

●●●●●●●
●●
●●●●

●●●●●●●●
●

●●●●●
●●

●
●●

●●
●●●●●●●

●
●●●

●
●●

●
●●●●●

●
●●●●●

●
●

●●●●

●

●
●

●
●●●

●

●●●
●

●
●

●●●●●●●●
●

●●
●●

●●●●●●●●●●●●●●●
●●●

● ●●●●●●●●
● ●●●●●●●●

●●
●

●●
●

●●●●●●●●
●

●
●●
●●

●● ●●●●●●●●●●
●●●●●●●●

●●● ●●●

●
●●●●●●●●●●●

●
●●

●
●●●

●●●●●●●●●●●●●
●●●

●●●●●●●●
●●●●●●

●
●●● ●●

●●●

●
●

●
●●●●●●●

●●●●●●●
●

●●●●●● ●
●

●

●●●
●

●●●●

●

●●●●●●●●●●●●●
●●●

●
●●●● ●●●

●
●●●

●●
●●●●●●●●●●

●

●

●●●

●
●●●●●●●●

●

●
●●
●●●

● ●●●
●●●●●●●●●●●

●
●●●

●●●●●●
●

●●●●●●
●●●●●

●

●
●●

●
●

●●●
●

●● ●●●●●
●

●
●

●
●●●

●
●

●
●

●●●
●●●

●●
●●●●●●●●●

●
●

●●●●●●
●●●●

●
●

●

●●●●
●●●
●●●●●●●

●
●

●
●●●●●●●●●

●
●●●

●
●●●●●●

●
●

●●●●●●●●
●●●●●●●●●●●●
●●●

●●
●●
●

●●●●●●●
●

●
●

●●● ●●●●●
●●●●●
●

●●●
●

●●●●●●
●

●●●●●●
●●

●●●
●

●
●●●●●●
●

●●●●
●●

●●●
●●

●●●●●●●●●●●
●

●

●●●●●
●●●●●●●
●●●●
●●●●

●
●●●●

●●●●

●

●●
●

●●
●

●
●●●

●
●●●●●●●●

●
●●

●
●●●●●●●●●●●●

●
●●

●●

●
●

●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●
●

●
●

●●
●●●●●●●●

●
●●●●●●●●●

●
●●●●●

●●●●●
●●●●●

●●●

●

●
●●●●●●●●●●●● ●

●●●●
●

●
●

●
●

●
●

●●●●●●●
●●●

●
●

●●●●●

●

●●●●
●●●●

●●
●●

●
●●●

●
●●●●●●

●
●●●●

●●●
●

●

●
●

●
●

●
●

●●
●

●●●●●
●

●
●●

●●
●●●●
●●●
●●●●●●
●

●●●●
●

●●●
●

●●
●

●
●

●●
●●●
●●

●●●
●

●
●

●
●

●
●

●●●
●●●

●
●●●●

●
●●

●●●
●●●
●

●●●●●●
●

●●●●●●●
●●●

●

●●●●●
●●●●●●●●●●

●
●

●
●●●●●●●●●●●
●●●●

●●●●●
●

●●

●
●●●●

●●●●●●●●●●●●●●●

●
●●

●●●
●

●●●●●
●●

●
●●●●●●●

●●●●●●●●

●
●

●●●●●●●●●●●●●●●
●● ●

●●
●

● ●●●●●
●●

●●●●●●
●

●●●●●
●●

●
●●

●
●●●●●

●●

●
●

●●
●●● ●

●●
●●●●

●●●●●
●●●●●●●●●●●●●●

●
●

●●
●●●●●

●
●●●●●●

●
●●●

●
●●●

●
●●

●
●

●
●●

●

●●●

●
●

●●●●●
●

●●
●

●●●●● ●●●●●

●

●
●

●●●●●
●●

●
●●

● ●●
●●

●
●

●●
●●●

●

●●
●●● ●●●●

●
●

●

●●●●
●

●
●

●● ●●●
●

●●●●●●●● ●
●

●
●●●●

●
●●●●
●●●●

●
●●●●

●●
● ●●●●●

●
●●●●●●●
●●●

●
●●●●●●●

●●● ●●●●●●●●●●●
●●●●●●

●●●●●●●●
●

● ●
●●

●●
●

●
●

●
●

●
●●●●●●●

●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●

●
●

●●●●
●

●
●●●●●●●●●

●●●●●●●●●●●●●●
●

●

●●●●
●

●
●

●●
●

●
●●●●

●
●●

●
●

●●●●●●●

●

●●●●●●●●
●●●●

●●
●●●

●●
●●●●

●
●●●●●

●
●●●●●

●
●●●●

●

●●●●●●●●●
●●●

●

●
●

●●
●●●●●●
●

●
●●● ●

●
●●●●

●
●

●● ●●
●

●
●●

●●
●

●●●●●●
●●●

●●
●

●●
●●

●
●●●

●
●

●●
●●●●●●●
●

●●
●●●●●●

●

●●●●
●

●●●

●
●

●●
●

●
●●

●●●●
●●●

●
●●

●

●●
●●

●●●●
●

●
●●●●

●

●●●●
●

●●●●●
●●
●

●●●●●●●●●●●●●● ●
●●

●
●

●●
●

●
●●●
●

●●●●
●●

●●
●

●●●●●●
●●●

●●●
●●●●●●●
●●

●●
●

●
●

●●
●

●●

●

● ●
●●

●
●

●●
●

●●●●●
●

●●
●

●●
●●●●
●●

●
●

●●●●●●●
●●● ●●
●

●
●

●
●●●●●●●●●●

● ●●●●●
●●●●●●

●●
●

●●
●●
●● ●●●
●●●
●

●●●●●
●●
●

●●●
●

●●
●●●

●
●

●●
●

●●●●●●●
●●●●●●●●

●
●●

●●●●●●●●●●
●●●●

●
●

●●
●

●
●●●●●●

●●●●●●●●●●●●●●●●●● ●●●
●●

●
●●●

●
●

●●●●●

●

●●●●●●●●
●●●●●●●

●
●●●

●
● ●●●●●●●●
●

●
●●●●

●●●
●

●●
●●

●
●

●
●●●●●●●

●
●●●

●●●●●

●

●●●●
●

●●
●●● ●●●●●●
●

●●
●●

●
●

●
●●

●●
●●

●●●●●●●
●

●
●

●
●

●●
●●

●●●●●●●●●●

●

●●●
●

●●
●●●●●●

●

●●●●●●
●

●●●●
●●

●
●●●●●●●●●●●●●

●
●

●●
●

●●●●●●●●●
●

●●●●●
●●

●
●●
●●

●
●●

●●●●●●●
●●● ●●●●●●●●●●●●●●●●●●●●●
●

●
●

●●●●●
●

●
●●

●
●

●●●●●●●●●●●●●
●

●●●●●●●●●●●●
●●●●

●

● ●●●●●●●●
●

●●
●

●●
●●●●●●●

●
●

●●●●●●
●

●
●●●●●●

●
●●●

●

●●

●
●●●●●

●●
●●●●●●●

●
●●●●●

●

●●●●●●●●
●

●●●●●●●●●●●●
●

●● ●●

●

●
●

●
●

●●●●●
●●●

●

●●●●●●●●●●
●

●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●
●●●●●●●●●●●●●●●● ●●

●

●

●●●●●
●●●●●●●●●●●

●
●●●●

●
●

●
●●●●

●
●●●●

●
●●

●●●●
●●●●●●●●●●●●●●●

●
●●●●

●
●●●●

●
●●●●●

●
●●

●●●●
●

●●●●●●●
●

●●
●

●●●●●●●
●

●
●

●●
●●●●

●●●
●●●●●

●
●

●●●●●●
●●●●

●●●●●●●
●

●● ●●●●●
●

●
●

●
●

●●●
●

●●
●

●●●●●
●

●
●●●
●

●●●●●
●

●●
●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●● ●●●●●●●
●

●●●●●
●●

●●
●●

●
●●

●● ●●●●
●●●●
●

●
●●●●●●●●
●

●●●●
●

●●
●

●●
●

●●
●●

●●
●●●

●

●●
●●

●●●●●●●
●●●●
●

●●
●

●●●●●
●●

●
●●●

●

●

●●
●●●●

●
●

●●●●
●●●●●●●●●●

●●●●●●●●●
●

●●●
●

●●
●

●●
●●●●●
●

● ●●
●●●●●●

●
●

●●●

●

●●●●

●

●●●●●●●●
●

●●●
●●

●
●●●●●

●

●●●● ●
●

●

●●
●

●●●●●●●●
●●●●●●●

●

●●
● ●

●●●●●
●●●●●●●●●●

●●●●●●●
●

●●●●●
●●

●
●●

●●●
●●●●●

●●
●●●●

●●
●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●

●
●●
●●●●●● ●●●

●
●●●

●

●●●
●

●●
●

● ●●●
●

●●●●
●

●●●
●●●●●●● ●●●●●●●●●●●

●
●●●●●●

●
●

●●●
●

●●●●●●

●

● ●
●

●●●●●
●●●●●●

●

●
●●●●

●

●●●●
●

●●●●
●●●

●●●
●●

●● ●●●

●

●●●●●●●●●
●

●●●●●●●●●
●●●● ●

●●●●●●●
●

●●●●
●

●
●

●
●

●
●● ●●●●
●

●●●●●
●●

●●
●●

●
●

●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●●●●●●● ●●●
●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●

●●●●●●●●●● ●●●●●
●●

●

●
●●●●●●●●●●●●● ●●●
●●●●●

●
●●●
●

●

●●●●●●●●●●●●●●●●●●●
●

●●●●

●

●

●

●●●●●●●
●●●●●●●●●●●

●
●

●●●●●●●●●●●
●●●●

●●●●●

●
●●●

●●
●

●●●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●
●●●

●●●
●●●●●●●●●●●●●●●●●

●●●●

●

●●●●●●●●●●●●●

●●

●●●●●
●

●
●

●●
●●

●●
●

●●●●●●●●●●●●
●

●
●●●●●●

●
●

●
●●●●●●●●●●●●●●● ●●●●●●

●
●●

●
●●●●●●

●
●●● ●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●
●

●●
●

●
●●●●●●●●●●●●

●●●
●

●●●
●

●●

●●
●

●

●
●

●●

●
●●

●
●●●●●●●●●

●

●●
●

●
●

●●●●●
●

●●●●●●●●
●●

●
●

●●
●●

●●●●●●
●

●
●

●●●●●●●
●●●●●●●●

●
●

●
●

●
●

●●
●

●

●●●●●●●●
●

●●●●●●●
●●

●
●●●●●●●●●●●●●

●●●●●●●●●● ●● ●●●●●●●●●●
●

●●●●
●

●●
●●●●

●

●●●●●●●●●●●●●
●●●●●●●●●

●●●●●●●
●●●●●

● ●
●●

●●
●●●

●●●●●●●●●●●●

●

●●● ●●
●●

●●●●
●●●●●●●●●●●●●●●●●●

●

●●●●
●

●

●

●●●

●
●

●●●●●●●
●

●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●
●

●●●●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●

●

●●●●●●●●●●●

●

●●
●

●●
●●●

●
●

●●●●●●●●
●

●

●

●
●●●

●●●●●●
●●
●●

●●●
●

●●●
●

●●●●
●● ●

●
●●●●

●
●●

●
●

●
●●●●●●●●
●●

●
●●●●●

●●
●

●●
●●

●●
●●

●
●

●●●●●●●●
●

● ●●●●●●

●

●●
●●●●

●●
●

●
●●●●●●●●
●

●●
●

●●
●●●●●●●●●●●●●●●●

●
●●●●

●

●
●●●●

●

●
●

●●
●

●● ●●
●
●●●●●●
●●

●●●
●●●●●
●

●●●●
●●

●
●●●

●

●

●
●●●
●●● ●●●

●
●

●●●
●●●

●
●

●●
●

●

●●
●●●●●
●

●●●●●
●

●●●
●●●●●●●●●●●●●●●●●●●●
●

● ●●●●
●●●●●●●●●●

●
●●

●●
●

●
●

●
●●●●●●●●●●●●●●●●●●●

●
●

●
●●●●●●●●●

●
●●

●
●

●●●●
●●●●●●●●

●
●●

●
●●●●

●
●

●
●●●●●●●

●
●●

●●●●●
●

●●●●●●●●●●●●●

●

● ●●
●●●●●●●●●●●●●●●●●●●●●

●●
●

●
●

●●●

●

●●
●●

●

●
●●●●●●●●●●●●●●●●

●●●●●●●●
●

●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●

●

●●●●●●●

●

●●
●

●●●●●●●
●

●●●●●●
●●●●●●

●
●●●●●●

●
●

●●●●●●●●
●●

●

●●
●●●●●

●●● ●● ●●●
●●

●●
●

●●
●

●●●●●●●●●●●●●●

●●

●

●●●●● ●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●● ●●●●●
●

●●
●

●●●
●●●●●●
●●
●

●●
●

●●
●●●●

●
●● ●
●●●

●
●●●●●●●

●●●
●

●
●

●●●●●●●●●●●●●● ●

●

●●●●

●
●

●●●●
●

●
●●

●
●●●●●●●
●●

●
●

●

●
●●

●●●

●
●●

●

●●●●●●●●●
●●●

●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

● ●●
●

●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●
●●●

●●
●●●●●

●
●

●
●

●
●●●

●
●●

●
●●●

●
●●●●●●●●

●
●●
●

●●●●● ●
●

●
●●●●●●●

●
●●●●

●●●
●

●●
●

●●●
●

●●●
●●

●
●●●
●

●
●●
●

●●●
●

●●●●
●●

●●●●●●●●●●
●●
●●

●●
●●●

●●●●●●●
●●

●●●●●●
●

●

●
●

●●●
●●●●●●●●●●●●●
●

●●●●●
●

●

●
●

●●●
●

●

●
●

●●●
● ●●●
●

●●

●●●●●

●

●

●

●
●

●
●●●●
●

●
●

●
●●●

●●●●●●● ●

●

●●
● ●

●

●

●
●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●
●●●●●

●●
●●

●

●
●●

●●● ●
●

●●●●●●● ●●●●●●●●●●●●●●●●●

●

●
●●●●●●●●●●● ●●●●●●●●

●●

●

●●●●●●
●

●
●●●●

●
●●●

●
●

●●●●●●●●●●●●●●●●●●

●

●

●

●●
●

●● ●●●●
●●

●

●
●●●●●

●●
●

●
●●●●●●●●●●●●●●●●
●

●●
●

●●●●

●

●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●
●

●●●
●

●●●●●●●●● ●●
●●●●
●●●●●●●●

●

●●●●● ●
●●●

●
●

●

●
●●●●●●●●● ●●
●

●
●

●●
●

●

●●●●●●
●●●●●
●●●

●
●

●
●●●

●●
●

●●●
●●●●●●●●

●

●●
●●●●●●●

●●●
●

●●●●●●●●
●

●●
●●●●●●●●
●●

●

●●
●

●●●●●●●

●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●

●●
●

●
●●

●●●●●
●

●●
●

●
●

●●●●●●●●●●●●
●

●
●

●
●●●●●●●●●●●

●

●
●●●●●●●●●●●●●

●

●●
●

●●●●●●●
●

●●●●●●
●

●
●

●●
●●●●●●●●●●●●●

●
●

●●●●●●●●●
●●●●●

●●
●●●●●●

●

●●
●

●●●
●●

●●●●●●

●●
●●●●

●
●●●●●●●●●●

●
●●●●●●●●●●
●

●●●
●

●●
●●
●

●

●●
●

●
●

●●●●
●●

●
●

●●
●

●
● ●

●●●●●●●●●●●●
●

●
●

●●
●●●●

●●●
●

●
●●●●
●

●
●●

●●
●

●●●●●●●●●
●

●●●●●●
●

●●●●
●

●●●●●●
●

●
●●●

●

●●●●
●

●
●●

●
●

●
●●●●●●●●●●●
●

●

●
●

●
●●

●
●

●●
●●●●

●
●●●

●
●●

●●●● ●
●

●
●

●●●
●

●

●
● ●

●
●●●●

●●●
●

●●

●

●●●
●

●

●

●●●●●●●●●

●

●●
●●●

●

●●●

●

●

●●●
●

●●●
●

●●●●●●

●

●●●●●● ●●

●

●
●

●●●●

●

●●●●● ●●●●●●●●●●

●
●●●●

●●●●●●
●●●

●

●

●

●●●●●●●●

●

●
●

●●●●●●●●●●●
●

●●●●
●●

●●●
●

●
●●●●

●
●●●●●●●●●

●●
●●●●●●●

●

●
●●

●●
●

●●●●●
●

●

●
●●●●●●●●●

●
●●●●
●

●
●●●
● ●●

●●●●

●
●●●●●●●●●●●●
●

●●●●●●●●●●
●●●●

●●●
●●

●●
●●

●●●●●●●●●●
●●
●

●●●●●●●●●●●●●●●●

●

●
●

●●●●
●●●●●
●●●●

●

●
●

●●
●

●●
●

●●●●●●●
●●●

●●
●●●●●●
●●

●●
●

●
●

●●
●

●●●●
●

●●●●●●●●●

●●

●●●●
●●●●●●

●
●●

●
●●●●●●

●
●

●
●

●

●
●

●●
●

●

●●●●●
●●

●●
●

●
●●●

●
●●

●●●
●

●
●

●
●●●●●●●

●
●●●●●●

●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●
●

●
●

●
●●●

●●●●
●●

●●

●

●
●●

●

●

●
●

●●
●

●●
●

●●●●● ●●
●●●●●●●●

●
●●●●●●
●●●●●●●●●●●●

●●●● ●●
● ●

●

●
●●●●●●●

●
●●●●
●

●

●●●●
●●●
●●

● ● ●●●

●
●

●
●●●●

●●●●

●
●

●●●●●
●

●●●●●
●●●●

●●●●●●●●●

●

●
●●●●●●●● ●●●●●●

●●●●●●●
●●●●

●●●●●●●
●

●●●

●
●

●

●●●●
●

●●●●
●●

●
●●●●●●

●
●

●●●

●
●

●●●
●

●

●

● ●

● ●

●●

●●
●

●●●●●●●●●●●
●

●●●●●●● ●●●●●
●●●●●●●●●

● ●
●●●●●●●

● ●

●

●●●
●●●●

●
●●●●

●
●● ●●●●●●

●
●●●●● ●●●

●
●

●
●●●●●●●●

●
●●●●●●

●
●●●●●●●

●
●

●

●●●●
●●

●

●●●
●

●●●
●●●●●●●●
●●●●●●
●

●●●
●

●●●●
●●●

●

●

●●●●●
●

●●●
●●

●
●●●●●●●

●●●●●●●
●●●

●●
●

●●●●●
●

● ●●●●●●
●●●

●●●
●

●●●●●
●●

●●●●
●

●●
●●●●●●●●●●●

●
●

●●●●●●●●●
●●

●●●●●●●●●
●●

●
●●●

● ●●●●●

●

●
●●●●
●

●
●

●●
●●●●●●●

●●●●
●●●

●●●●●●
●

●●
●

●

●●●●●●
●●●●●

●
●●●●●●

●

●●●●●●●● ●
●●●●●●●●●

●
●●

●●
●●●●●

●●
●●●

●●●●●
●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●
●●●● ●●●●●●

●
●

●●●●●
●●

●●●●

●

●●●●●●●●●●●
●●●●●●●●●●

●
●●●●●

●●●
●

●
●●●●●●●●●●●●●●●●

●●●●
●●

●
●●●●● ●●●●●●●
●●●●●●

●
●●●●●●●

●
●●●

●
●●●●

●●●●●●●●●●
●

●
●

●●●●●●●●●●●●●●

●

●
●●●●●
●

●
●●●●●

●
●

●
●●

●

●
●●●
●

●●●●●●●
●

●●
●

●●
●●●●●●● ●●●●●●●●●●
●

●●●●●
●●●

●●
●●●

●
●●●●●●

●
●●●●●●●●●●●●●●●●●●●

●●●●●●●
●

●
●●

●●●●
●●

●●●●●●●●●●●●
●

●
●

●●●●●●●●●●
●●●●●●

●
●●●●

●●●●●●●● ●●

●

●● ●
●

●
●

●●●●●●
●

●●●
●●●●●●●●●

●
●●●●●●●●●●

●●●●●
●

●●●●
●●

●
●●●●●●●●●●●●●●●●●●

●●● ●●
●

●●●
●

●●●●
●

●●●●
●●●●●

●
●●
●

●
●●

●●●●●●●●●
●●●●
●

●●
●●●

●●
●●●●●
●●●●●
●

●
●

●●●
● ●

●●●●●●●
●●●●●●●●●

●●●●
●●●●●●●●●

●●
●●

●●●●●●●●
●

●
●●●●●●●●●

●
●

●●●● ●●●
●●

●●●●●●●●●●●●●●●
●●●●
●

●●●●●●●●●●●
●●●●●●●●

●
●●

●
●●●●●●●●●●
●●●

●●

●

●
●

●

●●●●●
●●●●●●
●

●●●●●
●●

●●●●
●●●●●●●

●●●●●●●
●●●●●●●●
●

●●●
●

●

●●● ●
●●

●●●
●●●●●●●●●●●●●

●
●●●

●

●●●●●●●●●
●

●●●●●●●●●●
●●

●●●
●

●
●

● ●
●●●●●●

●●●●●●●●
●

●●●●●●
●●●●●●●●●●●●

●
●●

●●●
●

●●●
●

●

●

●●●●
●●●
●●

●●
●●

●
●●●●●
●

●
●●●

●
● ●

●●●●●●●

●
●

● ●●

●

●
●

●●
●

●
●●●●
●

●●●

●●●
●●●●●●●●●●●

●
●●●●●●●

●
●●

●

●
●

●●●●
●

●●●●●●●
●●

●●
●●●

●
●●●●●●●

●
●●●

●●●●●●●●●●
●

●●●●●● ●●●●●●●●●●
●●● ●●

●
●●●●●●●●●●●

●●●●●●●●●●● ●●●●
●●●●●●●●●
●

●●●●●●●●●●

●
●●●

●●● ●●
●

●

●●●●
● ●●

●
●●

● ●●●
●●●●●●●

●
●● ●●●●●●●

●

●

●●●●●
●●●●●●●●●
●

●●●●●●●●
●

●
●

●●●●
●

●
●●●●●●●●●
●●●●
●●●●●●
●

●●
●

●
●

●

●●●●●●●●●●
●

●
●●

●
●

● ●●●●

●

●
●

●●●
●●●●
●●

●
●●●
●●●●●●●●

●

●●●●●●●
●●●●●●●

● ●●
●●●

●
●

●
●●●●

●
●

●●
●

●
●

●
●●●●●●
●●●●●●●

●
●●●●●●
●●●●●●●

●●●●●●●●●
●

●●
●

●
●●●●●

●●●●●
●

●●●
●●

●
●●●●●●●●●●
●

●●●

●

●●●
●●●●●●●
●

●
●

●
●

●●
●●●●

●●
●●●

●
●
●●

●
●

●●●●●
●●●

●

●

●

●●●●●
●●●

●●●
● ●●●

●●●●
●●●
●●●

●
●●

●
● ●

●
●●

●
●●●●

●●
●

●●●●
●

●●●
●●●●

●● ●
●●●●
●●●●●

●●
●●●●●

●
●

●

●●
●

●●●●●●●●●
●

●
●●

●
●

●
●

●

●

●●

●

●
●

●
●●●●●●●●

●
●

●●●●●●●●
●●●●

●

●●
●●●● ●

●●●
●●●
●●
●

●●●●●●●
●

●●●●●●
●●●●●●●●●
●●●●●●●●
●

●●●●●●●● ●●●●●
●●●●●●

●
●●

●●●●●
●●●●●●● ●
●●

●●●●●●●●
●●

●●
●●●●●●●●●● ●●●●●●●
●●

●●●
●●● ●●●●●●●●●●●●●●

●●●● ●●●●
●

●●
●●

●
●●

●●●●
●

●
●

●
●

●●●●●
●

●●●●●●●●●
●●

●

●
●

●

●●●●●●
●● ●●●

●
●●●●

●●

●●●
●

●●●●●●●●●
●

●●
●

●
●●●●●●●●●●
●●●

●
●●●●●●●●●●

●

●
●●●
●●●●●●●●●●●●●●
●●

●
●

●●● ●●●●
●●●●
●●●

●
●●

●
●●

●
●●●●

●●
●●

●●●●●●●●●●●●●●●

●

●
●

●●
●

●
●●

●●●●●
●

●●●
●

●●●
●

●●●●●●●●●●●●●●
●

●
●●●●
●●●●●●●●●●●●●●●●●●

●
●

●
●●●●

●●●●
●●●

●● ●
●●●●●●●●●●

●●
●

●●●●●●●
●●● ●●
●

●
●

●●●
●

●●

●
●●●●●

●

●
●

●
●●●●

●●●●●●●●●●
●

●●●●
●

●●●●
●●●●●●●●●

●●
●●●●

●
●

●
●

●
●●●

●
●

●●●
●●●

●
●●●●

●

●●

●
●

●●
●●

●
●

●
●

●

●

●●●●●●●●
●●

●●●●●●●
●

●●●●●●●●
●●●●●

●

●
●

●

●
●●

●●●
●

●●
●

●●●●●●●●
●

●
●●●●●

●
●●●

●

●●●●●●
●●

●

●●●●●●●●●

●

●
●

●●●●●
●●●
●●●
●

●●●●●●

●
●●●●
●

●●●
●

●●●●●●●●●●●●
●

●●●
●

●●●●

●

●
●●

●

●●●●●●●●●●●●●●●●●
●●

●
●●●
●●

●
●●●●●●
●

●●●●●●●●●●●
●

●
●

●●●●●●●●●●●●●●● ●●●●
●●

●●●●
●

●●●●●●●●●
●

●●●●●●●●●

●

●
●

●●●●
●

●●●
●

●●●●●●●●●●●● ●
●●
●

●●●●
●●●●●●●●●

●
●●●●●●●●●

●
●●●

●●●●●

●

●●●●●
●

●●●
●

●
●

●●●●

●

●●

●

●

●
●●●
●

●●●
●●●●

●●
●●●●●●
●

●●● ●●●●

●
●●●●

●
●●

●
●●

●●
●●●●

●●●●●●●
●●

●

● ●●●●●●●●
●

●

●
●●

●●●●●
●

●●
●●●

●
●●●●●
●

●
●●

●●●●●●●
●●

●

●●
●

●

●

●●●●●●
●●●

●

●

●

●

●●

●

●
●●●●

●

●●
●●

●●●
●●●●●

●●
●●

●
●●●●●●

●
●●●●●●●
●

●

●
●

●●
●●●●

●
●

●
●

●
●●●●●●●
●

●
●●

●●●●
●●

●●●●● ●●●●●
●

●
●

●●●
●●●●

●●●
●●

●●●●●●●●
●●

●●●●●
●●●

●
●

●●
●

●

●

●●

●

●
●●

●

●
●●●

●
●

●●●●
●

●●●
●

●●
●

●●●●●
●●●●

●
●

●
●●●●
●●●

●●●●●●●●●
●●

●●

●
●

●
●

●

● ●
●

●●●●
●●
●

●
●●
●

●

●●

●

●
●

●●●
●●●●●●

●
●●●

●●●●●●●●
●

●
●

●●

●
●●●●

●
●●●

●●●●
●

●●
●●

●
●

●●●
●●

●
●●

●

●

●●
●

●●●●●●
●

●●●●●
●

●●●
●

●●●
●

●
●

●●●●●●●●
●●●●

●●●●●
●●●

●
●●●●●●●●●

●●●●

●
●

●●
●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●

●
●●

●
●●

●
●●

●
●● ●●●●●●●●●●●●●●●●●●●●●

●
●●

●
●●

●
●●●●●●●●●●●●●●●●●●●●●●●

●

●● ●●●
●

●●
●

●●●
●

●● ●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●
●

●●●
●

●●
●

●● ●●
●

●●
●

●●●
●●

●
●●

●
●● ●●● ●●

●
●●● ●●●

●
●●

●●
●

●●●
●

●●
●

●●●●●●●●●●●●●●●
●

●●

●

●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●
●

●●● ●●
●

●● ●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●

●●● ●●●
●

●●
●

●●
●

●●
●

●●
●

●●● ●●●
●

●●●●●●●●●●●● ●●●

●

●●
●

●● ●●●
●

●●

●

●●●●●●●●●●●●●●●●●●●●● ●●●
●

●●●
●

●●
●

●●●●●●●●●●
●

●●●
●

●●●
●

●●
●

●●
●

●●●
●

●●●
●

●●● ●●
●

●●●●●●●●●●●●●●●●
●

●●
●

●●

●
●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●

●
●●

●
●●

●
●●

●●●●●●● ●●●●●●●●●●●●●
●

●●
●

●●
●

●●●
●

●●
●

●●
●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●

●● ●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●

●

●●●

●

●●
●

●●●●●●●●●●●●●●●●●●●●
●

●●●

●

●●● ●●●
●

●●●●●●●●●●●

●

●●●●●●●●
●

●●●

●

●
●

●

●●
●

●

●

●
●

●●●●

●

●●
●

●

●
●

●●
●

●● ●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●

●●●●●●●●● ●●

●

●●●●●●●●●●●●●●●●● ●●● ●
●

●●●
●

●●●●●●●●●●●
●

●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●● ●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●
●

●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

● ●●●●●●●●●●●●●●
●

●●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●

●

●●●
●

●●●
●

●●
●

●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●●●
●

●●●
●

●●●
●

●●●●

●

●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●

●● ●●
●

●●
●

●●●
●

●●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●●●●●●
●●●

●
●●● ●● ●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●

●

●●
●

●●
●

●●● ●●● ●●● ●●
●

●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●
●

●●
●

●●●●●●●●●
●

●●● ●●●
●●●●●●●●●●●●●●●
●

●●●
●

●●●
●

●●●
●

●● ●●● ●●●●●●●●●●●●●●●●●●●● ●●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●
●●

●
●●

●●●● ●●●●● ●●● ●●●● ●●●●●●●●● ●●●
●

●●●●●●●●●●●●●●●●●● ●●● ●●● ●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ● ●
●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●● ●● ●● ●●●●●●●●●●●● ●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●

●
●●●●●●● ●●●● ●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●● ●● ●●● ●●●●●●● ●●●●●●●●●●●●●●●

●
●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●● ●● ●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●

●
●●●●●●●●●●●● ●●●●●●●●

●
● ●●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●

●
●●●●●●●●●●●●●● ●●●● ●
●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●● ●● ●● ●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●● ●● ●●●●● ●● ●●● ●●●●●● ●●●●●●●●●

●
●●●●●●●● ●● ●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●● ●●●●● ●●● ●●●●●●●●●●●● ●●● ●●●●● ●● ●● ●●●● ●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●● ●●●●● ●●●● ●●●● ●● ●●● ●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●● ●

●
●●●●●●●●●●●● ●●●●●● ●●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●● ●● ●● ●●● ●● ●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●● ●●● ●● ●●● ●●●●●●●●● ●●●●●

●
●●●●● ●●●●●●

●●●●●●●●●●●●●●●●●● ●● ●● ●●● ●● ●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●● ●● ●●●●●●●●●●●●● ●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●
●●●●● ●●●●●●●●

●
● ● ●●●●● ●●●●●● ● ●●●●●● ●●●●●●●● ●●●●●●●●● ●●●● ●●●●● ●●●●●●●● ●●●●●●● ●●● ●●●●●● ●●●●● ●●●●● ●●● ●●● ●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●● ●● ●● ●●

●●● ●● ●●●● ●●●●● ●●●●● ●● ●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●● ●● ●●●●●●● ●●●● ●●● ●●●●●● ●●● ●●● ●●●●●●●●●●●●
●

●●●●● ●●●●●●● ●●● ●●● ●● ●●●●●●●● ●●●●●●●● ●●● ●●● ●● ●●●●●● ●●●●● ●●●●● ●●● ● ●●● ●●●●●●● ●●●●●●
●

●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●● ●●● ●● ●●●● ●● ●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●● ●●●●● ●●● ●●●●●●●●●●
●

●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●● ●●●●●●● ●● ●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●● ●● ●●● ●● ●● ●● ●●●● ●● ●
●●●●●●● ●●●● ●●●●●●●

●
●●● ●●● ●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●

●
●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●● ●●●●●● ●●●●● ●●●●

●
● ●●●●●●●●● ●●● ●●●●●●●●● ● ●● ●●●●●● ●●●●●● ●●●●●●●●●●●● ●●● ●●● ●●●●

●
●●● ●●● ●●●●

●
●●●● ●●●●● ●●●●●●● ●● ●●● ●● ●●●●●●●● ●●●●●●●●●●●●● ●●● ●●● ●● ●●●● ●●●●●●

●
●●● ●●●●●●●● ●●●●●●●● ●●●●●●●●●●●● ●● ●●● ●● ●●●●●●●● ●●●● ●●●●●●●●●● ●●●●●●● ● ●
● ●●●● ●●●●●●●●●● ●●● ●●●●●● ●●●●● ●●●●●●●●●●●●● ●●●●●●● ●●●●●●● ●● ●●●●●●●● ●● ●●●●●●●●●● ●● ●●●●●●●●●●● ●●●●●● ●●●●●● ●●●●● ●●●●●● ●●

●
●● ● ●●●● ●●● ●●●●●●●● ●●● ●● ●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●● ●●●●●●●● ●●● ●●●●● ●●● ●●● ●●●● ●●●●●●●●●●●●●● ●●●●● ●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●● ●●●● ●●●●●●●●●●●●●●●●●●●● ●●●● ●● ●●●●● ●●● ●●●●● ●●●●●●●●●●●●●●●●●● ●● ●●●●● ●●● ●●●●●●

●
●●●●●●●●● ●●●●●●● ●● ● ●● ●●● ●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●● ●● ● ●●●●●●●●●●●● ●●●●●● ●●●●●●● ●●●●●●● ●●●●● ●● ●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●● ●● ●●● ●●

●
●●●●●● ●●●●● ●●●●●●●● ●●●●●● ●● ●●●● ● ●
●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●● ●●●●● ●●●●●●●●●● ●●●● ●●●●● ●●●●●●●●● ●●●●●●● ●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●● ●●●●●●● ●● ●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●● ●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●● ●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●● ●●●●● ●●●●●●●●●●●●●● ●● ●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●● ●●●●● ●●● ●●●● ● ●

●●●●●●● ●●●● ●●●●●●●● ●●●●●●● ●●● ●●●●● ●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●● ●●●● ●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●● ●●● ●● ●●●●●●●●●●●● ● ●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●●● ●●●● ●● ●● ●●●●●● ●●● ●●●●●●●●●●●●●●●●● ●●● ●●●●●

●
●●●●●●●●●

●
●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●● ●● ●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●● ●● ●●●●●●●●●●●●● ●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●● ●●●

●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●
●

●●●●●●●●● ●●●●●● ●●● ●●●●●●● ●● ●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●● ●●● ●●●●●●●●● ●● ●●●● ●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●● ●●●
●

●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●● ●●●●● ●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●● ●●●●●●●●●●
●

●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●● ●●● ●●●●●●●●●●●●● ●● ●●●●
●

● ●●●●●●●● ●●●●●●● ●●●●●●●●
●●●● ●●●● ●●●●● ●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●

●●●●●●●●●●●●●●●●● ●●●●●●● ●● ●●●●● ●●●●●● ●●●●●●●●●●●●●●●● ●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●● ●●●●●●● ●●● ●●●●●●●●●●●●● ●●●●● ●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●● ●● ●● ●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●
●

●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●
●

●●●●●●●●●●●
●

●●●●●●●● ●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●● ●●● ●●●●●● ●●●● ●●● ●●●●●●●●●●●●●● ●●●● ●●●●● ●●● ●●●● ●●●●●●●●●●● ●● ●●●●●●● ●●● ●● ●●●●●●●●●●●●●●●●●●●● ●●●●● ● ●
●●●●● ●●●●●● ●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●● ●●●●● ●●●

●●●●●●●●●● ●●●●● ●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●● ●● ● ●● ●●● ●●●●●●●●● ●●● ●● ●●●●●●●

●

●●●●●●●●● ●●● ●● ●●●● ●● ●
●

●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●● ●●●●● ●●●●●
●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●● ●●● ●●● ●●●●●●●●●●●●● ●●●●●●●●●●●● ●●

●

●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●● ●●●● ●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●● ●● ●● ● ●●● ● ●● ●●●●
●●●●●

●
●●●● ●●●●●●●●●●

●
●●● ●●● ●●●●●●●●●●● ●● ●●● ●●●●●●●●● ●●●●●●●●●●●●●● ●● ●●●●●●●●● ●●●●●●●● ●●●●● ●●●●●●

●
●●●●●●●●●

●
●●●●●● ●● ●● ● ●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●● ●●● ●●●●●●●● ●●●●●● ●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●● ● ●●● ●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●● ●●● ●● ●● ●● ●●● ●●●●●●●●● ●●

●
●● ●● ●●●●●● ●● ●●●●●● ●●● ●●●●● ●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●● ●●●●●●●●● ●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●● ●●●●●●● ●●●● ●●●●●●●●●

●

●●●●●●● ●
●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●● ●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●

●
●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●● ●●●●●● ●●●●●●●●●●●● ●●●● ● ●●● ●●●●●●● ●●●● ●●●●●●●●●● ●●●●● ●●●● ●●● ●●●●●●● ●● ●●●●●●● ●●●●● ●●●●●●●● ●●●●●●●●

●
●●●●●●●●● ●●●●●●●●●●●●● ●● ●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●● ●●● ●●●●●●● ●●●●●● ●●● ●●●●● ●●●●● ●●●●● ●● ●● ●
●● ●●●●●●● ●●●●●● ●●● ●●●●●●●● ●● ●●●●●●●●● ●● ●●●●● ●● ●● ●●● ●●● ●●●● ●●●●●● ●●●● ●●●● ●● ●●●●●●● ●●●●●●●● ●● ●●● ●●● ●● ●●●●●●● ● ●●●● ●●●●● ●● ●

●● ● ●●● ●●● ●●
●

● ●●●●●●● ●●●●●●●●●●● ●●●● ●● ●●● ●●● ●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●● ●●●●●●●● ●●●●●●●●●●●●● ●●● ●● ● ●● ●●●● ●● ●●●●●●●●●●● ●●●●●●● ●● ●●●●● ●●●● ●●●● ●●●●●● ●●●●●●● ●●●●● ●● ●
●●●●●●●●●●●●●

●
●●● ●●● ● ●● ●●●●●● ●●●●●●●● ●●●●● ●●●●● ●●●●●●●●●●● ●●●●● ●●●●● ●● ●●●●●●●● ●●●● ●●●●●●●● ●● ●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●● ● ●●●● ●●● ●● ● ●●●●●●●● ●●●●●● ●●● ●●●● ●● ●● ●● ●●●● ●● ●●●●●●

●
●●●●●●●●● ● ●●●● ●● ●●●●●●●●●●●●● ●●● ●●● ●●●●● ●●●●●●●●● ●●●●●● ●● ●● ●●●● ●●● ●●● ●●●● ●●●●● ●● ●●●●●●●●● ●●●●●●●●● ●●●●●● ●●●●●●● ●●●● ●●●● ●●● ●●●●●●●●●●●● ●●●●● ●●●●●● ●●●●●●●●●●●●●●●● ●●● ●●● ●●●●●●●●●●● ●● ●●●●●●●●●●● ●●● ●●● ●●● ●● ●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●● ●●●●●●●●● ●●●●●● ●●●●●● ●●●●●

●

●●●●●●●●● ●●●●●●●●●●●●● ●●●● ●●●●●●● ●●●●●●●●●● ●●●●● ●●●●●●●●● ●●●●●●●●● ●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●● ●● ●●● ●●●● ●●●● ●●●●●●●● ●●●●●●●●●●● ●●●●●●● ●● ●●●●●● ●●●●● ●●●●●●●●●●●● ●●●● ●●●●● ●●●●●●● ●● ●●●●
●

●● ●●● ●●●●● ●●● ●●●●●●●●● ●● ●●●●●●● ●●●●●
●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●● ● ●●● ●●●●● ●●● ●●● ●●● ●●●●●●●●●●● ●●● ●●● ●●●●●●●●●●●●●●●●●● ●●●●

●
●●● ●●●●●● ●●●●●●●● ●●●●● ● ●●●●●●●●●●●● ●●●●● ●●●● ●● ●●● ●●●●● ●●●●●●● ●●● ●● ●●● ●●●● ●●●●●●●●● ●●●●●● ●●●●●●●●● ●●●●●●●●●●●●● ●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ● ●●●● ●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ● ●● ●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●● ●●●●●● ●● ●●●●●●●● ●●●●●●●●●●●●●● ●● ●●●● ●●●● ●●●●●●●●●● ●●●●●●● ●●●●●●●●● ●●● ●●●●●●● ●●●● ●●●● ●●●●●● ●●●● ●●●●● ●●●●●●●●● ●● ●● ●●● ●● ●● ●●●●● ● ●●●●● ●●●●●●● ●●●●●●●●●● ●● ●●●●●● ●●●●●●●● ●● ●●● ●●● ●●●●●●●●● ●●●●● ●●●●●● ●●●●●●●●●●●● ●●●●●●● ●●●● ●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●● ●●● ●●●●● ● ●●●● ●●●●● ●●● ●●●●●●● ●●●●●●●●●●● ●●●●● ●●●●●●●● ●●● ●●●●●●●● ●●●●●●●●●●●●●● ●●●

●
●●●●●●●●●●●●●●●

●
●●●●●●● ●●●●●●●●●●● ●● ●●● ●●

●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●● ●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●● ●●●●●●● ●●●●●●●●●●●
●

●●●●●●●●●●●● ●●●●● ● ●●●●●●●●●●●● ●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●● ●● ●
●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●● ●●●●●● ●● ●
●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●● ●●●●●● ●●●●●●●●●●●●●● ●●●●●● ●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●● ●●●●●●●●●●●●●●●● ● ●●●●● ●●●●●●●● ●●

●
●●●●●●●● ●●●● ●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●●●●●● ●●● ●●●●●●●●●●●●●●●●●●● ●●● ●● ●●●●●●● ●●●●● ●●●●●●●● ●●●●●●●●●

●

●●● ●● ●●●●●●● ●●● ●● ●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●● ●●●●●● ●● ●●●● ●●● ●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●● ●● ● ●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●● ●●●●●●
●

●●●●●● ●●● ●●●●● ●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●● ●●●●●● ●●●●●●●● ●● ●●●●●●●● ●●●●●●●●●●● ●●●●● ●●●●●●● ●●●●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●
●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●
●

●●● ●●● ●●●●●●●●● ●● ●●●●● ●●● ●
●

●●● ●●●●●●●●● ●●●●●●●●● ●●
●

●●●
●●

●●●
●●

●●
●●

●●●● ●●●●●● ●● ●

●
●

●●●● ●●●● ●●●●●●●●●●
●●●●● ●●●●●●●●●●●●●●● ●●●●●●●● ●●●● ●●●

●
●●● ●●●●●●●● ●●●●● ●●●●●●●●●●●● ●●● ●●●●●●● ●●●●●●●●●● ●●●●●●●●●● ● ●●● ●●●●●●● ●● ●●●●●● ●●●● ●●● ●●●●● ●●●●●● ●●● ●●● ●●●●●●●● ●● ●●●● ●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●● ●●●●●●●●●●● ●●●●● ●● ●●●●●●●●●● ●●●●●●●●●●●●● ●●●● ●●●●●●●●●●● ●●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●● ●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●● ●●●●●●●●●● ●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●

●
●●●●●●●●●● ●●● ●● ●●●● ●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●● ●●● ●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●● ●● ●●●●● ●● ●●●● ●●●●●●●●●● ●● ●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●● ●●●● ●●●●●● ●● ●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●● ●●●● ●●● ●●●● ●● ●● ●● ●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●● ●●● ●●●●● ●●● ●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●● ●● ● ●● ●●●●●●●●● ●●●●●●●●● ●●● ●●●● ●●●●● ●●●●●● ●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●● ●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●● ●● ●●●●●● ●● ● ●
●● ●

●● ●●● ●●●●●● ●●●●●●● ●●● ●● ●●●●●●●●●● ● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●

●

●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●● ●●●●●● ●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●● ●●●●●●● ●●●●●●●●● ●●●●●● ●●●● ●●●●●●●●●● ●●●●●●●● ●●● ●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●
●

●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●● ●●●●●●● ●●●●●● ●●●●● ●●●●● ●● ●●●● ●●●●●●●● ●● ●● ●●●●●●●●● ●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●
●

● ●●●●●● ●●●
●

●● ●●●● ●
●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●●

●
●●● ●●●●● ●●●●● ●● ● ●

●●●●●● ●●● ●●●●● ●●● ●●●●●● ●●●● ●●●●●● ●●● ●●●●● ●●● ●●●● ●●●●● ●●●●●●● ●●● ●●●●●●● ●●●● ●●●●●● ●●●●●● ●
●

●●● ●●●●● ●●● ●●● ● ●●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●

●

●●●●● ●●● ●●●● ●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●● ● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●

●

● ●●●●●●●● ●●● ●●●●●●● ●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●

●

●●●●● ●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●● ●●●
●

● ●●●●●
●●●●● ●●
●

● ●●●●●●●● ●●●●●●●●●●●● ●● ●●●●●●● ●●● ●●●●●●●● ●●●●●● ●● ●●●● ●●●●● ●●●●
●

● ●●● ●●● ●●●●●●●●●●●
●● ●●●●● ●●●●● ●● ●● ●●● ●●●●●● ●●● ●●●● ●●●●●● ●

●● ●●●●●●●●●●● ●●●●●● ●● ●
● ●●●● ●●●●●● ● ●● ●●●●●● ●● ●●●●● ●
● ●●●●●● ●●●●●●●●●●● ●●● ●●●●●●● ●●●●●●●●● ●●●● ●

● ●
●●●●● ●

● ●●●●●●● ●●●●●●● ●●●●●●●●●● ● ●●● ●●●●●●●●● ●●●●●●●● ●●●●●●●●●● ●● ●● ●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●● ●●●●●●●● ●●● ●●●● ●●●●● ●●●●●● ●●●●●●●●●● ●● ●●●●●●● ●●●●●● ●●●●●● ●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●● ●●●●●●●●● ●●● ●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●● ● ●●●●●● ● ●● ●● ●● ●●● ●●●●●●●●●●●●●●●●●●
●

●●● ●●● ●● ● ●●●●●● ●● ●●●●●● ●●●●●●●●●●●● ●●●●●●●●● ●●●●● ●●●●●● ●●●●●● ●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●● ●●●●●● ●●●●● ●●● ●●●●●●● ●●● ●●●●●●● ●●●●●●●● ●●● ●●●●●●●●●● ●● ●●●● ●●●● ●●●● ●●● ●●● ●●● ●●●● ●●●●●●●●●●●●●●● ●●● ●●● ● ●●●●●●●●● ●●●●●● ●●●● ●●●●●● ●●●●●● ●●●● ●●●●●●●●●●●● ●●●●●●●●● ●●● ●● ●●●●●● ●●● ●●● ●●●●●● ●●●● ●●●●●●●●● ●●●●● ●● ●●● ●●● ●● ●●●●●●●●●● ●●●● ●●●●●●●●●●●●●● ●●●●●●● ●●● ●●●●●●●●●●●●● ●●●●●●●●● ●●●●● ●● ●● ●●●●● ●●●●● ●●●● ●●●●●●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●● ●●●●●●● ●●●● ●●● ●●●●●● ●●●●●● ● ●●●●● ●● ●● ●●● ●●●● ●● ●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●● ●●●●●●●● ●● ●●● ●●●●●●●●● ●● ●●●●●● ●●●●●●●●●●●●●●●●●● ●●● ●●● ●●●●●●●●●●●● ●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●● ●● ●●● ●●● ●●●●●●●●●●●●●● ●●●●●●● ●● ●●●● ●●●●● ●
●●●●●●●●●●●●●●●●●●●●● ●●● ●●●● ●● ●●●●●●●●●●●

●
●●● ●●●●●●●●● ●● ●● ●●●● ●●●●●●●●●●●●●● ●●●● ●●●●●● ●●●●●●●●●●●● ●● ●● ●● ●●● ●●● ●●●●● ●● ●●●●●● ●● ●●●●●●● ●●●●●●●●●●● ●● ●●●●●●●●●●● ● ●●●●● ●●●●●●●●●● ●● ●●●●●●●●●● ●●●● ●●●●●●● ● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●● ●●●●● ●●●●● ●●●●●●●●●●● ●●●●●●● ●●●●●●● ●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●● ● ●●●●●● ●●●●●●● ●●●● ●●●● ●●●●●●●●●

●

●●●●● ●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●● ●●●●● ● ●
●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●● ●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●● ●●●●● ●● ●● ●● ●●●●●●●● ●●● ●●●●●●●

●
●●●● ●●●● ●●●● ●●●● ●●●●●●● ●●●●●●●●●● ●● ●● ●● ●● ●●●●●●● ●●● ●●●●●●●●● ●●●●●● ●●●●●● ●●● ●●● ●● ●●● ●●● ●●●●● ●● ●● ●● ●●●● ●●● ●●●●● ●●● ●●● ●●● ●●●●●●●●●●●●●●● ●●●

●
●●●●● ●●●●●●●●●● ● ●●●●●●●●●●●●●●●●● ●●●●● ●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●● ●●● ●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●● ●●● ●● ●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●● ● ●●●●●● ● ●●●●●● ●●●●● ●●●●●●●●●●●●●● ●● ●●●●●●● ●●●●●●●● ●●●● ●●●●●● ●● ●●● ●●●● ●●●●●●●●●●●●●●●● ●●●●● ●● ●●●●●● ●● ●●● ● ●●●● ●● ●●●●● ●●● ●●● ●●●● ●● ●●●●● ●● ●●● ●●● ●●●●●●●●● ●● ●●●●● ●●●●●●●●●●●●●● ●●● ●●●●● ●●●●●●●●●●● ●●●●●●●● ●●● ●●●●●●●●●●● ●●●●●● ●●●●●●●● ●● ●●●●●●● ●● ● ●●●●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●

●
●●●● ●● ●●●● ●●●●● ●●● ●●●●●●●●●

●
●●●●●●●● ●●●● ●●●●● ●●●●●● ●●●●●● ●●●●●● ●●●●● ●●●●●●●●●●●●●

●
● ●●● ●●●●●● ● ●●●● ●● ●●●● ●● ●● ●●● ●●● ●●●●●●●●● ●●●●● ●●● ●● ●●●● ● ●●●●●●●●●●● ●●●●●●●● ●●●●● ●●●● ●●●●● ●●● ●●●●●●● ●●● ●●● ●●●●●● ●● ●●●● ●●●●● ●●●●●●●●● ●●●●●●●●●●●●●● ●●● ●● ●●● ●●●●●●●●● ●●●●●●●●●●● ●●● ●●● ●●●●●●● ●●●● ●● ●●● ●●● ●● ●●●● ●●● ●●●●●● ● ●●● ●●●●●●●●● ●●●●●●●● ●●● ●● ●● ●● ●●●●●●●●●●● ●●●●●●●●●●● ●● ●●●●● ●● ●●● ●●● ●●●●●● ●● ●●●● ●●● ●●● ● ●

●● ●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ● ●●● ●● ●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●● ●●●● ● ●●●●●●
●

●●●●●●●● ●●●●●●● ●●●● ●● ●●●●●●●●● ●●●●● ●●●● ●●●● ●● ●●●●●●●● ●●●● ●●●●● ●
●●●● ●●● ●●● ●●●●●●●●●●● ●● ●●● ●●●● ●●●●●●● ●● ●●● ●● ●●●●●●●●●●●●

●
●●● ●●● ●●●●●●

●
●●●●●● ●●●●●●● ●●●●●●●●●●●●●● ● ●●● ●●●●●●●●●● ●●●●●● ●●● ●●●●● ●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●● ●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●

●
● ●●●●●●●● ●●● ●●● ●●●●●●●●● ●●●●●● ●● ●●●●●● ●●●● ●●● ●●●●●● ●●●●●●●●● ●●●●●●

●
●●●●●●●● ●●●●●●●●●●●●● ●●● ●● ●
● ●● ●●●

●

●●●●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●● ●●●
●

●●●●● ●●●●●●●●●●● ●●●●●● ●● ●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●● ●●●●●● ●●● ●●●● ●●●●●●●●●●● ●●●●●●●●● ●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●● ●●●●●● ●●●●●●● ●●● ●●●●●● ●● ●●● ●●●●●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●● ●●●●●●●●●● ●●● ●●●● ●●●● ●●●● ●
●●●●●●●●● ●●●●● ●●● ●●● ● ●●●● ●●●●●
●●●●● ●●●●●●● ●●●● ●●● ●●●●●● ●● ●●●●● ●●● ●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●● ●●●●● ●● ●●●●●●●● ●● ●●●
●

●●●●
●

●●●●●●●●●●●● ●●● ●●●●●
●●●●● ●●
●●●●●●●●●●●● ●●●●●●●

●●● ● ●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●● ●● ●●●●●●●●●●● ●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●● ●●●●●● ●●●● ●●●
●

●●● ●●● ●● ●●● ●●●●● ●●●● ●●●●●●● ●●●●●●●●●●● ●●●●●●● ●● ●●● ●●●●●●●

●

● ● ●●●●●●●●●●●● ●● ●●●●
●

●●●● ●●●●●●●●●●● ●●●● ●●● ●●●●●●●●●● ●●●●●●●●●● ●●●● ●●●●●●●● ●●●●● ●● ●● ●● ●● ●●●● ●●●●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●● ●● ●
● ●●●●●●●●●●●●● ●●● ●●●●● ●●●●●

●
●●●●●●●●●●●●●●●●●●● ●●●●●

●

●
●

●●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●● ●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●● ●●● ●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●
●●●●●●● ●● ●●●●● ●●● ●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●●●●● ●●●●●● ●●● ●● ●●●●●●●●●●●●●●● ●●●● ●●● ●●● ●● ●●● ●●● ●●●●●●●●●● ●●● ●● ●●●●●● ●●●●●●●●● ●●● ●●● ●●●●●●●● ●● ●●●●●●●●●●●●●●●● ●● ● ●●●●● ● ●●●●●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●●● ●● ●●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ● ●●● ●●●●●●●●●●●●●●●●● ●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●● ●●●●
●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●● ●●●●●●●●● ● ●

●●●●●●●●●● ●● ●●● ●●●●●● ●● ●●●●●●●●● ●●●●●●● ●●●●●● ●●● ● ●●●●●●●●●● ●● ●●●●●● ●●● ●●●● ●●●●● ●●●●●●●●● ●● ●●●●●●
●

●● ●●●● ●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●●●

●

● ●●●●
●

●●●● ●●● ●●●●●●●●● ●●●●● ●●●●●●●●●●●●●●●● ●● ●●●● ●●● ●●● ●● ●●●●●● ●● ●●● ●●● ●●●●● ●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●● ●●●●●● ●● ●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●● ●●● ●●●●●● ●●●●●●●●●●● ●●●●● ●● ●●●●●●●● ●●● ●●●●● ●●●●●●●●●●●●●●
●

● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●
●

●● ●● ●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●●●● ●●●●●●●●●● ●●●●●●●●
●

●● ●●●●●●●● ●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●● ●● ●●●●●●●●●●● ●● ●●●●● ●● ●●● ●●●●●●●●●●●●●●● ●●
●

●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●● ●●● ●●●● ●●●●●● ●● ●●● ●●● ●●●● ●●● ●●●● ●●●●●●●● ●●●●● ●●●●●●●●●●●●●●● ● ●●●●● ●●●●●●● ●●● ●●●●●●●● ●● ● ● ●
● ●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●● ●● ●● ●●●●●●●

●
●●● ●●●●●●●●● ●●●●●●●●● ●● ●●●●●●●● ●●●●● ●●●●●● ●●●● ●●●● ●● ●●●● ●●●●●●●● ●●●●● ●● ●●●●●●●●●● ●● ●●●● ●●●●●●●●●● ●●●●●●●● ●● ●●●●● ●●●●●●●●●●●●● ●●●●●● ● ●● ●●●● ●●

●●●●● ● ●●●●●● ●●●●● ●●

●

●●● ●●●● ●● ●● ●●●●●●●●●● ●
●

●● ● ●●
●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●● ●● ●●●●● ●●
●●●●●●● ●●●●●●●●●●●●●●●●●

●
●●●●●●●●●●●● ●●●●●●●● ●● ●●●●●●●● ●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●

●
●

●
●●●●● ●●●● ●● ●● ●●●●●●● ●● ●●● ●●●●● ●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●● ●● ●●●●●●●●●●●● ●●●●●● ●●●● ●● ●●●●●●●●●●● ●●●● ●●●● ●●●●●●● ●●●●● ●●●● ●●●●●●● ●●●●●●●●●●●●

●
●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●●●●●

●
●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●● ●●●●●●●●●●●● ●● ●●●●●●●●●●●●● ●● ●● ●●●●●●●●●●● ●● ●●●●●●●●●●●●● ●●● ●●●●●●●● ●●●●●●● ●● ●●● ●●●●●●●●●●●●● ●● ●●●●●●●●● ●●●●●●●●●●●●●

●
●● ●●●●●● ●●●●●● ●●●●●● ●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●● ●

●

●●●● ●●●●● ●●● ●●● ●● ● ●●●●●●●●●●●●●●●● ●●●●●● ●●● ●● ●●●● ●● ●●●● ●●●●●●●●●● ●●●●●●● ●●●●● ●●●●●●● ●● ●●●
●

●●●● ●●●● ●● ●●●●●●●●●●●●● ●● ● ●●● ●● ●●●●●● ●●●● ●●● ●●●● ●● ● ●●●● ●
●

● ● ●●●●●● ●●● ●●●

●

●●● ●●

●

●●●●●●●●●
●

●●●●●

●

●●●

●
●●●● ●●●● ●●●●●●●

●
●●●●●● ●●

●

●● ●●●●
●●●●●● ●●●●●●●●●● ●●●●● ●●●●●● ●●● ●● ●●●●●●●●● ●● ●●●●●●●●●●●● ●●●●● ●●●●●● ●●●●● ●●●●●●●●●● ●●●●●●●●● ●● ●●●● ●●●●●● ●● ●●●●●●●●●● ●●●●●●● ●●●● ●●●●●● ●●●●●●●●●●●●● ●●●●●●●●●●● ●●●● ●●●●●●● ●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●● ●● ●●●●● ●●●●●●●●● ●● ●●● ●●● ● ●●●●●●● ●●●●● ●●●●●● ●●●● ●● ●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●● ●●● ●●●●●●● ●● ●●

●
● ●●● ● ●
●●●●●●●●●● ●●●● ●●●●●● ●● ●●●●●●●●● ●●●●●●● ●●●●●●●●●

●
●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●● ●●●● ●●●● ● ●●●●● ●●● ●●●●●● ●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●● ●●●● ●●● ● ●●●●●●●●● ●●●●● ●

●
●●●● ●●●●●● ● ●●● ●● ●●●●●●●●● ●●●●●●●● ●●●●● ●●●● ●●●●●●●●●

●●●●●●●●●● ●●●●●● ●●●●●●● ●●●●●●●●●●● ●●●● ●● ●
●●●●● ●●●● ●●●●●●●●● ●●●●● ●●●●● ●●

●
● ●

● ●
●●

●● ●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●● ● ●●●●●●●●● ●
●

●●●●●●●● ●●●●●●● ●●●●●● ●●●●●● ●●● ●● ●●●●●●●●● ●●●●●●● ●●●●●●●● ●● ●●●●●●● ●●●●● ●●● ●●●●●●●● ●●●●●● ●●●● ●●●●●●●●● ●●●●●● ●●●●●●● ●●●●●●●●●●●●●● ●●●●● ●●●●●● ●● ●●●●●●●●●●●● ●●●●●● ●●●●●● ●●● ●●●●●●●●●●● ●● ●●●●●●●●● ●●●●●●●●●●● ●●● ●●●● ●●●●● ●● ●●●● ●● ●●●●●●●●●●●●●● ●●● ●●●●●● ●●● ● ●
●●●●●●●●●●●●●●●●●● ●●●●●●●●● ●●●●●●●●●● ●●● ●●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●● ●●●●●● ●●●●●●● ●●●●●● ●●●●●●●●●●●● ●●●●●●●●●● ●●●●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●● ●●●●●●●●●●●●● ●●●●●●●● ●●●● ●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●● ●● ●●●●●●● ●●●●● ●●● ●●● ●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●● ●●● ●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●● ●●●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●● ●●

●
●● ●● ●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●● ●● ●●●●● ●●●● ●●●●●●●●●● ●●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●● ●● ●●●● ● ●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●● ●●●●●●●●●●● ●● ●●●● ●●●●●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●

●
●● ●●●●●● ●●●●●●●●●●●● ●●●●●●●●●●●●● ●●●●●●● ●●●●●●●● ●●●●● ●●●● ●●● ●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●● ●●●●●●●●●●● ●● ●●●● ●● ● ●●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●●●●● ●●●●●●●●●● ●●●● ●●●●●●● ●●●●● ● ●

●●●●●●● ●●● ●● ●● ●●● ●●●●●●● ●●●●●● ●●●●●●●●●●● ●●●●●●●● ●●● ●● ●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●●● ●●● ●●●●●● ●●● ●●● ●●● ●●●●●●● ●●● ●●●●●●● ●
●

●●●●● ●●●●●●●●● ●●●●●●●●● ●● ●●●●● ●● ●●●●●●●●● ●●●●●●●●●●●●● ●● ● ●●●●●●●●●●● ●●●●● ●● ●●●● ●● ●●●● ●●●● ●●●●●● ●●●●●●●● ●●●●●●●●●●●●●●● ● ●●●●● ●● ●●●●● ●● ●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●●●●● ●●● ●● ●●●●●●●●●● ●●●● ●●● ●●●●●●●●●● ●●●●

●

●●●●●●●●●●● ●● ●● ●●●●●● ●●●●● ●●●● ●● ●●●●●●●● ●● ●●●●●●●●● ●●● ● ●●●●●●● ●●● ●●●●●● ●● ●●●● ●●●●● ●● ●●●●● ●●●● ●●●● ●● ●●●●●●●●●● ●●●●●●● ●●
●

●● ●●●●●●●●●● ●● ●●● ●● ●● ●●● ●● ● ●●●●●●●●● ●●●●●●●●●● ●●●● ●●●●●●● ●●●● ●●● ●● ●●●●●●●● ●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●● ●●● ●●●●●●●●●●●● ●●● ●●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●● ●●●●●● ●●●●●●●●●●●●●● ●●●● ●●●● ●●●●●● ●●●●●● ●● ●● ●●●●●●●●●●●●●●●● ●●● ●● ●●●●●●●●● ●●● ●●●●● ●●●●● ●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●● ●●● ●●●●●●●●●●●●●●●●● ●●●● ●●●● ●●●● ●●●●●● ●●● ●●●●●●● ●●●●●●●●●●●●●●●●● ●●● ●●● ●●● ●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●● ●●●●●●●●● ●●●●●●●●●●● ●● ●●●●●●●● ●●● ●● ●● ●●●● ●●● ●●●●●●
●

● ●● ●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●● ●●●●●● ●● ●● ●●●● ●● ●●●●●● ●●●●●
●

●● ●●●● ●●● ●● ●●
●

●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●
●

●● ●● ●●●●● ●●● ●●●●●●●●● ●● ●●●●● ●●●●
●●●●●●● ●● ●●●●●●●●●● ●● ●●●●●●●●● ●●●●●●●●●● ●●●●● ●●●● ●●●●●●●●●●●●●●●●● ●●●●●

●

●●●
●●●●●●●●●●●●●●●●●● ●● ●●●● ●●●●●●●●●●●●●●●●●●●●●● ● ●●●●●●●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●● ●●●●●●●●●●

●

●● ●●●● ●●●● ●●●●●●●●●●●●● ●●●● ●●●● ●●●●●●●●● ●●●●●●●●●●●●●● ●●●●●
●

●●●●● ●●●● ●● ●●●●● ●●● ●● ●●●● ●●●● ●●●● ●●●●●●●●●●●● ●●●● ●●●●● ●●● ●●● ●●●●●● ●●●●●●●●●
●

● ●●●●●●●●●
●●●● ●●●●●● ●●●●● ●●●●●●●● ●●●●●●●●● ●● ●●● ●● ●●●●●●● ●●●● ●●

●
●●

●
●●●●● ●●●●● ●●●●●●●● ●●●● ●●●●●●● ●●●●●●●●●● ●●●●●●●●● ●●● ●●●●●●●● ●● ●●●●●● ●● ●●●●● ●●●●●●●●●●● ●●●● ●●● ●●●●●●●●●● ●●●●●●●●●● ●● ●● ●● ●●● ●● ●●

●
● ●●●● ●●●●● ●●●● ●●● ●●●●●● ●●●● ●●● ●●●●●●●●●●●●●●●● ●●●● ●●●●

●
● ●● ●●●●●●● ●●●● ●●● ●●●●●● ●●●●●●● ●●●●●●●●●●● ●● ●●● ●●●●● ●●●● ●●●●●●● ●●● ●●●● ●●● ●●● ●●● ●●●●●●●●●●●●● ●●●● ●●●● ●● ●●●●●●●●● ●●●●●●●●●●●● ●●●●●●●●●● ●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●● ●●● ●●● ●●● ●●● ●●●●●●●●●●●●●●●●●●●●● ●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●

●
●● ●●● ●●● ●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●●● ●● ●●

●
●● ●●● ●●● ●● ●● ●●● ●●● ●● ●● ●●● ●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●● ●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●● ●●● ●●● ●●● ●● ●●● ●●●●●●●●●●●●● ●●● ●●● ●●● ●●● ●●● ●●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●●● ●●●●●●●●●●● ●● ●●● ●●● ●● ●● ●●● ●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●● ●●● ●●●●●●● ●●●●●●●●●●●●● ●●● ●●● ●●● ●●● ●●● ●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●● ●●

●
●● ●●●●●●●●●●●●●●●●●●●●● ●●

●
●●● ●●● ●●●●●●●●●●●● ●●●●●●●●● ●●●●

●

●
●

●

●●
●

●

●

●
●

●●●●

●

●●
●

●

● ●●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●
●

● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●
●

●●●●●●●●● ●●
●

●●●●●●●●●●●●●●●●● ●●● ● ●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●● ●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●● ●●● ●● ●● ●● ●● ●● ●● ●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●● ●● ●● ●● ●●●●●
●

●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●● ●● ●●● ●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●●●●●●●●●●●●●●●●● ●●● ●● ●● ●●● ●●● ●●● ●●● ●● ●●● ●●● ●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●● ●● ●●● ●●●●●●●●●●●●●●● ●● ●● ●● ●●● ●●● ●●●●●●●●●●●●●●●●●●●● ●●●● ●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●

L = 1000 L = 10000

L = 40 L = 108

0 100 200 300 0 100 200 300

0

250

500

750

1000

1250

0

250

500

750

1000

1250

Number of Transcripts)

N
um

be
r

of
 S

eg
m

en
ts

(hg38 genome)

Figure 6 Number of transcripts vs. number of segments, per gene, for both fruit fly (left) and
human (right) genomes, with different values of L (40, 108, 1000, 10,000). The figure shows how a
fitted line (solid blue) compares to the identity line (dotted black).

differential splicing detection for count yij of segment i, sample j:

log2 yij = b0 + δc(j)× (2δt(i)− 1)× b1 + δt(i)× b2

with

δc(j) =
{

1, if j is case
0, o.w.

δt(i) =
{

1, if i is inclusion
0, o.w.

Parameter b0 models the expected log counts for exclusion segment in control samples,
and parameter b2 models expected log counts for the inclusion segment in control samples.
With this, parameter b1 corresponds to the log-odds ratio for the Percent Spliced In (PSI)
statistic frequently used for alternative splicing analysis. Denoting Ψ0 and Ψ1 as the PSI
values for case and control respectively, b1 = 1/2 log2 (Ψ1

1−Ψ1
/ Ψ0

1−Ψ0
). This model is similar

to the DEXSeq model [1], modified to accomodate inclusion/exclusion counts at the single
event level.

Preliminary Results. We tested this model over the synthetically generated data for both
genomes (using the Limma-voom R Package [11, 7]) using the segments library generated
by Yanagi with different values of the parameter L. The preliminary results shown here
considers exon skipping events that involve only one inclusion transcript and one exclusion
transcript, just to obtain a reasonable level of stability. In addition, only transcripts of high
enough expression levels are considered, i.e. the two transcripts have a combined TPM value
of 1. Similar constraints is advised in previous analysis [12, 14].

Figure 7 shows ROC plots for sensitivity and specificity measures, for each genome. As a
reference, we applied the same linear model on the transcripts’ true TPMs provided while
preparing the dataset. In principle, the prediction based on the true transcript expression
levels (TPMs) would give an upper bound performance, given the particular setting of this
synthetic dataset and the provided linear model. Figure 7 shows that using our segments
library with the proposed workflow, and using the suitable value of L, gives promising results
in detecting differential splicing events (Table 2 shows the AUC values). A suitable value
of L would be a value corresponds to the read length of the data, as discussed earlier in
Definition 2. While using lower value of L intensely shreds the reference into segments shorter

M.K. Gunady, S. Cornwell, S.M. Mount, and H. Corrada Bravo 10:11

Table 1 Running time (seconds) and memory usage (gigabytes) by Yanagi to generate segment
library for fruit fly (Dm6) and human (Hg38) genomes, for both the preprocessing and segmentation
steps. Time for the preprocessing step does not include the time to load the FASTA and GTF files.
Most of the memory usage is from loading the input data in both steps. Running on a 6-core 2.1 GHz
AMD processor, using single-threaded processes. The lower half shows the time and memory usage
for running Rapmap’s quasi-mapping using the segments library and the the full transcriptome, to
quantify samples of 40M paired-end reads, each of length 101bp.

Dm6 Hg38

time(s) memory(GB) time(s) memory(GB)

Preprocessing 13 0.9 112 1.5
Segmentation

L=40 20 0.4 248 1.3
L=108 20 0.4 250 1.3

L=1000 20 0.4 228 1.3
L=10000 8.5 0.4 77 1.3

Rapmap Indexing (4 Threads)
L=108 103 0.8 420 2.6

Txs 121 1.1 480 3.7
Rapmap Quantification (8 Threads)

L=108 236 0.7 220 2.1
Txs 292 1.2 416 3.1

Table 2 AUC values for the ROC curves in Figure 7 for both fruit fly and human genomes.
Including the AUC value when using the transcripts’ true TPM, besides AUC values from applying
the linear model to the generated segments counts using different values of L.

Tx.TPM Seg.Counts

L = 40 L = 108 L = 1000 L = 10000

Dm3 0.912 0.762 0.889 0.824 0.760
Hg37 0.916 0.706 0.881 0.754 0.727

than the reads which hurts the quantification step, using higher values rather increases the
portion of unnecessary overlap between the generated segments, leading to higher rates of
multi-mapped reads.

The results also shows that the segmentation approach gives slightly better performance
in the fruit fly case. That matches the fact that the fly transcriptome structure is much
simpler than the human transcriptome. Besides, the sequences in the fruit fly are more
unique with no allele repeats as the case with the human genome. That makes the counts in
the quantification step more stable for the differential analysis.

4 Discussion and Conclusion

In this paper we introduce Yanagi, an efficient tool that creates disjoint segments of refer-
ence transcriptomes amenable for quantification of RNA-seq reads using pseudo-alignment
techniques. We have formalized the notion of transcriptome segmentation, and proposed an
efficient algorithm for constructing L-disjoint, max-spanning segments. We report on the

WABI 2017

10:12 Yanagi: Transcript Segment Library Construction for RNA-Seq Quantification

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

Tx.TPM Sg.Cnts L=40 Sg.Cnts L=108

Sg.Cnts L=1000 Sg.Cnts L=10000

(dm3 genome)

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

False positive rate

Tr
ue

 p
os

iti
ve

 r
at

e

Tx.TPM Sg.Cnts L=40 Sg.Cnts L=108

Sg.Cnts L=1000 Sg.Cnts L=10000

(hg37 genome)

Figure 7 ROC plots for differential alternative splicing (exon skipping events), for both fruit
fly (left) and human (right) genomes. ROC curves are included for: transcript-level quantification,
besides segment-level quantification using different values of the parameter L.

characteristics of segment libraries in Drosophila melanogaster and Homo sapiens, and use
the resulting segments in a use case of differential analysis of exon skipping events across
samples in two conditions of interest.

Although it may appear that the discussed Yanagi-based workflow can perform quantifica-
tion only for the annotated transcripts, the workflow can be extended to discover unannotated
transcripts. An unannotated junction can be detected during the segment quantification
stage by relaxing the restriction of accepting alignments of a pair of reads only if the pair of
segments belong to at least one annotated transcript. When this restriction is relaxed, an
unannotated junction can be detected when reads show enough evidence of that junction.
I.e. when a segment pair that has no transcripts in common has high enough count.

Finally, the issues of paralogs and intersecting genes are not tackled in the scope of this
paper. However, it is clear that there is no extra alignment complexity added due to these
issues over the transcriptme-based alignment. Consequently, the occurrence of multi-mapping
resulting from such cases also remains the same as the transcriptome-based quantification.
So a warranted extension to the current approach of Yanagi is to consider distinct genes that
share identical exonic regions of length greater than L altogether.

The concept of transcriptome segmentation, and a tool that can build a segments library,
opens the door for more extended analysis than just the use case mentioned in this paper.
For instance, segment counts can serve as statistics into algorithms for differential isoform
usage analysis, for which existing pseudo-alignment methods are commonly used. Moreover,
segment level quantification can provide much more flexible opportunities for analysis
including quantification of RNA editing or other non splicing variations. Currently we are
exploring the possibility of utilizing the concept of segmentation into the problem of variant
calling.

Acknowledgements. We want to thank Julien Buchbinder for preliminary work in transcript
segmentation.

References
1 Simon Anders, Alejandro Reyes, and Wolfgang Huber. Detecting differential usage of exons

from RNA-seq data. Genome research, 22(10):2008–2017, 2012.

M.K. Gunady, S. Cornwell, S.M. Mount, and H. Corrada Bravo 10:13

2 Nicolas L. Bray, Harold Pimentel, Páll Melsted, and Lior Pachter. Near-optimal probabil-
istic RNA-seq quantification. Nature biotechnology, 34(5):525–527, 2016.

3 Brian J. Haas, Arthur L. Delcher, Stephen M. Mount, Jennifer R. Wortman, Roger K.
Smith Jr., Linda I. Hannick, Rama Maiti, Catherine M. Ronning, Douglas B. Rusch, Chris-
topher D. Town, et al. Improving the arabidopsis genome annotation using maximal tran-
script alignment assemblies. Nucleic acids research, 31(19):5654–5666, 2003.

4 Steffen Heber, Max Alekseyev, Sing-Hoi Sze, Haixu Tang, and Pavel A. Pevzner. Splicing
graphs and EST assembly problem. Bioinformatics, 18(suppl_1):S181, 2002.

5 Daehwan Kim, Geo Pertea, Cole Trapnell, Harold Pimentel, Ryan Kelley, and Steven L.
Salzberg. TopHat2: accurate alignment of transcriptomes in the presence of insertions,
deletions and gene fusions. Genome biology, 14(4):R36, 2013.

6 Ben Langmead and Steven L. Salzberg. Fast gapped-read alignment with Bowtie 2. Nature
methods, 9(4):357–359, 2012.

7 Charity W. Law, Yunshun Chen, Wei Shi, and Gordon K. Smyth. Voom: precision weights
unlock linear model analysis tools for RNA-seq read counts. Genome biology, 15(2):R29,
2014.

8 Bo Li and Colin N. Dewey. RSEM: accurate transcript quantification from RNA-Seq data
with or without a reference genome. BMC bioinformatics, 12(1):323, 2011.

9 Rob Patro, Geet Duggal, Michael I. Love, Rafael A Irizarry, and Carl Kingsford. Salmon
provides fast and bias-aware quantification of transcript expression. Nature Methods, 2017.

10 Rob Patro, Stephen M. Mount, and Carl Kingsford. Sailfish enables alignment-free isoform
quantification from RNA-seq reads using lightweight algorithms. Nature biotechnology,
32(5):462–464, May 2014.

11 Gordon K. Smyth et al. Linear models and empirical bayes methods for assessing differential
expression in microarray experiments. Stat Appl Genet Mol Biol, 3(1):3, 2004.

12 Charlotte Soneson, Katarina L. Matthes, Malgorzata Nowicka, Charity W. Law, and
Mark D. Robinson. Isoform prefiltering improves performance of count-based methods
for analysis of differential transcript usage. Genome biology, 17(1):12, 2016.

13 Avi Srivastava, Hirak Sarkar, Nitish Gupta, and Rob Patro. RapMap: a rapid, sensitive and
accurate tool for mapping RNA-seq reads to transcriptomes. Bioinformatics, 32(12):i192,
2016.

14 Mingxiang Teng, Michael I. Love, Carrie A. Davis, Sarah Djebali, Alexander Dobin,
Brenton R. Graveley, Sheng Li, Christopher E. Mason, Sara Olson, Dmitri Pervouchine,
et al. A benchmark for RNA-seq quantification pipelines. Genome biology, 17(1):74, 2016.

15 Hagen Tilgner, Fereshteh Jahanbani, Tim Blauwkamp, Ali Moshrefi, Erich Jaeger, Feng
Chen, Itamar Harel, Carlos D. Bustamante, Morten Rasmussen, and Michael P. Snyder.
Comprehensive transcriptome analysis using synthetic long-read sequencing reveals molecu-
lar co-association of distant splicing events. Nature biotechnology, 33(7):736–742, 2015.

16 Cole Trapnell, Lior Pachter, and Steven L. Salzberg. TopHat: discovering splice junctions
with RNA-Seq. Bioinformatics, 25(9):1105–1111, 2009.

17 Cole Trapnell, Brian A Williams, Geo Pertea, Ali Mortazavi, Gordon Kwan, Marijke J.
Van Baren, Steven L. Salzberg, Barbara J. Wold, and Lior Pachter. Transcript assembly and
quantification by RNA-Seq reveals unannotated transcripts and isoform switching during
cell differentiation. Nature biotechnology, 28(5):511–515, 2010.

18 Jorge Vaquero-Garcia, Alejandro Barrera, Matthew R. Gazzara, Juan Gonzalez-Vallinas,
Nicholas F. Lahens, John B. Hogenesch, Kristen W. Lynch, Yoseph Barash, and Juan
Valcárcel. A new view of transcriptome complexity and regulation through the lens of local
splicing variations. eLife, 5:e11752+, February 2016.

19 S. Lawrence Zipursky, Woj M. Wojtowicz, and Daisuke Hattori. Got diversity? wiring the
fly brain with dscam. Trends in biochemical sciences, 31(10):581–588, 2006.

WABI 2017

10:14 Yanagi: Transcript Segment Library Construction for RNA-Seq Quantification

A Transcriptome Segmentation Algorithm

Algorithm 1 Yanagi’s Segments Library Generation
Require: Transcriptome Annotation (GTF File), Transcripts Sequences (FASTA Files)
1: TxDB ← makeTxDBFromGTFFile . Preprocessing Step
2: DExs← disjoinExons(TxDB)
3: TxDB ← adjustTxDB(TxDB,DExs)
Step 2 – Segment Graph Construction
4: procedure CONSTRUCT_SEG_GRAPH(TxDB, g, L) . SgG of gene g
5: G← emptygraph

6: St← φ

7: prev ← DUMMY_NODE
8: for each Tx ∈ T xDB(g) do . For each transcript in gene g
9: loc← start(Tx)

10: while loc < end(Tx) do . Iterate till the end of transcript
11: gr ← GenomicRange(Tx, loc, loc+ L)
12: Exs← exons[TxDB(gr)]
13: w, locnew ← refine_node(Exs, loc, L) . Node refinement step
14: node← getOrCreateNode(G,< Exs, loc, w >)
15: Txs(node)← Txs(node) + Tx

16: Next(prev)← Next(prev) + node . Make an edge
17: if Txs(prev) 6= Txs(node) then . Mark branches in graph
18: for each n ∈ Next(prev) do
19: St← St+ n

20: prev ← node . Advance loop
21: loc← locnew

22: return G,St . The SgG of gene g

Step 3 – Segments Library Generation
23: procedure GENERATE_SEGMENTS(G,St)
24: for each node ∈ St do . Iterate over branching points in G
25: seg ← newsegment . Initialize a new segment
26: seg.appendNode(node)
27: while |Next(node)| = 1 do . Aggregating chain of nodes into the segment
28: node← Next(node)
29: seg.appendNode(node)
30: outputSegment(seg)

Shrinkage Clustering: A Fast and
Size-Constrained Algorithm for Biomedical
Applications∗

Chenyue W. Hu1, Hanyang Li2, and Amina A. Qutub3

1 Department of Bioengineering, Rice University, Houston, TX, USA
2 Department of Bioengineering, Rice University, Houston, TX, USA
3 Department of Bioengineering, Rice University, Houston, TX, USA

aminaq@rice.edu

Abstract
Motivation: Many common clustering algorithms require a two-step process that limits their
efficiency. The algorithms need to be performed repetitively and need to be implemented together
with a model selection criterion, in order to determine both the number of clusters present in the
data and the corresponding cluster memberships. As biomedical datasets increase in size and
prevalence, there is a growing need for new methods that are more convenient to implement and
are more computationally efficient. In addition, it is often essential to obtain clusters of sufficient
sample size to make the clustering result meaningful and interpretable for subsequent analysis.
Results: We introduce Shrinkage Clustering, a novel clustering algorithm based on matrix fac-
torization that simultaneously finds the optimal number of clusters while partitioning the data.
We report its performances across multiple simulated and actual datasets, and demonstrate its
strength in accuracy and speed in application to subtyping cancer and brain tissues. In addition,
the algorithm offers a straightforward solution to clustering with cluster size constraints. Given
its ease of implementation, computing efficiency and extensible structure, we believe Shrinkage
Clustering can be applied broadly to solve biomedical clustering tasks especially when dealing
with large datasets.

1998 ACM Subject Classification I.5.3 Clustering

Keywords and phrases Clustering, Matrix Factorization, Cancer Subtyping, Gene Expression

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.11

1 Introduction

Cluster analysis is one of the most frequently used unsupervised machine learning methods
in biomedicine. The task of clustering is to automatically uncover the natural groupings of a
set of objects based on some known similarity relationships. Often employed as a first step
in a series of biomedical data analyses, cluster analysis helps to identify distinct patterns
in data and suggest classification of objects (e.g. genes, cells, tissue samples, patients) that
are functionally similar or related. Typical applications of clustering include subtyping
cancer based on gene expression levels [31], classifying protein subfamilies based on sequence
similarities [5], distinguishing cell phenotypes based on morphological imaging metrics [26],
and identifying disease phenotypes based on physiological and clinical information [22].

∗ This research was funded in part by NSF CAREER 1150645 and NIH R01 GM106027 grants to A.A.Q.,
and a HHMI Med-into-Grad fellowship to C.W. Hu.

© Chenyue W. Hu, Hanyang Li, and Amina A. Qutub;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 11; pp. 11:1–11:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.WABI.2017.11
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

11:2 Shrinkage Clustering: A Fast and Size-Constrained Algorithm

Many algorithms have been developed over the years for cluster analysis [32], including
hierarchical approaches [11] (e.g., ward-linkage, single-linkage) and partitional approaches that
are centroid-based (e.g., K-means [15]), density-based (e.g., DBSCAN [7]), distribution-based
(e.g., Gaussian mixture models [19]), or graph-based (e.g., Normalized Cut [25]). Notably,
nonnegative matrix factorization (NMF) has received a lot of attention in application to
cluster analysis, because of its ability to solve challenging pattern recognition problems and
the flexibility of its framework [14]. NMF-based methods have been shown to be equivalent
to a relaxed K-means clustering and Normalized Cut spectral clustering with particular
cost functions [6], and NMF-based algorithms have been successfully applied to clustering
biomedical data [4].

With few exceptions, most clustering algorithms group objects into a pre-determined
number of clusters, and do not inherently look for the number of clusters in the data.
Therefore, cluster evaluation measures are often employed and are coupled with clustering
algorithms to select the optimal clustering solution from a series of solutions with varied
cluster numbers. Commonly used model selection methods for clustering, which vary in
cluster quality assessment criteria and sampling procedures, include Silhouette [24], X-means
[23], Gap Statistic [29], Consensus Clustering [20], Stability Selection [13], and Progeny
Clustering [10]. The drawbacks of coupling cluster evaluation with clustering algorithms
include (i) computation burden, since the clustering needs to be performed with various
cluster numbers and sometimes multiple times to assess the solution’s stability; and (ii)
implementation burden, since the integration can be laborious if algorithms are programmed
in different languages or are available on different platforms.

Here, we propose a novel clustering algorithm Shrinkage Clustering based on symmetric
nonnegative matrix factorization notions [12]. Specifically, we utilize unique properties of a
hard clustering assignment matrix to simplify the matrix factorization problem and to design
a fast algorithm that accomplishes the two tasks of determining the optimal cluster number
and performing clustering in one. The Shrinkage Clustering algorithm is mathematically
straightforward, computationally efficient, and structurally flexible. In addition, the flexible
framework of the algorithm allows us to extend it to clustering applications with minimum
cluster size constraints.

2 Methods

2.1 Problem Formulation
Let X = {X1, . . . , XN} be a finite set of N objects. The task of cluster analysis is to group
objects that are similar to each other and separate those that are dissimilar to each other.
The completion of a clustering task can be broken down to two steps: (i) deriving similarity
relationships among all objects (e.g., Euclidean distance); (ii) clustering objects based on
these relationships. The first step is sometimes omitted when the similarity relationships
are directly provided as raw data, for example in the case of clustering genes based on
their sequence similarities. Here, we assume that the similarity relationships were already
derived and are available in the form of a similarity matrix SN×N , where Sij ∈ [0, 1] and
Sij = Sji. In the similarity matrix, a larger Sij represents more resemblance in pattern or
closer proximity in space between Xi and Xj , and vice versa.

Suppose AN×K is a clustering solution for objects with similarity relationships SN×N .
Since we are only considering the case of hard clustering, we have Aik ∈ {0, 1} and

∑K
k=1Aik =

1. Specifically, K is the number of clusters obtained, and Aik takes the value of 1 if Xi

belongs to cluster k and takes the value of 0 if it does not. The product of A and its transpose

C.W. Hu, H. Li, and A. A. Qutub 11:3

AT represents a solution-based similarity relationship Ŝ (i.e. Ŝ = AAT), in which Ŝij takes
the value of 1 when Xi and Xj are in the same cluster and 0 otherwise. Unlike Sij which
can take continuous values between 0 and 1, Ŝij is a binary representation of the similarity
relationships indicated by the clustering solution. If a clustering solution is optimal, the
solution-based similarity matrix Ŝ should be similar to the original similarity matrix S if not
equal.

Based on this intuition, we formulate the clustering task mathematically as

min
A

‖S −AAT ‖F

subject to Aik ∈ {0, 1},
K∑

k=1
Aik = 1,

N∑
i=1

Aik 6= 0 .
(1)

The goal of clustering is therefore to find an optimal cluster assignment matrix A, which
represents similarity relationships that best approximate the similarity matrix S derived
from the data. The task of clustering is transformed into a matrix factorization problem,
which can be readily solved by existing algorithms. However, most matrix factorization
algorithms are generic (not tailored to solving special cases like Function 1), and are therefore
computationally expensive.

2.2 Properties and Rationale
In this section, we explore some special properties of the objective Function 1 that lay
the ground for Shrinkage Clustering. Unlike traditional matrix factorization problems, the
solution A we are trying to obtain has special properties, i.e. Aik ∈ {0, 1} and

∑K
k=1Aik = 1.

This binary property of A greatly simplifies the objective Function 1 as below.

min
A
‖S −AAT ‖F

= min
A

N∑
i=1

N∑
j=1

(Sij −Ai •Aj)2

= min
A

N∑
i=1

(
∑

j∈{j|Ai=Aj}

(Sij − 1)2 +
∑

j∈{j|Ai 6=Aj}

S2
ij)

= min
A

N∑
i=1

∑
j∈{j|Ai=Aj}

(1− 2Sij) +
N∑

i=1

N∑
j=1

S2
ij

Here, Ai represents the ith row of A, and the symbol • denotes the inner product of two
vectors. Note that Ai • Aj take binary values of either 0 or 1, because Aik ∈ {0, 1} and∑K

k=1Aik = 1. In addition,
∑N

i=1
∑N

j=1 S
2
ij is a constant that does not depend on the

clustering solution A. Based on this simplification, we can reformulate the clustering problem
as

min
A
f(A) =

N∑
i=1

∑
j∈{j|Ai=Aj}

(1− 2Sij). (2)

Let’s now consider how the value of the objective Function 2 changes when we change
the cluster membership of an object Xi. Suppose we start with a clustering solution A, in
which Xi belongs to cluster k (Aik = 1). When we change the cluster membership of Xi

from k to k′ with the rest remaining the same, we would obtain a new clustering solution A′,

WABI 2017

11:4 Shrinkage Clustering: A Fast and Size-Constrained Algorithm

in which A′ik′ = 1 and A′ik = 0. Since S is symmetric (i.e. Sij = Sji), the value change of the
objective Function 2 is

4fi := f(A′)− f(A)

=
∑
j∈k′

(1− 2Sij)−
∑
j∈k

(1− 2Sij) +
∑
j∈k′

(1− 2Sji)−
∑
j∈k

(1− 2Sji)

= 2(
∑
j∈k′

(1− 2Sij)−
∑
j∈k

(1− 2Sij)) .

(3)

2.3 Shrinkage Clustering: Base Algorithm
Based on the simplified objective Function 2 and its properties with cluster changes (Func-
tion 3), we designed a greedy algorithm Shrinkage Clustering to rapidly look for a clustering
solution A that factorizes a given similarity matrix S. As described in Algorithm 1, Shrinkage
Clustering begins by randomly assigning objects to a sufficiently large number of initial
clusters. During each iteration, the algorithm first removes any empty clusters generated
from the previous iteration, a step that gradually shrinks the number of clusters; then it
permutes the cluster membership of the object that most minimizes the objective function.
The algorithm stops when the solution converges (i.e. no cluster membership permutation
can further minimize the objective function), or when a pre-specified maximum number of
iterations is reached. Shrinkage Clustering is guaranteed to converge to a local optimum as
shown in Theorem 1. The main and advantageous feature of Shrinkage Clustering is that it
shrinks the number of clusters while finding the clustering solution. During the process of
permuting cluster memberships to minimize the objective function, clusters automatically
collapse and become empty until the optimization process is stabilized and the optimal
cluster memberships are found. The number of clusters remaining in the end is the optimal
number of clusters, since it stabilizes the final solution. Therefore, Shrinkage Clustering
achieves both tasks of (i) finding the optimal number of clusters and (ii) finding the clustering
memberships.

I Theorem 1. Shrinkage Clustering monotonically converges to a (local) optimum.

Proof. We first demonstrate the monotonically decreasing property of the objective Function 2
in each iteration of the algorithm. There are two steps taken in each iteration: (i) removal of
empty clusters; and (ii) permutation of cluster memberships. Step (i) does not change the
value of the objective function, because the objective function only depends on non-empty
clusters. On the other hand, step (ii) always lowers the objective function, since a cluster
membership permutation is chosen based on its ability to achieve the greatest minimization
of the objective function. Combing step (i) and (ii), it is obvious that the value of the
objective function monotonically decreases with each iteration. Since ‖S − AAT ‖F ≥ 0
and ‖S −AAT ‖F =

∑N
i=1

∑
j∈{j|Ai=Aj}(1− 2Sij) +

∑N
i=1

∑N
j=1 S

2
ij , the objective function

has a lower bound of −
∑N

i=1
∑N

j=1 S
2
ij . Therefore, a convergence to a (local) optimum is

guaranteed, because the algorithm is monotonically decreasing with a lower bound. J

2.4 Shrinkage Clustering with Cluster Size Constraints
It is well-known that K-means can generate empty clusters when clustering high-dimensional
data with over 20 clusters, and Hierarchical Clustering often generate tiny clusters with few
samples. In practice, clusters of too small a size can sometimes be full of outliers, and they
are often not preferred in cluster interpretation since most statistical tests do not apply to

C.W. Hu, H. Li, and A. A. Qutub 11:5

Algorithm 1 Shrinkage Clustering: Base Algorithm
Input: SN×N (similarity matrix)

K0 (intial number of clusters)
Initialization:
a. Generate a random AN×K0 (cluster assignment matrix)
b. Compute S̃ = 1− 2S
repeat
1. Remove empty clusters:

(a) Delete empty columns in A (i.e. {j|
∑N

i=1Aij = 0})
2. Permute the cluster membership that minimizes Function 2 the most:

(a) Compute M = S̃A

(b) Compute v by vi = min
j
Mij −

∑K
j=1(M ◦A)ij , where

◦ represents the element-wise product (Hadamard product)
(c) Find the object X̄ with the greatest optimization potential,

i.e. X̄ = arg min
i
vi

(d) Permute the membership of X̄ to C ′, where C ′ = arg min
j
MX̄j

until
∑N

i=1 vi = 0 or reaching max number of iterations
Output: A (cluster assignment)

Algorithm 2 Shrinkage Clustering with Cluster Size Constraints
Additional Input: ω (minimum cluster size).
Updated Step 1:
(a) Remove columns in A that contain too few objects, i.e. {j|

∑N
i=1Aij < ω}

(b) Reassign objects in these clusters to clusters with the greatest minimization

small sample sizes. Though extensions to K-means were proposed to solve this issue [3],
the attempt to control cluster sizes has not been easy. In contrast, the flexibility and the
structure of Shrinkage Clustering offers a straightforward and rapid solution to enforcing
constraints on cluster sizes. To generate a clustering solution with each cluster containing at
least ω objects, we can simply modify Step 1 of the iteration loop in Algorithm 1. Instead of
removing empty clusters in the beginning of each iteration, we now remove clusters of sizes
smaller than a pre-specified size ω. The base algorithm (Algorithm 1) can be viewed as a
special case of w = 0 in the size-constrained Shrinkage Clustering algorithm.

3 Results

3.1 Experiments on Similarity Data
3.1.1 Testing with Simulated Similarity Matrices
We first use simulated similarity matrices to test the performance of Shrinkage Clustering
and to examine its sensitivity to the initial parameters and noise. As a proof of concept,
we generate a similarity matrix S directly from a known cluster assignment matrix A by
S = AAT . Here, the cluster assignment matrix A100×5 is randomly generated to consist
of 100 objects grouped into 5 clusters with unequal cluster sizes (i.e. 15, 17, 20, 24 and
24 respectively). The similarity matrix S100×100 generated from the product of A and AT

therefore represents an ideal case, where there is no noise, since each entry of S only takes a
binary value of either 0 or 1.

WABI 2017

11:6 Shrinkage Clustering: A Fast and Size-Constrained Algorithm

Table 1 Clustering results of simulated similarity matrices with varying size constraints (ω),
where C is the cluster generated by Shrinkage Clustering.

True Label ω = 0 ω = 20 ω = 25
C1 C2 C3 C4 C5 C1 C2 C3 C4 C1 C2

Cluster 1 0 0 24 0 0 0 24 0 0 0 24
Cluster 2 15 0 0 0 0 15 0 0 0 15 0
Cluster 3 0 0 0 24 0 0 0 24 0 0 24
Cluster 4 0 17 0 0 0 17 0 0 0 17 0
Cluster 5 0 0 0 0 20 0 0 0 20 20 0

We apply Shrinkage Clustering to this simulated similarity matrix S with 20 initial
random clusters and repeat the algorithm for 1000 times. Each run, the algorithm accurately
generates 5 clusters with cluster assignments Ã in perfect match with the true cluster
assignments A (an example shown in Table 1 under ω = 0), demonstrating the algorithm’s
ability to perfectly recover the cluster assignments in a non-noisy scenario. The shrinkage
paths of the first 5 runs (Figure 1A) illustrate that most runs start around a number of 20
clusters, and all of them shrink down gradually to a final number of 5 clusters when the
solution reaches an optimum. We then test whether the algorithm is sensitive to the initial
number of clusters (K0) by running it with K0 ranging from 5 (true number of clusters)
to 100 (maximum number of clusters). In each case, the true cluster structure is recovered
perfectly, demonstrating the robustness of the algorithm to different initial cluster numbers.
The shrinkage paths in Figure 1B clearly show that in spite of starting with various initial
numbers of clusters, all paths converge to the same number of clusters at the end.

Next, we investigate the effects of size constraints on Shrinkage Clustering’s performance
by varying ω from 1 to 5, 10, 20 and 25. The algorithm is repeated 50 times in each case.
We find that as long as ω is smaller than the true minimum cluster size (i.e. 15), the size
constrained algorithm can perfectly recover the true cluster assignments A in the same way
as the base algorithm. Once ω exceeds the true minimum cluster size, clusters are forced to
merge and therefore result in a smaller number of clusters (example clustering solutions of
ω = 20 and ω = 25 shown in Table 1). In these cases, it is impossible to find the true cluster
structure because the algorithm starts off with fewer clusters than the true number of clusters
and it works uni-directionally (i.e. only shrinks). Besides enabling supervision on the cluster
sizes, size-constrained Shrinkage Clustering is also computationally advantageous. Figure 1C
shows that a larger ω results in fewer iterations needed for the algorithm to converge, and the
effect reaches a plateau once ω reaches certain sizes (e.g. ω = 10 in this case). The shrinkage
paths (Figure 1D) show that it is the reduced number of iterations at the beginning of a run
that speeds up the entire process of solution finding when ω is large.

In reality, it is rare to find a perfectly binary similarity matrix similar to what we
generated from a known cluster assignment matrix. There is always a certain degree of
noise clouding our observations. To investigate how much noise the algorithm can tolerate
in the data, we add a layer of Gaussian noise over the simulated similarity matrix. Since
Sij ∈ {0, 1}, we create a new similarity matrix SN containing noise defined by

SN = { |ε| if Sij = 0
1− |ε| if Sij = 1 ,

where ε ∼ N(0, σ2). Figure 1E illustrates the changes of the similarity distribution density
as the standard deviation σ varies from 0 to 0.5. When σ = 0 (i.e. no noise), SN is

C.W. Hu, H. Li, and A. A. Qutub 11:7

0

20

40

60

0 25 50 75 100
Iterations

C

lu
st

er
s

#Cluster
5
10
20
50
100

0

5

10

15

20

0 5 10 15 20
Iterations

C

lu
st

er
s

Min Size
1
2
3
4
5
10
15
20
25

●

●

●

●

●

●
● ●

●

5

10

15

20

0 5 10 15 20 25
Minimum Cluster Size

Ite

ra
tio

ns

0

3

6

9

12

0.00 0.25 0.50 0.75 1.00
Similarity

D
en
si
ty

SD
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5

● ● ● ● ● ● ● ● ●

●

●0

25

50

75

100

0.0 0.1 0.2 0.3 0.4 0.5
Noise SD

Tr
ue

 C
lu

st
er

 R
ec

ov
er

y
(%

)

5

10

15

20

0 25 50 75 100
Iterations

C

lu
st

er
s

A B C

D E F

Figure 1 Testing results on simulated similarity data: (A) The first 5 shrinkage paths from
running base algorithm with different initiations. (B) Example shrinkage paths with varying initial
cluster numbers of 5, 10, 20, 50 and 100. (C) The average number of iterations spent with ω taking
values of 1 to 5, 10, 15, 20 and 25. (D) Example shrinkage paths for ω of 1 to 5, 10, 15, 20 and 25
(path of ω = 10 is in overlap with ω = 15). (E) The similarity distribution for ε from 0 to 0.5. (F)
The probability of successfully recovering the underlying cluster structure against different noise
levels.

Bernoulli distributed. As σ becomes larger and larger, the bimodal shape is flattened by
noise. When σ = 0.5, approximately 32% of the similarity relationships are reversed, and
hence observations have been perturbed too much to infer the underlying cluster structure.
The performances of Shrinkage Clustering in these noisy conditions are shown in Figure 1F.
The algorithm proves to be quite robust against noise, as the true cluster structure is 100%
recovered in all conditions except for when σ > 0.4.

3.1.2 Biological Case Study: TCGA Dataset

To illustrate the performance of Shrinkage Clustering on real biological similarity data, we
apply the algorithm to subtyping tumors from the Cancer Genome Atlas (TCGA) dataset [27].
Derived from the TCGA database, the dataset includes 293 samples from 3 types of cancers,
which are Breast Invasive Carcinoma (BRCA, 207 samples), Glioblastoma Multiforme (GBM,
67 samples) and Lung Squamous Cell Carcinoma (LUSC, 19 samples). The data is presented
in the form of a similarity matrix, which integrates information from the gene expression
levels, DNA methylation and copy number aberration. Since the similarity scores from the
TCGA dataset are in general skew to 1, we first normalize the data by shifting its mean
around 0.5 and by bounding values that are greater than 1 and smaller than 0 to 1 and 0
respectively. We then perform Shrinkage Clustering to cluster the cancer samples, the result
of which is shown in comparison to the true cancer types (Table 2). We can see that the
algorithm generates three clusters, successfully predicting the true number of cancer types
contained in the data. The clustering assignments also demonstrate high accuracy, as the
majority of samples are correctly clustered with samples of the same type.

WABI 2017

11:8 Shrinkage Clustering: A Fast and Size-Constrained Algorithm

Table 2 Clustering results of the TCGA dataset, where the clustering assignments from Shrinkage
Clustering are compared against the three known tumor types.

Cluster 1 Cluster 2 Cluster 3
BRCA 3 204 0
GBM 0 0 67
LUSC 17 2 0

Table 3 Performances of Shrinkage Clustering on Simulated, Iris and Wine data, where the
clustering assignments are compared against the three simulated centers, three Iris species and three
wine types respectively.

Simulated Iris Wine
Center C1 C2 C3 Species C1 C2 Type C1 C2 C3
(−2, 2) 0 49 1 setosa 50 0 1 0 59 0
(−2, −2) 0 1 49 versicolor 0 50 2 59 6 0
(2, 0) 50 0 0 virginica 0 50 3 0 6 48

3.2 Experiments on Feature-based Data

3.2.1 Testing with Simulated and Standardized Data

Since similarity matrices are not always available in most clustering applications, we now
test the performance of Shrinkage Clustering using feature-based data that does not directly
provide the similarity information between objects. To run Shrinkage Clustering, we first
convert the data to a similarity matrix using S = exp(−(D(X)/βσ)2), where [D(X)]ij
is the Euclidean distance between Xi and Xj , σ is the standard deviation of D(X), and
β = E(D(X)2)/σ2. The same conversion method is used for all datasets in the rest of this
paper.

As a proof of concept, we first generate a simulated three-cluster two-dimensional data
set by sampling 50 points for each cluster from bivariate normal distributions with a
common identity covariance matrix around centers at (−2, 2), (−2, 2) and (0, 2) respectively.
The clustering result from Shrinkage Clustering is shown in Table 3, where the algorithm
successfully determines the existence of 3 clusters in the data and obtains a clustering solution
with high accuracy.

Next, we test the performance of Shrinkage Clustering using two real data sets, the Iris
[8] and the wine data [1], both of which are frequently used to test clustering algorithms;
and they can be downloaded from the University of California Irvine (UCI) machine learning
repository [2]. The clustering results from Shrinkage Clustering for both datasets are shown
in Table 3, where the clustering assignments are compared to the true cluster memberships
of the Iris and the wine samples respectively. In application to the wine data, Shrinkage
Clustering successfully identifies a correct number of 3 wine types and produces highly
accurate cluster memberships. For the Iris data, though the algorithm generates two instead
of three clusters, the result is acceptable because the species versicolor and virginica are
known to be hardly distinguishable given the features collected.

C.W. Hu, H. Li, and A. A. Qutub 11:9

Table 4 Clustering Accuracy Comparison of the seven algorithms based on NMI (Normalized
Mutual Information), Rand Index, F1 score and K (the optimal cluster number).

Type Metric Shrinkage Spectral K-means Hierarchical PAM DBSCAN Affinity

BCWD

NMI 0.50 0.29 0.46 0.09 0.50 0.29 0.27
Rand 0.77 0.68 0.75 0.55 0.77 0.64 0.52
F1 0.80 0.69 0.79 0.69 0.80 0.72 0.22

K (2) 2 2 2 2 2 3 21

AIBT

NMI 0.56 0.20 0.58 0.17 0.54 0.31 0.40
Rand 0.79 0.68 0.80 0.37 0.78 0.64 0.76
F1 0.61 0.39 0.62 0.40 0.59 0.43 0.26

K (4) 4 4 4 4 4 5 31

3.2.2 Biological Case Study 1: Breast Cancer Wisconsin Diagnostic
(BCWD)

The BCWD dataset [28, 17] contains 569 breast cancer samples (357 benign and 212
malignant) with 30 characteristic features computed from a digitized image of a fine needle
aspirate (FNA) of a breast mass. The dataset is available on the UCI machine learning
repository [2] and is one of the most popularly tested dataset for clustering and classification.
Here, we apply Shrinkage Clustering to the data and compare its performance against six
commonly used clustering methods: Spectral Clustering [33], K-means [15], Hierarchical
Clustering [11] (Ward’s method [30]), PAM [16], DBSCAN [7] and Affinity Propagation [9].
Since K-means, Spectral Clustering, Hierarchical Clustering and PAM do not inherently
determine the optimal cluster number and require the cluster number as an input, we first
run these algorithms with cluster numbers from 2 to 10, and then use the mean Silhouette
width as the criterion to select the optimal cluster number. The accuracy of all clustering
solutions is evaluated using four metrics: Normalized Mutual Information (NMI) [18], Rand
Index [18], F1 score [18], and the optimal cluster number (K).

The performance results (Table 4) show that Shrinkage Clustering correctly predicts
a 2 cluster structure from the data and generates the clustering assignments with high
accuracy. Notably, Shrinkage Clustering is the only algorithm that correctly estimates the
optimal cluster number among the three algorithms (together with DBSCAN and Affinity
Propagation) that inherently determine cluster numbers. When comparing the cluster
assignments against the true cluster memberships, we can see that Shrinkage Clustering is
one of the two best performers (with PAM) across all accuracy metrics.

3.2.3 Biological Case Study 2: Allen Institute Brain Tissue (AIBT)

The AIBT dataset [21] contains RNA sequencing data of 377 samples from four types of
brain tissues, i.e. 99 samples of temporal cortex, 91 samples of parietal cortex, 93 samples of
cortical white matter, and 94 samples hippocampus isolated by macro-dissection. For each
sample, the expression levels of 50282 genes are included as features, and each feature is
normalized to have a mean of 0 and a standard deviation of 1 prior to testing. In contrast to
the previous case study, the AIBT data is much larger in size with significantly more features
being measured. Therefore, this would be a great example to test both the accuracy and the
speed of clustering algorithms in face of greater data sizes and higher dimensions.

Similar to the previous case study, we apply Shrinkage Clustering and the six commonly
used clustering algorithms to the data, and use mean Silhouette width to select the optimal

WABI 2017

11:10 Shrinkage Clustering: A Fast and Size-Constrained Algorithm

Figure 2 Computation time of all clustering algorithms in application to the AIBT data.

cluster number for algorithms that do not inherently determine the cluster number. The
performances of all seven algorithms measured across the four accuracy metrics (i.e. NMI,
Rand, F1, K) are shown in Table 4. Among the three algorithms with built-in cluster number
determination, Shrinkage Clustering is the only algorithm that accurately predicts a 4 cluster
structure, whereas DBSCAN and Affinity Propagation both over-estimate the total number
of clusters present in the data. In addition, Shrinkage Clustering is the second best performer
among all seven algorithms in terms of clustering quality, with comparable accuracy to the
top performer (K-means).

Next, we record and compare the speed of the seven algorithms for clustering the data.
The speed comparison results, shown in Figure 2, demonstrate the unparalleled speed of
Shrinkage Clustering compared to the rest of the algorithms. Shrinkage Clustering is twice
as fast as DBSCAN and Affinity Propagation, and it is faster than Hierachical, PAM and
K-means by more than 20 times. In particular, the same data that takes Shrinkage Clustering
only 73 seconds to cluster can take Spectral clustering more than 20 hours.

4 Discussion

From the biological case studies, we showed that Shrinkage Clustering is computationally
advantageous in speed with high clustering accuracy comparable to the best performers of
the six commonly used clustering algorithms. This advantage in speed mainly comes from
the fact that Shrinkage Clustering integrates the clustering of the data and the determination
of the optimal cluster number into one seamless process, so the algorithm only needs to run
once in order to complete the clustering task. In contrast, algorithms like K-means, PAM
and Spectral Clustering perform clustering on a single cluster number basis, therefore they
need to be repeatedly run for all cluster numbers of interest before a clustering evaluation
method can be applied. Notably, the clustering evaluation method Silhouette that we used
in this experiment does not perform any repetitive clustering validation and therefore is
a much faster method compared to other commonly used methods that require repetitive
validation [10]. This means that Shrinkage Clustering would have an even greater advantage
in computation speed compared to the methods tested in this paper if we use a cluster
evaluation method that has a repetitive nature (e.g. Consensus Clustering, Gap Statistics,
Stability Selection).

One prominent feature of Shrinkage Clustering is its flexibility to solve semi-supervised
clustering problems, i.e. its ability to add constraints to the minimum cluster size. The size
constraints can help prevent generating empty or tiny clusters (which are often observed in
Hierarchical Clustering and sometimes in K-means applications), and can produce clusters of
sufficiently large sample sizes as required by the user. This is particularly useful when we
need to perform subsequent statistical analyses based on the clustering solution, since clusters

C.W. Hu, H. Li, and A. A. Qutub 11:11

of too small a size can make a statistical testing infeasible. For example, one application of
cluster analysis in clinical studies is identifying subpopulations of cancer patients based on
their gene expression levels, which is usually followed with a survival analysis to determine
the prognostic value of the gene expression patterns. In this case, clusters that contain too
few patients can hardly generate any significant or meaningful patient outcome comparison.
In addition, it is difficult to take actions based on tiny patient clusters (e.g. in the context of
designing clinical trials), since these clusters are hard to validate.

In summary, we developed a new NMF-based clustering method, Shrinkage Clustering,
which shrinks the number of clusters to an optimum while simultaneously optimizing the
cluster memberships. The algorithm performed with high accuracy on both simulated and
actual data, exhibited excellent robustness to noise, and demonstrated superior speeds
compared to some of the commonly used algorithms. The base algorithm has also been
extended to accommodate requirements on minimum cluster sizes, which can be particularly
beneficial to clinical studies and the general biomedical community. The size-constrained
extension also illustrates the flexibility of the Shrinkage Clustering algorithm framework and
the ease of adapting it towards semi-supervised learning tasks. Interesting future research
directions include exploring Shrinkage Clustering’s capability to deal with missing data or
incomplete similarity matrices, as well as extending the algorithm to handle semi-supervised
clustering tasks with must-link and cannot-link constraints.

References
1 S. Aeberhard, D. Coomans, and O. De Vel. Comparison of classifiers in high dimensional

settings. Dept. Math. Statist., James Cook Univ., North Queensland, Australia, Tech. Rep,
(92-02), 1992.

2 Arthur Asuncion and David Newman. Uci machine learning repository, 2007.
3 P. S. Bradley, K.P. Bennett, and Ayhan Demiriz. Constrained k-means clustering. Microsoft

Research, Redmond, pages 1–8, 2000.
4 Jean-Philippe Brunet, Pablo Tamayo, Todd R. Golub, and Jill P. Mesirov. Metagenes

and molecular pattern discovery using matrix factorization. Proceedings of the national
academy of sciences, 101(12):4164–4169, 2004.

5 Elisa Boari de Lima, Wagner Meira Júnior, and Raquel Cardoso de Melo-Minardi. Isofunc-
tional protein subfamily detection using data integration and spectral clustering. PLoS
Comput Biol, 12(6):e1005001, 2016.

6 Chris Ding, Xiaofeng He, and Horst D. Simon. On the equivalence of nonnegative ma-
trix factorization and spectral clustering. In Proceedings of the 2005 SIAM International
Conference on Data Mining, pages 606–610. SIAM, 2005.

7 Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In KDD, volume 96, pages
226–231, 1996.

8 Ronald A. Fisher. The use of multiple measurements in taxonomic problems. Annals of
eugenics, 7(2):179–188, 1936.

9 Brendan J. Frey and Delbert Dueck. Clustering by passing messages between data points.
science, 315(5814):972–976, 2007.

10 Chenyue W. Hu, Steven M. Kornblau, John H. Slater, and Amina A. Qutub. Progeny
clustering: A method to identify biological phenotypes. Scientific reports, 5, 2015.

11 Stephen C. Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–254, 1967.
12 Da Kuang, Chris Ding, and Haesun Park. Symmetric nonnegative matrix factorization for

graph clustering. In Proceedings of the 2012 SIAM international conference on data mining,
pages 106–117. SIAM, 2012.

WABI 2017

11:12 Shrinkage Clustering: A Fast and Size-Constrained Algorithm

13 Tilman Lange, Volker Roth, Mikio L. Braun, and Joachim M. Buhmann. Stability-based
validation of clustering solutions. Neural computation, 16(6):1299–1323, 2004.

14 Tao Li and Chris H.Q. Ding. Nonnegative matrix factorizations for clustering: A survey.,
2013.

15 James MacQueen et al. Some methods for classification and analysis of multivariate ob-
servations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and
probability, volume 1, pages 281–297. California, USA, 1967.

16 Martin Maechler, Peter Rousseeuw, Anja Struyf, Mia Hubert, and Kurt Hornik. Cluster:
cluster analysis basics and extensions. R package version, 1(2):56, 2012.

17 Olvi L Mangasarian, W. Nick Street, and William H. Wolberg. Breast cancer diagnosis
and prognosis via linear programming. Operations Research, 43(4):570–577, 1995.

18 Christopher D. Manning, Prabhakar Raghavan, Hinrich Schütze, et al. Introduction to
information retrieval, volume 1. Cambridge University Press, 2008.

19 Geoffrey J. McLachlan and Kaye E. Basford. Mixture models. inference and applications
to clustering. Statistics: Textbooks and Monographs, New York: Dekker, 1988, 1, 1988.

20 Stefano Monti, Pablo Tamayo, Jill Mesirov, and Todd Golub. Consensus clustering: a
resampling-based method for class discovery and visualization of gene expression microarray
data. Machine learning, 52(1-2):91–118, 2003.

21 Thomas J. Montine, Joshua A. Sonnen, Kathleen S. Montine, Paul K. Crane, and Eric B.
Larson. Adult changes in thought study: dementia is an individually varying convergent
syndrome with prevalent clinically silent diseases that may be modified by some commonly
used therapeutics. Current Alzheimer Research, 9(6):718–723, 2012.

22 Wendy C. Moore, Deborah A. Meyers, Sally E. Wenzel, W. Gerald Teague, Huashi Li, Xing-
nan Li, Ralph D’Agostino Jr., Mario Castro, Douglas Curran-Everett, Anne M. Fitzpatrick,
et al. Identification of asthma phenotypes using cluster analysis in the severe asthma re-
search program. American journal of respiratory and critical care medicine, 181(4):315–323,
2010.

23 Dan Pelleg, Andrew W. Moore, et al. X-means: Extending K-means with Efficient Estima-
tion of the Number of Clusters. In ICML, pages 727–734, 2000.

24 Peter J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and validation of
cluster analysis. Journal of computational and applied mathematics, 20:53–65, 1987.

25 Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 22(8):888–905, 2000.

26 John H Slater, James C. Culver, Byron L. Long, Chenyue W. Hu, Jingzhe Hu, Taylor F
Birk, Amina A. Qutub, Mary E. Dickinson, and Jennifer L. West. Recapitulation and
modulation of the cellular architecture of a user-chosen cell of interest using cell-derived,
biomimetic patterning. ACS nano, 9(6):6128–6138, 2015.

27 Nora Speicher and Thomas Lengauer. Towards the identification of cancer subtypes by in-
tegrative clustering of molecular data. PhD thesis, Universität des Saarlandes Saarbrücken,
2012.

28 W. Nick Street, William H. Wolberg, and Olvi L. Mangasarian. Nuclear feature extrac-
tion for breast tumor diagnosis. In IS&T/SPIE’s Symposium on Electronic Imaging:
Science and Technology, pages 861–870. International Society for Optics and Photonics,
1993.

29 Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the number of clusters
in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 63(2):411–423, 2001.

30 Joe H. Ward Jr. Hierarchical grouping to optimize an objective function. Journal of the
American statistical association, 58(301):236–244, 1963.

C.W. Hu, H. Li, and A. A. Qutub 11:13

31 Pratyaksha Wirapati, Christos Sotiriou, Susanne Kunkel, Pierre Farmer, Sylvain Prader-
vand, Benjamin Haibe-Kains, Christine Desmedt, Michail Ignatiadis, Thierry Sengstag,
Frédéric Schütz, et al. Meta-analysis of gene expression profiles in breast cancer: toward a
unified understanding of breast cancer subtyping and prognosis signatures. Breast Cancer
Research, 10(4):R65, 2008.

32 Christian Wiwie, Jan Baumbach, and Richard Röttger. Comparing the performance of
biomedical clustering methods. Nature Methods, 12(11):1033–1038, 2015.

33 Achim Zeileis, Kurt Hornik, Alex Smola, and Alexandros Karatzoglou. kernlab-an S4
package for kernel methods in R. Journal of statistical software, 11(9):1–20, 2004.

WABI 2017

Sparsification Enables Predicting Kissing Hairpin
Pseudoknot Structures of Long RNAs in Practice
Hosna Jabbari1, Ian Wark1, Carlo Montemagno1, and
Sebastian Will4

1 Ingenuity Lab, Department of Chemical and Materials Engineering, University
of Alberta, Edmonton, AB, Canada

2 Ingenuity Lab, Department of Chemical and Materials Engineering, University
of Alberta, Edmonton, AB, Canada

3 Ingenuity Lab, Department of Chemical and Materials Engineering, University
of Alberta, Edmonton, AB, Canada

4 Theoretical Biochemistry Group (TBI), Institute for Theoretical Chemistry,
University of Vienna, Vienna, Austria
will@tbi.univie.ac.at

Abstract
While computational RNA secondary structure prediction is an important tool in RNA research,
it is still fundamentally limited to pseudoknot-free structures (or at best very simple pseudoknots)
in practice. Here, we make the prediction of complex pseudoknots – including kissing hairpin
structures – practically applicable by reducing the originally high space consumption. For this
aim, we apply the technique of sparsification and other space-saving modifications to the recur-
rences of the pseudoknot prediction algorithm by Chen, Condon and Jabbari (CCJ algorithm).
Thus, the theoretical space complexity of free energy minimization is reduced to Θ(n3 + Z), in
the sequence length n and the number of non-optimally decomposable fragments (“candidates”)
Z. The sparsified CCJ algorithm, sparseCCJ, is presented in detail. Moreover, we provide and
compare three generations of CCJ implementations, which continuously improve the space re-
quirements: the original CCJ implementation, our first modified implementation, and our final
sparsified implementation. The two latest implementations implement the established HotKnots
DP09 energy model. In our experiments, using 244GB of RAM, the original CCJ implementation
failed to handle sequences longer than 195 bases; sparseCCJ handles our pseudoknot data set
(up to about length 400 bases) in this space limit. All three CCJ implementations are available
at https://github.com/HosnaJabbari/CCJ.

1998 ACM Subject Classification J.3 Life and Medical Sciences

Keywords and phrases RNA, secondary structure prediction, pseudoknots, space efficiency, spar-
sification

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.12

1 Introduction

Computational RNA secondary structure prediction has become an indispensable tool in
the research on non-coding RNAs. Such RNAs perform essential roles – most prominently
in regulating gene expression – in all kingdoms of live, in many cases mediated by their
three-dimensional structures [10]. Despite the ubiquity of pseudoknots in these RNAs, most
often only pseudoknot-free structure prediction methods are applied in biological research
– severely limiting the practical capabilities to correctly predict, recognize and compare
pseudoknotted structures.

© Hosna Jabbari, Ian Wark, Carlo Montemagno, and Sebastian Will;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 12; pp. 12:1–12:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://github.com/HosnaJabbari/CCJ
http://dx.doi.org/10.4230/LIPIcs.WABI.2017.12
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

12:2 Sparsification of Kissing Hairpin Pseudoknot RNA Structure Prediction

A B C

Figure 1 Examples of TGB and CCJ structures. Each arc represents a band of base pairs, which
cross other bands. (A) TGB structure with two left, two right, and four middle bands; (B) TGB
with nested substructure; (C) CCJ structure composed of two TGB structures (see decomposition
of P).

The fundamental cause of this limitation is the computational complexity of pseudoknot
prediction – an NP-hard problem [1, 7, 8]. Thus, the high complexity of pseudoknot prediction
can be overcome only by either heuristics without optimality-guarantees or restrictions on
the predictable pseudoknot class. In comparison, predicting minimum free energy (MFE)
structures without pseudoknots is easy (due to tree-like dependencies): a pseudoknot-free
secondary structure is either closed by a base pair connecting the first and last base in the
sequence, or can be partitioned into two independent substructures on a prefix and suffix
of the sequence, where energies of substructures add up to the total energy. As a result of
the simple decomposition scheme, the MFE pseudoknot-free secondary structure prediction
problem is solved by dynamic programming in Θ(n3) time and Θ(n2) space for standard
energy loop models [12].

The most general dynamic programming algorithm for MFE prediction of pseudoknotted
structures, Pknots, was proposed by Rivas and Eddy [14]. Pknots is a complex dynamic
programming algorithm with time complexity of Θ(n6), and space complexity of Θ(n4). There
are algorithms for predicting MFE pseudoknotted secondary structures that run in Θ(n5)
time and Θ(n4) space [18, 8]. These algorithms handle a severely limited class compared to
the Rivas and Eddy’s algorithm. All can handle H-type pseudoknots, and some can handle
kissing hairpin structures when these do not have arbitrary nested substructures [18]. There
are also some algorithms that run in Θ(n4) time [13, 8]; these handle classes of structures
that are even more restricted than the Θ(n5) algorithms. However, none of these algorithms
handle kissing hairpin structures with arbitrary nested substructures. This is a serious,
practically relevant limitation, given the biological importance of such structures [4, 9, 19].

We previously proposed a novel MFE-based algorithm, called CCJ [5], which significantly
expands the class of structures that can be handled in O(n5) time. We described a more
general method of formulating the dynamic programming recurrences for prediction of
pseudoknotted RNA secondary structures that cover gapped regions. To improve the time
complexity to O(n5) we introduced two new ideas into the dynamic programming recurrences:
(i) a new class of structures called TGB structures (see Figs. 1A and 1B), with at most
three groups of bands, and (ii) recurrences that handle TGB structures by transferring to
the left, right, middle or the outer bands. By overlaying TGB structures (Fig. 1C), CCJ
covers H-type pseudoknotted structures, kissing hairpins, and chains of four interleaved
stems; moreover it recursively handles nested substructures of these types; we simply called
this class of structures, CCJ structures.

We previously compared CCJ’s prediction accuracy versus HotKnots V2.0 [2] and IPknot
[16], and showed that CCJ outperforms these algorithms on some of our data sets [6]. While
CCJ predicts such complex pseudoknotted secondary structures in Θ(n5) time and Θ(n4)
space, which is a significant improvement over the existing MFE-based algorithms [18, 8], in
practice it fails to run on sequences longer than 195 bases even given 244GB of RAM (as in
our experiments).

Here, we apply the technique of sparsification [20, 3] to the CCJ algorithm with the main
goal to reduce its extreme space complexity of Θ(n4). Devising sparsified recurrences of

H. Jabbari, I. Wark, C. Montemagno, and S. Will 12:3

CCJ, resulting in the algorithm sparseCCJ, we improve the space complexity to Θ(n3 + Z),
where Z is the total number of candidates. This complexity is the result of replacing all four-
dimensional dynamic programming matrices by (a constant number of) three-dimensional
matrix slices and lists of candidates. This is still sufficient to calculate exactly the same
optimal solutions as before, which can be shown based on inverse triangle inequality. The
number of candidates is expected to be much smaller than the number of replaced matrix
entries; moreover it cannot be larger.

The space-efficient retrieval of the optimal structure from this algorithm is enabled by
implementing our recently presented technique of space-efficient sparse traceback [21]; this
method requires additional space for trace arrows, but keeps the number of trace arrows low
due to techniques like garbage collection.

Previous applications of the sparsification technique to RNA structure prediction discussed
pseudoknot-free methods [20, 3] or used pseudoknotted methods with simplified energy
models (base pair maximization only) [11]. Sparsified RNA–RNA interaction prediction [15]
is the most complex case of structure prediction so far that was implemented for a realistic
interaction energy model. While space-efficient sparsification is discussed in the paper,
the space-efficient variant of the implementation could not recover the optimal interaction
structure by traceback.

Contributions

We present – to the best of our knowledge – the first space-efficient sparsification of any
pseudoknot prediction algorithm that uses a realistic, practically relevant pseudoknot energy
model (with according parametrization). Moreover, we sparsify the particularly powerful
pseudoknot prediction algorithm CCJ that covers the biologically important kissing hairpins.
We implemented – in addition to the original CCJ implementation – a first space-improved
CCJ variant and the resulting sparsified algorithm sparseCCJ, both using the current
HotKnots DP09 energy model [2]. By comparing all three CCJ implementations, we study
the (length-dependent) impact of various space savings and finally show that sparsification
significantly improves the space requirements over non-sparse implementations of CCJ.

2 The original CCJ pseudoknot prediction algorithm

The original CCJ algorithm [5] is a dynamic programming algorithm (DP) that minimizes
the free energy over all CCJ structures for a given input sequence S. As stated in the
introduction, CCJ structures comprise kissing hairpins and chains of four interleaved stems,
which can recursively contain CCJ structures as substructures. The optimal CCJ structure
is then determined by standard traceback through the DP matrices.

Generally, DP algorithms can be described by presenting the recurrences that are used to
calculate the entries of their DP matrices. In the case of RNA structure prediction, the DP
matrices store minimum free energy (MFE) values for sequence fragments (under specific
conditions). The reccurrences correspond to decompositions of these fragments such that the
matrix entries can be recursively inferred from energies of smaller subproblems. For example,
assuming an energy value of −1 for each canonical base pair, i.e. C–G, A–U or G–U, the
MFE structure of an RNA sequence, S, can be found using matrices WN and VN , where the
respective entries WN (i, j) and VN (i, j) are decomposed as follows

VNWN ,WN WN VN WN (1)

WABI 2017

12:4 Sparsification of Kissing Hairpin Pseudoknot RNA Structure Prediction

These grammar-rules represent a complete case distinction of possible structures. In the
example of Eq. (1), WN (i, j) corresponds to the MFE structure from base i to base j; this
structure can be decomposed according to Eq. (1), since either j is unpaired (left case) or j

is paired to some inner position (recursion to VN , in which solid arc represent a base pair);
the closed structure corresponding to VN (i, j) is reduced to WN (i + 1, j− 1) (rightmost case).
Moreover, the grammar rules allow – almost mechanically – inferring the recursion equations
for base pair energy minimization. The graphical notation is designed to encode the required
information: red dots on the right side always correspond to red dots on the left side of the
rule, while blue squares mark free position indices. Generally, our recursions marginalize
(i.e. minimize) over the recursion cases and the free indices in their respective range limited
by the fixed indices. Thus, we translate the rules of Eq. (1) to

WN (i, j) = min{WN (i, j − 1), min
i≤k<j

WN (i, k − 1) + VN (k, j)} ,

VN (i, j) = WN (i + 1, j − 1)− 1 if Si–Sj is canonical, VN (i, j) =∞ otherwise.

In our discussion of CCJ and its sparsification, this level of presentation allows us to focus
on the sparsification and avoid distracting details like the exact added energy contributions
in each single step, which is not necessary for understanding the sparsification.

While pseudoknot-free recursions generally use only fragments that are connected at the
sequence level, the CCJ algorithm requires ‘gapped’ fragments, where two subsequences
are disconnected by a gap. Consequently, defining such fragments requires four sequence
positions in total.

The MFE of the CCJ structure for subsequence Si..l is calculated in W (i, l), which is
decomposed as

W W V PW W .

The recurrence for V (i, l) handles different types of loops closed by i and l; P(i, l) is the
minimum free energy of a CCJ pseudoknot for region [i, l].

P(i, l) is decomposed by the rule

P PK

PK
(2)

into two TGB structures (with MFEs in the PK matrix). Representing TGB structures
requires using gapped fragments.

As indicated by the three blue boxes (free indices) in Eq. (2), each entry of P is minimized
over three indices. Thus, already this step bounds the time and space complexity of the CCJ
algorithm to O(n5) and O(n4) respectively.

PK(i, j, k, l) is the MFE over all TGB structures of the gapped fragment [i, j]∪ [k, l]. Note
that such structures have the additional restrictions: the positions i and l must be involved
in some base pairs, which are not part of nested substructures; moreover, some base pair of
a TGB structure must span the gap. The recurrence for PK uses terms PL, PM , PO, and
PR, which (put informally) handle bands on the left, middle and right groups of the TGB
structure, respectively. Both PM and PO are needed to handle bands in the middle group.
The matrix entries PL(i, j, k, l), PM (i, j, k, l), PR(i, j, k, l), PO(i, j, k, l) are decomposed as
illustrated in Fig. 2, in which WP, handles nested substructures in a pseudoloop. (For invalid
index combinations, the matrix entries are set to +∞, and do not have to be stored.)

Each of the matrices PL, PR, PM , and PO requires a base pair between the two ends at
the respective positions left, right, middle, or outer. Each such matrix distinguishes the three

H. Jabbari, I. Wark, C. Montemagno, and S. Will 12:5

PK
PK PKWP

WP
PL POPR PM

PM PM,mloop PfromMPM,iloop

PO PO,mloop PfromOPO,iloop

PL PL,mloop PfromLPL,iloop

PR PR,mloop PfromRPR,iloop

Figure 2 Decompositions for PK(i, j, k, l), PL(i, j, k, l), PM (i, j, k, l), PR(i, j, k, l), PO(i, j, k, l) in
grammar-rule like graphical notation.

WP
WP

POPR PM

PfromLPfromL

PfromL

WP
WP

POPMPfromR

PfromR PfromR

WPPfromM

PfromM

PL PR
WP

PfromM

PfromO

PfromO

PL PR

PfromOWP WP

Figure 3 Decompositions of PfromX(i, j, k, l) for X ∈ {L, R, M, O}, which handle transitions
from PX in other matrices PY in graphical notation.

cases that this base pair closes an interior loop or a multi-loop or is the inner border of a
band. In the latter case, the respective terms PfromX (X ∈ {L, R, M, O}) handle transitions
from base pairs in one group to base pairs in some other group (see Fig. 3).

Whenever we change a band via one of the matrices PfromX , we must allow for nested
substructures around the band. This is handled by the first two cases of the respective
recurrence PfromX . Moreover, in PfromX we recurse to matrices PX(i, j, k, l) only if the
requirements of these matrices are met.

Note that in PfromL, it is not possible to transition to PL. This is because the recurrences
are designed so that bands are handled in rounds. Within a round, bands in the left are
handled first, if any, then those on the right, if any, and then those on the middle, with
bands handled by PM (if any) handled before those handled by PO. A middle band must
be handled in each round; otherwise, for example, two “bands” on the left group, added in
different rounds, would collapse into one, causing the recurrences to incorrectly add penalty
terms for band “borders” that are not actually borders. For this reason, no row in PfromL

has a PL term, and so a band on the left group cannot be handled directly after a band
on the right group. Also, PfromO does not have a row with a PM term, to ensure that PM

cannot be used twice on the same round.

Interior loops in the left band are decomposed by the rule PL,iloop

PL

; the
remaining cases (right, middle, outer) are analogous. Note that, while the decomposition of
PL,iloop(i, j) has two free indices, these indices are constraint by setting a constant maximum
size of interior loops (here 30 bases) as it is common practice. For handling interior loops,
the original CCJ algorithm introduced the five-ary function PL,iloop5 and applied a clever
scheme to still use only Θ(n4) space. However, this space consumption could not easily
be reduced further by sparsification. Thus, avoiding PL,iloop5, which is possible due to the
HotKnots energy model, is essential to reduce the space complexity.

WABI 2017

12:6 Sparsification of Kissing Hairpin Pseudoknot RNA Structure Prediction

PL,mloop10 PL,mloop00

WB'
WBPL,mloop00

PL,mloop PL,mloop10 PL,mloop01

PL,mloop01 PL,mloop00WB'

PL,mloop00 PL,mloop00

WB
WBPL,mloop00

PL

Figure 4 Decomposition of multi-loops in the left band.

WB WB WB' V PWB'
WB' WB'

Figure 5 Decompositions of WB(i, l) and WB′(i, l).

Moreover, we modify the original handling of multi-loop cases to enable their sparsification.
Fig. 4 shows our multi-loop handling for the left band. We handle multi-loops by passing
through states PL,mloop10, PL,mloop01, and PL,mloop00, which keep track of introduced inner
multi-loop base pairs on the left or on the right. Finally, Fig. 5 shows the decompositions of
WB(i, l) and WB′(i, l). The other “W”-matrices are decomposed analogously.

Further details of the original CCJ recurrences are available in the thesis [6], which also
provides a detailed description of its sparsification.

3 Sparsification of the CCJ algorithm

By and large, “sparsification” allows keeping just the required dynamic programming matrix
cells, which we refer to as candidates, (instead of the whole matrix) to find the MFE value.
By storing a few candidates (as explained below) we avoid storing any four-dimensional CCJ
matrix. (i) In recurrences in which the left-most index, i, does not change, we store the
value of such recurrences in a constant number of three-dimensional matrix slices; we call
the collection of these matrix slices i-slices. In many of these recursion cases, we recurse
to matrix entries of the same i-slice (e.g. when inferring PK from PL or, slightly more
interestingly, PR from PfromR). In other cases, we recurse to the (i + 1)-slice (e.g. PL from
PfromL) or (i + c)-slice, where c is constantly bounded. The latter occurs in the handling
of interior loops (PL,iloop and analogously PO,iloop), where c does not exceed the maximum
interior loop size MLS. (ii) This leaves us with the recursion cases that recurse to some
d-slice, where d− i cannot be constantly bounded. Instead of storing all slices, we store only
certain candidate entries in such slices. These matrix entries (called candidates) are stored
in candidate lists for specific recursion cases together with their corresponding second, third,
and fourth matrix indices, j, k, and l to keep track of band borders. In some cases, candidate
lists can be shared between recursion cases. We presented more details on candidate list
requirements in [11].

Space representation of the four-dimensional matrices by sparseCCJ

Only matrices corresponding to PL and PO occur in interior loops that span a band, and
require to recurse to a different i-slice; for them, we store slices i..i + MLS. For matrices
corresponding to PfromL, PfromO, PL,mloop10, PL,mloop01, PO,mloop10, and PO,mloop01, we
only need to store slices i and i + 1. Matrices corresponding to recurrences of types PX,iloop

and PX,mloop (X ∈ {L, R, M, O}) do not need to be stored and can be computed when
needed. For the remaining matrices, we store only the current i-slice. Note that space is
always reused in the next iteration; in case of ranges of slices, the memory access is ‘rotated’

H. Jabbari, I. Wark, C. Montemagno, and S. Will 12:7

without copying in memory. Matrices corresponding to the following recurrence cases require
maintaining candidate lists: PK, PL, PO, PfromL, PfromO, PL,mloop00, and PO,mloop00.

To finalize sparsification, all recursion cases that recurse to these matrices – where the
left-most index is not constantly bound – need to be modified. This affects all recursion
cases, which insert any nested substructure to the left of the gapped region. This occurs
exactly in the decompositions of PK, PfromL, PfromO, PL,mloop10, PL,mloop00, PO,mloop10,
and PO,mloop00. Moreover, this affects the decomposition of P into two PK-fragments, where
the latter is taken from the respective candidate list. We discuss the single modifications on
the three examples of PK, PL,mloop10, and P – the remaining cases are sufficiently similar
to be sparsified analogously.

1. Consider the case of the PfromL recurrence:

min
i<d≤j

WP(i, d− 1) + PK(d, j, k, l).

It suffices to minimize only over certain candidates PK(d, j, k, l) that are not optimally
decomposable in the following sense:

6 ∃e > d : PK(d, j, k, l) = WP(d, e− 1) + PK(e, j, k, l). (3)

It can be shown easily that whenever PK(i, j, k, l) is optimally decomposable, there is a
candidate (i.e. a smaller, not optimally decomposable fragment) which yields the same
minimum value. Remarkably, the candidate criterion can be efficiently checked by the
dynamic programming algorithm. This is more directly seen from the equivalent candidate
criterion

PK(d, j, k, l) < mind<e≤jWP(d, e− 1) + PK(e, j, k, l).

Also this minimum can be computed by running only over candidates; moreover it must
be calculated by the dynamic programming algorithm for computing PK(d, j, k, l), such
that the check is performed without additional overhead. This idea holds analogously for
the other candidate checks.

2. Similarly, the minimization

min
i<d≤j

WB′(i, d− 1) + PL,mloop00(d, j, k, l)

that occurs in the recurrence of PL,mloop10 is restricted to candidates that satisfy

6 ∃e : PL,mloop00(d, j, k, l) = WB(d, e− 1) + PL,mloop00(e, j, k, l). (4)

We can even strengthen the criterion, such that candidates must further satisfy

6 ∃e : PL,mloop00(d, j, k, l) = PL,mloop00(d, e, k, l) + WB(e + 1, j). (5)

3. In the minimization calculating P (i, l), i.e.

min
i<j<d<k<l

PK(i, j − 1, d + 1, k − 1) + PK(j, d, k, l),

it suffices to consider only candidates PK(j, d, k, l). Entries PK(j, d, k, l) are candidates
if and only if they are not optimally decomposable in the following sense:

6 ∃e(j ≤ e < d) : PK(j, d, k, l) = PK(j, e, k, l) + WP(e + 1, d). (6)

WABI 2017

12:8 Sparsification of Kissing Hairpin Pseudoknot RNA Structure Prediction

We emphasize that certain cases share the same candidates (allowing space savings). For
example, the candidate criterion for decomposing PL,mloop10 into WB′ and PL, mloop00 is
identical to the one of decomposing PL,mloop00 into WB′ and PL, mloop00. Similarly, we
share the candidate lists of PO,mloop10 and PO,mloop00.

Finally, the sparsified CCJ recurrences can be computed based on the (constantly bounded)
matrix slices and the candidates alone. Their correctness is a consequence of inverse triangle
inequalities; for example in case of W we have ∀x < y ≤ z : W (x, z) ≤W (x, y− 1) + W (y, z),
which follows from the definition of W . Analogous inequalities hold for WP, WB, and WB.

I Theorem 1 (Correctness of the CCJ sparsification). The sparsified CCJ recurrences are
equivalent to the non-sparsified CCJ recurrences.

Proof. We show for fragments i, l and i, j, k, l by simultaneous induction on the fragment
size (respectively, l − i and j − i + l − k) that all changes in the definition of sparseCCJ
(from the original to the sparsified recurrences of CCJ) are equivalent, in particular the
values of the CCJ recursions and their corresponding sparsified versions are identical for each
fragment.

It suffices to show the equivalence of the changes of the minimization cases explicitly.
Moreover in each case, it suffices to show that there exists a minimum that is a candidate.
By the induction hypothesis, the sparsified recursion for all smaller fragments do not have
to be distinguished from the non-sparsified ones. We prove the three example cases PK,
PL,mloop10, and P explicitly; the remaining cases can be shown analogously.

1. Choose the largest d, i < d ≤ j, s.t. WP(i, d− 1) + PK(d, j, k, l) is minimal. We show –
by contradiction – that PK(d, j, k, l) is a candidate, i.e. it satisfies Eq. (3). Assume Eq. (3)
does not hold and choose e (e > d) such that PK(d, j, k, l) = WP(d, e−1) + PK(e, j, k, l).
Now, WP(i, d− 1) + PK(d, j, k, l) = WP(i, d− 1) + WP(d, e− 1) + PK(e, j, k, l) ≥
WP(i, e−1) + PK(e, j, k, l) (using the inverse triangle inequality forWP). This contradicts
the choice of d; thus PK(d, j, k, l) must be a candidate.

2. Choose the largest d s.t. WB′(i, d− 1) + PL,mloop00(d, j, k, l) is minimal. We show – by
contradiction – that the candidate criterion, i.e. Eqs. (4) and (5), hold.

Assume Eq. (4) does not hold, then there exists some e s.t.
WB′(i, d−1)+PL,mloop00(d, j, k, l) = WB′(i, d−1)+WB(d, e−1)+PL,mloop00(e, j, k, l) ≥
WB′(i, e− 1) + PL,mloop00(e, j, k, l); the latter inequality holds due to the definition of
WB′.
Assume Eq. (5) does not hold, then there exists some e s.t.
PL,mloop00(d, j, k, l) = PL,mloop00(d, e, k, l) + WB(e + 1, j). Consequently, the corre-
sponding case of PL,mloop10(i, j, k, l) yields a smaller or equal value, since WB′(i, d−
1) + PL,mloop00(d, j, k, l) = WB′(i, d − 1) + PL,mloop00(d, e, k, l) + WB(e + 1, j) ≥
PL,mloop10(i, e, k, l) + WB(e + 1, j).

3. For fixed i < j < k < l, choose the smallest d (j < d < k) s.t. PK(i, j − 1, d + 1, k −
1) + PK(j, d, k, l) is minimal. Assume Eq. (6) is violated, then there is some e > d, s.t.
PK(i, j−1, d+ 1, k−1) +PK(j, d, k, l) = PK(i, j−1, d+ 1, k−1) +PK(j, e, k, l) +WP(e+
1, d) ≥(∗∗) PK(i, j − 1, e + 1, k − 1) + PK(j, e, k, l), which contradicts the choice of d.

For inequality (**), we observe that PK(i, j − 1, d + 1, k − 1) + WP(e + 1, d) ≤ PK(i, j −
1, e + 1, k − 1) by definition of PK. J

Note that the presented sparsification would not have been possible for the multi-
loop handling of the original CCJ algorithm (Fig. 6), which required us to modify these
decompositions. In the original decomposition of PL,mloop, the unbound access to d-slices

H. Jabbari, I. Wark, C. Montemagno, and S. Will 12:9

PL,mloop0 PLWB

PL,mloop

WB'
PL,mloop0

WB
PL,mloop1

PL,mloop1 PLWB'

Figure 6 Decomposition of multi-loops in the left band by the original CCJ algorithm.

cannot easily be replaced by candidates – note the index offsets in the graphical notation,
indicating that in the recurrence of PL,mloop(i, j, k, l), the WB′ and WB fragments both
start at i + 1; similarly, there is a shift to j − 1 in the recurrences of PL,mloop0(i, j, k, l) and
PL,mloop1(i, j, k, l).

4 Space Complexity Analysis

In the previous sections, we sparsified all four-dimensional matrices of the CCJ algorithm
with the goal of reducing its space complexity. As explained before, our sparsification allows
us to replace all four-dimensional matrices by three-dimensional matrix slices. In seven
recursion cases, we needed to rewrite minimizations, such that they compute equivalent
results by recursing only to candidates (or entries of the same i-slice). In two of these cases,
candidate lists can be shared.

Even if only a small fraction of the respective four-dimensional fragments are optimally
decomposable (i.e. are not candidates), these changes will save space over the non-sparsified
version. However, experience from previous sparsification (and our results) show that a large
number of fragments is optimally decomposable, such that number of candidates is small.

We define Z as the total number of candidates. For traceback, we store a number of trace
arrows, dynamically limiting their number; denote their maximum number by T . Then, the
total space complexity of sparseCCJ is O(n3 + Z + T).

5 Results

In this section we provide implementation and data set details, and show a comparison of
sparseCCJ in terms of time and memory usage to its predecessors, original CCJ and modified
CCJ.

5.1 Implementation
We implemented three versions of CCJ algorithm in C++; the first version is strictly based
on the original CCJ recurrences, but the energy values are similar to that of DP09 energy
model in HotKnots V2.0 [2]; we refer to this version as “original”. There are few energy
functions in the original CCJ energy model that are not explicitly in the DP09 model. We
have set values of these functions to 0, in order to make the models as similar as possible. The
second version has modified recurrences to match the energy model of HotKnots V2.0, and is
referred to as “modified”. The main difference between this version and the original version
is in calculating energy of interior loops that span the band. The energy of an interior loop
or multi-loop depends on whether or not the external base pair of the loop is pseudoknotted.
If it is not, we call the loop ordinary, and otherwise say that the loop spans a band. If the
external base pair of an ordinary interior loop, not including stacks, is i.l and the other
closing base pair is d.e, then similar to the DP09 energy model, the energy of the interior

WABI 2017

12:10 Sparsification of Kissing Hairpin Pseudoknot RNA Structure Prediction

Table 1 Summary of data sets used in this work.

Name # of sequences Structure Type sequence lengths Reference
HK-PK 88 pseudoknotted 26–400 test set of [2]

HK-PK-free 337 pseudoknot-free 10–194 test set of [2]
IP-pk168 168 pseudoknotted 21–137 test set of [16]
DK-pk16 16 pseudoknotted 34–377 test set of [17]

loop is calculated by a call to the function eint(i, d, e, l). If the internal loop spans a band we
call the function eintP (i, d, e, l) instead. The third version uses the sparsification technique,
and is referred to as “sparse” (sparseCCJ). Similar to [21], we utilize trace arrows to keep
track of accessible cells and employ a garbage collection technique to remove trace arrows
from unreachable cells. Using these techniques in sparseCCJ required extensions like trace
arrows between different matrices, which were only briefly mentioned in [21]; otherwise it
demonstrates the generality of this approach.

5.2 Data sets

We use a large data set of over 600 RNA strands of length between 10–400 bases to analyze
the performance of our algorithm. This data set was compiled from three non-overlapping
data sets with various pseudoknotted and pseudoknot-free structures. Table 1 provides a
summary of these data sets.

5.3 Benchmark Results

We ran all three versions of CCJ implementations on Amazon Cloud (r4.8xlarge instance
consisting of 32 Xeon E5-2686 Broadwell 2.3 GHz CPUs, and 244GB of DDR3 RAM) and
compared their time and memory requirements for instances of our data set. First, we
verified that the two versions that implement DP09 energy model of HotKnots V2.0, i.e. the
modified CCJ and the sparse CCJ implementation, indeed produced exactly the same results.
This equivalence must hold in correct implementations due to Theorem 1. We focus on (run
time and space) performance of sparse CCJ, in this work. Fig. 7 shows – in log scale – the
memory consumption (left), our main objective in this work, and run times (right), both
as functions of sequence length. We observe significant improvements in space from the
original implementation over the modified one to the sparse implementation. At the same
time, one observes a comparably small run time penalty in our (little run time-optimized)
sparse implementation. However, given today’s heavily parallel computation platforms (with
comparably costly main memory), differences in run-time are generally less relevant than
space improvements.

We further investigated whether a specific class of structures (i.e. pseudoknotted vs.
pseudoknot-free) would benefit stronger than the other from sparsification, and found out
that both classes benefit equally from sparsification (see Fig. 8); in general longer sequences
benefit more (as seen in Fig. 7). Closer look at Fig. 7 shows that while sparseCCJ has
variation in memory usage within the same length, these variations are minimal. We looked
at numbers of candidates and trace arrows (9) in sparse CCJ, which together explain the
space requirements.

H. Jabbari, I. Wark, C. Montemagno, and S. Will 12:11

Figure 7 Memory usage (left, presented as log of maximum resident set size in GB) and run time
(right, presented as log of time in second) vs. length for the three CCJ implementations.

Figure 8 Performance comparison (memory usage) of sparse CCJ in different class of structures.

Figure 9 Total number of candidates (measured as log(total number of candidates)) and trace
arrows (measured as log(maximum number of trace arrows)) used in SparseCCJ versus sequence
length.

WABI 2017

12:12 Sparsification of Kissing Hairpin Pseudoknot RNA Structure Prediction

6 Conclusion

We have presented the first application of the sparsification to a complex pseudoknot structure
prediction algorithm – supporting kissing hairpins with arbitrarily nested substructures – with
a realistic energy model. While previous applications of the sparsification technique mainly
focused on speed improvements, we solely aimed at reducing the space requirements, which is
the main factor limiting the practical applicability of complex RNA pseudoknotted secondary
structure prediction. Our comparison to two previous CCJ variants provides interesting
insights into general potentials for space improvements of complex RNA-related algorithms.
Finally, our space savings in sparseCCJ open the door for large scale biologically-relevant
application of pseudoknot structure prediction covering all important pseudoknot classes.

Acknowledgements. We thank Anne Condon for discussing details of the CCJ algorithm
and first ideas on space savings.

References
1 T. Akutsu. Dynamic programming algorithms for RNA secondary structure prediction

with pseudoknots. Disc. App. Math., 104(1–3):45–62, 2000.
2 M.S. Andronescu, C. Pop, and A.E. Condon. Improved free energy parameters for RNA

pseudoknotted secondary structure prediction. RNA (New York, N.Y.), 16(1):26–42, Jan-
uary 2010.

3 R. Backofen, D. Tsur, S. Zakov, and M. Ziv-Ukelson. Sparse RNA folding: Time and
space efficient algorithms. Journal of Discrete Algorithms, 9(1):12–31, March 2011. doi:
10.1016/j.jda.2010.09.001.

4 K.-Y. Chang and I. Tinoco. The structure of an RNA kissing hairpin complex of the HIV
TAR hairpin loop and its complement. Journal of Molecular Biology, 269(1):52–66, May
1997. doi:10.1006/jmbi.1997.1021.

5 H.L. Chen, A. Condon, and H. Jabbari. An o(n(5)) algorithm for MFE prediction of
kissing hairpins and 4-chains in nucleic acids. Journal of computational biology : a journal
of computational molecular cell biology, 16(6):803–815, June 2009. doi:10.1089/cmb.2008.
0219.

6 H. Jabbari. Algorithms for prediction of RNA pseudoknotted secondary structures. PhD
thesis, University of British Columbia, March 2015.

7 R.B. Lyngsø. Complexity of pseudoknot prediction in simple models. In ICALP’04, pages
919–931, 2004.

8 R.B. Lyngsø and C.N. Pedersen. RNA pseudoknot prediction in energy-based models. J.
Comput. Biol., 7(3-4):409–427, 2000.

9 W.J. Melchers, J.G. Hoenderop, H. J. Bruins Slot, C.W. Pleij, E.V. Pilipenko, V.İ. Agol,
and J.M. Galama. Kissing of the two predominant hairpin loops in the coxsackie B virus
3’ untranslated region is the essential structural feature of the origin of replication required
for negative-strand RNA synthesis. Journal of Virology, 71(1):686–696, January 1997.

10 T.R. Mercer, M.E. Dinger, and J. S. Mattick. Long non-coding RNAs: insights into func-
tions. Nature Reviews Genetics, 10(3):155–159, March 2009. doi:10.1038/nrg2521.

11 M. Möhl, R. Salari, S. Will, R. Backofen, and S.C. Sahinalp. Sparsification of RNA
structure prediction including pseudoknots. Algorithms for Molecular Biology, 5(1):39+,
December 2010. doi:10.1186/1748-7188-5-39.

12 R. Nussinov and A.B. Jacobson. Fast algorithm for predicting the secondary structure of
single-stranded RNA. Proceedings of the National Academy of Sciences of the United States
of America, 77(11):6309–6313, November 1980. doi:10.1073/pnas.77.11.6309.

http://dx.doi.org/10.1016/j.jda.2010.09.001
http://dx.doi.org/10.1016/j.jda.2010.09.001
http://dx.doi.org/10.1006/jmbi.1997.1021
http://dx.doi.org/10.1089/cmb.2008.0219
http://dx.doi.org/10.1089/cmb.2008.0219
http://dx.doi.org/10.1038/nrg2521
http://dx.doi.org/10.1186/1748-7188-5-39
http://dx.doi.org/10.1073/pnas.77.11.6309

H. Jabbari, I. Wark, C. Montemagno, and S. Will 12:13

13 J. Reeder and R. Giegerich. Design, implementation and evaluation of a practical pseudo-
knot folding algorithm based on thermodynamics. BMC Bioinformatics, 5, 2004.

14 E. Rivas and S.R. Eddy. A dynamic programming algorithm for RNA structure prediction
including pseudoknots. J. Mol. Biol., 285(5):2053–2068, 1999.

15 R. Salari, M. Möhl, S. Will, S. C. Sahinalp, and R. Backofen. Time and Space Efficient
RNA-RNA Interaction Prediction via Sparse Folding. In Bonnie Berger, editor, Research
in Computational Molecular Biology, volume 6044 of Lecture Notes in Computer Science,
chapter 31, pages 473–490. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2010. doi:
10.1007/978-3-642-12683-3_31.

16 K. Sato, Y. Kato, M. Hamada, T. Akutsu, and K. Asai. IPknot: fast and accurate prediction
of RNA secondary structures with pseudoknots using integer programming. Bioinformatics,
27(13):i85–i93, July 2011.

17 J. Sperschneider, A. Datta, and M. J. Wise. Predicting pseudoknotted structures across
two RNA sequences. Bioinformatics (Oxford, England), 28(23):3058–3065, December 2012.

18 Y. Uemura, A. Hasegawa, S. Kobayashi, and T. Yokomori. Tree adjoining grammars for
RNA structure prediction. Theor. Comput. Sci., 210(2):277–303, 1999.

19 M.H. Verheije, R.C. L. Olsthoorn, M.V. Kroese, P. J.M. Rottier, and J. J.M. Meulenberg.
Kissing interaction between 3’ noncoding and coding sequences is essential for porcine
arterivirus RNA replication. Journal of Virology, 76(3):1521–1526, February 2002. doi:
10.1128/jvi.76.3.1521-1526.2002.

20 Y. Wexler, C. Zilberstein, and M. Ziv-Ukelson. A study of accessible motifs and RNA
folding complexity. Journal of computational biology: a journal of computational molecular
cell biology, 14(6):856–872, 2007. doi:10.1089/cmb.2007.r020.

21 S. Will and H. Jabbari. Sparse RNA folding revisited: space-efficient minimum free energy
structure prediction. Algorithms for molecular biology: AMB, 11, 2016.

WABI 2017

http://dx.doi.org/10.1007/978-3-642-12683-3_31
http://dx.doi.org/10.1007/978-3-642-12683-3_31
http://dx.doi.org/10.1128/jvi.76.3.1521-1526.2002
http://dx.doi.org/10.1128/jvi.76.3.1521-1526.2002
http://dx.doi.org/10.1089/cmb.2007.r020

Vaquita: Fast and Accurate Identification of
Structural Variation Using Combined Evidence
Jongkyu Kim1 and Knut Reinert2

1 Department of Mathematics and Computer Science, Freie Universität Berlin,
Berlin, Germany; and
Max Planck Institute for Molecular Genetics, Berlin, Germany
j.kim@fu-berlin.de

2 Department of Mathematics and Computer Science, Freie Universität Berlin,
Berlin, Germany; and
Max Planck Institute for Molecular Genetics, Berlin, Germany
knut.reinert@fu-berlin.de

Abstract
Motivation: Comprehensive identification of structural variations (SVs) is a crucial task for
studying genetic diversity and diseases. However, it remains challenging. There is only a marginal
consensus between different methods, and our understanding of SVs is substantially limited. In
general, integration of multiple pieces of evidence including split-read, read-pair, soft-clip, and
read-depth yields the best result regarding accuracy. However, doing this step by step is usually
cumbersome and computationally expensive.
Result: We present Vaquita, an accurate and fast tool for the identification of structural vari-
ations, which leverages all four types of evidence in a single program. After merging SVs from
split-reads and discordant read-pairs, Vaquita realigns the soft-clipped reads to the selected re-
gions using a fast bit-vector algorithm. Furthermore, it also considers the discrepancy of depth
distribution around breakpoints using Kullback-Leibler divergence. Finally, Vaquita provides an
additional metric for candidate selection based on voting, and also provides robust prioritization
based on rank aggregation. We show that Vaquita is robust in terms of sequencing coverage, in-
sertion size of the library, and read length, and is comparable or even better for the identification
of deletions, inversions, duplications, and translocations than state-of-the-art tools, using both
simulated and real datasets. In addition, Vaquita is more than eight times faster than any other
tools in comparison.
Availability: Vaquita is implemented in C++ using the SeqAn library. The source code is dis-
tributed under the BSD license and can be downloaded at http://github.com/seqan/vaquita.

1998 ACM Subject Classification J.3 Life and Medical Sciences

Keywords and phrases Structural variation

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.13

1 Introduction

Next generation sequencing (NGS) provides us remarkable opportunity to find genetic
variants that are directly linked to diseases such as cancer [13] and rare genetic disorders
[2]. Therefore, there has been a growing attention in identifying such variants. The size of
genetic variations ranges from a single base pair to megabases [15]. Among them, structural
variations (SVs), i.e. variations that are usually larger than 50 nucleotides in size, play a
major role in many phenotypic differences. In contrast to single-nucleotide polymorphisms

© Jongkyu Kim and Knut Reinert;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 13; pp. 13:1–13:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://github.com/seqan/vaquita
http://dx.doi.org/10.4230/LIPIcs.WABI.2017.13
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

13:2 Vaquita: Identification of Structural Variation Using Combined Evidence

(SNPs) or small indels, SVs are much more diverse in type and size and are often harder to
find confidently [1]. Consequently, it is not surprising that there is only a marginal consensus
between different variant callers [1]. It is fair to say that the current understanding of
SVs is substantially limited and large-scale studies often rely on multiple variant callers
that use different methods to obtain the most comprehensive list of SVs. However, the
integration of multiple outputs is often cumbersome due to the required prior knowledge
of different algorithms and their parameters and also suffers from limited computational
resources. Therefore, there is an urgent need for a better method that can detect SVs more
accurately and efficiently.

The algorithms for SV identification can be categorized into four types [1]. First, we can
use split-read evidence. The reads spanning a breakpoint have to be split to be able to map
multiple loci. For example, Pindel [24] splits discordant reads and tries to find breakpoints
by mapping them to different positions. However, it is difficult to find SVs in some part of a
genome such as repeat-rich regions using just the spilt-read information.

Additionally, read-pair information can be used to identify SVs. With the prior knowledge
of the proper orientations and distribution of insertion sizes in paired-end sequencing libraries,
read-pairs with improper orientation and/or insertion size can be identified and used to detect
SVs. However, read-pair information alone does not provide base-pair resolution accuracy.
Accordingly, a variant caller like Delly [19] considers read-pair information together with
split-read information.

Many recently-developed short-read mappers [12, 10] provide local alignments. These
mappers produce soft-clipped reads, meaning that only a part of a sequence is mappable to
the reference genome. The unmapped sequences are relatively short and erroneous, which
make them difficult to map to a unique position. To resolve this issue, CREST [23] assembles
contigs around potential breakpoints and map them to a reference genome using Blat [9].

Lastly, read-depth information is also useful in finding copy number variations. However,
the depth of coverage of sequencing data is usually non-uniform [14]. Thus, a significance
testing such as event-wise testing [25] is required to distinguish the true signals from
background noise. Moreover, read-depth information alone cannot provide base-pair resolution
accuracy.

Often, integrating results from multiple approaches yield better performance regarding
accuracy. In this aspect, LUMPY [11] uses a probabilistic framework to combine split-read
and read-pair information by default, and MetaSV [16] focuses on connecting multiple
external tools.

Our method, Vaquita, integrates split-read, read-pair, soft-clipped, and read-depth
information in a single program to achieve maximum accuracy while also maintaining speed.
Vaquita utilize all four types of information without contributions from external tools. The
overall workflow of Vaquita is depicted in Figure 1.

2 Methods

2.1 Breakpoint and structural variation identification
The overall workflow of Vaquita is depicted in Figure 1(a). We define a breakpoint using
the coordinate information of two genomic segments (intervals) and their orientation with
respect to each other. We call the two intervals left and right intervals according to their
genomic coordinates. We also define three types of orientation as shown in Figure 1(b),
namely, normal, inverted and swapped. Reads and read-pairs with inverted and swapped
orientations are considered to be discordant, and suggesting a breakpoint. These discordant

J. Kim and K. Reinert 13:3

.BAM

SE + PE

Evidence extraction

SE + PE + CE

SE + PE + CE + RE

Split-read
evidence (SE)

Read-pair
evidence (PE)

.VCF

Soft-clipped
evidence (CE)

Depth
information

Merging SE and PE

Realignment of CE

Calculate Read-depth evidence (RE)

Filtering &
Prioritization

(a) (b)

Structural variation Found SV(interval) from SE or PE

Normal orientation Inverted orientation

Split-read Discordant read-pairGenomic segment

Deletion Inversion

Duplication Translocation

>> >>

>
>

>>

. . .
v w z

>
>

>>

>> <<

Imprecise (PE)

Exact
(SE)

wv

>
>

<
<

>> <<

Imprecise (PE)

Exact (SE)

v w

Swapped orientation

zv w

>
>

>>>>

>>
>
>

>>

. . .

Figure 1 (a) The overall process of Vaquita. (b) The four types of structural variations. The
dotted rectangles colored with gray denote the modification of the reference genome. The deletion
and inversion in the figures show structural variations from v to w. The duplication and translocation
in the figures illustrate copied or moved segments from v to w, and z is the target position.

reads also constitute of split-read evidence (SE) and read-pair evidence (PE), which are the
number of reads and read-pairs that support a breakpoint, respectively. For read-pairs with
normal orientation, we estimate m and s which denote the median and median absolute
deviation of insertion size distribution in a sequencing dataset. Then we apply a cutoff that
is m+ s× 9 by default. The adjustment of this cutoff affects the accuracy of the result. A
weak cutoff yields a sensitive result, but at the cost of specificity. The value 9 is empirically
decided after testing values from 5 to 10 (data not shown). Note that this default value is
the same as Delly2 and was used in large scale studies such as 1000 Genome Project [21].
We define four SV types, namely deletion, inversion, duplication, and translocation that
are illustrated in Figure 1(b). We identify deletions and inversions from breakpoints with
normal and inverted orientation, respectively. The two types of breakpoints are required to
find duplications and translocations. The definition is based on previous studies [22, 19].
Nevertheless, there are alternative definitions of SVs which are not always mutually exclusive.
Other types of SVs can be identified by the user from the reported breakpoints.

2.2 Candidate merging: SE + PE
Two breakpoints with the same orientation can be merged if both the left and right intervals
are adjacent or overlapping. A distance of 50 bases is set by default in assessing adjacency.
When two breakpoints are merged, the minimum and maximum positions of each left and
right intervals are selected to define the merged breakpoint. The original positions are kept
in a list, and the median positions are reported as final positions in the last step. We merge
all the breakpoints identified by SE or PE according to this principle. For efficiency, the
reference genome is divided into equally sized regions that are 1000 bp by default. The left
and right intervals of SVs belong to one or more regions according to their size and genomic
coordinates. The entire merging process can be efficiently done by identifying breakpoints in

WABI 2017

13:4 Vaquita: Identification of Structural Variation Using Combined Evidence

0.0
0.2
0.4
0.6
0.8
1.0

Relatvie
Number of calls

Precision

Chromosome 22, 5x

SE (n=305)
PE (n=667)
CE (n=73)>> <<

>>>>

>>

>>

>>

>>

>>

Genomic
segment

Structural
variations Found SV

NGS twilight zoneCandidate region
by SE

Candidate region
by PE

Clipped sequence
cluster

Representative
sequence Realignment

2nd trial

1st trial

3rd trial

(a) (b)

0.0
0.2
0.4
0.6
0.8
1.0

Relatvie
Number of calls

Precision

Chromosome 22, 30x

SE (n=1,721)
PE (n=3,602)
CE (n=433)

Figure 2 (a) The realignment process for soft-clipped evidence (CE). (b) The relative number of
structural variation calls and precision of each evidence types in simulation datasets.

the same region. In the worst case, all the SVs are distinct and fall into the same region. In
this scenario, the comparison step takes O(n2) where n is the number of SVs. However, in
practice, the distribution of SVs are sparse, and only a small number of SVs are expected to
co-exist in a single region. If all the SVs exist in unique regions, the time complexity is O(n)
since only one hashing is required. This process is conducted in parallel while decompressing
a .bam file, which is usually an I/O bound process.

2.3 Realignment of soft-clipped reads: SE + PE + CE

Mapping the clipped part of sequences is challenging because they are short and erroneous.
One can assemble longer contigs to map them correctly and uniquely. However, the entire
process is computationally expensive. Instead, Vaquita selects a representative sequence
without assembly and reduces the search space by surveying only the pre-selected regions.
Initially, Vaquita identifies clusters of soft-clipped sequences according to the genomic
coordinates of their mapped parts. Subsequently, it locates the longest unmapped sequence
in a cluster and uses it as a representative sequence. Then, it tries to map those representative
sequences to candidate regions identified by SE or PE using a fast bit-vector algorithm
for approximate string matching [17], using lenient criteria. The time complexity of the
algorithm is O(nr/k) where n and r are the sizes of the read and the reference, and k is the
word size of the machine which is 64 in modern hardwares including ours. Often, relatively
small deletions are difficult to find using read-pair information because the sizes of SVs fall
within the variance of the insertion size. This region has been defined as the NGS twilight
zone [22]. To address this, Vaquita also examines the genomic sequences around the clipped
position for queries that failed the mapping. The size of the additional searching region
is set to m + s × 9 by default, where m and s are median and median absolute deviation
of the insertion size distribution. The default value is based on criterion for identifying
discordant read-pairs in Section 2.1. Only soft-clipped parts that are equal to or longer than

J. Kim and K. Reinert 13:5

Se
qu

en
cin

g
de

pt
h

Genomic coordinates

𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑙𝑒𝑓𝑡𝐻𝑖𝑔ℎ) 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑙𝑒𝑓𝑡𝐿𝑜𝑤) 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑟𝑖𝑔ℎ𝑡𝐿𝑜𝑤) 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑟𝑖𝑔ℎ𝑡𝐻𝑖𝑔ℎ)

Left depth discrepancy (L) :
𝐾𝐿𝐷(𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑙𝑒𝑓𝑡𝐻𝑖𝑔ℎ), 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑙𝑒𝑓𝑡𝐿𝑜𝑤))

Right depth discrepancy (R) :
𝐾𝐿𝐷(𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑟𝑖𝑔ℎ𝑡𝐻𝑖𝑔ℎ), 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑟𝑖𝑔ℎ𝑡𝐿𝑜𝑤))

Read-depth evidence (RE) : max(L,R)

(a) (b)

0.0

1.0

2.0

3.0

4.0

5.0

Random
(n=10,000)

ALL
(n=264)

DEL
(n=74)

INV
(n=63)

DUP
(n=61)

TRA
(n=66)

M
ea

n
de

pt
h

di
sc

re
pa

nc
y

𝑃 = 2.2 × 10−227

𝑃 = 3.2 × 10−66

𝑃 = 1.2 × 10−56

𝑃 = 6.4 × 10−55

𝑃 = 2.9 × 10−59

Figure 3 (a)The read-depth evidence. (b) The depth discrepancy distribution of random positions
and four types of structural variations in the simulation dataset (Chromosome 22 and 30x coverage).
P indicates p-values obtained by two-tailed Kolmogorov-Smirnov test using a random sample. The
red line shows the third quartile plus the interquartile range of the random sample.

20 nucleotides undergo realignment, allowing edit distance of 10% of the sequence size by
default. The overall process is described in Figure 3(a). In the two simulation datasets, the
quantity of CE was more than 20% of SE, and 10% of PE. Furthermore, the precision of
CE is about the same as SE and PE, as shown in Figure 2(b). Note that Mason [6] we used
in the simulation selects random positions to introduce variations. This limitation usually
makes simulation tests less challenging since SVs are not randomly distributed. For example,
many of the SVs are found in repeat-rich regions in real datasets. The higher precisions
reported in Figure 2(b) reflect this limitation.

2.4 Calculation of depth discrepancy
The depth distribution of a sequencing sample has been previously reported to be non-uniform.
Hence, the distributions around two randomly picked positions that are not adjacent to each
other are likely to be different. We use this observation to discriminate true breakpoints from
false positives, especially for unbalanced structural variations. For two genomic intervals i1
and i2, we calculate λ1 and λ2 that are the mean depth of each interval. We then assume
that the local distributions follow a Poisson distribution and calculate the Kullback-Leibler
divergence (KLD) from Poisson(λ1) to Poisson(λ2) as follows:

KLDλ1,λ2 = λ1 − λ2 + λ1 log λ2

λ1
. (1)

We use this as a metric of depth discrepancy between i1 and i2 and calculate the read-depth
evidence (RE) for each breakpoint as described in Figure 3(a). As a rule, we always calculate
the divergence from the higher depth region to the lower depth region and select the larger
value between the discrepancies of the left and right side of the breakpoint. We use the
window size of 20 bases for calculating local coverages. To efficiently calculate RE for all

WABI 2017

13:6 Vaquita: Identification of Structural Variation Using Combined Evidence

(a) (b)

0.0

0.2

0.4

0.6

0.8

1.0

5x 10x 30x 50x
Sequencing depth

(SE+PE+CE) ≥ 4 or VT = 3

(SE+PE+CE) ≥ 4

(SE+PE) ≥ 4

SE ≥ 2

Recall Precision F1

0.80

0.85

0.90

0.95

1.00

≥ Q1 ≥ Q2 ≥ Q3 All

Pr
ec

isi
on

Threshold

Vaquita (Rank aggregation)
Vaquita
Lumpy
Delly

Figure 4 (a) The impact of evidence integration on breakpoint identification. The criterion
VT=3 rescues SVs that are supported by all three evidence types as described in Section 2.5.2.
(b) Prioritization performance of deletion calling in the 30x simulation dataset. Q1-Q3 indicates the
first to the third quartile.

breakpoints, we maintain a lookup table regarding various λ1 and λ2. In the simulation
datasets, the depth discrepancy distributions were significantly different from random samples
as shown in Figure 3(b). As expected, RE is more effective in discriminating unbalanced
structural variations like deletions and duplications than balanced structural variations such
as inversions. By default, we do not use RE for inversions. However, one can turn on this
option.

2.5 Combined evidence

2.5.1 SE + PE + CE
We assessed the impact of evidence integration in breakpoint identification starting from the
SE only case. The result is shown in Figure 4(a). We combined the number of split-reads and
read-pairs that supported a breakpoint or an SV and used it as a cutoff. We applied a cutoff
of 4 as we explained the reason in Section 3.2. However, we had to apply a cutoff of 2 for SE
only case since it was too stringent when using a single evidence type in low-coverage samples.
Our experiment showed that more accurate results were achieved when additional types of
information were considered. The impact is more dramatic in datasets with low-coverage. In
the 5x dataset, we obtained the F1 score of 0.62 using the evidence from SE+PE+CE and
only 0.43 using SE only. The effect is less pronounced in high-coverage datasets. For the 50x
dataset we obtained 0.97 and 0.93, respectively.

2.5.2 Voting based metric for candidate selection
Often, variant callers such as Delly2 and LumpyExpress apply basic filtration using a sum of
split-reads and read-pairs that support SVs. Instead of using a simple sum of signals from

J. Kim and K. Reinert 13:7

different types of evidence, Vaquita provides an additional metric for candidate selection
based on voting. In this scheme, each type of evidence for a breakpoint is checked by a
relatively lenient cutoff, and then we calculate the number of evidence types that pass the
criteria that we denote as VT. For example, a structural variation with V T = 3 is supported
by three evidence types. By default, we used ≥ 1 for SE and PE since this is the most
lenient condition. For RE, we used ≥ (Q3 + IQR× 1.0) where Q3 and IQR denote the third
quartile and the interquartile range of depth discrepancy score from random positions. The
red line in Figure 3(b) shows this default RE cutoff in a simulation dataset. Note that we
add CE to SE to treat them as a single evidence type. In Figure 4(a), we applied V T = 3
as an additional criterion to rescue SV candidates in low-coverage samples and obtained
better recalls without reducing precision. Therefore, we used this option by default for later
analyses. One can also use this metric to filter out false positives at repeat-rich regions,
instead of excluding those regions from the analysis.

2.5.3 Prioritization by rank aggregation
In practice, prioritization of SVs is an important task for downstream analysis. We formulate
this problem to find an aggregated rank from the ranks based on multiple evidence types.
At first, we define the goodness of a rank based on Spearman’s footrule distance [3]. It is
given as follows:

F (φ) =
Φ∑
e

S∑
s

|φe(s)− φ(s)| (2)

where φx(i) is the rank of the element i by the evidence type x, Φ = {SE,PE,RE}, and S
is the set of all structural variation candidates. In this scheme, the optimal rank φ∗ is the
one that minimize F . We also define the median rank φM that is defined as follows:

φM (s) = median(φSE(s), φPE(s), φRE(s)) . (3)

The cost of calculating φM is O(|Φ| · |S| log |S|) using a quick sort. Hence, it is applicable to
large datasets. Furthermore, φM = φ∗ if there is no tie [4] and, in the presence of ties, φM
is still a 3-approximate solution of φ∗ [5]. Hence, we calculated φM instead of φ∗ for rank
aggregation. To prevent arbitrary breaking up of ties, we obtain the φ using two different
criteria. At first, we order the candidates according to the strength of the evidence, for
example, the number of split-reads for SE. Secondly, we use the depth around the breakpoints
as a tie breaker. In this scheme, the candidate that is in the lower covered region receives the
higher rank. The impact of rank aggregation is shown in Figure 4(b). All the parameters
including the cutoff value was same as described in Section 3.2. In the figure, the top 50%
(≥ Q2) of the structural variations detected by Vaquita turned out to be true positives after
prioritization.

3 Result

3.1 Preliminaries
3.1.1 Datasets and variant callers
We generated a diploid that contains SVs based on chr22 of hg19/GRCh37 using Mason [6].
We set the size range from 30 to 5000 and used simulated rates of 4.0× 10−6 for indel and
2.0 × 10−6 for inversion, duplication, and translocation, respectively. We also introduced

WABI 2017

13:8 Vaquita: Identification of Structural Variation Using Combined Evidence

SNPs and small indels with simulated rates of 2.0 × 10−4 and 4.0 × 10−5 to mimic the
natural variation, but these were not the focus of the evaluation. From the SVs introduced
in chr22, we generated a simulation dataset using ART [7]. We selected Mason since it
can simulate the types of SVs that are defined previously, and ART because it provides
simulation profiles for the platforms such as Illumina HiSeq-2500. We simulated Illumina
paired-end sequencing data with the HS25 option. The depth, read-length, the mean and
standard deviation of insertion sizes are shown in Figure 5. We used the 50x sequencing
samples of a trio from the Illumina Platinum Genome, NA12878, NA12891 and NA12892,
the accession numbers being ERR194147, ERR194160, and ERR194161, respectively. We
also used the validation set from the Genome In A Bottle (GIAB) consortium that was
constructed using multiple sequencing platforms, including a long-read technology [18]. We
compared the performance of Vaquita with five variant callers relying on different sets of
evidence types. Delly2 [19], LumpyExpress [11] and Pindel [24] use split-read and read-pair
information. We also considered CREST [23] that uses read-depth and soft-clipped reads
information, and GASVPro [20] that uses paired-end and read-depth information. All the
reads were aligned to hg19/GRCh37 using BWA-MEM [12] with default parameters. We
also used BLAT for CREST and SAMBLASTER for LumpyExpress.

3.1.2 Validation process
We only considered breakpoints and SVs that are ≥ 50 nucleotides in size. The identified
breakpoints were considered as true positive if we could find a match in the validation set
that had more than 80% of reciprocal overlap. For variant callers that report intervals rather
than exact positions like GASVPro, we considered the identified variations as valid if there
was a match in the validation set that had both ends within the identified intervals. We used
in-house scripts to interpret each of .vcf files from different variant callers according to our
definition of SVs in Figure 1(b). We also used default parameters for each variant callers and
noted for when otherwise.

3.2 Performance comparison using simulation data
The comparison with other variant callers using the simulation datasets is shown in Figure 5.
We combined the number of split-reads with read-pairs and applied 4 as the minimum
cutoff for all variant callers. We used this single cutoff throughout all the comparison in the
manuscript to see the performance in overall and noted for when otherwise. Note that there
can be best parameters for each variant callers for each test condition, and sometimes 4 is
not always the default value. For example, Lumpy uses 4 while Delly2 uses 3 by default.
We also applied a mapping quality cutoff of 20 for when a variant caller supported such
functionality. Vaquita included voting based candidates with the default parameters explained
in the method section. All the variant callers yielded better accuracy as the depth increases.
Notably, Vaquita, LumpyExpress, and Delly2 constantly ranked as the top three. Vaquita
clearly outperformed the top three in the 5x and 10x datasets, mainly because of voting
based rescue. However, the difference in performance decreased for the 30x and 50x datasets.
Although we could not observe significant differences in high-coverage samples, the result of
Figure 4(b) suggests that the prioritization performance of Vaquita is better than the others.
Note that Delly2 showed the highest precision when using Q3 as the threshold in Figure 4(b),
However, the difference between Q1 and Q3 cases was only 0.05. This result can be explained
by the limitation of simulation based testing that we mentioned in Section 2.3. However,
this pattern is not observed when using real datasets as shown in Figure 6(a). We could

J. Kim and K. Reinert 13:9

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

5x 10x 30x 50x
Sequencing depth(D)

(M=300, S=30, L=100)

Br
ea

kp
oi

t
De

le
tio

n
In

ve
rs

io
n

Du
pl

ica
tio

n
Tr

an
slo

ca
tio

n

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

200,20 300,30 600,60 1000,100

Insertion size(M,S)
(D=30, L=100)

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

0.0
0.2
0.4
0.6
0.8
1.0

50bp 75bp 100bp 150bp
Read length(L)

(D=30, M=300, S=30)

Vaquita LumpyExpress Delly2 CREST Pindel GASVPro Recall Precision F1

Figure 5 The assessment of accuracy using simulated datasets. M and S indicate the mean and
standard deviation of the insertion size.

not observe notable differences from Vaquita, LumpyExpress, Delly2 and CREST from the
insert size variations. However, Pindel and GASVPro’s accuracy were dramatically reduced
in larger insert size samples. Vaquita, LumpyExpress, and Delly2 showed robust accuracy
across the read length. However, CREST and Pindel that undergo split-read alignments
internally showed poor performance in the samples with read lengths of 50bp. GASVPro was
unable to find duplications and translocations (defined according to our criteria), reported
alternative SV types, and was unable to run on smaller insert size (200bp) or longer read
length (150bp) samples.

From such results, we selected Vaquita, LumpyExpress, and Delly2 as the top three
variant callers and their performance was further analyzed using real datasets.

3.3 Performance comparison using real datasets

3.3.1 Overlap between variant callers
The matched fraction of deletions calls compared to GIAB were 0.55, 0.57, and 0.48 for
Vaquita, LumpyExpress, and Delly2, respectively. We also investigated the prioritization
performance by selecting top 25%, 50%, and 75% of SVs using the rank aggregation for
Vaquita, and the evidence summation for LumpyExpress and Delly2 in Figure 6(a). The
difference between the overall matching fraction and that of top 25% (≥ Q1) were 0.30, 0.26
and 0.19 for Vaquita, LumpyExpress, and Delly2, respectively. This result suggests that the
rank aggregation based on multiple evidence types is still effective in this relatively high-
coverage samples. In Figure 6(b), Vaquita and Delly2 contain about 28% and 25% of unique
breakpoints, while LumpyExpress only has 10%. However, the total number of breakpoints
calls were 6,681 and 6,658 for Vaquita and Delly2, while only 5,420 for LumpyExpress. This
result suggests that the cutoff used in the comparison are more stringent for LumpyExpress.
Notably, LumpyExpress only identified 154 inversions while Vaquita and Delly2 identified
816 and 602 inversions, respectively. One possible explanation is that Vaquita and Delly2

WABI 2017

13:10 Vaquita: Identification of Structural Variation Using Combined Evidence

1867

1627527

609516

688
3869

770

1436283

111281

444
2897

325

10478

43311

18
47

180

6951

810

10
34

0.40

0.50

0.60

0.70

0.80

0.90

1.00

≥ Q1 ≥ Q2 ≥ Q3 All

M
at

ch
ed

 fr
ac

tio
n

Threshold

Comparison with GIAB deletions

Vaquita
LumpyExpress
Delly2

(a) (b)
Breakpoint Deletion

Inversion Duplication /
Translocation

Figure 6 The comparion between variant callers using the NA12878 dataset. (a) Comparison
with deletion calls from Genome in a Bottle consortium. (b) The result overlaps between tools.

have an internal realignment process while LumpyExpress is not. However, this explanation
is not rigorously tested.

3.3.2 Trio analysis
In Figure 7, the Mendelian errors of breakpoints were 0.23, 0.11, and 0.18 for Vaquita,
LumpyExpress, and Delly2, respectively. The error count of LumpyExpress being the lowest
can be explained by the high fraction of structural variations that were overlapping in
both parents. For LumpyExpress, these fractions were substantially higher than the others,
especially in deletions. We additionally investigated the rate of overlaps between two parents
and found that LumpyExpress had 0.42 of overlaps in breakpoints while Vaquita and Delly
had 0.37 and 0.38, respectively. Note that a recent study using hydatidiform moles and
long-reads sequencing technology suggested that 32% of overlaps in deletions and insertions
between two genetically unrelated individuals [8]. Therefore, 42% of overlaps between two
parents were higher than expected although the reason is not clear. The main difference of
the Mendelian errors between Vaquita and Delly2 were due to inverisons. For inverisons,
the Mendelian errors were 0.30 for Vaquita, and 0.13 for Delly2. This much of difference is
not consistent with the previous analysis using simulation datasets. Therefore, we suspect
that several types of inversion couldn’t be simulated by Mason properly. However, Vaquita
obtained the Mendelian errors of 0.19 and 0.46 for deletions and duplications while Delly2
obtained 0.20 and 0.48, respectively.

3.4 Runtime performance
We compared the CPU time reported by the time command in Debian Linux. In the
comparison, Vaquita was significantly faster than the other tools for analyzing the human
WGS sample with 50x coverage (NA12878). We found that Vaquita is 8.2 times faster
than LumpyExpress and 9.6 times faster than Delly2 which only finds one variant type in

J. Kim and K. Reinert 13:11

0.00

0.20

0.40

0.60

0.80

1.00

Both parent Single parent Child only

M
at

ch
ed

 fr
ac

tio
n

Breakpoint
Vaquita (n: 7287)
LumpyExpress (n: 5871)
Delly2 (n: 7354)

0.00

0.20

0.40

0.60

0.80

1.00

Both parent Single parent Child onlyM
at

ch
ed

 fr
ac

tio
n

Deletion
Vaquita (n: 4177)
LumpyExpress (n: 4097)
Delly2 (n: 5037)

0.00

0.20

0.40

0.60

0.80

1.00

Both parent Single parent Child only

M
at

ch
ed

 fr
ac

tio
n

Inversion
Vaquita (n: 1134)
LumpyExpress (n: 173)
Delly2 (n: 947)

0.00

0.20

0.40

0.60

0.80

1.00

Both parent Single parent Child only
M

at
ch

ed
 fr

ac
tio

n

Duplication / Translocation
Vaquita (n: 291)

LumpyExpress (n: 107)

Delly2 (n: 127)

Figure 7 The SVs identified from the child dataset(NA12878) were compared to the SVs from
the parent’s datasets (NA12891 and NA12892).

a single run. Vaquita only required less than 40 minutes in our test environment. We can
explain this speed-up based on three observations. First, the merging step of Vaquita that
we explained in Section 2.2 is very fast in practice since structural variations are sparsely
distributed across the human genome. Second, the realignment step is also very fast and
took less than 5 minutes in total for the test case. Third, the .bam file processing of SeqAn
library is also faster than other implementation since it internally separates several threads
for decompression of bgzf stream. Regarding the last reason, we modified the original source
code of the library so that the library was fixed to a single thread for the decompression
process. Although it is still a separated thread, we used CPU time for the comparison. Note
that LumpyExpress calls an external tool for .bam file parsing, and Delly2 should be ran
multiple times to find all variant types. Therefore, we concluded that the comparison is not
specifically biased to Vaquita. The peak memory consumption were 12.5G for Vaquita, 6.4G
for LumpyExpress, and 320M for Delly2. This relatively large memory consumption was due
to inefficient implementation for storing positions and can be improved in the future version.

All the tests were done on a Debian GNU/Linux 8 machine with two Intel Xeon E5-
2667V2 Octa core CPUs at 3.3GHz, 387GB of RAM, and 2TB of SATA SSDs on RAID5
configuration. We did not attempt to use multi-threading for each variant caller.

4 Discussion and conclusion

Vaquita was developed to integrate split-read, read-pair, soft-clipped, and read-depth in-
formation and provides effective evidence combination strategy based on voting and rank
aggregation. In the benchmark using the simulation datasets, Vaquita showed relatively
robust performance across different sequencing depths, insert sizes and read lengths. In the
comparison with GIAB deletions, about 55% of deletions found by Vaquita were matched
and showed better prioritization results compared to LumpyExpress and Delly2. Vaquita also
identified more breakpoints than the others and about 28 percent of them were unique. In

WABI 2017

13:12 Vaquita: Identification of Structural Variation Using Combined Evidence

the trio analysis, Vaquita showed similar number of Mendelian errors compared to Delly2 and
higher number of errors compared to LumpyExpress. The difference between these errors can
be explained by the prevalence of overlapping variations in both parents (LumpyExpress),
or by errors in inversions (Delly2). The runtime of Vaquita was significantly faster than
those of LumpyExpress and Delly2 by a factor of more than 8 times. As a future goal, we
will provide an improved functionality to confidently integrate other orthogonal datasets,
including long-read datasets.

Acknowledgements. The authors thank Dr. Birte Kehr for her suggestions regarding
validation process and many valuable comments on the manuscript. The authors also thank
Dr. Bernhard Renard and Kathrin Trappe for their helpful discussion. J.K was supported
by the International Max Planck Research School for Computational Biology and Scientific
Computing and the Efficient Algorithms for Omics Data group at the MPI for Molecular
Genetics.

References
1 Can Alkan, Bradley P. Coe, and Evan E. Eichler. Genome structural variation discovery

and genotyping. Nature reviews. Genetics, 12(5):363–376, 2011. arXiv:NIHMS150003, doi:
10.1038/nrg2958.

2 Kym M. Boycott, Megan R. Vanstone, Dennis E. Bulman, and Alex E. MacKenzie. Rare-
disease genetics in the era of next-generation sequencing: discovery to translation. Nature
reviews. Genetics, 14(10):681–91, 2013. doi:10.1038/nrg3555.

3 Persi Diaconis. Group representations in probability and statistics. Lecture Notes-
Monograph Series, 11:i–192, 1988.

4 Cynthia Dwork, Ravi Kumar, Moni Naor, and D Sivakumar. Rank aggregation methods
for the Web. Proceedings of the 10th international conference on World Wide Web, pages
613–622, 2001. doi:10.1145/371920.372165.

5 Ronald Fagin, Ravi Kumar, Mohammad Mahdian, D. Sivakumar, and Erik Vee. Comparing
and aggregating rankings with ties. In Proceedings of the twenty-third ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 47–58, 2004. doi:
10.1145/1055558.1055568.

6 Manuel Holtgrewe. Mason – A Read Simulator for Second Generation Sequencing Data.
Technical report, Freie Universität Berlin, 2010.

7 Weichun Huang, Leping Li, Jason R. Myers, and Gabor T. Marth. ART: A next-
generation sequencing read simulator. Bioinformatics, 28(4):593–594, 2012. doi:10.1093/
bioinformatics/btr708.

8 John Huddleston, Mark Jp Chaisson, Karyn Meltz Steinberg, Wes Warren, Kendra
Hoekzema, David S Gordon, Tina A Graves-Lindsay, Katherine M Munson, Zev N Kron-
enberg, Laura Vives, Paul Peluso, Matthew Boitano, Chen-Shin Chin, Jonas Korlach,
Richard K Wilson, and Evan E Eichler. Discovery and genotyping of structural variation
from long-read haploid genome sequence data. Genome research, page gr.214007.116, 2016.
URL: http://www.ncbi.nlm.nih.gov/pubmed/27895111, doi:10.1101/gr.214007.116.

9 W James Kent. BLAT – The BLAST-Like Alignment Tool. Genome Research, 12:656–664,
2002. doi:10.1101/gr.229202.

10 Ben Langmead and Steven L Salzberg. Fast gapped-read alignment with Bowtie 2. Nat
Methods, 9(4):357–359, 2012. arXiv:{\#}14603, doi:10.1038/nmeth.1923.

11 Ryan M. Layer, Colby Chiang, Aaron R. Quinlan, and Ira M. Hall. LUMPY: a probabilistic
framework for structural variant discovery. Genome biology, 15(6):R84, 2014. arXiv:
1210.2342, doi:10.1186/gb-2014-15-6-r84.

http://arxiv.org/abs/NIHMS150003
http://dx.doi.org/10.1038/nrg2958
http://dx.doi.org/10.1038/nrg2958
http://dx.doi.org/10.1038/nrg3555
http://dx.doi.org/10.1145/371920.372165
http://dx.doi.org/10.1145/1055558.1055568
http://dx.doi.org/10.1145/1055558.1055568
http://dx.doi.org/10.1093/bioinformatics/btr708
http://dx.doi.org/10.1093/bioinformatics/btr708
http://www.ncbi.nlm.nih.gov/pubmed/27895111
http://dx.doi.org/10.1101/gr.214007.116
http://dx.doi.org/10.1101/gr.229202.
http://arxiv.org/abs/{#}14603
http://dx.doi.org/10.1038/nmeth.1923
http://arxiv.org/abs/1210.2342
http://arxiv.org/abs/1210.2342
http://dx.doi.org/10.1186/gb-2014-15-6-r84

J. Kim and K. Reinert 13:13

12 Heng Li. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.
arXiv preprint arXiv, 00(00):3, 2013. URL: http://arxiv.org/abs/1303.3997.

13 Matthew Meyerson, Stacey Gabriel, and Gad Getz. Advances in understanding cancer
genomes through second-generation sequencing. Nature reviews. Genetics, 11(10):685–96,
2010. doi:10.1038/nrg2841.

14 Alison M Meynert, Morad Ansari, David R FitzPatrick, and Martin S Taylor. Variant de-
tection sensitivity and biases in whole genome and exome sequencing. BMC bioinformatics,
15:247, 2014. doi:10.1186/1471-2105-15-247.

15 Ryan E. Mills, Klaudia Walter, Chip Stewart, Robert E. Handsaker, Ken Chen, Can Alkan,
Alexej Abyzov, Seungtai Chris Yoon, Kai Ye, R. Keira Cheetham, Asif Chinwalla, Don-
ald F. Conrad, Yutao Fu, Fabian Grubert, Iman Hajirasouliha, Fereydoun Hormozdiari,
Lilia M. Iakoucheva, Zamin Iqbal, Shuli Kang, Jeffrey M. Kidd, Miriam K. Konkel, Joshua
Korn, Ekta Khurana, Deniz Kural, Hugo Y.K. Lam, Jing Leng, Ruiqiang Li, Yingrui Li,
Chang-Yun Lin, Ruibang Luo, Xinmeng Jasmine Mu, James Nemesh, Heather E. Peckham,
Tobias Rausch, Aylwyn Scally, Xinghua Shi, Michael P. Stromberg, Adrian M. Stütz, Alex-
ander Eckehart Urban, Jerilyn A. Walker, Jiantao Wu, Yujun Zhang, Zhengdong D. Zhang,
Mark A. Batzer, Li Ding, Gabor T. Marth, Gil McVean, Jonathan Sebat, Michael Snyder,
Jun Wang, Kenny Ye, Evan E. Eichler, Mark B. Gerstein, Matthew E. Hurles, Charles Lee,
Steven A. McCarroll, and Jan O. Korbel. Mapping copy number variation by population-
scale genome sequencing. Nature, 470(7332):59–65, feb 2011. doi:10.1038/nature09708.

16 Marghoob Mohiyuddin, John C. Mu, Jian Li, Narges Bani Asadi, Mark B. Gerstein, Alexej
Abyzov, Wing H. Wong, and Hugo Y K Lam. MetaSV: An accurate and integrative
structural-variant caller for next generation sequencing. Bioinformatics, 31(16):2741–2744,
2015. doi:10.1093/bioinformatics/btv204.

17 Gene Myers. A fast bit-vector algorithm for approximate string matching based on dynamic
programming. Journal of the ACM, 46(3):395–415, 1999. doi:10.1145/316542.316550.

18 Hemang Parikh, Marghoob Mohiyuddin, Hugo Y K Lam, Hariharan Iyer, Desu Chen,
Mark Pratt, Gabor Bartha, Noah Spies, Wolfgang Losert, Justin M Zook, and Marc Salit.
Svclassify: a Method To Establish Benchmark Structural Variant Calls. BMC genomics,
17(1):64, 2016. doi:10.1186/s12864-016-2366-2.

19 T. Rausch, T. Zichner, A. Schlattl, A. M. Stutz, V. Benes, and J. O. Korbel. DELLY:
structural variant discovery by integrated paired-end and split-read analysis. Bioinformat-
ics, 28(18):i333–i339, 2012. doi:10.1093/bioinformatics/bts378.

20 Suzanne S. Sindi, Selim Onal, Luke Peng, Hsin-Ta Wu, and Benjamin J. Raphael. An integ-
rative probabilistic model for identification of structural variation in sequencing data. Gen-
ome biology, 13(3):R22, 2012. URL: http://www.ncbi.nlm.nih.gov/pubmed/22452995,
doi:10.1186/gb-2012-13-3-r22.

21 Peter H. Sudmant, Tobias Rausch, Eugene J. Gardner, Robert E. Handsaker, Alexej
Abyzov, John Huddleston, Yan Zhang, Kai Ye, Goo Jun, Markus Hsi-Yang Fritz, Miriam K.
Konkel, Ankit Malhotra, Adrian M. Stütz, Xinghua Shi, Francesco Paolo Casale, Jiem-
ing Chen, Fereydoun Hormozdiari, Gargi Dayama, Ken Chen, Maika Malig, Mark J. P.
Chaisson, Klaudia Walter, Sascha Meiers, Seva Kashin, Erik Garrison, Adam Auton, Hugo
Y.K. Lam, Xinmeng Jasmine Mu, Can Alkan, Danny Antaki, Taejeong Bae, Eliza Cerveira,
Peter Chines, Zechen Chong, Laura Clarke, Elif Dal, Li Ding, Sarah Emery, Xian Fan,
Madhusudan Gujral, Fatma Kahveci, Jeffrey M. Kidd, Yu Kong, Eric-Wubbo Lameijer,
Shane McCarthy, Paul Flicek, Richard A. Gibbs, Gabor Marth, Christopher E. Mason,
Androniki Menelaou, Donna M. Muzny, Bradley J. Nelson, Amina Noor, Nicholas F. Par-
rish, Matthew Pendleton, Andrew Quitadamo, Benjamin Raeder, Eric E. Schadt, Mallory
Romanovitch, Andreas Schlattl, Robert Sebra, Andrey A. Shabalin, Andreas Untergasser,
Jerilyn A. Walker, Min Wang, Fuli Yu, Chengsheng Zhang, Jing Zhang, Xiangqun Zheng-

WABI 2017

http://arxiv.org/abs/1303.3997
http://dx.doi.org/10.1038/nrg2841
http://dx.doi.org/10.1186/1471-2105-15-247
http://dx.doi.org/10.1038/nature09708
http://dx.doi.org/10.1093/bioinformatics/btv204
http://dx.doi.org/10.1145/316542.316550
http://dx.doi.org/10.1186/s12864-016-2366-2
http://dx.doi.org/10.1093/bioinformatics/bts378
http://www.ncbi.nlm.nih.gov/pubmed/22452995
http://dx.doi.org/10.1186/gb-2012-13-3-r22

13:14 Vaquita: Identification of Structural Variation Using Combined Evidence

Bradley, Wanding Zhou, Thomas Zichner, Jonathan Sebat, Mark A. Batzer, Steven A.
McCarroll, Ryan E. Mills, Mark B. Gerstein, Ali Bashir, Oliver Stegle, Scott E. Devine,
Charles Lee, Evan E. Eichler, and Jan O. Korbel. An integrated map of structural variation
in 2,504 human genomes. Nature, 526(7571):75–81, 2015. doi:10.1038/nature15394.

22 Kathrin Trappe, Anne-Katrin Katrin Emde, Hans-Christian Christian Ehrlich, and Knut
Reinert. Gustaf: Detecting and correctly classifying SVs in the NGS twilight zone. Bioin-
formatics (Oxford, England), 30(24):1–8, 2014. doi:10.1093/bioinformatics/btu431.

23 Jianmin Wang, Charles G Mullighan, John Easton, Stefan Roberts, Sue L Heatley, Jing
Ma, Michael C Rusch, Ken Chen, Christopher C Harris, Li Ding, Linda Holmfeldt, Debbie
Payne-Turner, Xian Fan, Lei Wei, David Zhao, John C Obenauer, Clayton Naeve, Elaine R
Mardis, Richard K Wilson, James R Downing, and Jinghui Zhang. CREST maps somatic
structural variation in cancer genomes with base-pair resolution. Nature methods, 8(8):652–
4, 2011. arXiv:NIHMS150003, doi:10.1038/nmeth.1628.

24 Kai Ye, Marcel H. Schulz, Quan Long, Rolf Apweiler, and Zemin Ning. Pindel: A pattern
growth approach to detect break points of large deletions and medium sized insertions
from paired-end short reads. Bioinformatics, 25(21):2865–2871, 2009. arXiv:NIHMS150003,
doi:10.1093/bioinformatics/btp394.

25 Seungtai Yoon, Zhenyu Xuan, Vladimir Makarov, Kenny Ye, and Jonathan Sebat. Sensitive
and accurate detection of copy number variants using read depth of coverage. Genome
Research, 19(9):1586–1592, 2009. doi:10.1101/gr.092981.109.

http://dx.doi.org/10.1038/nature15394
http://dx.doi.org/10.1093/bioinformatics/btu431
http://arxiv.org/abs/NIHMS150003
http://dx.doi.org/10.1038/nmeth.1628
http://arxiv.org/abs/NIHMS150003
http://dx.doi.org/10.1093/bioinformatics/btp394
http://dx.doi.org/10.1101/gr.092981.109

Assessing the Significance of Peptide Spectrum
Match Scores∗

Anastasiia Abramova1 and Anton Korobeynikov2

1 Department of Statistical Modeling, Saint Petersburg State University,
Saint Petersburg, Russia; and
Center for Algorithmic Biotechnology, Saint Petersburg State University,
Saint Petersburg, Russia

2 Department of Statistical Modeling, Saint Petersburg State University,
Saint Petersburg, Russia; and
Center for Algorithmic Biotechnology, Saint Petersburg State University,
Saint Petersburg, Russia

Abstract
Peptidic Natural Products (PNPs) are highly sought after bioactive compounds that include many
antibiotic, antiviral and antitumor agents, immunosuppressors and toxins. Even though recent
advancements in mass-spectrometry have led to the development of accurate sequencing methods
for nonlinear (cyclic and branch-cyclic) peptides, requiring only picograms of input material, the
identification of PNPs via a database search of mass spectra remains problematic. This holds
particularly true when trying to evaluate the statistical significance of Peptide Spectrum Matches
(PSM) especially when working with non-linear peptides that often contain non-standard amino
acids, modifications and have an overall complex structure.

In this paper we describe a new way of estimating the statistical significance of a PSM,
defined by any peptide (including linear and non-linear), by using state-of-the-art Markov Chain
Monte Carlo methods. In addition to the estimate itself our method also provides an uncertainty
estimate in the form of confidence bounds, as well as an automatic simulation stopping rule that
ensures that the sample size is sufficient to achieve the desired level of result accuracy.

1998 ACM Subject Classification G.3 [Probability and Statistics] Statistical Software, J.3 [Com-
puter Applications] Biology and Genetics

Keywords and phrases mass spectrometry, natural products, peptide spectrum matches, statis-
tical significance

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.14

1 Introduction

Tandem mass-spectrometry (MS/MS) is an attractive alternative to nuclear magnetic reso-
nance (NMR) spectroscopy that can be used to sequence non-linear (cyclic and branch-cyclic)
peptides. Usually MS/MS is coupled with a database search algorithm capable of locating
candidate peptides within the database of protein sequences, computing the peptide-spectrum
match scores and estimating the statistical significance of the PSMs found.

A number of recent studies have been focusing on trying to compute the statistical
significance of the PSMs. Since this particular problem is very similar to the thoroughly
researched issue of having to compute the statistical significance of sequence match scores,
many different approaches were proposed. For example, in [2] it was proposed to approximate

∗ This work was supported by the Saint Petersburg State University (grant number 15.61.951.2015).

© Anastasiia Abramova and Anton Korobeynikov;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 14; pp. 14:1–14:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.WABI.2017.14
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

14:2 Assessing the Significance of Peptide Spectrum Match Scores

the statistical significance of PSMs by first modeling the distribution of the PSM scores (e.g.,
by Gumbel distribution) and further using this distribution to calculate the probability of
interest. Unfortunately, while useful in many other applications, this approximation approach,
often fails when one has to estimate extremely small PSM probabilities typical for mass
spectrometry (e.g., values as small as 10−10 are often required to achieve 1% FDR [12]).

Linear peptides and additive scoring functions use a polynomial-time algorithm [11] to
compute the PSM p-values. It would seem, however, that the same approach cannot be
applied to non-linear peptides. A groundbreaking breakthrough [15] gave rise to MS-DPR,
an algorithm capable of computing the p-values of the PSM using the Markov Chain Direct
Probability Redistribution approach. Unfortunately, while the algorithm has great appeal
and appears to be quite universal, MS-DPR does not give any indication as to the accuracy
of the calculated estimates and its overall performance greatly depends on the size of the
sample, i.e. the number of simulations used to compute the p-value. The algorithm, however,
does not provide any guidelines as to how one should go about selecting the correct size for
the initial sample so as to assure quality end results.

Fortunately, the rare probability estimation problem itself is not new and has been very
well studied within the framework of such fields as particle physics, stochastic simulation,
financial mathematics, chemistry and telecommunication theory among the others.

We are using several state-of-art methods of the Monte Carlo sampling theory, including
the Markov Chain Monte Carlo, importance sampling, the Wang-Landau algorithm and the
efficient variance estimates for Markov Chains to derive a novel method, capable not only
of estimating the statistical significance of the PSMs, but also of constructing confidence
bounds for the p-value of interest and provide a way to predict the size of the sample that
would be required to achieve the desired level of result accuracy.

2 Methods

2.1 Probabilistic model of a spectrum of an arbitrary peptide
We use the same probabilistic model to compute the statistical significance of PSM as
presented in [15, 14]. For the sake of completeness we will describe it below.

A PNP graph G of a peptide P is defined as a graph with nodes V (G) corresponding to
amino acids in P and edges E(G) corresponding to generalized peptide bonds [14]1. The mass
Mass(G) of a PNP graph is defined as the total mass of its amino acids, i.e. Mass(G) =∑
v∈V (G) m(v).
A peptide bond is called a bridge if its removal disconnects the graph. A pair of bonds

is called a 2-cut if neither of them are bridges but removing both of them simultaneously
disconnects the graph. Let Cb be the set of bridges of G and C2 be the set of pairs of 2-cut
edges and we define the set of cuts of G as C(G) = Cb(G) ∪ C2(G).

Any cut C ′ ∈ C induces two masses (theoretical peaks) mb(C ′) and my(C ′) of the
connected components of G resulting from the cut C ′. Note that these two peaks are
complementary with a total mass equal to the molecular mass of the compound, Mass(G).
This means that for the PNP graph G and its set of cuts C there exist two vectors of masses
~mb = (m(1)

b , . . . ,m
(|C|)
b) and ~my = (m(1)

y , . . . ,m
(|C|)
y). The vector ~mb is called the theoretical

spectrum of P and further be referred as TheoreticalSpectrum(P).

1 Generalized peptide bonds include N-C-O linkage amide bonds as well as C-C-O linkage bonds between
thiazoles/oxazoles and dehydroalanines/dehydrobutyrines and other amino-acids. The notion of gener-
alized peptide bonds is useful as illustrated by identification of the thiazole/oxazole containing PNP
plantazolicin from B. amyloliquefaciens, lanthipeptide SapB from S. coelicolor, and complex PNPs such
as two-rings containing actinomycin from Streptomyces sp. CNS654 [14].

A. Abramova and A. Korobeynikov 14:3

The TheoreticalSpectrum(P) can also be represented via a fragmentation matrix H =
{hij} of size |C|× |V (G)| with the elements hij = 1 if j ∈ V (G1(C(i))) and 0 otherwise. Here
C(i) ∈ C and G \ C(i) = G1(C(i)) ∪G2(C(i)). Rows of the fragmentation matrix correspond
to different, potentially observable fragmentations. Each row specifies which amino acids are
to be found on one of the connected component of graph G after the removal of some nodes.
This means that TheoreticalSpectrum(P) = H~µ, where ~µ is a vector of the masses of the
amino acids.

SPCScore(P, Spectrum) is defined as the Shared Peak Count, the number of peaks shared
between TheoreticalSpectrum(P) and the filtered MS/MS spectrum Spectrum [5]. Two
peaks are considered as shared if their masses are within a pre-defined threshold (typically
0.02 Da for high-resolution spectra). From here on we will consider Spectrum to be fixed
and we will denote Score(~µ) = SPCScore(Spectrum,H~µ).

We will useM to denote a set of vectors that satisfy the following condition:

M = {~µ = (µ1, . . . , µ|V (G)|), | µi > 0,
|V (G)|∑
i=1

µi = Mass(G)}. (1)

This set represents a variety of amino acid mass-vectors (with possible non-standard amino-
acids that are typical for non-ribosomal peptides, modifications, etc. mixed in). Our goal is
to calculate the probability

p = IP(SPCScore(Spectrum,H~µ) ≥ S∗) = IP(Score(~µ) ≥ S∗), (2)

where ~µ is a random variable uniformly distributed on setM and S∗ is a fixed threshold
(usually S∗ = SPCScore(Spectrum,P)). Note that the probability (2) defined above
depends on the particular choice of the setM. We could obtain different models of PSM
significance via changing the scoring function SPCScore and/or the setM. For example, if
we consider an integer simplexM′ (so all the µi would be integers), additive scoring functions
and linear peptides, then we will end with the PSM statistical significance model as used by
MS-GF+ [11]. The estimates presented below could easily be adopted to a different model.

2.2 Monte Carlo and the Importance Sampling Approach
The probability (2) could be estimated by using the Monte Carlo sampling approach. Consider
the set

S = {~µ ∈M : Score(~µ) ≥ S∗} .

Denote by 1lS an indicator function of the set S, i.e. 1lS(~µ) equals 1 if ~µ ∈ S (equivalently,
Score(~µ) ≥ S∗) and 0 otherwise. Let ~µ1, . . . , ~µN be N iid random variables with a uniform
distribution on the setM. Then

p̂MC = 1
N

N∑
i=1

1lS(~µi)

is an unbiased and consistent estimate of p.
Variance D(p̂MC) of p̂MC equals to p(1−p)

N and tends to 0 as N → ∞. However, its
relative error

RE(p̂MC) = D(p̂MC)
p2 = p(1− p)

Np2 = 1
Np
− 1
N
−→∞, p→ 0, (3)

is unbounded indicating that the performance deteriorates when the event is rare. For
example, if a relative error at 1% is desired and the probability is of order 10−6 then we

WABI 2017

14:4 Assessing the Significance of Peptide Spectrum Match Scores

need to take N such that
√

(106 − 1)/N ≤ 0.01. This implies that N ≈ 1010 which is an
unfeasible task for most computer systems. Therefore we need to look for an estimate that
would have its variance smaller than D(p̂MC), ideally having the relative error bounded (or
at least growing much slower).

Importance sampling is a general Monte-Carlo approach to reduce the variance in the
estimation of quantities that can be written as an expectations. Importance sampling
generates the “interesting” events more often by sampling from a different distribution and
correcting for this bias afterward, which results in a more accurate estimate with a reasonable
number of samples.

Formally, let P be the distribution of ~µi and f the corresponding density. Consider
another distribution Q with density q. Let ~ν1, . . . , ~νN be a sequence of iid random variables
having the distribution Q. Then importance sampling estimator of p is defined as

p̂IS = 1
N

N∑
i=1

f(~νi)
q(~νi)

1lS(~νi). (4)

Note that this estimator is also consistent and unbiased.
Suppose that the density q has the following form:

q(x) = cw(x)f(x), (5)

where c > 0 is a normalizing constant and w(x) is some biasing factor. Then p̂IS would not
depend on f and could be written as

p̂IS =

N∑
i=1

1lS(~νi)/w(~νi)

N∑
i=1

1/w(~νi)
, (6)

where ~ν1, . . . , ~νN is a sequence of iid random variables with density function q.

2.3 Metropolis-Hastings Algorithm with Wang-Landau weighting
In order to calculate p̂IS we need to sample from the distribution Q with density (5). This
might be a non-trivial task, since the normalizing constant c of q(x) is unknown and weights
w(x) could be arbitrary.

Usually this task is approached by using the Metropolis-Hastings [7] algorithm that allows
for the usage of unnormalized densities. Our goal is to construct a Markov Chain having Q
as an equilibrium distribution and obtain the desired sequence {~νn} of random variables via
sampling from this distribution. Then the ergodicity of the Markov chain will ensure that as
N →∞ still p̂IS will converge to the target probability p almost surely [18, 17].
Algorithm 1: Metropolis-Hastings algorithm
Input :Transition kernel γ(x|y), current state of Markov Chain ~νi
Output :Next state of Markov-Chain ~νi+1

1 Sample random variable ~ν from conditional probability distribution γ(·|~νi)
2 Sample uniform random variable r on the interval [0; 1]
3 Calculate the acceptance ratio α = min

(
q(~νi)γ(~ν|~νi)
q(~ν)γ(~νi|~ν) , 1

)
4 if r < α then
5 ~νi+1 ← ~ν

6 else
7 ~νi+1 ← ~νi
8 end

A. Abramova and A. Korobeynikov 14:5

The density q here is defined by (5) and sampling from proposal density γ(·|~νi) is performed
as follows:

Algorithm 2: Simulation from conditional density γ(·|~νi)
Input :Current state of Markov Chain ~ν = (ν1, . . . , ν|V (G)|) ∈M
Output :Proposed state ν̃

1 Sample index i uniformly on {1, . . . , |E(G)|}
2 Consider ei ∈ E(G). Denote by v1 a starting vertex of ei and by v2 an ending vertex
3 Sample δ uniformly on [−m(v1);m(v2)]
4 Set ν̃v1 ← νv1 + δ, ν̃v2 ← νv2 − δ, and ν̃j ← νj for the rest j

The density f in our case is a uniform density on the setM and it is natural to assume that
the weights w(~ν) should be score-invariant. Therefore to calculate p̂IS we will consider a
proposal distribution Q with the density q(~ν) = cw(Score(~ν))f(~ν). In order to decrease the
relative error RE(p̂IS) we aim to choose w(S) ≈ 1/IP(Score(~ν) = S). This way sampling
from Q will yield a flat score distribution reducing the variance of p̂IS .

For this purpose we adapt a variant of Wang-Landau algorithm [13, 19]. This algorithm
is an adaptive modification of the Metropolis-Hastings algorithm, which can simultaneously
construct the Markov Chain and estimates weights. We use this algorithm, however, only to
estimate weights because the resulting random walk is not even Markovian and therefore one
could not guarantee the consistency of the estimates and lack of bias.

Algorithm 3: Wang-Landau algorithm
Input :Minimum and maximum values of log-weight increments Cmin, Cmax
Output : Set of weights w(S)

1 Set w[i]← 0 for i ∈ Smin, . . . , Smax, where Smin and Smax are minimum and
maximum scores correspondingly

2 C ← Cmax
3 while C > Cmin do
4 Set Hist[i]← 0 for i ∈ Smin, . . . , Smax
5 Simulate ~ν uniformly onM
6 while Hist is not sufficiently flat do
7 Run a step of Metropolis-Hastings algorithm with density

q(~ν) = cw(Score(~ν))f(~ν). Denote obtained new state by ν̃
8 w[Score(ν̃)]← w[Score(ν̃)]/C
9 Hist[Score(ν̃)]← Hist[Score(ν̃)] + 1

10 end
11 C ←

√
C

12 end
13 return w(S)

Typically we use Cmin = exp(0.6), Cmax = exp(0.0000367). The criterion for a “sufficiently
flat” histogram is that counts in every bin of the histogram are larger than 70% and smaller
than 130% of the value expected in a perfectly flat histogram.

Use of Metropolis-Hastings algorithm coupled with Wang-Landau sampling is a common
technique used recently for rare event sampling (see [9] for an extensible review). In [21] it
was used to calculate the probabilities of sequence local alignment scores (however, neither
accuracy estimates in the form of variance nor the sample sizes required to achieve the desired
accuracy of estimates were given).

WABI 2017

14:6 Assessing the Significance of Peptide Spectrum Match Scores

2.4 Variance Estimation
The estimate alone is useless without knowing how accurate it is. Regardless of the length of
the simulation, there will be an unknown Monte Carlo error, p̂IS − p. While it is impossible
to assess this error directly, we can obtain its approximate sampling distribution through a
Markov Chain central limit theorem (CLT) [18]. That is, if
√
N (p̂IS − p)→ N(0, σ2

p),

as N →∞ with some σ2
p > 0. Denote by λ2

p the posterior variance associated with p. Then
it is important to note that due to the correlation present in a Markov chain σ2

p 6= λ2
p.

For now, suppose we have an estimator σ̂2
N such that σ̂2

N → σ2
p almost surely as N →∞.

This allows construction of a (1− δ)100% confidence interval CN for p by

CN = (p̂IS − zδ/2σ̂N/
√
N ; p̂IS + zδ/2σ̂N/

√
N), (7)

where zδ/2 is a quantile of a standard Normal distribution. The width wδ of CN is given by

wδ = 2zδ/2σ̂N/
√
N

and allows reporting the uncertainty of estimate p̂IS .
There are many strongly consistent variance estimation techniques applicable for p̂IS

including batch means [4, 10], spectral variance estimators[4] and regenerative simulation [8,
16].

Unfortunately, all these methods require storing the entire trajectory of the Markov chain
to allow for the recalculations as the batch size increases with N . This might quickly become
a problem if the fixed accuracy criterion is used as a stopping rule for the simulation process.
Indeed, while storage capabilities overall are gradually becoming less and less of an issue, still,
in order to obtain proper estimates in this case one would need to recalculate them over the
length of the entire chain over and over again, which would make the process prohibitively
computationally expensive.

Most likely the first recursive approach to update a σ2
p estimate when new observations

come with O(1) memory and computational complexity was proposed in [22]. The challenge
here is to figure out a way to determine the batch sizes recursively to preserve consistency
of the estimates and have a small mean square error, while simultaneously keeping the
computational and computer memory requirements low. We are using a novel recursive
estimator for σ2

p proposed in [23] that in the most situations works better than the estimator
from [22] while preserving the O(1) storage requirements.

2.5 Stopping Rule
In order to be able to process big MS/MS databases we need to carry out PSM significance
estimation en masse in a fully automated manner. It follows that in this case performing
chain diagnostics by hand or using a fixed time Markov chain stopping rule is out of the
question. Recently in [3] an automated sequential stopping procedure was proposed that
terminates the simulation when the computation uncertainty is small relative to the posterior
uncertainty. In [6] it was shown that this stopping rule is equivalent to stopping when the
effective sample size is sufficiently large.

Let λ̂N be an estimator of λp and consider a relative standard deviation fixed-width
stopping rule, i.e.

Nε = inf
{
N > 0 : 2zδ/2σ̂N/

√
N ≤ ελ̂N

}
. (8)

A. Abramova and A. Korobeynikov 14:7

From [3] it follows that if λ̂N → λp a.s. and σ̂N → σp a.s. as N → ∞, then as ε → 0 the
simulations will terminate with probability 1 and IP(p ∈ CNε)→ 1− δ. In practice we are
using ε = 0.02 and the σ̂N estimate from [23].

A useful modification of this stopping criterion comes from the specific MS/MS database
search problem statement. In certain situations the aim is not to estimate the probability
of interest (2), but to decide whether p satisfies p < p0 with p0 being some fixed threshold.
Usually p0 is much larger compared to p (e.g. p0 = 10−7 and p < 10−10). Therefore in
addition to checking a condition (8) for a particular N we could also check if p0 6∈ CN . If
this is indeed so, then it automatically implies that either p < p0 or p > p0 with probability
1− δ as N →∞. This addition to the stopping rule might result in a significant reduction
of the amount of simulations required, since it would depend on a much larger p0 and not p.

2.6 Outline of the Algorithm

Gathering all the parts of the proposed method together we end with the following algorithm
to compute p̂IS .

Algorithm 4: Importance Sampling estimator for p
Input :A peptide P and spectrum Spectrum

Output :An estimate p̂IS of statistical significance p and confidence interval CN
1 Construct PNP graph G of a peptide P and determine the set of cuts C
2 Construct fragmentation matrix H and let Score(µ) = SPCScore(Spectrum,Hµ)
3 Determine the set of weights w(S) using Wang-Landau algorithm (see algorithm 3)
4 while Stopping criterion (8) is not satisfied do
5 Simulate next state ~νN using Metropolis-Hastings algorithm (see algorithm 1)
6 Update estimates σ̂N and λ̂N
7 end
8 Calculate p̂IS using (6) and confidence interval CN via (7).

3 Results

To confirm the validity of our approach, we have made a point to verify the accuracy of
our calculations in a number of different ways. First, we have chosen a number of linear,
cyclic and branch-cyclic peptides and selected several PSMs that had not extremely small
probability of interest (say, within the 10−8 − 10−6 range). This allowed us to calculate
them via direct Monte Carlo sampling, construct confidence intervals and compare the
variances. For cyclic peptides we have chosen five examples from [15, Table 1], namely
cyclic peptides (10, 20, 40), (10, 20, 40, 80), (10, 20, 40, 80, 160), (10, 20, 40, 80, 160, 320), and
(10, 20, 40, 80, 160, 320, 640). The branch-cyclic example is Surfactin test dataset for the
Dereplicator algorithm described in [14].

We denote p̂MC as the probability estimate calculated via Monte Carlo sampling, p̂IS as
the probability estimate calculated via the proposed algorithm (importance sampling via
MCMC), and p̂DPR as the probability calculated by the MS-DPR algorithm from [14]. Note
that the latter does not provide any accuracy estimate and therefore we were unable to
construct confidence interval for p̂DPR. p̂MC were calculated via N = 50 · 106 simulations,
p̂IS were calculated using the stopping rule (8) with ε = 0.02, and p̂DPR were calculated by
Dereplicator, using default settings.

WABI 2017

14:8 Assessing the Significance of Peptide Spectrum Match Scores

Table 1 Comparison of Monte Carlo, MCMC and MS-DPR approaches: estimates.

Peptide p̂IS p̂MC p̂DP R

PPAEDSQK 4.87 · 10−7 4.20 · 10−7 6.6 · 10−7

GQGDPGSNPNK 4.70 · 10−7 6.40 · 10−7 1.5 · 10−8

HSNAAQTQTGEANR 2.39 · 10−6 2.22 · 10−6 4.9 · 10−8

GEEEPSQGQK 1.03 · 10−6 1.04 · 10−6 3.6 · 10−7

(10, 20, 40) 0.00184 0.00184 0.00197
(10, 20, 40, 80) 7.35 · 10−6 7.34 · 10−6 9.36 · 10−6

(10, 20, 40, 80, 160) 6.76 · 10−9 N/A 4.49 · 10−9

(10, 20, 40, 80, 160, 320) 1.74 · 10−12 N/A 1.56 · 10−12

(10, 20, 40, 80, 160, 320, 640) 4.08 · 10−16 N/A N/A
Surfactin 1.18 · 10−5 1.13 · 10−5 1.01 · 10−5

Table 2 Comparison of Monte Carlo, MCMC and MS-DPR approaches: 95% confidence intervals.

Peptide Conf. interval, p̂IS Conf. interval, p̂MC

PPAEDSQK 4.74 · 10−7 4.99 · 10−7 2.40 · 10−7 6.00 · 10−7

GQGDPGSNPNK 4.53 · 10−7 4.87 · 10−7 4.18 · 10−7 8.62 · 10−7

HSNAAQTQTGEANR 2.30 · 10−6 2.48 · 10−6 1.81 · 10−6 2.63 · 10−6

GEEEPSQGQK 9.96 · 10−7 1.07 · 10−6 7.57 · 10−7 1.32 · 10−6

(10, 20, 40) 1.80 · 10−3 1.88 · 10−3 1.82 · 10−3 1.85 · 10−3

(10, 20, 40, 80) 7.12 · 10−6 7.58 · 10−6 6.60 · 10−6 8.10 · 10−6

(10, 20, 40, 80, 160) 6.4 · 10−9 7.10 · 10−9 N/A N/A
(10, 20, 40, 80, 160, 320) 1.51 · 10−12 1.97 · 10−12 N/A N/A
(10, 20, 40, 80, 160, 320, 640) 3.60 · 10−16 4.55 · 10−16 N/A N/A
Surfactin 1.14 · 10−5 1.22 · 10−5 1.03 · 10−5 1.23 · 10−5

Tables 1 and 2 summarize these results. As can be seen from these tables, the confidence
intervals constructed from p̂IS lie within the confidence intervals for p̂MC and often have
significantly smaller lengths. p̂DPR falls outside the confidence intervals and often is biased
downwards. We must note that this property of p̂DPR could easily lead to false discoveries and
certainly inflates the number of significant PSMs in the applications. Also, the sample size N
of 50 · 106 was not enough to estimate p̂MC for (10, 20, 40, 80, 160), (10, 20, 40, 80, 160, 320),
and (10, 20, 40, 80, 160, 320, 640) and MS-DPR failed to calculate p̂DPR for the last peptide.

In the next series of experiments we study the variance of p̂IS and compare it to that
of p̂MC . In order to do so, we calculate p̂MC using the same number of simulations N as it
was used to calculate p̂IS2. Table 3 shows the reduction of variance of p̂IS compared to the
p̂MC . Overall, it could be observed that the smaller the probability is, the larger does the
difference between the variances of MCMC and Monte Carlo estimators end up being.

Finally, in order to verify the scalability and applicability of the proposed method, the
run of the Dereplicator algorithm was performed on the entirety of the Global Natural
Products Social (GNPS) molecular network [20] database. This allowed us to compare the

2 We have to increase the sample size to obtain observations with desired target score 13 to allow σ̂2
MC

estimation for GQGDPGSNPNK.

A. Abramova and A. Korobeynikov 14:9

Table 3 Comparison of Monte Carlo and MCMC approaches: variances.

Peptide σ̂2
IS σ̂2

MC σ̂2
MC/σ̂

2
IS Sample Size

PPAEDSQK 2.09 · 10−10 4.94 · 10−7 2358.98 5000000
GQGDPGSNPNK 2.33 · 10−10 1.49 · 10−7 639.49 200000002

HSNAAQTQTGEANR 5.56 · 10−9 2.24 · 10−6 403.23 2800000
GEEEPSQGQK 1.23 · 10−9 7.89 · 10−7 642.19 3800000
(10, 20, 40) 5.47 · 10−4 1.88 · 10−3 3.43 1500000
(10, 20, 40, 80) 9.93 · 10−8 7.60 · 10−6 76.53 7500000
Surfactin 1.15 · 10−7 1.00 · 10−5 86.96 2000000

Table 4 Comparison of p̂IS and p̂DP R on GNPS data. The number of target and decoy database
matches and FDR estimates at different significance levels are shown.

MSDPR MCMC
− log10 p target decoy F̂DR % target decoy F̂DR %
7 762 188 19.78 744 179 19.39
8 619 110 15.08 610 104 14.56
9 505 52 9.33 473 51 9.73
10 443 33 6.93 415 30 6.74
11 393 21 5.07 354 20 5.34
12 354 15 4.06 312 12 3.70
13 322 11 3.30 271 7 2.51
14 293 11 3.61 238 2 0.83
15 264 7 2.58 201 1 0.49
16 238 5 2.05 169 0 0.0
17 211 2 0.93 138 0 0.0
18 188 0 0.0 104 0 0.0
19 157 0 0.0 87 0 0.0
20 139 0 0.0 76 0 0.0

devised algorithm with the MS-DPR estimate used by Dereplicator by default. Table 4
shows an overview of the obtained results. The False Discovery Rate estimate is calculated
in Dereplicator via the target-decoy approach [1]. Table 4 shows that p̂IS yields a smaller
number of significant decoy matches compared to p̂DPR and therefore less FDR. This could
easily be explained by the fact that p̂DPR are biased downwards.

4 Summary

We presented the importance sampling-based estimator that is capable of accurately and
quickly assess the significance of peptide spectrum matches. Given its generic nature, it could
be easily modified to be used with a great number of different score functions, fragmentation
models and amino acid mass distributions. The proposed estimation algorithm has been
integrated into Dereplicator3 and VarQuest4 tools and publicly available as a part of
these packages.

3 http://cab.spbu.ru/software/dereplicator/
4 http://cab.spbu.ru/software/varquest/

WABI 2017

http://cab.spbu.ru/software/dereplicator/
http://cab.spbu.ru/software/varquest/

14:10 Assessing the Significance of Peptide Spectrum Match Scores

Acknowledgement. The authors would like to extend a special thanks to Alexey Gurevich
for running Dereplicator on GNPS, Seungjin Na for making the spectra and PSMs
available for linear peptides and Alex Shlemov for all the fruitful discussions that were of
great help in improving the algorithm.

References

1 J. E. Elias and S. P. Gygi. Target-decoy search strategy for increased confidence in large-
scale protein identifications by mass spectrometry. Nat. Methods, 4(3):207–214, 2007.

2 David Fenyö and Ronald C. Beavis. A method for assessing the statistical significance of
mass spectrometry-based protein identifications using general scoring schemes. Analytical
Chemistry, 75(4):768–774, 2003.

3 James M. Flegal and Lei Gong. Relative fixed-width stopping rules for Markov Chain
Monte Carlo simulations. Statistica Sinica, 25(2):655–675, 2015.

4 James M. Flegal and Galin L. Jones. Batch means and spectral variance estimators in
Markov Chain Monte Carlo. Ann. Statist., 38(2):1034–1070, 2010.

5 A.M. Frank. Predicting intensity ranks of peptide fragment ions. J. Proteome Res.,
8(5):2226–2240, 2009.

6 Lei Gong and James M. Flegal. A practical sequential stopping rule for high-dimensional
Markov Chain Monte Carlo. Journal of Computational and Graphical Statistics, 25(3):684–
700, 2016.

7 W.K. Hastings. Monte Carlo sampling methods using Markov chains and their applications.
Biometrika, 57(1):97–109, 1970.

8 James P. Hobert, Galin L. Jones, Brett Presnell, and Jeffrey S. Rosenthal. On the ap-
plicability of regenerative simulation in markov chain monte carlo. Biometrika, 89(4):731,
2002.

9 Yukito Iba, Nen Saito, and Akimasa Kitajima. Multicanonical MCMC for sampling rare
events: an illustrative review. Annals of the Institute of Statistical Mathematics, 66(3):611–
645, 2014.

10 Galin L. Jones, Murali Haran, Brian S. Caffo, and Ronald Neath. Fixed-width output
analysis for Markov Chain Monte Carlo. Journal of the American Statistical Association,
101(476):1537–1547, 2006.

11 Sangtae Kim, Nitin Gupta, and Pavel A. Pevzner. Spectral probabilities and generating
functions of tandem mass spectra: A strike against dgegeecoy databases. Journal of Pro-
teome Research, 7(8):3354–3363, 2008.

12 Sangtae Kim, Nikolai Mischerikow, Nuno Bandeira, J. Daniel Navarro, Louis Wich, Shabaz
Mohammed, Albert J. R. Heck, and Pavel A. Pevzner. The generating function of CID,
ETD, and CID/ETD pairs of tandem mass spectra: Applications to database search. Molec-
ular & Cellular Proteomics, 9(12):2840–2852, 2010.

13 D.P. Landau, Shan-Ho Tsai, and M. Exler. A new approach to Monte Carlo simulations in
statistical physics: Wang-landau sampling. American Journal of Physics, 72(10):1294–1302,
2004.

14 H. Mohimani, A. Gurevich, A. Mikheenko, N. Garg, L. F. Nothias, A. Ninomiya, K. Takada,
P.C. Dorrestein, and P.A. Pevzner. Dereplication of peptidic natural products through
database search of mass spectra. Nat. Chem. Biol., 13(1):30–37, 2017.

15 H. Mohimani, S. Kim, and P.A. Pevzner. A new approach to evaluating statistical signifi-
cance of spectral identifications. J. Proteome Res., 12(4):1560–1568, 2013.

16 Per Mykland, Luke Tierney, and Bin Yu. Regeneration in Markov chain samplers. Journal
of the American Statistical Association, 90(429):233–241, 1995.

A. Abramova and A. Korobeynikov 14:11

17 G.O. Roberts. Markov chain concepts related to sampling algorithms. In W.R. Gilks,
S. Richardson, and D. J. Spiegelhalter, editors, Markov Chain Monte Carlo in Practice,
pages 45–58. Chapman & Hall, London, 1996.

18 Luke Tierney. Markov chains for exploring posterior distributions. Ann. Statist., 22(4):1701–
1728, 1994.

19 F. Wang and D.P. Landau. Efficient, multiple-range random walk algorithm to calculate
the density of states. Physical Review Letters, 86:2050–2053, 2001.

20 M. Wang, J. J. Carver, V.V. Phelan, L.M. Sanchez, et al. Sharing and community curation
of mass spectrometry data with Global Natural Products Social Molecular Networking. Nat.
Biotechnol., 34(8):828–837, 2016.

21 Stefan Wolfsheimer, Inke Herms, Sven Rahmann, and Alexander K. Hartmann. Accurate
statistics for local sequence alignment with position-dependent scoring by rare-event sam-
pling. BMC Bioinformatics, 12(1):47, 2011.

22 Wei Biao Wu. Recursive estimation of time-average variance constants. Ann. Appl. Probab.,
19(4):1529–1552, 2009.

23 Chun Yip Yau and Kin Wai Chan. New recursive estimators of the time-average variance
constant. Statistics and Computing, 26(3):609–627, 2016.

WABI 2017

abSNP: RNA-Seq SNP Calling in Repetitive
Regions via Abundance Estimation∗

Shunfu Mao1, Soheil Mohajer2, Kannan Ramachandran3,
David Tse4, and Sreeram Kannan5

1 Department of Electrical Engineering, University of Washington, Seattle, WA,
USA
shunfu@uw.edu

2 Department of Electrical and Computer Engineering, University of Minnesota,
Minneapolis, MN, USA
soheil@umn.edu

3 Department of Electrical Engineering and Computer Science, University of
California, Berkeley, CA, USA
kannanr@eecs.berkeley.edu

4 Department of Electrical Engineering, Stanford University, Stanford, CA, USA
dntse@stanford.edu

1 Department of Electrical Engineering, University of Washington, Seattle, WA,
USA
ksreeram@uw.edu

Abstract
Variant calling, in particular, calling SNPs (Single Nucleotide Polymorphisms) is a fundamental
task in genomics. While existing packages offer excellent performance on calling SNPs which
have uniquely mapped reads, they suffer in loci where the reads are multiply mapped, and are
unable to make any reliable calls. Variants in multiply mapped loci can arise, for example in
long segmental duplications, and can play important role in evolution and disease.

In this paper, we develop a new SNP caller named abSNP, which offers three innovations.
(a) abSNP calls SNPs from RNA-Seq data. Since RNA-Seq data is primarily sampled from gene
regions, this method is inexpensive. (b) abSNP is able to successfully make calls on repetitive
gene regions by exploiting the quality scores of multiply mapped reads carefully in order to
make variant calls. (c) abSNP exploits a specific feature of RNA-Seq data, namely the varying
abundance of different genes, in order to identify which repetitive copy a particular read is
sampled from.

We demonstrate that the proposed method offers significant performance gains on repetitive
regions in simulated data. In particular, the algorithm is able to achieve near-perfect sensitivity
on high-coverage SNPs, even when multiply mapped.

1998 ACM Subject Classification J.3 Life and Medical Sciences

Keywords and phrases RNA-Seq, SNP Calling, Repetitive Region, Multiply Mapped Reads,
Abundance Estimation

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.15

∗ This work of SK and SM were supported, in part, by U.S. National Institute of Health grant
5R01HG008164-02 (SK and SM) and U.S. National Science Foundation CAREER grant 1651236
(SK). The work of DNT was supported in part by the Center for the Science of Information and in part
by the NIH grant R01HG008164.

© Shunfu Mao, Soheil Mohajer, Kannan Ramachandran, David Tse, and Sreeram Kannan;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 15; pp. 15:1–15:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.WABI.2017.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

15:2 abSNP: RNA-Seq SNP Calling in Repetitive Regions via Abundance Estimation

1 Introduction

Decoding individual-specific (or even tissue or cell-specific) variations with respect to a
reference genome is an important task, downstream of DNA sequencing. Among the
variations that can be detected with high throughput sequencing data, the most frequently
called variants are single nucleotide polymorphisms (SNPs), which specify single base loci at
which the target sequence differs from the reference allele. There are tens of millions of SNPs
in a human genome (which has 3 billion bases), and a reliable detection of them (i.e. SNP
calling) is an important task because they are relevant in predicting organismal traits as well
as implicated in several diseases.

Existing SNP calling softwares (i.e. DNA-Seq SNP callers), such as GATK [6], GlfMultiples
[1], SAMtools mpileup [16], FreeBayes [8] and VarScan [14], mainly rely on whole genome
sequencing (WGS) or whole exome sequencing (WES). While WGS can call SNPs throughout
the entire genome, many downstream pipelines only consider SNPs in gene exon regions, as
their impact is easier to quantify. Therefore, WES is a widely-used cheaper alternative, which
focuses on DNA reads from the exonic regions. A third strategy is to utilize RNA-seq reads
from a tissue of interest and use those reads both for (a) expression estimation as well as (b)
variant calling. Beside being fast and inexpensive [3], this third strategy is advantageous
when the genes harboring SNPs of interest are likely to have non-negligible expression, such
as in cancer tissue analysis. However existing DNA-Seq SNP callers are not suitable to
properly handle RNA-Seq data directly. One reason is that RNA-Seq reads may be sampled
from two different exons, and these splice junctions are typically not captured by these
callers. In addition, RNA-Seq data also has a specific feature, namely the varying expression
of different genes, with expression levels varying over several orders of magnitude.

To address the above mentioned challenges, designing SNP callers tailored for RNA-Seq
data (RNA-Seq SNP callers) is necessary. There are only a limited number of works on
RNA-Seq SNP calling, such as GATK, eSNV-detect [22], SNPiR [19] and SNVMix [10].
eSNV-detect and SNPiR essentially rely on SAMtools mpileup and GATK to call SNPs
respectively, and SNVMix depends on SAMtools mpileup to prepare necessary statistics for
SNP calling. Among these, only GATK is still under constant maintenance and development.

Even though most existing SNP callers (especially GATK) offer excellent performance on
benchmark sets, these sets are usually only representative of regions in the genome without
repeats. On the repetitive regions, where reads are not uniquely mapped, most callers are
unable to make any reliable calls, since they simply discard all of the multiply mapped
reads, and consequently corresponding SNP information will be missed. We note that even
projects that are designed to catalogue the performance of SNP callers, such as Genome in a
bottle project [23], consider high-quality calls only in non-repetitive regions. This limitation
fundamentally comes from the fact that existing read aligners are unable to differentiate
between multiply mapped reads, and therefore cannot make any predictions on the origin
of the SNP with confidence. There are some studies regarding DNA-Seq SNP calling that
consider multiply mapped reads, such as Sniper [21], SiRen [5] and GW-CALL [9], but to our
best knowledge there is no work yet on RNA-Seq SNP Calling that addresses the problem of
multiply mapped reads on repetitive genomic regions.

To fill this gap, we’ve designed abSNP (“a” stands for abundance and “b” stands
for Bayesian principles. abSNP is written in Python and is freely available at https:
//github.com/shunfumao/abSNP), which is a novel RNA-Seq SNP calling software that is
able to call SNPs even in repetitive regions. The key idea, as illustrated in Figure 1, is to
use the products of abundance estimation (or called quantification), which include estimated

https://github.com/shunfumao/abSNP
https://github.com/shunfumao/abSNP

S. Mao, S. Mohajer, K. Ramachandran, D. Tse, and S. Kannan 15:3

Figure 1 The utility of abundance estimation in SNP calling. Suppose target individual genome
has (approximate) repetitive regions inside genes A, B and C, and gene B contains a SNP of G→ T .
Step (a) shows sampling RNA reads from transcriptome (e.g. set of RNA transcripts), where reads
{A1, A2, . . . , A50} and {B1, B2} are sampled from genes A and B, respectively. In step (b) we align
reads onto a reference genome. However it is possible that all reads are mapped onto all three genes
because of their similarity. One may rely on {B1, B2} and call SNPs in all three genes, therefore
bringing wrong calls (false positives) in gene A and C. Alternatively, existing methods discard all
these reads, which results in a false negative (a true SNP not detected) of the SNP in gene B. Now
let us consider an additional RNA-Seq abundance estimation procedure in step (c): One byproduct
we can obtain is rich information of mapping quality scores for reads. Suppose the mapped reads (in
dotted shape) onto gene C are therefore known to have very low mapping scores (e.g. < 0.1), we then
exclude them for SNP calling. The other product we can obtain is the estimated gene abundance.
Suppose the abundance levels (the number of reads per locus here) of genes A, B and C are therefore
known to be λA = 50, λB = 2 and λC = 0. Then we can say reads {B1, B2} are more likely to come
from gene B, while {A1, A2, . . . , A50} are probably sampled from gene A. Consequently, we call the
SNP correctly in gene B.

gene expression levels as well as rich information of read mapping quality scores. As far as
we know, such kind of information has not been exploited yet for RNA-Seq SNP calling.
We demonstrate that utilizing such information leads to significant gains in SNP calling
performance. In comparison to existing callers that are unable to make any calls in multiply
mapped regions, abSNP is able to get significantly increased sensitivity. In particular, in
SNPs that have high coverage, abSNP demonstrates near perfect sensitivity, making it a
viable alternative to existing SNP callers.

2 Method

2.1 Problem Statement
In this work, our goal is to call SNPs in diploid genome based on RNA-Seq data. The input
to our caller is the set of RNA-Seq reads sampled from the transcriptome (i.e. set of RNA

WABI 2017

15:4 abSNP: RNA-Seq SNP Calling in Repetitive Regions via Abundance Estimation

transcripts). Our goal is to identify SNPs located within the gene regions of the target
individual, i.e., loci at which the target genome is different from a known reference genome.
To this end, we use the standard technique of read alignment of the sampled reads onto
the reference sequence, and compare the nucleotides on the mapped reads to those of the
reference genome to call SNPs.

There are several challenges that need to be addressed: (i) The most important factor is
due to existence of (approximately) repetitive regions in the target/reference; reads sampled
from repetitive regions get mapped to multiple loci, and the algorithm has to figure out where
they are sampled from. (ii) Not all the reads sampled from a locus carry SNP information.
This is due to the heterozygous SNPs, in which one of the alleles contain a SNP, and the
other one matches with the reference genome. (iii) A unique feature of RNA-Seq data is that
there is potentially a wide gap between the number of reads sampled from the paternal and
maternal alleles, due to the varying expression levels of the corresponding genes.

2.1.1 Assumptions
To handle the above-mentioned challenges, we develop abSNP based on the following three
key assumptions in order to simplify our modeling of the problem:
(i) Heterozygous SNPs: We assume that SNP only appears in one of the paternal or the

maternal allele, while the other allele is consistent with the reference genome. Our
methods can also detect SNP occurring in both alleles (i.e. homozygous SNP), but
further refinement is needed to distinguish whether a SNP occurs in one or both of the
alleles.

(ii) Equal allele contribution: This means each paternal and maternal allele contributes
equally to the abundance for each genomic locus1.

(iii) Single SNP across repetitive regions: When there are repetitive regions, we assume
that at most one copy has a SNP at a given locus. This assumption is valid since the
probability of SNP is small (p ≈ 0.001) and the probability of two SNPs p2 is negligible.
We note that each copy of a repetitive region can have many SNPs; just that they do
not occur at the same base locus.

2.2 Definitions
We briefly review a set of terms and notations (as summarized in Figure 2) that are useful
for presentation of the algorithm and the following discussions.

The proposed SNP calling procedure examines genomic loci one-by-one, to identify
whether a SNP occurs at each locus or not. While processing the sequence at locus i, the
base of the reference genome (reference base) at locus i is denoted by r ∈ {A,C,G, T}.
In a typical scenario where no SNP exists, both the paternal and maternal alleles of the
individual target also have base r at the current locus i. A locus i is called a SNP if among
the two alleles of the individual target, one allele (non-SNP allele) has base r, and the
other allele (SNP allele) has x 6= r (recall the heterozygous SNP assumption).

After read alignment, a subset of J reads (denoted by R = {R1, R2, . . . , RJ}) sampled
from the target alleles will be mapped onto the reference genome so that they cover locus
i. We denote by λ0 the expression level (abundance) of locus i, which can be estimated by
quantifying the transcripts with observed reads, for example, by using RSEM [15]. For each

1 This assumption is used to develop our algorithm, however, this assumption is not critical. In our actual
evaluation each allele has a randomly assigned (thus different) expression levels.

S. Mao, S. Mohajer, K. Ramachandran, D. Tse, and S. Kannan 15:5

Figure 2 A typical scenario of SNP calling at locus i.

Rj , we denote its base covering locus i in alignment by bj , and denote its base quality2 at
locus i by qj . A read Rj is called a SNP read if its read base differs from the reference
base, i.e. bj 6= r.

As illustrated in Figure 2, these reads may be also mapped to other repetitive regions of
the reference genome. The corresponding bases of multiply mapped reads will cover other
loci of the reference, which are called alternative loci for locus i, and will be denoted by
{i1, i2, . . . , iK}. Their respective reference base and estimated abundance are denoted as rk
and λk for k ∈ {1, ...,K}.

2.3 Overall Flow
The core stages of the proposed caller are illustrated in Figure 3. The algorithm takes in raw
reads, known transcriptome annotations (such as .gtf format), and reference genome, and
first performs abundance estimation using RSEM [15], which estimates abundance for each
RNA transcript. Based on RSEM results, we utilize the following outputs: (1) estimated
abundance per genome locus, as well as (2) genome-based read alignments. Although it
is also possible to use pure alignment softwares (e.g. STAR [7] or TopHat2 [13]) to obtain
read alignments, our alternate process using RSEM offers rich mapping quality information
which can be used to filter out noisy multiply mapped reads in a step called MAPQ filtering
(Section 2.4). Based on the estimated abundance and read alignments, we perform Count
Generation, where we collect necessary information (Figure 2 and Section 2.2) required for
SNP calling per target locus. We then use our Bayesian SNP calling criteria to find SNP
candidates for the target genome. This step is carried out using information at a given locus
(including multiply mapped reads, their alternative loci and abundance). Since the SNP call

2 The base quality is encoded in read file, and is different from mapping quality of a read, which is
encoded in the read alignment file.

WABI 2017

15:6 abSNP: RNA-Seq SNP Calling in Repetitive Regions via Abundance Estimation

Figure 3 Overall Flow of abSNP.

at each locus is made independently, in order to share information between the multiple SNP
calls, we have a filtering step that takes into account the calls at alternative loci; this step is
called shadow SNP filtering, see Section 2.6.

2.4 MAPQ Filtering
MAPQ (MAPping Quality of read alignments) is a metric used to capture the confidence
about mapping of a read to a reference region. As described in [17] as well as in official read
alignment format [11], it is defined as: −10log10(1− P (correct mapping)). Since a read can
be multiply mapped onto different loci (i.e. repetitive genomic regions), a better knowledge of
MAPQ for each alignment can potentially help us remove false alignments and consequently
achieve a better SNP calling performance.

Though well defined, the MAPQ scores reported by existing RNA-Seq aligners (such
as STAR and TopHat2) are usually uninformative and usually have same value for all of
the multiply mapped reads. For example, in STAR (also similar in TopHat2), a uniquely
mapped read will have MAPQ = 255 and a read multiply mapped onto Nmap loci will have
MAPQ = −10log10(1 − 1

Nmap
) corresponding to P (correct mapping) = 1

Nmap
. If the read

maps equally well to all possible loci, it appears that there may be no way to get further
information.

However, when one considers multiple reads, it is possible to get additional information,
since each gene has a differing abundance, which when estimated, modifies the posterior
probability of mapping. In other words, we can obtain a more informative mapping quality
measure as a side product of RNA-Seq abundance estimation. Typically, an Expectation-
Maximization (EM) algorithm is involved, which alternates between the two steps: (1) given
the read alignments onto RNA transcripts, the abundance of transcripts is estimated; (2) given
the abundance of transcripts, the read alignment probabilities are refined. This iterative
procedure calculates the probability that a given read is assigned to a particular genomic
locus, and therefore can be used as a sharper estimate of MAPQ.

S. Mao, S. Mohajer, K. Ramachandran, D. Tse, and S. Kannan 15:7

Here we use RSEM [15], a software extensively used for abundance estimation, to provide
us with refined MAPQ scores. We then filter out some of the low quality read alignments
with MAPQ scores lower than certain threshold (e.g. 0.1) via the MAPQ filtering process.
We empirically choose this threshold, since we find this helps effectively removing false
alignments of multiply mapped reads that may cause false positives.

To the best of our knowledge, our algorithm is the first to use abundance estimators
for RNA-Seq SNP calling. They provide us with not only better MAPQ scores, but also
estimates of abundance levels required by our algorithm to detect (as in Section 2.5) and
refine (as in Section 2.6) SNP calls. While we choose RSEM in our current implementation
due to its popularity, it is also possible to replace RSEM with other abundance estimators
such as eXpress [20].

2.5 SNP Calling Algorithm
Here we describe our core SNP calling algorithm. Our algorithm runs over all loci, and
for a given locus i, it examines whether i consists of a SNP. Consequently, throughout this
section we present the algorithm for a given locus i (as illustrated in Figure 2), and hence
dependency of variables on i is eliminated, whenever it is clear from the context.

Based on the assumptions of equal allele contribution and heterozygous SNPs (Sec-
tion 2.1.1), at locus i we have two target alleles: one allele with base r (identical to the
reference sequence) and abundance λ0

2 , and the other allele with base x ∈ {A,C,G, T} and
abundance λ0

2 . There is a SNP at locus i if and only if x 6= r.
At locus i, we try to estimate the corresponding x using maximum a-posterior probability

(MAP) estimation:

x̂ = arg max
x∈{A,C,G,T}

P (X = x|R) = arg max
x∈{A,C,G,T}

P (R|X = x)P (X = x) (1)

where R = {R1, . . . , RJ} is the set of reads mapped over locus i of the reference genome, and
X is a random variable, which represents possible base at locus i of the potential SNP allele.

The second equation holds due to P (X = x|R) = P (R|X=x)P (X=x)
P (R) (according to the

Bayes’ theorem) and the fact that P (R) is the same for all values of x. Here P (X = x) can
be further expressed as:

P (X = x) =
{

PSNP
3 if x ∈ {A,C,G, T} \ {r}

1− PSNP if x = r
(2)

where PSNP indicates the prior probability (i.e. general knowledge) for a SNP to occur per
genomic locus3.

In order to solve the optimization in (1) we also need to find P (R|X = x). A common
approach is to assume reads are independent from each other (as used in [17]), so we have:

P (R|X = x) = ΠJ
j=1Pj = ΠJ

j=1P (Rj = bj |X = x, r, qj , λbj
, λΣ) (3)

Here Pj indicates the probability of the j-th read (i.e. Rj) having base bj at locus i, given
all the other assumptions, including base x at the target, base r in the reference, and all
related quality scores and abundance levels. In particular, qj denotes the quality score of
base bj at the read, λbj

denotes the (sum of the) abundance level(s) of alternative loci that

3 PSNP can be set based on the knowledge of SNP rate of the genome of interest. Suppose there are
around 10 million SNPs across human genome of 3 billion bases, then we set PSNP as 107

3×109 ≈ 3× 10−3.

WABI 2017

15:8 abSNP: RNA-Seq SNP Calling in Repetitive Regions via Abundance Estimation

the read can be mapped to and the reference has bj , i.e., λbj =
∑K
k=1 λk1{rk = bj}, where

1{·} is an indicator function. Finally, for the current locus i and read Rj , λΣ is the total
estimated abundance level, given by λΣ = λ0 +

∑K
k=1 λk. Hence, we can further expand Pj

as:

P (Rj = bj |X = x, r, qj , λbj , λΣ) = 1
λΣ

λ0qj + λbj if bj = x = r

λ0(qj

3 + 1
6) + λbj

if bj = x 6= r

λ0(qj

3 + 1
6) + λbj

if bj = r 6= x

λ0
1−qj

3 + λbj
if bj /∈ {x, r}

(4)

To understand Equation (4), let’s first consider an Rj with no alternative mappings
(i.e. λbj = 0, λΣ = λ0). For bj = x = r, Pj is the probability that read Rj is sampled from
target individual’s paternal or maternal allele at locus i (which is 1) and no error has occurred
(which happens with probability qj): thus we have Pj = 1× qj = qj . If bj = x 6= r, there are
two possibilities for observing Rj : either Pj is the probability of sampling Rj from the SNP
allele at locus i (which is 1

2 , due to assumption of equal allele contribution) without error
(which is qj), or Pj is the probability of sampling Rj from the non-SNP allele (which is 1

2)
with error (which is 1−qj

3). Therefore, Pj = 1
2qj + 1

2
1−qj

3 = qj

3 + 1
6 . Similar reasoning applies

to the remaining cases. For Rj with alternative mappings (λΣ > λ0), the additional term
λbj

λΣ
represents the possibility of Rj being sampled from the alternative loci. For simplicity,

we have assumed the alternative loci have no SNPs and the sampling from them is error free.
Therefore, this possibility is

∑K
k=1

λk

λΣ
1{rk = bj} = λbj

λΣ
.

Once at locus i, we have obtained estimated x̂ by using Equation (1) to (4), we will call
a SNP at locus i if x̂ 6= r.

2.6 Shadow SNP Filtering
For SNPs called at their multiply mapped loci, we have assumed there is one true SNP
among them (Section 2.1.1). We call the others as shadow SNPs because they are typically
called when the reads sampled from some true SNP locus are multiply mapped onto these
loci and thus propagate the false (i.e. shadow) SNP information. This is mainly due to the
fact that our SNP caller operates on a locus-by-locus basis, and the SNP calls at the multiply
mapped regions are not coordinated. This causes our SNP calls to violate Assumption (iii),
i.e., there is a single SNP in repetitive regions. In order to compensate for this, we apply a
filtering method, which tries to enforce that the called SNPs obey Assumption (iii). The
basic idea is to keep only the most likely SNP among the SNPs called in the alternate loci.

To formulate, suppose we have a locus i for which we have called a SNP with Nb SNP reads
with base value b 6= r mapped at locus i, having abundance λ0. Let us consider the other
loci to which multiply mapped reads also get mapped to, among which loci {i1, ...ik, ..., iK}
have also been called as SNP, and the abundance at locus ik be λk.

We assume the number of reads with base b actually sampled at locus i is a Poisson
random variable Xb with mean λ = λi

2 . λi

2 is used here because we have assumed each allele
has equal contribution to abundance. We now do a hypothesis testing whether SNP reads
came from locus i or an alternate locus ik. Let the confidence of Nb reads sampled at locus
i be denoted as P (Xb = Nb|λi

2). Similarly, the confidence of Nb reads actually sampled at
alternative locus ik is P (Xb = Nb|λk

2).
We throw away SNP at locus i if the confidence of Nb SNP reads actually sampled at i is

not high enough compared to at its alternative loci:

maxikP (Xb = Nb|
λk
2) ≥ αP (Xb = Nb|

λi
2) (5)

S. Mao, S. Mohajer, K. Ramachandran, D. Tse, and S. Kannan 15:9

Here α ≥ 0 is a design parameter. When α = 0, a SNP detected locus i containing SNP
reads alternatively mapped elsewhere will always be filtered away, thus achieving minimal
false positive. When α = 1, it implies there is some other locus with higher confidence for
Nb reads to be sampled from. Therefore we filter the current SNP away.

Empirically we find false positives increase faster than false negatives decrease as α(> 1)
gets larger, so we only consider 0 ≤ α ≤ 1.

3 Results

In this section, we perform simulation studies to compare the results of abSNP with other
alternatives for RNA-Seq SNP calling. It is difficult to obtain real data with ground truth
for SNPs that have multiply mapped reads, as existing methods are unable to call these loci
reliably. Therefore, we resort to simulation studies in order to evaluate the performance of
abSNP and compare it against GATK, which has a best-practice guideline for RNA-Seq SNP
calling. We demonstrate that while GATK is unable to make any calls on multiply mapped
reads, abSNP can call SNPs with significant accuracy.

Simulation Setup: To evaluate performance, we have developed a RNA-Seq SNP simulator.
The simulator takes as input a reference genome, a transcriptome annotation, the requested
number of SNPs, and the read requirements (e.g. number, length, error rate). It assigns each
transcript a random expression level according to a log-normal distribution. We explicitly
account for the effect of allele-specific expression with maternal and paternal transcripts
having different expression levels (in our case, we simulate these expression levels to be
independent of each other). The requested number of SNPs are generated randomly in
the gene regions where high expression levels (top 10 percent) are assigned, so that the
majority of these true SNPs are expected to be covered by SNP reads. We then generate
reads independently from the paternal and maternal transcriptomes that contain SNPs using
the UC Riverside RNA-seq simulator [18], with error rate set at 1% (to mimic Illumina error
rates). Note that due to the randomeness of read sampling, it is possible that some true
SNPs are still covered by no or only a few SNP reads. We then pool the reads from the two
alleles in order to generate the read dataset.

We generate 5 datasets each with 2M 100-bp reads, so that we can get a sense of the
average performance. We choose human chromosome 15 of GRCh37 [4] as the reference
genome and the relevant UCSC gene annotations [12] as the transcriptome, and generate
2000 SNPs for each dataset. To compare performance, we run both abSNP and GATK by
taking simulated reads as input and obtaining SNP candidates as output. For abSNP, the
process is described in Section 2.3. For GATK (version 3.4-46), we apply its best practice [2]
and incorporate the annotated transcriptome to improve its read alignment.

Overall Performance: The SNP calls are compared to the ground truth SNPs in order
to estimate the number of ground-truth SNPs missed (false negative) and the number of
falsely-called SNPs (false positive). For false negative, we have excluded the SNPs where no
SNP reads are sampled because they are trivially to be not detected. The overall performance
is plotted in Figure 4a. abSNP has a parameter α that can be tuned in order to change
the tradeoff between the false negative and false positive (to make it more conservative or
less conservative, as described in Section 2.6), and here we focus on two extreme points
α = 0 and α = 1. We find that abSNP attains much less false negatives with a small increase
in false positives. To quantify the effect, we measure the sum of false negative and false

WABI 2017

15:10 abSNP: RNA-Seq SNP Calling in Repetitive Regions via Abundance Estimation

(a) (b)

(c) (d)

Figure 4 Performance Evaluation on Simulated Data (1K SNPs per allele, 2M 100-bp reads with
error rate 0.01). We categorize true SNPs by their multi-mapping degree (based on GATK’s read
alignment) in (b) and by their SNP reads coverage in (c) and (d). A SNP is multiply mapped if all
its SNP reads are multiply mapped, and its multi-mapping degree is the mean of multiple mappings
of its SNP reads. Otherwise it’s uniquely mapped with degree 1. SNP reads coverage is the number
of SNP reads originally sampled from (instead of mapped onto) the SNPs. (a) abSNP has much less
false negatives with small increase in false positives; with total error (which is the sum of the false
positive and false negative, as demonstrated by 45-degree dashed lines where “m” stands for false
negative error (missed), “f” stands for false positive and “e” stands for total error) reduced from
189 (GATK) to 102 (abSNP α = 1). (b) abSNP and GATK share similar sensitivity for uniquely
mapped SNPs. For multiply mapped SNPs, GATK fails to make any calls while abSNP is still able
to capture these SNPs. (c) Both abSNP and GATK increase sensitivity as coverage increases. (d)
While GATK fails to capture any multiply mapped SNPs across different coverages, abSNP is able
to recover these SNPs with high accuracy provided their SNP reads coverages are high.

positive as the total number of errors, and this is plotted by a 45-degree line, from which we
can see the gain from abSNP. The total error for abSNP(α = 1) is 102 whereas GATK makes
189 errors; showing the significant improvement in the error rate. We also point out that
abSNP(α = 0) has only 5 false positives compared to 2 false positives for GATK, while the
number of false negatives is reduced from 187 to 122, thus incurring a modest false positive
increase can lead to significantly improved sensitivity.

S. Mao, S. Mohajer, K. Ramachandran, D. Tse, and S. Kannan 15:11

Performance on multiply mapped reads: While the overall results indicate that abSNP
can afford performance gain over GATK, the full picture emerges only when we stratify the
performance results by the average number of mappings for each read. Consider Figure 4b,
where each bar represents an average recovery fraction, and in the x-axis, the true SNPs are
grouped based on their multi-mapping degree using GATK’s intermediate read alignment.
Let the true SNP at locus i (SNPi) has U uniquely mapped SNP reads and V multiply
mapped SNP reads (each of which has the number of multiple mappings as v1, ..., vj , ..., vV
respectively, with any vj > 1). SNPi is considered as multiply mapped only when all its
SNP reads are multiply mapped (i.e. U = 0), and its multi-mapping degree is the mean of
multiple mappings of its multiply mapped SNP reads.

For uniquely mapped SNPs (e.g. group uniq_map), abSNP and GATK have very similar
sensitivity, with 96% for GATK, 96% for abSNP(α = 0) and 97% for abSNP(α = 1). Indeed,
the false positives also remain similar between GATK and abSNP(α = 0). For multiply
mapped SNPs (e.g. in groups [2, 3) to [7, 9)), GATK fails to detect any SNPs because it will
throw away all multiply mapped reads and thus captures no SNP information, while abSNP
is still able to call many SNPs succesfully. Indeed, the mild-increase in false positives in
abSNP also comes from the the multiply mapped loci. Actually there can be two factors
contributing to the gains of abSNP - the first is due to MAPQ filtering, and the second
is due to our SNP calling algorithm together with shadow SNP filtering. Both factors are
needed in order to obtain the full performance improvement of abSNP, and are only possible
due to the exploitation of abundance variation of the different transcripts. In particular,
when abSNP becomes conservative (i.g. α = 0) on false positives, MAPQ filtering plays a
dominant role in our gain. When abSNP becomes less conservative (e.g. α→ 1), our calling
algorithm together with shadow SNP filtering will dominate the gain especially for SNPs of
high multi-mapping degrees.

We choose a very strict definition of multiply mapped SNPs requiring no uniquely mapped
SNP reads on that locus (i.e. U = 0). This strict choice is motivated from the fact that
if there are a non-zero number of uniquely-mapped SNP reads, then existing algorithms
can indeed make non-trivial calls. Also, when gene regions are repeated, due to paralogous
gene families or long segmental duplications, we expect the SNP to be embedded inside a
duplicated region, and hence have no uniquely mapped reads.

Dependence on coverage: We can also stratify the performance by coverage in Figure 4c,
where the true SNPs are grouped based on their SNP reads coverage: the number of SNP
reads originally sampled from these SNPs. Each group contains 25% of the true SNPs. Each
bar represents an average recovery fraction. As SNP reads coverage increases, the sensitivity
of all callers improves, with abSNP approaching 100% at the highest coverage group. We
note that this is highly significant considering that the highest coverage bar also contains
nearly 25% of the multiply mapped SNPs. Thus abSNP has the potential to detect multiply
mapped SNPs with high accuracy provided their SNP reads coverage is high. To verify this,
we only focus on the true SNPs that are multiply mapped (based on GATK’s read alignment)
and group them based on their SNP reads coverage as in Figure 4d, where each group also
contains approximately 25% of the multiply mapped true SNPs. Whereas GATK does not
recover these SNPs, abSNP has a tendency of better recovery as the coverage increases.

4 Discussion

While many algorithms have been developed in order to reveal SNPs in human genome (both
coding and non-coding regions) based on different sequencing technologies, SNPs at repetitive

WABI 2017

15:12 abSNP: RNA-Seq SNP Calling in Repetitive Regions via Abundance Estimation

genomic regions remain mostly unexplored, because the current SNP discovery mainly relies
on methods that ignores all multiply mapped reads due to repetitive genomic regions. We
have developed abSNP that is especially designed in order to fill this gap (in particular with
regard to the usage of RNA-Seq), through Bayesian principles and filtering methods that
utilize the unique products of RNA-Seq abundance estimation that contain rich mapping
quality information and estimated abundance. We believe this is the first work to explore
this kind of information through an abundance estimation procedure. Our simulated results
have shown abSNP’s promising performance gain over the widely used GATK best practice.
The main gain over GATK is in multiply mapped reads, where GATK does not make any
SNP calls, whereas abSNP can get most SNP calls right on the highly abundant gene regions.
Our algorithm abSNP is freely available at Github for others to use.

There are many directions for future work: (1) Testing abSNP on real data-sets is an
important direction for future work. This is complicated by the lack of ground-truth SNP
calls in multiply mapped regions. The present gold-standard datasets focus on SNPs in
non-repetitive regions (i.e. they may not belong to the category of multiply mapped SNPs
discussed in Section 3), which is the reason for the excellent performance on these datasets.
(2) Current version of abSNP does not utilize the pairing information in paired-end reads; this
can be potentially utilized to improve performance. (3) abSNP does not factor RNA-editing
into account, therefore the SNPs called are post-transcriptional. Thus abSNP in combination
with DNA SNP calling can be used to quantify the impact of RNA-editing; although this
requires strong statistical controls to reduce the impact of false-positives. (4) Currently
abSNP assumes that both alleles have equal expression levels. While we have tested this in
the simulation by having differing allele specific expressions, the algorithm can be potentially
improved if the effect of allele-specific expression is accounted for. This is a chicken-and-egg
problem since SNP calls are needed in order to quantify allele-specific expression, whereas,
knowledge of allele-specific expression can improve SNP calls. Thus a joint SNP-calling and
allele-specific expression detection can be useful. (5) In many cases, data from both DNA and
RNA sequencing are available in order to make SNP calls, sometimes both from regular and
diseased tissues. Extending abSNP to this framework is an interesting direction of research.
(6) A potential application of abSNP is on real cancer datasets to detect somatic mutations.

Acknowledgements. We thank Ashvin Nair for his help in programming some portions of
the algorithm. We also want to thank the anonymous reviewers for their useful comments.

References

1 Abecasis Lab. GlfMultiples. http://genome.sph.umich.edu/wiki/GlfMultiples.
2 Broad Institute. GATK Best Practices workflow for SNP and indel calling on RNAseq data.

https://software.broadinstitute.org/gatk/guide/article?id=3891.
3 Elizabeth T. Cirulli, Abanish Singh, Kevin V. Shianna, Dongliang Ge, Jason P. Smith,

Jessica M. Maia, Erin L. Heinzen, James J. Goedert, and David B. Goldstein. Screening
the human exome: a comparison of whole genome and whole transcriptome sequencing.
Genome Biology, 11(5):R57, 2010. doi:10.1186/gb-2010-11-5-r57.

4 The Genome Reference Consortium. Human Genome Assembly GRCh37. https://www.
ncbi.nlm.nih.gov/grc/human/data?asm=GRCh37.

5 Kristal Curtis, Ameet Talwalkar, Matei Zaharia, Armando Fox, and David A. Patterson.
SiRen: Leveraging Similar Regions for Efficient and Accurate Variant Calling, 2015. http:
//www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-159.html.

http://genome.sph.umich.edu/wiki/GlfMultiples
https://software.broadinstitute.org/gatk/guide/article?id=3891
http://dx.doi.org/10.1186/gb-2010-11-5-r57
https://www.ncbi.nlm.nih.gov/grc/human/data?asm=GRCh37
https://www.ncbi.nlm.nih.gov/grc/human/data?asm=GRCh37
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-159.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-159.html

S. Mao, S. Mohajer, K. Ramachandran, D. Tse, and S. Kannan 15:13

6 M.A. DePristo, E. Banks, R. Poplin, K.V. Garimella, J. R. Maguire, C. Hartl, A.A. Philip-
pakis, G. Angel, M.A. Rivas, M. Hann, A. McKenna, T. J. Fennell, A.M. Kernytsky, A.Y.
Sivachenko, K. Cibulskis, S. B. Gabriel, D. Altshuler, and M. J. Daly. A framework for
variation discovery and genotyping using next-generation DNA sequencing data. Nature
Genetics, 43(5):491–498, April 2011. doi:10.1038/ng.806.

7 A. Dobin, C.A. Davis, F. Schlesinger, J. Drenkow, C. Zaleski, S. Jha, P. Batut, M. Chaisson,
and T.R. Gingeras. STAR: ultrafast universal RNA-seq aligner. Bioinformatics, 2012.
doi:10.1093/bioinformatics/bts635.

8 Erik Garrison and Gabor Marth. Haplotype-based variant detection from short-read se-
quencing, 2012. arXiv:arXiv:1207.3907.

9 Maryam Ghareghani, Seyed Abolfazl Motahari, Shahram Khazaei, and Mostafa Tavassoli-
pour. Gw-call: Accurate genome-wide variant caller. bioRxiv, 2016. doi:10.1101/079905.

10 R. Goya, M.G. F. Sun, R.D. Morin, G. Leung, G. Ha, K.C. Wiegand, J. Senz, A. Crisan,
M.A. Marra, M. Hirst, D. Huntsman, K.P. Murphy, S. Aparicio, and S. P. Shah. SNVMix:
predicting single nucleotide variants from next-generation sequencing of tumors. Bioin-
formatics, 26(6):730–736, February 2010. doi:10.1093/bioinformatics/btq040.

11 The SAM/BAM Format Specification Working Group. Sequence Alignment/Map Format
Specifiation. https://samtools.github.io/hts-specs/SAMv1.pdf.

12 UCSC Genome Informatics Group. UCSC Genome Browser. https://genome.ucsc.edu/
cgi-bin/hgTables.

13 Daehwan Kim, Geo Pertea, Cole Trapnell, Harold Pimentel, Ryan Kelley, and Steven L.
Salzberg. TopHat2: accurate alignment of transcriptomes in the presence of inser-
tions, deletions and gene fusions. Genome Biology, 14(4):R36, 2013. doi:10.1186/
gb-2013-14-4-r36.

14 D.C. Koboldt, Q. Zhang, D.E. Larson, D. Shen, M.D. McLellan, L. Lin, C.A. Miller,
E.R. Mardis, L. Ding, and R.K. Wilson. VarScan 2: Somatic mutation and copy number
alteration discovery in cancer by exome sequencing. Genome Research, 22(3):568–576, 2012.
doi:10.1101/gr.129684.111.

15 Bo Li and Colin N Dewey. RSEM: accurate transcript quantification from RNA-seq data
with or without a reference genome. BMC Bioinformatics, 12(1):323, 2011. doi:10.1186/
1471-2105-12-323.

16 H. Li. A statistical framework for SNP calling, mutation discovery, association mapping
and population genetical parameter estimation from sequencing data. Bioinformatics,
27(21):2987–2993, September 2011. doi:10.1093/bioinformatics/btr509.

17 H. Li, J. Ruan, and R. Durbin. Mapping short DNA sequencing reads and calling variants
using mapping quality scores. Genome Research, 18(11):1851–1858, November 2008. doi:
10.1101/gr.078212.108.

18 Wei Li. RNASeqReadSimulator: A Simple RNA-Seq Read Simulator. http://alumni.cs.
ucr.edu/~liw/rnaseqreadsimulator.html.

19 Robert Piskol, Gokul Ramaswami, and Jin Billy Li. Reliable identification of genomic
variants from RNA-seq data. The American Journal of Human Genetics, 93(4):641–651,
2013. doi:10.1016/j.ajhg.2013.08.008.

20 Adam Roberts and Lior Pachter. Streaming fragment assignment for real-time analysis
of sequencing experiments. Nat Meth, 10(1):71–73, January 2013. Brief Communication.
doi:10.1038/nmeth.2251.

21 Daniel F. Simola and Junhyong Kim. Sniper: improved SNP discovery by multiply
mapping deep sequenced reads. Genome Biology, 12(6):R55, 2011. doi:10.1186/
gb-2011-12-6-r55.

22 X. Tang, S. Baheti, K. Shameer, K. J. Thompson, Q. Wills, N. Niu, I. N. Holcomb, S. C.
Boutet, R. Ramakrishnan, J.M. Kachergus, J.-P.A. Kocher, R.M. Weinshilboum, L. Wang,

WABI 2017

http://dx.doi.org/10.1038/ng.806
http://dx.doi.org/10.1093/bioinformatics/bts635
http://arxiv.org/abs/arXiv:1207.3907
http://dx.doi.org/10.1101/079905
http://dx.doi.org/10.1093/bioinformatics/btq040
https://samtools.github.io/hts-specs/SAMv1.pdf
https://genome.ucsc.edu/cgi-bin/hgTables
https://genome.ucsc.edu/cgi-bin/hgTables
http://dx.doi.org/10.1186/gb-2013-14-4-r36
http://dx.doi.org/10.1186/gb-2013-14-4-r36
http://dx.doi.org/10.1101/gr.129684.111
http://dx.doi.org/10.1186/1471-2105-12-323
http://dx.doi.org/10.1186/1471-2105-12-323
http://dx.doi.org/10.1093/bioinformatics/btr509
http://dx.doi.org/10.1101/gr.078212.108
http://dx.doi.org/10.1101/gr.078212.108
http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html
http://alumni.cs.ucr.edu/~liw/rnaseqreadsimulator.html
http://dx.doi.org/10.1016/j.ajhg.2013.08.008
http://dx.doi.org/10.1038/nmeth.2251
http://dx.doi.org/10.1186/gb-2011-12-6-r55
http://dx.doi.org/10.1186/gb-2011-12-6-r55

15:14 abSNP: RNA-Seq SNP Calling in Repetitive Regions via Abundance Estimation

E.A. Thompson, and K.R. Kalari. The eSNV-detect: a computational system to identify
expressed single nucleotide variants from transcriptome sequencing data. Nucleic Acids
Research, 42(22):e172–e172, October 2014. doi:10.1093/nar/gku1005.

23 Justin M. Zook, Brad Chapman, Jason Wang, David Mittelman, Oliver Hofmann, Winston
Hide, and Marc Salit. Integrating human sequence data sets provides a resource of bench-
mark SNP and indel genotype calls. Nat Biotech, 32(3):246–251, Mar 2014. Computational
Biology. doi:10.1038/nbt.2835.

http://dx.doi.org/10.1093/nar/gku1005
http://dx.doi.org/10.1038/nbt.2835

All Fingers Are Not the Same: Handling
Variable-Length Sequences in a Discriminative
Setting Using Conformal Multi-Instance Kernels
Sarvesh Nikumbh1, Peter Ebert1, and Nico Pfeifer3

1 Department of Computational Biology and Applied Algorithmics, Max Planck
Institute for Informatics, Saarland Informatics Campus, Saarbrücken,
Germany
snikumbh@mpi-inf.mpg.de

2 Department of Computational Biology and Applied Algorithmics, Max Planck
Institute for Informatics, Saarland Informatics Campus, Saarbrücken,
Germany
pebert@mpi-inf.mpg.de

3 Department of Computational Biology and Applied Algorithmics, Max Planck
Institute for Informatics, Saarland Informatics Campus, Saarbrücken,
Germany; and
Department of Computer Science, University of Tübingen, Tübingen, Germany
npfeifer@mpi-inf.mpg.de, pfeifer@informatik.uni-tuebingen.de

Abstract
Most string kernels for comparison of genomic sequences are generally tied to using (absolute)
positional information of the features in the individual sequences. This poses limitations when
comparing variable-length sequences using such string kernels. For example, profiling chromatin
interactions by 3C-based experiments results in variable-length genomic sequences (restriction
fragments). Here, exact position-wise occurrence of signals in sequences may not be as important
as in the scenario of analysis of the promoter sequences, that typically have a transcription start
site as reference. Existing position-aware string kernels have been shown to be useful for the
latter scenario.

In this work, we propose a novel approach for sequence comparison that enables larger po-
sitional freedom than most of the existing approaches, can identify a possibly dispersed set of
features in comparing variable-length sequences, and can handle both the aforementioned scen-
arios. Our approach, CoMIK, identifies not just the features useful towards classification but
also their locations in the variable-length sequences, as evidenced by the results of three binary
classification experiments, aided by recently introduced visualization techniques. Furthermore,
we show that we are able to efficiently retrieve and interpret the weight vector for the complex
setting of multiple multi-instance kernels.

1998 ACM Subject Classification I.5.1 Models, I.5.2 Design Methodology, J.3 Life and Medical
Sciences

Keywords and phrases Multiple instance learning, conformal MI kernels, 5C, Hi-C

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.16

1 Introduction

In various studies since the elucidation of the human genome, many different definitions
of promoters have been used in different studies. For example, Butler et al. defined a

© Sarvesh Nikumbh, Peter Ebert, and Nico Pfeifer;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 16; pp. 16:1–16:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.WABI.2017.16
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

16:2 Handling Variable-Length Sequences with Dispersed Features

core promoter as a minimal stretch of contiguous DNA sequence (∼ 40 nucleotides (nts))
that contains the transcription start site (TSS) and is sufficient for accurate transcription
initiation [4], and a proximal promoter as a region in the immediate vicinity of the TSS,
roughly 250 nts upstream and downstream. There are examples of many studies that consider
either only an upstream region or using an arbitrary-sized window around the TSS (albeit
fixed for the study) as promoter sequences. How does one know what size is appropriate in
any independent new study or a study unifying such promoter sequences from multiple prior
studies?

Discriminative machine learning methods like support vector machines (SVMs) [3] with
their state-of-the-art performance on many relevant problems in computational biology (e.g.,
splice site prediction [15]) have been proven to be a very powerful tool. The earliest kernel-
based approaches for computing similarities between biological sequences, e.g. spectrum [9]
and mismatch kernel [10], allowed comparing sequences of different length, but they did
not encode any positional information. Latter approaches, for example the weighted degree
kernel [16] and oligo kernel [13], do consider positional information in the corresponding
sequences, even with a certain amount of positional uncertainty [15]. Additionally, alignment-
based sequence comparison also provides a position-dependent similarity score albeit with a
gap penalty [17]. Thus, these approaches do allow deviations from exact matches but they
are penalized. The oligomer distance histograms (ODH) kernel [11] allows comparing of
sequences of different length by way of representing a sequence with a fixed-length feature
vector. But it ignores information about the position of such oligomer pairs within the
sequence.

These scenarios are outlined in Figure 1, panel Motivation, when comparing two sequences
S1 and S2. Any position-aware kernel that also allows shifts can detect the signal in case
(a) but not in case (b) where the signal is very far apart. Even if it does, it would penalize
this deviation. Case (c) represents how ODH would detect this signal and thus consider the
two sequences to be similar, but information on the position of this signal in the individual
sequences is lost. This work is a step in the direction to tackle this issue: compare sequences
allowing reasonable degree of positional freedom and not simultaneously penalizing this
deviation or keeping it problem-dependent. This scenario can arise in case of Hi-C data
where the pairs of loci interacting over a long-range are variable-length restriction fragments
reported from the experiments and the causal signal in the two loci compared, for example, the
enhancer and the promoter, does not have any positional restriction unlike the transcription
start site in the promoter sequences.

In this work we approach the problem of handling variable-length sequences and allowing
positional freedom when comparing them for problems such as identifying promoter architec-
tures or analysis of long-range interaction partners collected from Hi-C experiments. We do so
by breaking the individual sequences into segments (see Figure 1, panel Motivation, case (d))
and casting the problem into a multiple instance learning problem [6] where the instances in
each bag are parts of the whole sequence. We employ conformal multi-instance kernels [2]
to obtain the weightings for instances in each bag, thus rendering the capability to identify
segments of a sequence informative for the prediction problem. We efficiently retrieve the
weight vector for the complex setting of multiple conformed multi-instance kernels (outlined
in Section 2.4.1). We also demonstrate how to interpret the nonlinear classifiers by adopting
visualization techniques that were recently introduced [14] in the more basic setting (outlined
in Section 2.4.2).

S. Nikumbh, P. Ebert, and N. Pfeifer 16:3

Figure 1 A schematic of our approach CoMIK, and the motivation. The complementary
segmentation procedure is illustrated in the top panel. The sequence is shown in gray. Non-shifted
segments are shown with an orange border, and shifted segments with blue border. The ‘Motivation’
panel shows the various scenarios when comparing sequences S1 and S2. Here, a signal in the sequence
is shown as a yellow box. ‘FV1’ and ‘FV2’ denote the ODH (oligomer distance histograms [11])
feature vectors for S1 and S2 respectively. The panel ‘CoMIK’ shows a schematic of our approach
starting from a sequence to the complementary conformal multi-instance (MI) kernel (see Methods
for details). S1, S2,. . . , Sn are the n sequences in the collection.

2 Methods

Towards pair-wise comparison of variable-length sequences allowing positional freedom, we
segment the individual sequences thus representing each sequence as a collection of its
segments and then compare all segments of one sequence to all those of the other. With this,
the typical binary classification problem involving sequences is cast into a multiple instance
learning problem [6]. We call our approach CoMIK for ‘Conformal Multi-Instance Kernels’.

In the following, we begin by discussing our sequence segmentation procedure and the
need for a complementary representation (Section 2.1). Further, we show how we exploit
this design with the help of conformal transformations to the multi-instance (MI) kernel [2]
to identify segments of a sequence which are important (due to features contained in the
segment) towards its classification (Section 2.2). Subsequently, we discuss the procedure
to obtain the SVM weight vector from the multiple conformal multi-instance kernels and
visualizing the important features thus making it interpretable (Section 2.4).

2.1 Segment Instantiation with Complementary Views
Non-shifted Segment Instantiation: Given any arbitrary length sequence, we propose
representing it by its segments where a segment is defined as a smaller part of the whole

WABI 2017

16:4 Handling Variable-Length Sequences with Dispersed Features

sequence. Beginning right at the start of the sequence, we create segments of a predetermined
size along the sequence until it ends. The segment size is chosen a priori by the user
depending on the problem (see Section 2.3 for details). The last segment is allowed to have a
different size (either larger or smaller than other segments) to accommodate any remainder
portion in case the sequence length is not an exact multiple of the segment size. We call this
instantiation the non-shifted segment instantiation. A simple case of non-shifted segmentation
is illustrated in Figure 1 (panel ‘Complementary Segmentation’). This segmentation provides
the non-shifted view of the whole sequence as the first segment starts at the beginning of the
sequence and, in total, the segments span the entire sequence.

Shifted Segment Instantiation: There may still be signals at the boundaries of any two
non-shifted segments (see Figure 1, panel ‘Complementary Segmentation’, signal at position
A5) which may get overlooked when comparing sequences using just non-shifted segments.
To cover for this scenario, we introduce an alternate instantiation called shifted segmentation
whereby the boundaries due to initial segmentation of the sequence end up in the same
segment in this representation. In this case, segmentation begins from the mid-point of
the first non-shifted segment, and proceeds to create further segments along the sequence
essentially covering the boundaries of the non-shifted segments. The portions of the sequence
before B1 and beyond B5 can be omitted since they are already covered in the non-shifted
view (see Figure 1). Shifted segments can either be of same size as the non-shifted segments
or different. Thus, shifted segmentation provides a complementary view of the same sequence
covering the portions which get overlooked by non-shifted segmentation.

Refer to Section 2.3 for a discussion on choosing an appropriate segment-size and its
influence on the method.

2.2 Conformal Multi-Instance Kernels for Complimentary Set of
Segments

Once segmented, we cast this problem into a multiple instance learning problem [6]. In
this setting, each sample (X, y) contains a set of instances x ∈ X and label y. The sets of
instances are also called bags. Each sequence is thus treated as a bag and its segments as
instances in the bag. One or more instances from a bag could be responsible for the bag to
be classified as positive or negative due to the presence or absence of class-specific features.
Since there is no restriction on the number of instances a bag can contain, this setting can
inherently allow for considering arbitrary length sequences that result in an arbitrary number
of instances per bag upon segmentation. Thus, there is a bag for each sequence containing
non-shifted and shifted segments of the sequence as instances in its bag.

2.2.1 Multi-Instance Kernels
Gärtner et al. proposed the normalized set kernel (also known as the multi-instance kernel)
for the multiple instance problem [8]. For each sample represented as a bag of instances, the
kernel value between any two bags X and X ′, k(X,X ′), is given as in Eq. 1.

k(X,X ′) := kset(X,X ′)
fnorm(X)fnorm(X ′) . (1)

Here kset(X,X ′) :=
∑

x∈X,x′∈X′
k(x, x′) and fnorm(X) is a suitable normalization function.

One could normalize using either averaging (fnorm(X) := #X, where #X denotes the number

S. Nikumbh, P. Ebert, and N. Pfeifer 16:5

of instances in bag X) or feature space normalization (fnorm(X) :=
√
kset(X,X)). In this

work, we used feature space normalization.
While the multi-instance kernel can successfully handle comparison between bags by

comparing their individual instances, it has the issue that, in averaging, it looses any
information related to the contributions of the individual instances. In other words, it treats
all the instances in a bag equally. And, it is usually desirable to not only obtain a solution to
a problem, but also to identify (a) the features that contribute to that specific solution, and
(b) the parts which contain these features. Here, (b) amounts to knowing which instance(s)
in a bag have features that helped determining the correct class label of the bag (positive or
negative class). To this end, we propose using conformal multi-instance kernels [2] that allow
us to obtain an instance weighting based on the contribution of these instances to learning
the discriminant function.

2.2.2 Conformal Multi-Instance Kernels
Blaschko and Hofmann proposed the conformal multi-instance kernel as a modification to
the normalized set kernel [2]. This modification is a conformal transformation parameterized
by θ, tθ > 0, applied to the kernel function, meaning that the transformation preserves the
angle between vectors in the mapped space. The idea is to magnify those regions in the
feature space which are discriminative and shrinking those which are not discriminative.
Selection of these candidate regions in the feature space is done by clustering the complete
set of input instances and choosing the corresponding cluster centres as candidate regions or
expansion points. The decision of whether the region characterized by any cluster centre is
discriminative or not is made by solving the multiple kernel learning problem as explained
further.

Blaschko and Hofmann [2] proposed (a) the conformal transformation tθ(x) to be of the
form given in Eq. 2.

tθ(x) =
E∑
e=1

θeκ̃(x, ce) (2)

κ̃(x, ce) = exp
(
− ||x− ce||

2

2σ2

)
(3)

Here, ce’s denote the cluster centres indexed by e ∈ {1, . . . , E} for a total of E expansion
points; and (b) κ̃ to be a Gaussian (Eq. 3) whose bandwidth (σ) can be adjusted. The
parameter θe in Eq. 2 tells how discriminative the region around a certain cluster centre is. A
large value of θe denotes that the neighborhood of the corresponding expansion point ce is a
discriminative region. As mentioned, the θe values are learnt via multiple kernel learning (see
subsection ‘Resultant conformal multi-instance kernel’ and Eq. 5). Thus, replacing k(x, x′)
by its conformal transformation tθ(x)tθ(x′)k(x, x′)

k(X,X ′) = 1
fnorm(X) · fnorm(X ′)

∑
x∈X

∑
x′∈X′

tθ(x)tθ(x′) k(x, x′)︸ ︷︷ ︸
base kernel

(4)

Identifying expansion points. To identify a set of expansion points, one could use k-means
clustering with all available instances to identify clusters, whose cluster centres, ce’s, are
then treated as expansion points (E = k). Here, the individual instances are represented
by their ODH feature vectors as discussed in Section 2.2.3. When dealing with too many

WABI 2017

16:6 Handling Variable-Length Sequences with Dispersed Features

instances, which could make the clustering process a bottleneck, Blaschko and Hofmann [2]
suggest using the buckshot clustering approach [5] wherein, in order to identify E clusters
from n instances, instead of using all n instances, one could perform k-means clustering using
randomly sampled

√
En instances out of n. This has been shown to identify qualitatively

similar clusters and being highly scalable at the same time [2].

Resultant conformal multi-instance kernel. Upon substituting Eq. 2 in Eq. 4, and simpli-
fication (see [2] for more details), the conformal multi-instance kernel is given by

k(X,X ′) ≈
E∑
e=1

θ2
e

(
1

fnorm(X) · fnorm(X ′)
∑
x∈X

∑
x′∈X′

κ̃(x, ce)κ̃(x′, ce) k(x, x′)︸ ︷︷ ︸
base kernel

)
(5)

Eq. 5 is then posed as a multiple kernel learning (MKL) [1] problem (linear in ρe ≡ θ2
e)

to simultaneously learn the θe’s and the SVM parameters α, also called λ in part of the
literature.

Obtaining individual instance weights. Upon solving the MKL problem, once the sub-
kernel weights (θe’s) are obtained we can directly obtain tθ(x) for any instance x of a bag X
using Eq. 2.

2.2.3 Oligomer Distance Histograms (ODH) Kernel as Base Kernel
The choice of the base kernel to compare the individual instances depends on the problem.
Here, we propose representing the individual segments of any sequence by its ODH repres-
entation [11] and using the ODH kernel [11] to compute similarities between them. In the
ODH representation, any arbitrary-length sequence is represented by a feature vector that
counts the occurrences of all pairs of short K-mers separated by d positions in the sequence.

For the DNA alphabet, Σ = {A, C, G, T}, with mi ∈ ΣK , i = 1, . . . ,M as all possible K-
mers, any L-length sequence s can have K-mers separated by a maximum distance D = L−K.
Thus, d ∈ {0, . . . , D}. Here, distance between a K-mer pair is the difference between its
starting positions in the sequence. For any K-mer pair (mi,mj), the distance histogram
vector of its occurrences in sequence s is given as hij(s) = [h0

ij(s), h1
ij(s), . . . , hDij(s)]T. Here,

each hdij(s) is the count of the number of times the K -mer pair (mi,mj) is observed at
distance d in s. Finally, the feature space transformation of sequence s is obtained by stacking
together the distance histograms of all K-mer pairs over Σ.

Φ(s) = [hT
11(s),hT

12(s), . . . ,hT
MM (s)]T (6)

Then, N training samples are given as: X = [Φ(s1), . . . ,Φ(sN)] and the N ×N kernel matrix
is given by K = XTX.

2.3 Choosing an appropriate segment-size
While the user could choose a segment-size that is appropriate for a problem, there is a
trade-off one should consider. On the one hand, the ODH kernel computation involving
dot products between very high-dimensional feature vectors benefits from the sparsity of
these feature vectors. But, with just 4 characters in the DNA alphabet, for very long
segments the representation may not be sparse enough. On the other hand, having too
many segments overall, influences the computation time spent performing clustering and

S. Nikumbh, P. Ebert, and N. Pfeifer 16:7

subsequently applying the transformation per segment. Thus, there is a trade-off between
the size of the segments and the total number of segments at the training stage.

In general, many long segments in total from all the sequences at the training stage could
lead to a longer computation time for the (instance-wise) base kernel, but we note that this
is done only once at the beginning.

2.4 Interpretation and Visualization of Features
In the following, we discuss how one can interpret and visualize the sequence features deemed
important by CoMIK for a prediction problem.

2.4.1 Obtaining the SVM Weight Vector for CoMIK
In the MKL problem [1], the weight vector corresponding to a given sub-kernel Km is given
as in Eq. 7.

wm = βm

N∑
i=1

αiyiΦm(Xi) (7)

Φce
m(X) = 1

B

∑
x∈X

κ̃(x, ce)φm(x) (8)

Here βm is the sub-kernel weight learnt by solving the MKL problem and each Φm(Xi) is
the feature space representation of sequence Xi corresponding to sub-kernel Km. And, for
the conformally transformed multi-instance setting, this would mean Φm(X) is the bag-level,
transformed ODH representation of the sequence corresponding to the cluster centre chosen
when computing the sub-kernel Km. Thus, Φce

m(X) can be represented mathematically as
in Eq. 8 where φm(x) is the ODH representation of segment x (Eq. 6) belonging to bag X,
κ̃(x, ce) is the Gaussian transformation (Eq. 3) and B is the feature space normalization
factor. Following [20], B can either be

√
k(X,X) or ||

∑
x∈X κ̃(x, ce)φm(x)||2 since our base

kernel, the ODH kernel, is a dot product kernel (refer to Section 2.2.3). Thus, we have a
bag-level representation of a sequence corresponding to all cluster centres which allows us to
compute all the relevant weight vectors. These individual weight vectors can also be used
to make fast predictions on test examples. For this, we only need the transformed ODH
representations of the test examples corresponding to each kernel in the collection.

2.4.2 Visualizing Features from the CoMIK Weight Vector
Figure 2 shows two ways of visualizing the features deemed important by CoMIK in discerning
the positive set of sequences from the negative set. The bottom-left panel in Figure 2 shows
the distance-centric view, the ‘Absolute Max Per Distance’ (AMPD) visualization [14], and,
the right panel, K-mer-centric view [11]. In the AMPD visualization, based on the ODH
feature representation, each dimension of the weight vector corresponds to the histogram
count of an oligomer pair lying at a given distance d (unit: basepairs) (refer Section 2.2.3,
Eq. 6). From this weight vector, for each distance value, among all the K-mer pairs, we pick
the pair that is assigned the most positive and most negative coefficient. A positive coefficient
value means the feature (i.e., the d-separated K-mer pair, d ∈ {0, 1, . . . , D}) is prominent
among the positive set of examples, otherwise negative. This provides a distance-centric
view of the important features. The K-mer-centric view [11] shows the role of each K-mer

WABI 2017

16:8 Handling Variable-Length Sequences with Dispersed Features

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Segment ranks

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

0

10

20

30

40

50

60

D
is
ta

n
ce

s
(i
n

b
as

ep
ai

rs
)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Weights

Highest scoring motifs for kernel ranked 1

GC|GC TA|TA
AG|GG TG|GG

GA|CA AT|GG
AT|TA AT|GT

AG|AC CA|CCCC|GG AC|CA
CC|GG CA|CA

CC|GA CC|CA
CA|CT CG|CC

AG|CA AC|CC
AG|AC GA|GA

CA|AC TA|CC
CA|CA TA|CA

AT|TA CC|AG
CA|GG CA|GTCA|AG AC|GT
CA|GG AC|GA

AC|TA AC|GT
GA|TA CA|CG

CA|AG TC|GG
AC|AG GA|GA

AC|GA AG|GA
AC|AC AC|CA

AG|GA AT|GA
GA|GG TA|TGAC|GA GC|AC
AC|AC AG|AC

CA|AG GC|AG
AC|AC AG|AG

AC|CA AG|GA
AT|TG GA|GA

TT|TA AC|CG
GA|AG GT|GA

GA|GC CC|CA
AG|GC TA|GTAT|CA TA|TA
AC|TA TT|TA

AT|GA CA|GA
AG|AG GA|TG

GA|AT GA|GG
CA|CT GA|GA

AT|GA GA|AC
AG|CA CT|AC

GT|CA AG|CA
AG|CT CC|ACAG|TA AT|TA
AC|CT AC|AC

TA|AA AC|CG
GA|CC TG|AG

AT|GG AC|GA
GA|GT GA|GA

AC|CT TT|CA
GA|CC CT|GT

TG|TT AA|AT
AG|GG TT|CACA|TT AT|CT
AT|AG CT|AA

AT|AC GG|AG
GC|AG AC|GT

AC|AT TC|CA
GA|GT GA|GA

GG|GC AC|CA
GC|GA AC|CA

CA|GA TG|GT
AT|GC GC|CCCC|AC GA|AC
CC|CA AC|AG

TT|TG GA|TA
AC|CT GA|TT

O
d
d

d
is
ta

n
ce

s,
d

=
f2

N
0
+

1
g

E
ve

n
d
is
ta

n
ce

s,
d

=
f2

N
0
g

E
ve

n
d
is
ta

n
ce

s,
d

=
f2

N
0
g

O
d
d

d
is
ta

n
ce

s,
d

=
f2

N
0
+

1
g

2−mers

2−
m

er
s

AA

AC

AG

AT

CA

CC

CG

CT

GA

GC

GG

GT

TA

TC

TG

TT

A
A

A
C

A
G AT C
A

C
C

C
G C
T

G
A

G
C

G
G G
T TA TC TG TT

0.2

0.3

0.4

0.5

0.6

0.7

Figure 2 (top) Visualizing the weights assigned to segments of the variable-length sequences in
simulated data set, distance-centric (bottom-left panel) and K-mer-centric visualizations (bottom-
right panel) of features for the simulated data set. The left panel shows 2-mer pairs that were assigned
the highest positive and negative weights at each distance value corresponding to a sub-kernel that
was assigned the highest weight. For easy viewing, the K-mer-pairs at odd distances are placed on
the outside and the even distances, inside. Horizontal axis: weights, vertical axis: distances between
2-mer pairs (in basepairs). Refer to Section 2.4.2 for details on the K-mer centric visualization.

pair towards prediction. Simply stated, the K-mer-centric view of the discriminant is a
matrix which is obtained upon performing, for all K-mer pairs, an `2-norm of the relevant
dimensions of the weight vector, corresponding to all distance values considered, with itself.
Thus, a pair which holds high importance (i.e., it has large coefficients in the discriminant,
positive or negative) will have higher absolute value in the matrix.

3 Materials

Simulated data set: We prepared a simulated data set of 1000 arbitrary-length sequences
with a mix of many coupled and non-coupled motifs as explained below. Of these 1000 were
three kinds of positive sequences totaling 500; the rest 500 comprised of two kinds of negative
sequences.

Refer to Table 1 for the following: (a) 300 of the 500 positive sequences had motifs from
set A planted in them (column marked ‘+’), all except those marked with N (e.g., 4N and 5N
which are negative variants of the positive motifs 4P and 5P, respectively). (b) Another 100

S. Nikumbh, P. Ebert, and N. Pfeifer 16:9

Table 1 Motif sets planted in the simulated data set. The differences between the positive and
the negative variants are underlined (e.g., 4P and 4N). ‘-’ denotes a gap. Columns marked ‘+’ and
‘−’ give the number of positives and negatives respectively containing the corresponding set of motifs.
Columns ‘P’ and ‘N’ give the #segment (non-shifted) in which the motif could lay (start positions).

Set Motifs + − P N
1.‘GAGTTATACATGGTATAGACCACACTATTA’ {1,2} {2,3}
2.‘AACATGGTCTAGACCATTTT’ {3} {1}
3.‘CTAAACAGGGTCTATACCACACTATTA’ {5} {5}

A 4P.‘AGGATATATATGTGCTCTTCAGATTTTCACCCTTAGCAAGAGCGAGG’ 300 300 {6} −
4N.‘ACCATATACATGTGCAGATCAGATTTTCACCCCGAGCAAGAGCGAGG’ − {6}
5P.‘ACACAGCTACTACCACAGGGACAGACAGACAG’ {4} −
5N.‘ATAGCGCTACTACCACACCCACAGACAGACAG’ − {1}
1.‘ACCATATACATGTGCAGATCAGATTTTCACCCCGAGCAAGAGCGAGG’ {3} {2,3}
2.‘ATAGCGCTACTACCACACCCACAGACAGACAG’ {2} {1}

B 3P.‘GACACATGTGCACATATGGTTTTCACCCCGATACATAGTGAGG’ 100 200 {4} −
3N.‘GACACATGTGCACATATG-TAGCGAGG’ − {3,4}

C ‘GA’ repeated at every 10 nt in the sequence 100 − − −

positive sequences had motifs from set B planted in them – 3P and 3N denoting variants as
in (a). (c) Additional 100 positive sequences had the dinucleotide ‘GA’ repeated at every
10nt throughout the sequences. For the 500 negative sequences, 300 contained all motifs
from set A (1, 2, 3 and the negative variants) and the remaining 200, similarly, with motifs
from set B. In all the sequences, each motif was planted at a randomly chosen start position
inside a respective window. For CoMIK, it was then possible to determine the segment in
which the different motifs could lay. Since we later discuss results with segment-size 70nt,
columns ‘P’ and ‘N’ already give the 70nt-segment numbers (for non-shifted segments) for
each motif. Length of sequences of type (a) and (b), either positive or negative, was in the
range [300,500]nt, and [500,600]nt for type (c). All sequences were generated with uniform
probabilities for A, C, G and T and the motifs had a 0.1 mutation probability. Maintaining
equal proportions of the different kinds of positives and negatives, we held out 200 sequences
as unseen test examples (100 positives and 100 negatives) and used the remaining 800
sequences for training.

Yeast: Lubliner et al. studied yeast core promoter sequences analyzing the effect of sequence
variation in different core promoter regions [12]. Among other things, the authors showed
that location, orientation, and flanking bases are important for TATA element function. We
obtained a total of 316 118nt-long core promoter sequences ([-118,-1] relative to the TSS) for
which the core promoter activity measurements were provided and followed the procedure
in Figure 5 in [12] to classify them into two classes– sequences showing either low or high
activity (low or high expression), giving 28 positive and 288 negative sequences.

5C: In a recent study, Nikumbh and Pfeifer [14] approached the problem of predicting the
long-range interaction partners of a genomic locus (of interest) profiled in 5C experiments
in cell lines GM12878, K562 and HeLa-S3 [18] using the DNA sequence at the interacting
(positive class) and non-interacting loci (negative class) w.r.t. the locus of interest. For any
5C-profiled TSS-containing region, the distal loci that showed a significant interaction with
it in all replicates were considered as positive and the ones that did not interact significantly

WABI 2017

16:10 Handling Variable-Length Sequences with Dispersed Features

Table 2 Number of positive and negative sequences the 5C data set.

GM12878 K562 HeLa-S3
#Positives 63 46 98
#Negatives 226 105 207

Table 3 Parameters and the range of values tested for the simulated, 5C and the yeast data set.

Parameters Simulated data set 5C Yeast
#Clusters {2, 5, 7} {5, 7, 10} {2, 5, 7}
Segment size {50, 70} 50 10
Sigma (σ) for Gaussian transformation 10{−1,...,2} 10{2,4,6} 10{−1,...,2}

Oligomer length {2, 3} {2, 3} {2, 3}
Maximum distance {50, 70} 50 10
SVM-cost 10{−3,...,3} 10{−3,...,6} 10{−3,...,3}

in any replicate were considered negative. Thus, here the problem is approached as a single
binary classification task. While the authors also consider a multitask setting [14], here, for
the performance comparison, we performed experiments in the single task setting (see [14] for
more details). We fetched the positive and negative set of sequences for one region (region 0)
per cell line [14]. The number of positive and negative sequences for each of these are given
in Table 2.

4 Experimental Setup

For each data set, we performed 5-fold nested cross-validation (CV) by splitting the data
into 80%:20% for training and test, respectively. For each outer-fold, model selection was
performed with a 5-fold inner CV loop on the training set with `1- and `2-norm MKL. We
note that CoMIK accounts for any class imbalance by proportionately up-weighting the
misclassification cost for the minority class as proposed in [7]. All parameters and the range
of values tested for them are given in Table 3. Of these, #Clusters, σ and SVM-cost are
optimized by cross-validation while other parameters, namely segment size, oligomer length
and maximum distance, are assigned fixed values for each individual run. We used the
same segment-size for the shifted and the non-shifted cases. The best performing set of
parameter values obtained from the inner CV-folds was used to re-train the model using the
complete training data and make predictions on the unseen test set of examples per outer
CV-fold. We report the area under the receiver operating characteristic (ROC) curve (AUC)
for predictions on this held-out test set averaged over the five outer folds.

We compare our performance on the simulated data set to that of KIRMES (Kernel-based
Identification of Regulatory Modules in Euchromatic Sequences) [19]. KIRMES was shown
to perform well on gene sets derived from microarray experiments for identifying loss or gain
of gene function [19]. For a collection of positive and negative genomic sequences, given a set
of motifs representing transcription factor binding sites and their match-positions (obtained
by performing a motif-finding step a priori) in the sequences, KIRMES picks a fixed-size
window around the best match-position of the motif in the sequence as a representative of
the sequence for that motif. These selected, fixed-size portions from all sequences (thus,
equal length) are used to compute a WDSC kernel (weighted degree kernel with shifts and
conservation information; see [19] for complete details) corresponding to that motif. This

S. Nikumbh, P. Ebert, and N. Pfeifer 16:11

procedure results in as many kernels as the number of motifs. The remaining parts of the
sequences (those not selected for any motif) are neglected.

5 Results

In the following, with computational experiments on a simulated data set, and yeast and 5C
data, we demonstrate how CoMIK can be used to uncover the features regarded important for
classification together with their locations (at the segment level) in any candidate sequence.

Simulated data set: For this data set, while KIRMES achieves an AUC of 0.9432, CoMIK
attains near-perfect classification, AUC 0.9960 ± 0.003. We surmise that the superior
performance of CoMIK is due to the sequences containing the dinucleotide repeat motif ‘GA’
(see Figure 1) which may not be captured at the motif-finding step and thus affect KIRMES’
prediction.

We provide visualizations from the run that achieved the best performance with oligomer-
length 3, segment-size 70nt, `1-norm MKL in Figure 2. The top panel visualizes the 70nt-long
segments of 50 out of the 200 test sequences horizontally. For each sequence, the non-shifted
segments are followed by its shifted segments. Per sequence, the higher-ranked segments
would be the ones where the features are located. Figure 2, bottom-left panel, is a distance-
centric visualization of the SVM weight vector and the bottom-right panel, the K-mer-centric
view. While the K-mer-centric view clearly indicates GA’s important role, the distance-centric
visualization shows that it could be periodic. Experiments using different segment-sizes can
easily uncover the fact that they are spread throughout the sequences.

Yeast: CoMIK achieved an AUC of 0.9459± 0.029 on this data set with segment-size 10nt,
oligomer-length 3 and `1-norm MKL. Furthermore, the most important features represent
motifs known as important for classification. We visualize the 3-mer pairs deemed important
by CoMIK for this classification in Figure 3, left panel. The right panel here visualizes
the sequences and their ranked segments as a heatmap. The 316 sequences are arranged
vertically from top to bottom, and their segments horizontally. For the 118nt-long sequences
in this data set, the segment-size of 10nt lead to 12 non-shifted and 11 shifted segments, and
are arranged in that order. Thus, the coordinates for the non-shifted and shifted segments in
the sequence are as marked on the top of the heatmap.

We observe that segments 3 and 9, i.e., regions [−98,−89] and [−38,−29] happen to be
ranked first consistently. Segments 15 and 21 are the best-ranked shifted segments also
corresponding to the same genomic window. And, indeed, Lubliner et al. report that the
main TSS lay at position −30 and that the regions [−118,−99] and [−98,−69] hold important
features which upon mutations greatly reduced expression [12]. In the left panel, the top-
ranked kernel shows TATA-like elements to be important for classification. Furthermore,
among the features reported by other kernels in the collection (not shown), CoMIK rightly
identifies T/C-rich K-mers to be enriched among the positive sequences as against G/C-rich
K-mers which are also reported in Supplementary Figure 4 in [12].

5C data set: Performances of CoMIK on the three cell lines are given in Table 4. For
comparison with the method by Nikumbh and Pfeifer [14] that represents the complete
restriction fragment with its ODH representation, we directly report the performances with
oligomer length 3 from Table 1 in [14]. We observe that in experiments with segment-size
50 using 3-mers, CoMIK already achieves as good or better performance. Furthermore, the

WABI 2017

16:12 Handling Variable-Length Sequences with Dispersed Features

-1

0

1

2

3

4

5

6

7

8

D
is
ta

n
ce

s
(i
n

b
as

ep
ai

rs
)

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Weights

Highest scoring motifs for kernel ranked 1

TAG|TAG TAT|TAT

ACC|CCA TAT|ATA

AAA|AGA AAA|AAA

AAA|ATT TAT|AAA

AAA|AAC TAT|AAA

AAA|AAC TAT|AAG

AAA|ACC TAT|AGA

AAC|TAA AGA|AGT

O
d
d

d
is
ta

n
ce

s,
d

=
f2

N
0
+

1
g

E
ve

n
d
is
ta

n
ce

s,
d

=
f2

N
0
g

E
ve

n
d
is
ta

n
ce

s,
d

=
f2

N
0
g

O
d
d

d
is
ta

n
ce

s,
d

=
f2

N
0
+

1
g

Non-shifted segments
(1-12)

Shifted segments
(13-23)

Figure 3 Distance-centric visualization of features (left) and visualization of weights assigned to
segments per sequence for the yeast data set. As in Figure 2, the left panel shows 3-mer pairs that
were assigned the highest positive and negative weights at each distance value corresponding to the
sub-kernel with the highest weight among all sub-kernels in the collection. For easy viewing, the
K-mer-pairs at odd distances are placed on the outside and the even distances, inside. Horizontal
axis: weights, vertical axis: distances between 3-mer pairs (in basepairs). The right panel shows
all sequences in the data set as segments: Segment rankings based on the weights assigned to the
various segments are visualized as a heatmap. The rank to color mapping is as shown in the colorbar
on the extreme right.

Table 4 5C data set results: Test AUC values (mean±s.d.) for region 0 [14] in three cell lines.

Method↓/Cell lines→ GM12878 K562 HeLa-S3
Nikumbh and Pfeifer [14] 0.7417± 0.059 0.8163± 0.071 0.6914± 0.058
CoMIK 0.7829± 0.063 0.7920± 0.084 0.6993± 0.012

additional ability of CoMIK to identify important portions in the individual sequences could
give novel insights.

6 Discussion

We presented a multiple instance learning-based approach, called CoMIK (‘Conformal Multi-
Instance Kernels’), that can handle highly dispersed features in comparing variable-length
sequences in a discriminative setting. We assessed the performance of CoMIK on three
classification problems: a simulated data set and two real biological data sets including a
5C data set. Together with the visualizations, we demonstrated the efficacy of CoMIK in
all these problems. As compared to KIRMES, where the classifier completely relies on the
motif-finding step a priori for its input, CoMIK, by design, uses the complete sequence and
is able to locate the portions deemed important for the prediction problem. This enables
CoMIK to avert the risk of ignoring the low-affinity, weak binding sites in the sequences
which can be missed by KIRMES. Technically, one could use the complete sequence with
KIRMES provided the set of motifs considered are spread through-out the sequence, but that
is again controlled by the motif-finding stage. CoMIK allows positional freedom in comparing
sequences. For the 5C data set, Nikumbh and Pfeifer also used the ODH representation to
compare the restriction fragments [14], but their approach does not give any information on
the location of the features in the long restriction fragments. Our results on this data set

S. Nikumbh, P. Ebert, and N. Pfeifer 16:13

showed that in this scenario looking closely at shorter segments rather than the complete
restriction fragments can help attain better performance. Additionally, CoMIK ’s ability
to locate signal within the sequence could be useful in studying the so-called structural
interactions between the intervening chromatin [18] of the long-range interacting loci.

We note that CoMIK’s computation time is largely governed by the clustering step and
the subsequent transformation of the segments – both performed at every CV iteration,
and both of these are influenced by the choice of the segment-size. Our implementation
exploits the sparsity of short individual segments, makes use of sparse representations and
computations. Thus, while, in general, the segment-size only affects CoMIK’s running time,
for scenarios like the discussed yeast problem, shorter segments could be preferable. In the
clustering step, the buckshot heuristic is incognizant of the imbalance prevalent in the data.
This could be improved by using a stratified sample with buckshot clustering. We also note
that for scenarios wherein positional information is important, kernels like the WDS [15] or
the oligo kernel [13] could be more suitable as base kernels depending on the problem.

References
1 Francis R. Bach, Gert R.G. Lanckriet, and Michael I. Jordan. Multiple kernel learning,

conic duality, and the SMO algorithm. In Proceedings of the Twenty-first International
Conference on Machine Learning, ICML’04, page 6, New York, NY, USA, 2004. ACM.
doi:10.1145/1015330.1015424.

2 Matthew B. Blaschko and Thomas Hofmann. Conformal multi-instance kernels. In NIPS
2006 Workshop on Learning to Compare Examples, 2006.

3 Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik. A training algorithm for
optimal margin classifiers. In Proceedings of the Fifth Annual Workshop on Computational
Learning Theory, COLT’92, pages 144–152, New York, NY, USA, 1992. ACM. doi:10.
1145/130385.130401.

4 Jennifer E. F. Butler and James T. Kadonaga. The RNA polymerase II core promoter: a key
component in the regulation of gene expression. Genes & Development, 16(20):2583–2592,
2002. doi:10.1101/gad.1026202.

5 Douglass R. Cutting, David R. Karger, Jan O. Pedersen, and John W. Tukey. Scatter-
/gather: A cluster-based approach to browsing large document collections. In Proceedings
of the 15th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR’92, pages 318–329, New York, NY, USA, 1992. ACM.
doi:10.1145/133160.133214.

6 Thomas G. Dietterich, Richard H. Lathrop, Tomas Lozano-Perez, and Arris Pharmaceut-
ical. Solving the multiple-instance problem with axis-parallel rectangles. Artificial Intelli-
gence, 89:31–71, 1997.

7 Charles Elkan. The foundations of cost-sensitive learning. In Proceedings of the 17th
International Joint Conference on Artificial Intelligence – Volume 2, IJCAI’01, pages 973–
978, San Francisco, CA, USA, 2001. Morgan Kaufmann Publishers Inc.

8 Thomas Gärtner, Peter A. Flach, Adam Kowalczyk, and Alex J. Smola. Multi-instance
kernels. In Proc. 19th International Conf. on Machine Learning, pages 179–186, Massachu-
setts, 2002. Morgan Kaufmann.

9 C. Leslie, E. Eskin, and W. S. Noble. The spectrum kernel: A string kernel for SVM protein
classification. In Proceedings of the Pacific Symposium on Biocomputing, volume 7, pages
566–575, 2002.

10 Christina S. Leslie, Eleazar Eskin, Adiel Cohen, Jason Weston, and William Stafford Noble.
Mismatch string kernels for discriminative protein classification. Bioinformatics, 20(4):467–
476, 2004. doi:10.1093/bioinformatics/btg431.

WABI 2017

http://dx.doi.org/10.1145/1015330.1015424
http://dx.doi.org/10.1145/130385.130401
http://dx.doi.org/10.1145/130385.130401
http://dx.doi.org/10.1101/gad.1026202
http://dx.doi.org/10.1145/133160.133214
http://dx.doi.org/10.1093/bioinformatics/btg431

16:14 Handling Variable-Length Sequences with Dispersed Features

11 Thomas Lingner and Peter Meinicke. Remote homology detection based on oli-
gomer distances. Bioinformatics, 22(18):2224–2231, September 2006. doi:10.1093/
bioinformatics/btl376.

12 Shai Lubliner, Ifat Regev, Maya Lotan-Pompan, Sarit Edelheit, Adina Weinberger, and
Eran Segal. Core promoter sequence in yeast is a major determinant of expression level.
Genome research, 25(7):1008–1017, 2015.

13 Peter Meinicke, Maike Tech, Burkhard Morgenstern, and Rainer Merkl. Oligo kernels for
datamining on biological sequences: a case study on prokaryotic translation initiation sites.
BMC Bioinformatics, 5(1):169, 2004. doi:10.1186/1471-2105-5-169.

14 Sarvesh Nikumbh and Nico Pfeifer. Genetic sequence-based prediction of long-range chro-
matin interactions suggests a potential role of short tandem repeat sequences in genome
organization. BMC Bioinformatics, 18(1):218, 2017. doi:10.1186/s12859-017-1624-x.

15 G. Rätsch, S. Sonnenburg, and B. Schölkopf. RASE: recognition of alternatively
spliced exons in C.elegans. Bioinformatics, 21(suppl 1):i369–i377, 2005. doi:10.1093/
bioinformatics/bti1053.

16 Gunnar Rätsch and Sören Sonnenburg. Accurate splice site prediction for caenorhabditis
elegans. In Kernel Methods in Computational Biology, MIT Press series on Computational
Molecular Biology, pages 277–298. MIT Press, Cambridge, MA., 2004.

17 Hiroto Saigo, Jean-Philippe Vert, Nobuhisa Ueda, and Tatsuya Akutsu. Protein homology
detection using string alignment kernels. Bioinformatics, 20(11):1682–1689, July 2004.
doi:10.1093/bioinformatics/bth141.

18 Amartya Sanyal, Bryan R. Lajoie, Gaurav Jain, and Job Dekker. The long-range in-
teraction landscape of gene promoters. Nature, 489(7414):109–113, Sep 2012. doi:
10.1038/nature11279.

19 Sebastian J. Schultheiss, Wolfgang Busch, Jan U. Lohmann, Oliver Kohlbacher, and Gunnar
Rätsch. Kirmes: kernel-based identification of regulatory modules in euchromatic sequences.
Bioinformatics, 25(16):2126–2133, 2009. doi:10.1093/bioinformatics/btp278.

20 John Shawe-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis. Cambridge
University Press, New York, NY, USA, 2004.

http://dx.doi.org/10.1093/bioinformatics/btl376
http://dx.doi.org/10.1093/bioinformatics/btl376
http://dx.doi.org/10.1186/1471-2105-5-169
http://dx.doi.org/10.1186/s12859-017-1624-x
http://dx.doi.org/10.1093/bioinformatics/bti1053
http://dx.doi.org/10.1093/bioinformatics/bti1053
http://dx.doi.org/10.1093/bioinformatics/bth141
http://dx.doi.org/10.1038/nature11279
http://dx.doi.org/10.1038/nature11279
http://dx.doi.org/10.1093/bioinformatics/btp278

Forbidden Time Travel: Characterization of
Time-Consistent Tree Reconciliation Maps∗

Nikolai Nøjgaard1, Manuela Geiß2, Daniel Merkle3,
Peter F. Stadler4, Nicolas Wieseke5, and Marc Hellmuth6

1 Department of Mathematics and Computer Science, University of Greifswald,
Greifswald, Germany; and
Department of Mathematics and Computer Science, University of Southern
Denmark, Denmark

2 Bioinformatics Group, Department of Computer Science, and Interdisciplinary
Center of Bioinformatics, University of Leipzig, Leipzig, Germany

3 Department of Mathematics and Computer Science, University of Southern
Denmark, Denmark

4 Bioinformatics Group, Department of Computer Science, and Interdisciplinary
Center of Bioinformatics, University of Leipzig, Leipzig, Germany; and
Max-Planck-Institute for Mathematics in the Sciences, Leipzig, Germany; and
Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria; and
Santa Fe Institute, Santa Fe, NM, USA

5 Parallel Computing and Complex Systems Group, Department of Computer
Science, Leipzig University, Leipzig, Germany

6 Department of Mathematics and Computer Science, University of Greifswald,
Greifswald, Germany; and
Saarland University, Center for Bioinformatics, Saarbrücken, Germany

Abstract
Motivation: In the absence of horizontal gene transfer it is possible to reconstruct the history
of gene families from empirically determined orthology relations, which are equivalent to event-
labeled gene trees. Knowledge of the event labels considerably simplifies the problem of reconciling
a gene tree T with a species trees S, relative to the reconciliation problem without prior knowledge
of the event types. It is well-known that optimal reconciliations in the unlabeled case may violate
time-consistency and thus are not biologically feasible. Here we investigate the mathematical
structure of the event labeled reconciliation problem with horizontal transfer.
Results: We investigate the issue of time-consistency for the event-labeled version of the recon-
ciliation problem, provide a convenient axiomatic framework, and derive a complete characteriza-
tion of time-consistent reconciliations. This characterization depends on certain weak conditions
on the event-labeled gene trees that reflect conditions under which evolutionary events are ob-
servable at least in principle. We give an O(|V (T)| log(|V (S)|))-time algorithm to decide whether
a time-consistent reconciliation map exists. It does not require the construction of explicit timing
maps, but relies entirely on the comparably easy task of checking whether a small auxiliary graph
is acyclic.
Significance: The combinatorial characterization of time consistency and thus biologically feas-
ible reconciliation is an important step towards the inference of gene family histories with hori-
zontal transfer from orthology data, i.e., without presupposed gene and species trees. The fast
algorithm to decide time consistency is useful in a broader context because it constitutes an
attractive component for all tools that address tree reconciliation problems.

∗ Supported in part by the Danish Council for Independent Research, Natural Sciences, grants DFF-1323-
00247 and DFF-7014-00041.

© Nikolai Nøjgaard, Manuela Geiß, Daniel Merkle, Peter F. Stadler, Nicolas Wieseke,
and Marc Hellmuth;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert;
Article No. 17; pp. 17:1–17:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

17:2 Characterization of Time-Consistent Tree Reconciliation Maps

1998 ACM Subject Classification G.2.2 Graph Theory, G.2.3 Applications, F.2.2 Nonnumerical
Algorithms and Problems

Keywords and phrases Tree Reconciliation, Horizontal Gene Transfer, Reconciliation Map, Time-
Consistency, History of gene families

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.17

1 Introduction

Modern molecular biology describes the evolution of species in terms of the evolution of
the genes that collectively form an organism’s genome. In this picture, genes are viewed
as atomic units whose evolutionary history by definition forms a tree. The phylogeny of
species also forms a tree. This species tree is either interpreted as a consensus of the gene
trees or it is inferred from other data. An interesting formal manner to define a species tree
independent of genes and genetic data is discussed e.g. in [7]. In this contribution, we assume
that gene and species trees are given independently of each other. The relationship between
gene and species evolution is therefore given by a reconciliation map that describes how the
gene tree is embedded in the species tree: after all, genes reside in organisms, and thus at
each point in time can be assigned to a species.

From a formal point of view, a reconciliation map µ identifies vertices of a gene tree with
vertices and edges in the species tree in such a way that (partial) ancestor relations given by
the genes are preserved by µ. Vertices in the species tree correspond to speciation events.
Since in this situation genes are faithfully transmitted from the parent species into both (all)
daughter species, some of the vertices in the gene tree correspond to speciation events. Other
important events considered here are gene duplications, in which two copies of a gene keep
residing in the same species, and horizontal gene transfer events (HGT). Here, the original
remains in the parental species, while the offspring copy “jumps” into a different branch of
the species tree. It is customary to define pairwise relations between genes depending on the
event type of their last common ancestor [8, 11, 13].

Most of the literature on this topic assumes that both the gene tree and the species
tree are known. The aim is then to find a mapping of the gene tree T into the species tree
S and, at least implicitly, an event-labeling on the vertices of the gene tree T . Here we
take a different point of view and assume that T and the types of evolutionary events on
T are known. This setting has ample practical relevance because event-labeled gene trees
can be derived from the pairwise orthology relation [15, 13]. These relations in turn can be
estimated directly from sequence data using a variety of algorithmic approaches that are
based on the pairwise best match criterion and hence do not require any a priori knowledge
of the topology of either the gene tree or the species tree, see e.g. [19, 2, 17, 1].

Genes that share a common origin (homologs) can be classified into orthologs, paralogs,
and xenologs depending whether they originated by a speciation, duplication or horizontal
gene transfer (HGT) event [8, 13]. Recent advances in mathematical phylogenetics [10, 11, 15]
have shown that the knowledge of these event-relations (orthologs, paralogs and xenologs)
suffices to construct event-labeled gene trees and, in some case, also a species tree.

Conceptually, both the gene tree and species tree are associated with a timing of each event.
Reconciliation maps must preserve this timing information because there are biologically
infeasible event labeled gene trees that cannot be reconciled with any species tree. In the
absence of HGT, biologically feasibility can be characterized in terms of certain triples (rooted
binary trees on three leaves) that are displayed by the gene trees [16]. In contrast, the timing

http://dx.doi.org/10.4230/LIPIcs.WABI.2017.17

N. Nøjgaard, M. Geiß, D. Merkle, P. F. Stadler, N. Wieseke, and M. Hellmuth 17:3

information must be taken into account explicitly in the presence of HGT. In other words,
there are gene trees with HGT that can be mapped to species trees only in such a way that
some genes travels back in time.

There have been several attempts in the literature to handle this issue, see e.g. [6] for a
review. In [18, 5] a single HGT adds timing constraints to a time map for a reconciliation
to be found. Time-consistency is then subsequently defined based on the existence of a
topological order of the digraph reflecting all the time constraints. In [20] NP-hardness was
shown for finding a parsimonious time-consistent reconciliation based on a definition for
time-consistency that essentially is based on considering pairs of HGTs. However, the latter
definitions are explicitly designed for binary gene trees and do not apply to non-binary gene
trees, which are used here to model incomplete knowledge of the exact gene phylogenies.
Different algorithmic approaches for tackling time-consistency exist [6] such as the inclusion
of time-zones known for specific evolutionary events. It is worth noting that a posteriori
modifications of time-inconsistent solutions will in general violate parsimony [18]. So-far, no
results have become available to determine the existence of time-consistent reconciliation
maps given the (undated) species tree and the event-labeled gene tree.

Here, we introduce an axiomatic framework for time-consistent reconciliation maps and
characterize for given event-labeled gene trees and species trees whether there exists a time-
consistent reconciliation map. We provide an algorithm that constructs a time-consistent
reconciliation map if one exists. The algorithms are implemented in C++ using the boost graph
library and are freely available at https://github.com/Nojgaard/tc-recon. In addition,
the proofs and additional information on this paper are provided at this url.

2 Notation and Preliminaries

We consider rooted trees T = (V,E) (on LT) with root ρT ∈ V and leaf set LT ⊆ V . A
vertex v ∈ V is called a descendant of u ∈ V , v �T u, and u is an ancestor of v, u �T v, if u
lies on the path from ρT to v. As usual, we write v ≺T u and u �T v to mean v �T u and
u 6= v. The partial order �T is known as the ancestor order of T ; the root is the unique
maximal element w.r.t �T . If u �T v or v �T u then u and v are comparable and otherwise,
incomparable. We consider edges of rooted trees to be directed away from the root, that is,
the notation for edges (u, v) of a tree is chosen such that u �T v. If (u, v) is an edge in T ,
then u is called parent of v and v child of u. It will be convenient for the discussion below to
extend the ancestor relation �T on V to the union of the edge and vertex sets of T . More
precisely, for the edge e = (u, v) ∈ E we put x ≺T e if and only if x �T v and e ≺T x if and
only if u �T x. For edges e = (u, v) and f = (a, b) in T we put e �T f if and only if v �T b.
For x ∈ V , we write LT (x) := {y ∈ LT | y �T x} for the set of leaves in the subtree T (x) of
T rooted in x.

For a non-empty subset of leaves A ⊆ L, we define lcaT (A), or the least common ancestor
of A, to be the unique �T -minimal vertex of T that is an ancestor of every vertex in A. In
case A = {u, v}, we put lcaT (u, v) := lcaT ({u, v}). We have in particular u = lcaT (LT (u))
for all u ∈ V . We will also frequently use that for any two non-empty vertex sets A,B of a
tree, it holds that lca(A ∪B) = lca(lca(A), lca(B)).

A phylogenetic tree is a rooted tree such that no interior vertex in v ∈ V \ LT has degree
two, except possibly the root. If LT corresponds to a set of genes G or species S, we call
a phylogenetic tree on LT gene tree or species tree, respectively. In this contribution we
will not restrict the gene or species trees to be binary, although this assumption is made
implicitly or explicitly in much of the literature on the topic. The more general setting allows

WABI 2017

https://github.com/Nojgaard/tc-recon

17:4 Characterization of Time-Consistent Tree Reconciliation Maps

us to model incomplete knowledge of the exact gene or species phylogenies. Of course, all
mathematical results proved here also hold for the special case of binary phylogenetic trees.

In our setting a gene tree T = (V,E) on G is equipped with an event-labeling map
t : V ∪ E → I ∪ {0, 1} with I = {•,�,4,�} that assigns to each interior vertex v of T a
value t(v) ∈ I indicating whether v is a speciation event (•), duplication event (�) or HGT
event (4). It is convenient to use the special label � for the leaves x of T . Moreover, to
each edge e a value t(e) ∈ {0, 1} is added that indicates whether e is a transfer edge (1) or
not (0). Note, only edges (x, y) for which t(x) = 4 might be labeled as transfer edge. We
write E = {e ∈ E | t(e) = 1} for the set of transfer edges in T . We assume here that all edges
labeled “0” transmit the genetic material vertically, that is, from an ancestral species to its
descendants.

We remark that the restriction t|V of t to the vertex set V coincides with the “symbolic
dating maps” introduced in [4]; these have a close relationship with cographs [10, 12, 14].
Furthermore, there is a map σ : G → S that assigns to each gene the species in which it
resides. The set σ(M), M ⊆ G, is the set of species from which the genes M are taken. We
write (T ; t, σ) for the gene tree T = (V,E) with event-labeling t and corresponding map σ.

Removal of the transfer edges from (T ; t, σ) yields a forest TE := (V,E \ E) that inherits
the ancestor order on its connected components, i.e., �TE

iff x �T y and x, y are in same
subtree of TE [20]. Clearly �TE

uniquely defines a root for each subtree and the set of
descendant leaf nodes LTE

(x).
In order to account for duplication events that occurred before the first speciation event,

we need to add an extra vertex and an extra edge “above” the last common ancestor of all
species in the species tree S = (V,E). Hence, we add an additional vertex to V (that is now
the new root ρS of S) and the additional edge (ρS , lcaS(S)) to E. Strictly speaking S is not
a phylogenetic tree in the usual sense, however, it will be convenient to work with these
augmented trees. For simplicity, we omit drawing the augmenting edge (ρS , lcaS(S)) in our
examples.

3 Observable Scenarios

The true history of a gene family, as it is considered here, is an arbitrary sequence of
speciation, duplication, HGT, and gene loss events. The applications we envision for the
theory developed, here, however assume that the gene tree and its event labels are inferred
from (sequence) data, i.e., (T ; t, σ) is restricted to those labeled trees that can be constructed
at least in principle from observable data. The issue here are gene losses that may completely
eradicate the information on parts of the history. Specifically, we require that (T ; t, σ) satisfies
the following three conditions:

(O1) Every internal vertex v has degree at least 3, except possibly the root which has degree
at least 2.

(O2) Every HGT node has at least one transfer edge, t(e) = 1, and at least one non-transfer
edge, t(e) = 0;

(O3) (a) If x is a speciation vertex, then there are at least two distinct children v, w of x
such that the species V and W that contain v and w, resp., are incomparable in S.
(b) If (v, w) is a transfer edge in T , then the species V and W that contain v and w, resp.,
are incomparable in S.

Condition (O1) ensures that every event leaves a historical trace in the sense that there
are at least two children that have survived in at least two of its subtrees. If this were not
the case, no evidence would be left for all but one descendant tree, i.e., we would have no

N. Nøjgaard, M. Geiß, D. Merkle, P. F. Stadler, N. Wieseke, and M. Hellmuth 17:5

evidence that event v ever happened. We note that this condition was used e.g. in [16] for
scenarios without HGT. Condition (O2) ensures that for an HGT event a historical trace
remains of both the transferred and the non-transferred copy. If there is no transfer edge,
we have no evidence to classify v as a HGT node. Conversely, if all edges were transfers,
no evidence of the lineage of origin would be available and any reasonable inference of the
gene tree from data would assume that the gene family was vertically transmitted in at least
one of the lineages in which it is observed. In particular, Condition (O2) implies that for
each internal vertex there is a path consisting entirely of non-transfer edges to some leaf.
This excludes in particular scenarios in which a gene is transferred to a different “host” and
later reverts back to descendants of the original lineage without any surviving offspring in
the intermittent host lineage. Furthermore, a speciation vertex x cannot be observed from
data if it does not “separate” lineages, that is, there are two leaf descendants of distinct
children of x that are in distinct species. However, here we only assume to have the weaker
Condition (O3.a) which ensures that any “observable” speciation vertex x separates at least
locally two lineages. In other words, if all children of x would be contained in species that are
comparable in S or, equivalently, in the same lineage of S, then there is no clear historical
trace that justifies x to be a speciation vertex. In particular, most-likely there are two leaf
descendants of distinct children of x that are in the same species even if only TE is considered.
Hence, x would rather be classified as a duplication than as a speciation upon inference of
the event labels from actual data. Analogously, if (v, w) ∈ E then v signifies the transfer
event itself but w refers to the next (visible) event in the gene tree T . Given that (v, w) is
a HGT-edge in the observable part, in a “true history” v is contained in a species V that
transmits its genetic material (maybe along a path of transfers) to a contemporary species Z
that is an ancestor of the species W containing w. Clearly, the latter allows to have V �S W

which happens if the path of transfers points back to the descendant lineage of V in S. In
this case the transfer edge (v, w) must be placed in the species tree such that µ(v) and µ(w)
are comparable in S. However, then there is no evidence that this transfer ever happened,
and thus v would be rather classified as speciation or duplication vertex.

It can be shown that (O1), (O2) and (O3) imply Lemma 1 as well as two important
properties (Σ1) and (Σ2) of event labeled species trees that play a crucial role for the results
reported here.

I Lemma 1. Let T1, . . . , Tk be the connected components of TE with roots ρ1, . . . , ρk, respect-
ively. If (O2) holds, then, {LTE

(ρ1), . . . , LTE
(ρk)} forms a partition of G.

(Σ1) If t(x) = • then there are distinct children v, w of x in T such that σ(LTE
(v)) ∩

σ(LTE
(w)) = ∅.

Intuitively, (Σ1) is true because within a component TE no genetic material is exchanged
between non-comparable nodes. Thus, a gene separated in a speciation event necessarily
ends up in distinct species in the absence of horizontal transfer. It is important to note that
we do not require the converse: σ(LTE

(y)) ∩ σ(LTE
(y′)) = ∅ does not imply t(lcaT (LTE

(y) ∪
LTE

(y′)) = •, that is, the last common ancestor of two sets of genes from different species is
not necessarily a speciation vertex.

Now consider a transfer edge (v, w) ∈ E , i.e., t(v) = 4. Then TE(v) and TE(w) are
subtrees of distinct connected components of TE . Since HGT amounts to the transfer of
genetic material across distinct species, the genes v and w must be contained in distinct
species X and Y , respectively. Since no genetic material is transferred between contemporary
species X ′ and Y ′ in TE , where X

′ and Y ′ is a descendant of X and Y , respectively we derive

(Σ2) If (v, w) ∈ E then σ(LTE
(v)) ∩ σ(LTE

(w)) = ∅.

WABI 2017

17:6 Characterization of Time-Consistent Tree Reconciliation Maps

aa c' ecb

x

x

x

x

A B EA C D

b c'eca b c'eca

a

b

c

c'

e a c' ecb

A B EA C
Figure 1 Left: A “true” evolutionary scenario for a gene tree with leaf set G evolving along the

tube-like species trees is shown. The symbol “x” denotes losses. All speciations along the path from
the root ρT to the leaf a are followed by losses and we omit drawing them.
Middle: The observable gene tree is shown in the upper-left. The orthology graph G = (G, E) (edges
are placed between genes x, y for which t(lca(x, y)) = •) is drawn in the lower part. This graph is
a cograph and the corresponding non-binary gene tree T on G that can be constructed from such
data is given in the upper-right part (cf. [10, 11, 13] for further details).
Right: Shown is species trees S on S = σ(G) with reconciled gene tree T . The reconciliation map µ
for T and S is given implicitly by drawing the gene tree T within S. Note, this reconciliation is not
consistent with DTL-scenarios [20, 3]. A DTL-scenario would require that the duplication vertex
and the leaf a are incomparable in S. for further details.

From here on we simplify the notation a bit and write σTE
(u) := σ(LTE

(u)). We are
aware of the fact that condition (O3) cannot be checked directly for a given event-labeled
gene tree. In contrast, (Σ1) and (Σ2) are easily determined. Hence, in the remainder of this
paper we consider the more general case, that is, gene trees that satisfy (O1), (O2), (Σ1)
and (Σ2).

4 Time-Consistent Reconciliation Maps

The problem of reconciliation between gene trees and species tree is formalized in terms of
so-called DTL-scenarios in the literature [20, 3]. This framework, however, usually assumes
that the event labels t on T are unknown, while a species tree S is given. The “usual” DTL
axioms, furthermore, explicitly refer to binary, fully resolved gene and species trees. We
therefore use a different axiom set here that is a natural generalization of the framework
introduced in [16] for the HGT-free case:

I Definition 2. Let T = (V,E) and S = (W,F) be phylogenetic trees on G and S, resp.,
σ : G→ S the assignment of genes to species and t : V ∪ E → {•,�,4,�} ∪ {0, 1} an event
labeling on T . A map µ : V →W ∪ F is a reconciliation map if for all v ∈ V it holds that:
(M1) Leaf Constraint. If t(v) = �, then µ(v) = σ(v).
(M2) Event Constraint.

(i) If t(v) = •, then µ(v) = lcaS(σTE
(v)).

(ii) If t(v) ∈ {�,4}, then µ(v) ∈ F .
(iii) If t(v) = 4 and (v, w) ∈ E , then µ(v) and µ(w) are incomparable in S.

(M3) Ancestor Constraint.
Suppose v, w ∈ V with v ≺TE

w.
(i) If t(v), t(w) ∈ {�,4}, then µ(v) �S µ(w),
(ii) otherwise, i.e., at least one of t(v) and t(w) is a speciation •, µ(v) ≺S µ(w).

We say that S is a species tree for (T ; t, σ) if a reconciliation map µ : V →W ∪ F exists.

N. Nøjgaard, M. Geiß, D. Merkle, P. F. Stadler, N. Wieseke, and M. Hellmuth 17:7

0

now

t
i
m
e

A B C D
a c' db' cba' d'

a b c d a' b' c' d'

A B C D
a c' db' cb

a c' db'cb

Figure 2 Shown are two (tube-like) species trees with reconciled gene trees. The reconciliation
map µ for T and S is given implicitly by drawing the gene tree (upper right to the respective
species tree) within the species tree. In the left example, the map µ is unique. However, µ is not
time-consistent and thus, there is no time consistent reconciliation for T and S. In the example on
the right hand side, µ is time-consistent.

It can be shown that the DTL axioms and the notation used here as in Definition 2 are
equivalent in the case of binary trees. In Figure 1 an example of a biologically plausible
reconciliation of non-binary trees that is valid w.r.t. Definition 2 is shown, however, it does
not satisfy the conditions of a DTL-scenario.

Condition (M1) ensures that each leaf of T , i.e., an extant gene in G, is mapped to the
species in which it resides. Conditions (M2.i) and (M2.ii) ensure that each inner vertex of
T is either mapped to a vertex or an edge in S such that a vertex of T is mapped to an
interior vertex of S if and only if it is a speciation vertex. Condition (M2.i) might seem overly
restrictive, an issue to which we will return below. Condition (M2.iii) satisfies condition
(O3) and maps the vertices of a transfer edge in a way that they are incomparable in the
species tree, since a HGT occurs between distinct (co-existing) species. It becomes void
in the absence of HGT; thus Definition 2 reduces to the definition of reconciliation maps
given in [16] for the HGT-free case. Importantly, condition (M3) refers only to the connected
components of TE since comparability w.r.t. ≺TE

implies that the path between x and y in
T does not contain transfer edges. It ensures that the ancestor order �T of T is preserved
along all paths that do not contain transfer edges.

We will make use of the following bound that effectively restricts how close to the leafs
the image of a vertex in the gene tree can be located.

I Lemma 3. If µ : (T ; t, σ) → S satisfies (M1) and (M3), then µ(u) �S lcaS(σTE
(u)) for

any u ∈ V (T).

Proof. If u is a leaf, then by Condition (M1) µ(u) = σ(u) and we are done. Thus, let
u be an interior vertex. By Condition (M3), z �S µ(u) for all z ∈ σTE

(u). Hence, if
µ(u) ≺S lcaS(σTE

(u)) or if µ(u) and lcaS(σTE
(u))) are incomparable in S, then there is a

z ∈ σTE
(u) such that z and µ(u) are incomparable; contradicting (M3). J

Condition (M2.i) implies in particular the weaker property “(M2.i’) if t(v) = • then µ(v) ∈W ”.
In the light of Lemma 3, µ(v) = lcaS(σTE

(v)) is the lowest possible choice for the image of a
speciation vertex. Clearly, this restricts the possibly exponentially many reconciliation maps
for which µ(v) �S lcaS(σTE

(v)) for speciation vertices v is allowed to only those that satisfy
(M2.i). However, the latter is justified by the observation that if v is a speciation vertex with
children u,w, then there is only one unique piece of information given by the gene tree to
place µ(v), that is, the unique vertex x in S with children y, z such that σTE

(u) ⊆ LS(y)
and σTE

(w) ⊆ LS(z). The latter arguments easily generalizes to the case that v has more
than two children in T . Moreover, any observable speciation node v′ �T v closer to the root

WABI 2017

17:8 Characterization of Time-Consistent Tree Reconciliation Maps

a b c d a' b' c' d'

A B C D
a c' db' cba' d'

A B C D
a c' db' cba' d'

0

now

t
i
m
e

Figure 3 Shown are a gene tree (T ; t, σ) (right) and two identical (tube-like) species trees S (left
and middle). There are two possible reconciliation maps for T and S that are given implicitly by
drawing T within the species tree S. These two reconciliation maps differ only in the choice of placing
the HGT-event either on the edge (lcaS(C,D), C) or on the edge (lcaS({A,B,C,D}), lcaS(C,D)).
In the first case, it is easy to see that µ would not be time-consistent, i.e., there are no time maps τT

and τS that satisfy (C1) and (C2). The reconciliation map µ shown in the middle is time-consistent.

than v must be mapped to a node ancestral to µ(v) due to (M3.ii). Therefore, we require
µ(v) = x = lcaS(σTE

(v)) here.
If S is a species tree for the gene tree (T, t, σ) then there is no freedom in the construction

of a reconciliation map µ on the set {x ∈ V (T) | t(x) ∈ {•,�}}. The duplication and
HGT vertices of T , however, can be placed differently. As a consequence there is a possibly
exponentially large set of reconciliation maps from (T, t, σ) to S.

From a biological point of view, however, the notion of reconciliation used so far is too
weak. In the absence of HGT, subtrees evolve independently and hence, the linear order
of points along each path from root to leaf is consistent with a global time axis. This
is no longer true in the presence of HGT events, because HGT events imply additional
time-consistency conditions. These stem from the fact that the appearance of the HGT copy
in a distant subtree of S is concurrent with the HGT event. To investigate this issue in detail,
we introduce time maps and the notion of time-consistency, see Figures 2 – 4 for illustrative
examples.

I Definition 4 (Time Map). The map τT : V (T)→ R is a time map for the rooted tree T if
x ≺T y implies τT (x) > τT (y) for all x, y ∈ V (T).

I Definition 5. A reconciliation map µ from (T ; t, σ) to S is time-consistent if there are
time maps τT for T and τS for S for all u ∈ V (T) satisfying the following conditions:
(C1) If t(u) ∈ {•,�}, then τT (u) = τS(µ(u)).
(C2) If t(u) ∈ {�,4} and, thus µ(u) = (x, y) ∈ E(S), then τS(y) > τT (u) > τS(x).

Condition (C1) is used to identify the time-points of speciation vertices and leaves u in
the gene tree with the time-points of their respective images µ(u) in the species trees. In
particular, all genes u that reside in the same species must be assigned the same time point
τT (u) = τS(σ(u)). Analogously, all speciation vertices in T that are mapped to the same
speciation in S are assigned matching time stamps, i.e., if t(u) = t(v) = • and µ(u) = µ(v)
then τT (u) = τT (v) = τS(µ(u)).

To understand the intuition behind (C2) consider a duplication or HGT vertex u. By
construction of µ it is mapped to an edge of S, i.e., µ(u) = (x, y) in S. The time point of
u must thus lie between time points of x and y. Now suppose (u, v) ∈ E is a transfer edge.
By construction, u signifies the transfer event itself. The node v, however, refers to the
next (visible) event in the gene tree. Thus τT (u) < τT (v). In particular, τT (v) must not be

N. Nøjgaard, M. Geiß, D. Merkle, P. F. Stadler, N. Wieseke, and M. Hellmuth 17:9

0

now

t
i
m
e

a b d d'cb'c'

A B C D
a c' db' cb d'

A B C D
a c' db' cb d'

Figure 4 Shown are a gene tree (T ; t, σ) (right) and two identical (tube-like) species trees S
(left and middle). There are two possible reconciliation maps for T and S that are given implicitly
by drawing T within the species tree S. The left reconciliation maps each gene tree vertex as
high as possible into the species tree. However, in this case only the middle reconciliation map is
time-consistent.

misinterpreted as the time of introducing the HGT-duplicate into the new lineage. While
this time of course exists (and in our model coincides with the timing of the transfer event)
it is not marked by a visible event in the new lineage, and hence there is no corresponding
node in the gene tree T .

W.l.o.g. we fix the time axis so that τT (ρT) = 0 and τS(ρS) = −1. Thus, τS(ρS) <
τT (ρT) < τT (u) for all u ∈ V (T) \ {ρT }.

Clearly, a necessary condition to have biologically feasible gene trees is the existence of a
reconciliation map µ. However, not all reconciliation maps are time-consistent, see Fig. 2.

I Definition 6. An event-labeled gene tree (T ; t, σ) is biologically feasible if there exists a
time-consistent reconciliation map from (T ; t, σ) to some species tree S.

As a main result of this contribution, we provide simple conditions that characterize (the
existence of) time-consistent reconciliation maps and thus, provides a first step towards the
characterization of biologically feasible gene trees.

I Theorem 7. Let µ be a reconciliation map from (T ; t, σ) to S. There is a time-consistent
reconciliation map from (T ; t, σ) to S if and only if there are two time-maps τT and τS for T
and S, respectively, such that the following conditions are satisfied for all x ∈ V (S):
(D1) If µ(u) = x, for some u ∈ V (T) then τT (u) = τS(x).
(D2) If x �S lcaS(σTE

(u)) for some u ∈ V (T) with t(u) ∈ {�,4}, then τS(x) > τT (u).
(D3) If lcaS(σTE

(u) ∪ σTE
(v)) �S x for some (u, v) ∈ E, then τT (u) > τS(x).

From the algorithmic point of view it is desirable to design methods that allow to check
whether a reconciliation map is time-consistent. Moreover, given a gene tree T and species
tree S we wish to decide whether there exists a time-consistent reconciliation map µ, and if
so, we should be able to construct µ.

To this end, observe that any constraints given by Definition 4, Theorem 7 (D2)–(D3),
and Definition 5 (C2) can be expressed as a total order on V (S)∪V (T), while the constraints
(C1) and (D1) together suggest that we can treat the preimage of any vertex in the species
tree as a “single vertex”. In fact we can create an auxiliary graph in order to answer questions
that are concerned with time-consistent reconciliation maps.

I Definition 8. Let µ be a reconciliation map from (T ; t, σ) to S. The auxiliary graph A is
defined as a directed graph with a vertex set V (A) = V (S) ∪ V (T) and an edge-set E(A)
that is constructed as follows:

WABI 2017

17:10 Characterization of Time-Consistent Tree Reconciliation Maps

Algorithm 1 Check existence and construct time-consistent reconciliation map
Precondition: S = (W,F) is a species tree for T = (V,E).
1: ` ← ComputeLcaSigma((T ; t, σ), S)
2: µ(u)← ∅ for all u ∈ V . “∅” means uninitialized
3: for all u ∈ V do
4: if t(u) ∈ {•,�} then µ(u)← `(u)
5: else µ(u)← (p(`(u)), `(u)) . p(`(u)) denotes the parent of `(u)
6: Compute the auxiliary graph A2
7: if A2 contains a cycle then return “No time-consistent reconciliation map exists.”
8: Let τ : V (A2)→ R such that if (x, y) ∈ E(A2) then τ(x) < τ(y)
9: . W.l.o.g. we can assume that τ(x) 6= τ(y) for all x, y ∈ V (A2)

10: τS ← A time map such that τS(x) = τ(x) for all x ∈W
11: τT ← A time map such that τT (u) = τ(µ(u)) if t(u) ∈ {•,�}, otherwise τT (u) = τ(u)

for all u ∈ V .
12: for u ∈ V where t(u) ∈ {�,4} do
13: while it does not hold that τS(x) < τT (u) < τS(y) for (x, y) = µ(u) do
14: µ(u) ← (p(x), x)
15: return µ

(A1) For each (u, v) ∈ E(T) we have (u′, v′) ∈ E(A), where

u′ =
{
µ(u) if t(u) ∈ {�, •}
u otherwise

, v′ =
{
µ(v) if t(v) ∈ {�, •}
v otherwise

,

(A2) For each (x, y) ∈ E(S) we have (x, y) ∈ E(A).
(A3) For each u ∈ V (T) with t(u) ∈ {�,4} we have (u, lcaS(σTE

(u))) ∈ E(A).
(A4) For each (u, v) ∈ E we have (lcaS(σTE

(u) ∪ σTE
(v)), u) ∈ E(A)

(A5) For each u ∈ V (T) with t(u) ∈ {4,�} and µ(u) = (x, y) ∈ E(S) we have (x, u) ∈ E(A)
and (u, y) ∈ E(A).

We define A1 and A2 as the subgraphs of A that contain only the edges defined by (A1),
(A2), (A5) and (A1), (A2), (A3), (A4), respectively.

We note that the edge sets defined by conditions (A1) through (A5) are not necessarily
disjoint. The mapping of vertices in T to edges in S is considered only in condition (A5).
The following two theorems are the key results of this contribution.

I Theorem 9. Let µ be a reconciliation map from (T ; t, σ) to S. The map µ is time-consistent
if and only if the auxiliary graph A1 is a directed acyclic graph (DAG).

I Theorem 10. Assume there is a reconciliation map µ from (T ; t, σ) to S. There is a
time-consistent reconciliation map, possibly different from µ, from (T ; t, σ) to S if and only
if the auxiliary graph A2 (defined on µ) is a DAG.

Naturally, Theorems 9 or 10 can be used to devise algorithms for deciding time-consistency.
To this end, the efficient computation of lcaS(σTE

(u)) for all u ∈ V (T) is necessary. This
can be achieved with Algorithm 2 in O(|V (T)| log(|V (S)|)). More precisely, we have the
following statement.

I Lemma 11. For a given gene tree (T = (V,E); t, σ) and a species tree S = (W,F),
Algorithm 2 correctly computes `(u) = lcaS(σTE

(u)) for all u ∈ V (T) in O(|V | log(|W |))
time.

N. Nøjgaard, M. Geiß, D. Merkle, P. F. Stadler, N. Wieseke, and M. Hellmuth 17:11

Let S be a species tree for (T ; t, σ), that is, there is a valid reconciliation between the two
trees. Algorithm 1 describes a method to construct a time-consistent reconciliation map for
(T ; t, σ) and S, if one exists, else “No time-consistent reconciliation map exists” is returned.
First, an arbitrary reconciliation map µ that satisfies the condition of Def. 2 is computed.
Second, Theorem 10 is utilized and it is checked whether the auxiliary graph A2 is not a
DAG in which case no time-consistent map µ exists for (T ; t, σ) and S. Finally, if A2 is a
DAG, then we continue to adjust µ to become time-consistent.

I Theorem 12. Let S = (W,F) be species tree for the gene tree (T = (V,E); t, σ). Algorithm 1
correctly determines whether there is a time-consistent reconciliation map µ and in the positive
case, returns such a µ in O(|V | log(|W |)) time.

5 Outlook and Summary

We have characterized here whether a given event-labeled gene tree (T ; t, σ) and species tree
S can be reconciled in a time-consistent manner in terms of two auxiliary graphs A1 and A2
that must be DAGs. These are defined in terms of given reconciliation maps. This condition
yields an O(|V | log(|W |))-time algorithm to check whether a given reconciliation map µ is
time-consistent, and an algorithm with the same time complexity for the construction of a
time-consistent reconciliation maps, provided one exists.

Our results depend on three conditions on the event-labeled gene trees that are motivated
by the fact that event-labels can be assigned to internal vertices of gene trees only if there is
observable information on the event. The question which event-labeled gene trees are actually
observable given an arbitrary, true evolutionary scenario deserves further investigation in
future work. Here we have used conditions that arguable are satisfied when gene trees
are inferred using sequence comparison and synteny information. A more formal theory of
observability is still missing, however.

Our results provide an efficient way of deciding whether a given pair of gene and species
tree can be time-consistently reconciled. There are, however, in general exponentially many
putative species trees. This begs the question whether there is at least one species tree S
for a gene tree and if so, how to construct S. “Informative triples” extracted from the gene
tree answer this question in the absence of HGT [16]. It is plausible that this idea can be
generalized to our current setting to provide at least a partial characterization [9].

Acknowledgment. We thank the organizers of the 32nd TBI Winterseminar 2017 in Bled
(Slovenia), where the authors participated, met and basically drafted the main ideas of this
paper, while drinking a cold and tasty red Union, or was it a green Laško?

References
1 A.M. Altenhoff, B. Boeckmann, S. Capella-Gutierrez, D.A. Dalquen, T. DeLuca,

K. Forslund, J. Huerta-Cepas, B. Linard, C. Pereira, L. P. Pryszcz, F. Schreiber, A. S.
da Silva, D. Szklarczyk, C.M. Train, P. Bork, O. Lecompte, C. von Mering, I. Xenarios,
K. Sjölander, L. J. Jensen, M. J. Martin, M. Muffato, T. Gabaldón, S. E. Lewis, P.D.
Thomas, E. Sonnhammer, and C. Dessimoz. Standardized benchmarking in the quest
for orthologs. Nature Methods, 13:425–430, 2016.

2 A.M. Altenhoff and C. Dessimoz. Phylogenetic and functional assessment of orthologs
inference projects and methods. PLoS Comput Biol., 5:e1000262, 2009.

3 M.S. Bansal, E. J. Alm, and M. Kellis. Efficient algorithms for the reconciliation problem
with gene duplication, horizontal transfer and loss. Bioinformatics, 28(12):i283–i291, 2012.

WABI 2017

17:12 Characterization of Time-Consistent Tree Reconciliation Maps

4 S. Böcker and A.W.M. Dress. Recovering symbolically dated, rooted trees from symbolic
ultrametrics. Adv. Math., 138:105–125, 1998.

5 M.A. Charleston. Jungles: a new solution to the host/parasite phylogeny reconciliation
problem. Math Biosci., 149(2):191–223, 1998.

6 J.-P. Doyon, V. Ranwez, V. Daubin, and V. Berry. Models, algorithms and programs for
phylogeny reconciliation. Briefings in Bioinformatics, 12(5):392, 2011.

7 A. Dress, V. Moulton, M. Steel, and T. Wu. Species, clusters and the ‘tree of life’: A
graph-theoretic perspective. J. Theor. Biol., 265:535–542, 2010.

8 W.M. Fitch. Homology: a personal view on some of the problems. Trends Genet., 16:227–
231, 2000.

9 M. Hellmuth. Biologically feasible gene trees, reconciliation maps and informative triples,
2017. (submitted) arXiv:1701.07689.

10 M. Hellmuth, M. Hernandez-Rosales, K.T. Huber, V. Moulton, P. F. Stadler, and
N. Wieseke. Orthology relations, symbolic ultrametrics, and cographs. J. Math. Biology,
66(1-2):399–420, 2013.

11 M. Hellmuth, P. F. Stadler, and N. Wieseke. The mathematics of xenology: Di-cographs,
symbolic ultrametrics, 2-structures and tree- representable systems of binary relations.
Journal of Mathematical Biology, 2016. DOI: 10.1007/s00285-016-1084-3.

12 M. Hellmuth and N. Wieseke. On symbolic ultrametrics, cotree representations, and co-
graph edge decompositions and partitions. In Dachuan et al., editor, Proceedings COCOON
2015, pages 609–623, Cham, 2015. Springer International Publishing.

13 M. Hellmuth and N. Wieseke. From sequence data including orthologs, paralogs, and
xenologs to gene and species trees. In Pierre Pontarotti, editor, Evolutionary Biology:
Convergent Evolution, Evolution of Complex Traits, Concepts and Methods, pages 373–392,
Cham, 2016. Springer.

14 M. Hellmuth and N. Wieseke. On tree representations of relations and graphs: Symbolic
ultrametrics and cograph edge decompositions. J. Comb. Opt., 2017. doi:DOI10.1007/
s10878-017-0111-7.

15 M. Hellmuth, N. Wieseke, M. Lechner, H.-P. Lenhof, M. Middendorf, and P. F.
Stadler. Phylogenomics with paralogs. Proceedings of the National Academy of Sciences,
112(7):2058–2063, 2015. doi:10.1073/pnas.1412770112.

16 M. Hernandez-Rosales, M. Hellmuth, N. Wieseke, K.T. Huber, V. Moulton, and P. F.
Stadler. From event-labeled gene trees to species trees. BMC Bioinformatics, 13(Suppl
19):S6, 2012.

17 M. Lechner, M. Hernandez-Rosales, D. Doerr, N. Wieseke, A. Thévenin, J. Stoye, R.K.
Hartmann, S. J. Prohaska, and P. F. Stadler. Orthology detection combining clustering
and synteny for very large datasets. PLoS ONE, 9(8):e105015, 08 2014.

18 D. Merkle and M. Middendorf. Reconstruction of the cophylogenetic history of related
phylogenetic trees with divergence timing information. Theory in Biosciences, 4:277–299,
2005.

19 A.C. J. Roth, G.H. Gonnet, and C. Dessimoz. Algorithm of OMA for large-scale orthology
inference. BMC Bioinformatics, 9:518, 2008.

20 A. Tofigh, M. Hallett, and J. Lagergren. Simultaneous identification of duplications and
lateral gene transfers. IEEE/ACM Transactions on Computational Biology and Bioinform-
atics, 8(2):517–535, 2011.

http://dx.doi.org/DOI 10.1007/s10878-017-0111-7
http://dx.doi.org/DOI 10.1007/s10878-017-0111-7
http://dx.doi.org/10.1073/pnas.1412770112

Rainbowfish: A Succinct Colored de Bruijn Graph
Representation∗

Fatemeh Almodaresi1, Prashant Pandey2, and Rob Patro3

1 Stony Brook University, Stony Brook, NY, USA
falmodaresit@cs.stonybrook.edu

2 Stony Brook University, Stony Brook, NY, USA
ppandey@cs.stonybrook.edu

3 Stony Brook University, Stony Brook, NY, USA
rob.patro@cs.stonybrook.edu

Abstract
The colored de Bruijn graph – a variant of the de Bruijn graph which associates each edge (i.e.,
k-mer) with some set of colors – is an increasingly important combinatorial structure in com-
putational biology. Iqbal et al. demonstrated the utility of this structure for representing and
assembling a collection (population) of genomes, and showed how it can be used to accurately
detect genetic variants. Muggli et al. introduced VARI, a representation of the colored de Bruijn
graph that adopts the BOSS representation for the de Bruijn graph topology and achieves con-
siderable savings in space over Cortex, albeit with some sacrifice in speed. The memory-efficient
representation of VARI allows the colored de Bruijn graph to be constructed and analyzed for
large datasets, beyond what is possible with Cortex.

In this paper, we introduce Rainbowfish, a succinct representation of the color information of
the colored de Bruijn graph that reduces the space usage even further. Our representation also
uses BOSS to represent the de Bruijn graph, but decomposes the color sets based on an equi-
valence relation and exploits the inherent skewness in the distribution of these color sets. The
Rainbowfish representation is compressed based on the 0th-order entropy of the color sets, which
can lead to a significant reduction in the space required to store the relevant information for each
edge. In practice, Rainbowfish achieves up to a 20× improvement in space over VARI. Rainbow-
fish is written in C++11 and is available at https://github.com/COMBINE-lab/rainbowfish.

1998 ACM Subject Classification E.1 Data Structures, E.2 Data Storage and Representations,
E.4 Coding and Information Theory

Keywords and phrases de Bruijn graph, succinct data structures, rank and select operation,
colored de Bruijn graph

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.18

1 Introduction and Related Work

This paper proposes a new representation of the colored de Bruijn graph. The colored de
Bruijn graph is a variant of the de Bruijn graph where each edge (i.e., k-mer) is associated
with some set of colors. Here, each color is used to encode the source of the corresponding
k-mers (e.g., different source genomes, transcriptomes, sequenced samples, etc.). From this
perspective, it is a flexible and powerful combinatorial structure for representing a collection
of sequences while maintaining the identity of each. This structure gained popularity in the

∗ We gratefully acknowledge support from NSF grant BBSRC-NSF/BIO-1564917.

© Fatemeh Almodaresi, Prashant Pandey, and Rob Patro;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 18; pp. 18:1–18:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://github.com/COMBINE-lab/rainbowfish
http://dx.doi.org/10.4230/LIPIcs.WABI.2017.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

18:2 Rainbowfish: A Succinct Colored de Bruijn Graph Representation

work of Iqbal et al. [12], which demonstrated the utility of the colored de Bruijn graph for
representing and assembling a collection (population) of genomes, and for detecting both
simple and complex genetic variants with high accuracy. Analysis of the colored de Bruijn
graph exhibits particular promise for analyzing complex population-level variation, since
topological structures (e.g., bubbles) can be associated with variation in the underlying
sub-populations. The representation adopted by Iqbal, as implemented in the tool Cortex,
is optimized for speed, and so requires a considerable amount of memory to represent both
the topology of the de Bruijn graph and the colors associated with each edge.

The memory usage of the colored de Bruijn graph representation adopted in Cortex
precludes this approach from being adopted when the underlying genomes and color sets
become too large. In order to overcome such limitations, Muggli et al. [16] introduced
the VARI representation of the colored de Bruijn graph. This approach sacrifices some
of the speed of the Cortex representation for a considerable reduction in the required
space. VARI achieves this space savings in two ways. First, rather than using a hash-table-
based representation of the de Bruijn graph topology, it adopts the highly-efficient BOSS
representation. The BOSS [1] representation (named based on the initials of the authors)
makes use of the FM index [7] to encode the topology of the de Bruijn graph. BOSS uses
4N + o(N) bits to represent a de Bruijn graph with N edges (empirically, this often works
out to be as few as 4-6 bits per edge).

VARI couples the BOSS representation of the de Bruijn graph topology with a compressed
representation of the color information. By its nature, BOSS assigns to every de Bruijn
graph edge a distinct rank in the range [0, N). So, VARI represents the color information
as a N × C bit matrix where C is the number of input colors. Conceptually, each of the
N rows of this matrix is simply a bit vector that encodes which of the C colors label the
corresponding edge. To reduce the space required to store this color information, VARI
concatenates these rows into a single vector over N × C coordinates and stores them in an
Elias-Fano [5, 6] encoded bit vector, allowing for a (sometimes substantial) reduction in the
size while still enabling efficient point queries (i.e., is a particular edge labeled with a given
color?). Muggli et al. [16] demonstrate that the VARI representation can be built on data
sets consisting of large numbers of k-mers, large input color sets, or both. Specifically, the
space efficiency of VARI makes it possible to build and query the colored de Bruijn graph on
datasets that are orders of magnitude larger than what is possible with Cortex. This is an
exciting development that opens up this methodology for increasingly large-scale analysis.

Though VARI achieves a substantial improvement in space over Cortex, there is still
a considerable amount of redundancy present in its representation. Both of these systems
represent the color set corresponding to each k-mer independently of other k-mers. Hence
a considerable amount of redundant information can be present when the color set for
each k-mer is represented independently. In fact, some existing colored de Bruijn Graph
representations, like the Bloom Filter Trie [11] exploit this redundancy to compress shared
color information, and share certain ideas and motivation with the representation proposed
in this paper. However, many of the possible subsets of colors do not occur in practice, and
there is an inherent (often extreme) skewness in the distribution of the color sets that do
appear. It becomes even more important to exploit this skewness for large metagenomic
datasets because the space usage of VARI for these datasets can become impractical.

In this paper, we introduce a succinct representation, called Rainbowfish, of the color sets
associated to each edge in the de Bruijn graph. We also adopt the BOSS representation of
the de Bruijn graph topology, and focus, specifically, on how to concisely represent the color
information. Rainbowfish’s colored de Bruijn graph representation is entropy compressed

F. Almodaresi, P. Pandey, and R. Patro 18:3

Boundary BV

Label BV

index([1 − 3)) = 2

lookup(l = 2)

select(r = 2) = 1

Equivalence class table

0110010101
0011110000
1000011111
0111110101

0
1
10
11

Color matrix
0011110000
0110010101
0111110101
0110010101

1000011111
0110010101

ACTT
ACTG

CTTG
TTTC
GCGT
AGCC

k-mer Color set

next(r = 2) = 3

1 1 0 1 1 1 0 1

0 1 0 1 0 1 1 0

Figure 1 The representation of color information in Rainbowfish. The “Color Matrix” at the top
represents 6 distinct 4-mers, each assigned a color set. 3 of these 4-mers (ACTG, TTTC, AGCC)
have the same color class, labeled 0, and the other 3 (CTTG, ACTT, and GCGT) each have color
classes labeled 1, 10, and 11 respectively. To retrieve the color set for a k-mer, we first perform select
on the boundary bit vector (BBV) using rank r of the corresponding edge (k-mer). This returns
the label’s starting position, i. We then look for the next set bit BBV to find the label’s ending
position, j. Then, we fetch the label at indices i to j in label bit vector (LBV). Finally, we lookup
the label l in the equivalence class table (ECT) and return the color class corresponding to the label.
A detailed explanation of the data structure and its construction is given in Section 3.1.

and exploits the high skewness present in the distribution of color sets. By exploiting a more
efficient decomposition of the set of present colors (i.e., in terms of equivalence classes), we
achieve a considerable reduction over the space required by VARI (up to 20× depending on
the dataset), while still retaining efficient (i.e., constant time) queries.

2 Background and definitions

Rainbowfish is a succinct representation of the color information, and uses rank and select
operations to lookup the color class corresponding to k-mers in the de Bruijn graph. Here,
we briefly recapitulate the definition of a succinct data structure and the rank and select
operations.

A succinct data structure consumes an amount of space that is close to the information-
theoretic optimum. More precisely, if Z denotes the information-theoretic optimal space
usage for a given data structure, then a succinct data structure uses Z + o(Z) space [14].

rank and select [13] are operations that are commonly used for navigating within succinct
data structures. For a bit vector B[0, . . . , n − 1], rank(j) returns the number of 1s in the
prefix B[0, . . . , j] of B. select(r) returns the position of the rth 1, that is, the smallest index
j such that rank(j) = r. For example, for the 12-bit vector B[0, . . . , 11] =100101001010,
rank(5) = 3, because there are three bits set to one in the 6-bit prefix B[0, . . . , 5] of B, and
select(4) = 8, because B[8] is the fourth 1 in the bit vector.

3 Method

In this section we first describe the design of Rainbowfish. We then analyze the space usage
and provide a lower bound for the representation of sets of colors given a ranking of de Bruijn
graph edges. Finally, we discuss the Rainbowfish implementation.

WABI 2017

18:4 Rainbowfish: A Succinct Colored de Bruijn Graph Representation

3.1 Design
Rainbowfish’s compact representation of color information is based on two particular obser-
vations. First, it is often the case that many of the k-mers in a colored de Bruijn graph share
the same set of colors. More formally, we define an equivalence relation ∼ over the set of
k-mers in the de Bruijn graph. Let Col(·) denote the function that maps each k-mer to its
corresponding set of colors. We say that two k-mers are color-equivalent (i.e., k1 ∼ k2) if and
only if Col(k1) = Col(k2). We will refer to the set of colors shared by the k-mers related by
∼ as a color class. If C, the number of input colors, is large, it is often the case that the
number of distinct color classes is far less than the number of possible color classes (which is
bounded above by min(N, 2C)).

Second, it is often the case that the frequency distribution of color classes is far from
uniform. Hence, it will often be useful to record a frequently occurring color class using a
short description (i.e., a small number of bits) while reserving larger descriptions for less
frequent color classes.

The design of Rainbowfish is motivated by the above observations. Instead of storing the
color set for each k-mer separately, Rainbowfish stores each distinct color class only once
and assigns to each distinct class a label (which, practically, is much smaller than the unary
encoding of the color class itself). It then stores, for each k-mer, the label of the color class
to which it belongs.

The approach we use to assign variable-length labels to color classes is similar in spirit to
the construction of a Huffman code, where the message is a string of color class symbols.
However, we do not build a prefix code, and instead opt to store an additional bit vector
to allow the efficient selection of an arbitrary label from the list. We generate the labels
according to the following procedure. We first sort, in descending order, all the color classes
based on their frequency (i.e., the number of k-mers in this color equivalence class). We then
assign labels to each color class starting from the class with the largest cardinality, so that
the color class represented by the most frequent label will have the shortest label length etc.

The color class representation in Rainbowfish has three components. Rainbowfish stores
the mappings between labels and color classes in an equivalence class table (ECT).
As labels are assigned sequentially, this is simply an array of bit vectors encoding the
corresponding color sets. Apart from the equivalence class table, Rainbowfish maintains two
bit vectors, a boundary bit vector (BBV) and a label bit vector(LBV).

All color classes are stored in the equivalence class table (with their corresponding labels
implicitly being their position). However, we now need to store a mapping from k-mers to
the variable-length labels. Rainbowfish stores variable-length labels corresponding to each
k-mer in the label bit vector. The labels are stored in the order in which k-mers are stored
in the de Bruijn graph representation. Specifically, the k-mers are stored in the rank order
induced by BOSS. However, since these labels are variable-length, we can not directly read
the label corresponding to the k-mer of a specific rank, since we do not know where such a
label begins or how long it is.

To address this, Rainbowfish maintains another bit vector – the boundary bit vector
(BBV) – to mark the boundary of each variable-length label in LBV. The BBV is the same
size as the LBV and has a bit set to 1 at each index where a new label starts in the LBV.
Thus, the starting position for the label corresponding to the rth k-mer can be obtained by
issuing a select(r) query on BBV, and the length of this label can be obtained by simply
scanning BBV until we encounter the next set bit.

Figure 1 shows how the color classes are represented in Rainbowfish. To perform a query
for the color class corresponding to a k-mer in the colored de Bruijn graph, we first get the

F. Almodaresi, P. Pandey, and R. Patro 18:5

rank r of the k-mer in the de Bruijn graph. We then perform a select operation using r on
BBV. The result of the select operation i is the start index of the label of the color class in
LBV to which the k-mer belongs. To find the length of the label we determine the index
i′ of the next bit set in BBV using the tzcnt instruction. tzcnt returns the number of
trailing zeros in its argument. If B is a 12-bit vector such that B[0, 11] =110010100000 then
tzcnt(B) = 5. Using i and i′ we retrieve the label from LBV, and using the label we lookup
the corresponding color class in ECT. We also note that, as we never have > 264 distinct
k-mers in practice, and number of distinct labels is at max equal to the number of distinct
k-mers (when each k-mer has a unique label), then we never have > 264 labels. Hence, we
can always represent a label using a single machine word. Consequently, we will always reach
the next set bit in the LBV after scanning at most a single machine word when starting from
current label. This ensures we need only issue a single tzcnt instruction per label decoding
call.

3.2 Space analysis
The color class representation in Rainbowfish is entropy compressed, i.e., the space is bounded
by the entropy (H(Xc)) of the color class distribution. For a dataset in which number of
k-mers belonging to each distinct color class are similar, the entropy of the color class
distribution will be high. On the other hand, if most of the k-mers in a dataset belong to a
small number of distinct color classes, the entropy of the color class distribution will be low.

I Lemma 1. The size of each color class label is bounded by log2 M bits, where M is the
total number of distinct color classes. For a dataset with N distinct k-mers coming from C

input samples (i.e., colors), we have that M ≤ min(N, 2C).

I Theorem 2. Given an ordering of edges (or k-mers) in a de Bruijn graph, the space
needed by Rainbowfish to represent a set of colors attached to each edge is O(MC + NH(Xc))
bits, where M is the number of distinct color classes, C is the number of colors, N is the
number of distinct k-mers, and H(Xc) = −

∑M
i=1 P (xi) log P (xi) is the entropy (i.e., order-0

or Shannon’s entropy) over random variable Xc, which distributed according to the frequency
distribution of the color classes.

Proof. The space needed by Rainbowfish can be analyzed as follows. There are three bit
vectors in Rainbowfish, the equivalence class table, label bit vector, and boundary bit vector.
To store an equivalence class table containing M distinct color classes each having C colors
we need MC bits. To store a label bit vector (as stated in Theorem 1), for N k-mers, where
each label corresponds to one of the M distinct color classes, takes N log2 M bits. However,
as explained in Section 3.1, in Rainbowfish we assign (optimal) variable-length labels based
on the frequency of color classes. Therefore, the space needed to store the label bit vector
is dependent on the 0th-order entropy of the color class variable, H(Xc), and the size of
the label bit vector is upper bounded by N log2 M . The boundary bit vector has the same
number of bits as the label bit vector. J

3.3 Lower bound for color representation
We now provide a lower bound to store a color class representation for a set of edges in a
colored de Bruijn graph. In the color class representation, the equivalence class table takes
MC bits to store M bit vectors each having C bits, which is optimal. The other two bit
vectors, the boundary and label bit vector, map k-mers given an ordering in the de Bruijn

WABI 2017

18:6 Rainbowfish: A Succinct Colored de Bruijn Graph Representation

graph to their corresponding color classes. The theorem below gives the lower bound to store
such a mapping.

I Theorem 3. The lower bound to represent a mapping from an ordered list of k-mers in a
de Bruijn graph to a set of color classes is log2 (MN−M · M !) bits, where M is the number
of distinct color classes, N is the number of edges, and for a dataset with N distinct k-mers
coming from C input samples (i.e., colors), we have that M ≤ min(N, 2C).

Proof. We can analyze the lower bound using a counting argument. We count the number
of ways to map a set of M distinct color classes to a set of N edges. The space required to
store the color class representation should be less than or equal to the space required to store
these mappings.

Edges can be mapped to color classes using a surjective (onto) function. Thus, we wish
to count the total number of surjections from M color classes to N edges. Rather than
counting this number exactly, we instead provide a lower bound. First, we must ensure that
each of the M color classes maps to at least one edge – so, we select a set of M edges and
label each with a distinct color class. There are M ! ways to assign M color classes to a set
of M edges. We will then allow the remaining N − M edges to be colored in any possible
manner. We can assign M colors to N − M edges (the remaining number) in MN−M ways.
Therefore, the total number of different mappings is bounded below by MN−M · M !. To be
able to represent each such mapping, and distinguish it from the others, we need at least
log2 (MN−M · M !) bits. J

The lower bound can be expanded using Sterling’s approximation as

(N − M) log2 M + M log2 M − 0.44M + O(log2 M),

which, ignoring the additive term O(log2 M), is greater or equal to N log2 M −0.44M . Given
the range of M (i.e., 1 ≤ M ≤ N), N log2 M always dominates the lower bound.

Now, we show that the space needed by Rainbowfish to store the variable-length labels
assigned to color classes is equal to the lower bound. As explained in Theorem 1, the
upper bound to store any label is log2 M bits, and for N edges, it is given by N log2 M bits.
Rainbowfish also stores a boundary bit vector which has the same number of bits as the label
bit vector. Therefore, the space required to store the label mappings is strictly ≤ 2N log2 M .
Note that the extra overhead to store the metadata to perform a select operation in constant
time on the boundary bit vector is bounded by o(N), where N is the numbers of bits in the
bit vector [9].

However, Rainbowfish’s representation of color classes is entropy compressed (see Sec-
tion 3.1) and the space required depends on the entropy of the color class distribution. For a
highly skewed distribution, the entropy is low and the space required to store labels is much
smaller than N log2 M bits. On the other hand, when the distribution is near-uniform, i.e.,
the entropy is high, Rainbowfish makes all labels to be log2 M bits and dispenses with BBV.
Therefore, the space required by Rainbowfish is always smaller than or equal to the lower
bound.

3.4 Implementation
Considerations due to the underlying de Bruijn graph representation. We recall here that
we make use of the BOSS representation of the underlying de Bruijn graph topology. To build
the BOSS representation, k-mer counting is first performed using KMC2 [3], canonicalizing
k-mers during counting. Though the BOSS representation inserts both forward and reverse

F. Almodaresi, P. Pandey, and R. Patro 18:7

0 1 2 3 4 5 6 7 8 9 101112131415

103

104

105

106

107

108

109

Equivalence class labels

#k
-m

er
s

in
ea

ch
eq

ui
va

le
nc

e
cl

as
s

Color class dist. in 1-pass
Color class dist. in 2-pass

Figure 2 Distribution of k-mer frequencies across equivalence class labels in Rainbowfish after
1-pass and 2-pass algorithm on plant dataset Table 1. The 2-pass algorithm assigns the smallest
label to color class with maximum number of k-mers. The distribution in 2-pass algorithm is
monotonically decreasing.

complement k-mers into the graph, it associates only a single color vector with this pair.
Moreover, BOSS creates “dummy” edges (real k-mers prepended or appended with $) to allow
encoding k-mers that appear near terminal nodes in the de Bruijn graph. In the colored de
Bruijn graph these dummy edges are assigned the empty color set. All of this information is
encoded by both VARI and Rainbowfish. However, as we discuss in more detail in Section 5,
the Rainbowfish representation can work with any de Bruijn graph representation that can
assign distinct ranks to each k-mer in the de Bruijn graph. Thus, we would expect this
encoding scheme to work well with, e.g., a de Bruijn graph representation based on minimum
perfect hashing of the k-mers [4].

Storing bit vectors. In Rainbowfish, we use bit vector implementations from the SDSL
library [8] to store the three bit vectors from Figure 1. We use the rrr_vector implementation
from SDSL to store the equivalence class table and boundary bit vector, and the bit_vector

implementation from SDSL to store the label bit vector.
The rrr_vector of SDSL is an implementation of RRR encoding [20]. RRR encoding is

an entropy compressed encoding and also supports constant time rank and select operations
on the compressed bit vector. The space reduction depends on the entropy of the bit vector.
For high entropy bit vectors, the compression is not noticeable and in fact “negative” in
some cases because of the extra metadata overhead to support rank and select operations.

The equivalence class table and boundary bit vector often have fairly low entropy, and
can be compressed efficiently using RRR encoding. However, the label bit vector often has
high entropy, and compressing it using RRR encoding is not effective. In our representation,
the average order-0 entropy of the label bit vector for four different datasets is 0.94. This
is a quite high, and hence we did not see any reduction in the space using RRR encoding.
However, for the other two bit vectors, the order-0 entropy is lower (e.g., for boundary bit
vector the average entropy over same four datasets is 0.56) and, in practice, we achieve a
considerable space reduction using RRR encoding.

Construction. We use a 2-pass algorithm to construct the three bit vectors. In the first
pass, we read the color matrix, compute the distinct color classes, and count the frequency

WABI 2017

18:8 Rainbowfish: A Succinct Colored de Bruijn Graph Representation

Table 1 The number of edges (include k-mers and dummy edges in the BOSS representation),
samples and color classes for different datasets used in the experiments. k = 32 unless otherwise
specified. *# of edges excluding dummies.

Datasets # of edges # of colors (samples) # of distinct color classes
E. coli 10 28,273,951 10 479
E. coli 1000 157,737,064 1000 2,669,157
E. coli 5598 435,705,390 5598 7,000,715
E. coli 1000 (k=63) 258,893,268 1000 2,530,253
Plant 2,520,140,426 4 16
Beef safety 97,096,576,010* 87 623,022,532
Human transcriptome 159,441,804* 95,146 340,762

of each class. Once we have the frequency information, we sort color classes in descending
order based on their frequency. We then assign labels to color classes starting from zero. In
the second pass, we read the uncompressed color matrix again, and add the label of each
k-mer to the label bit vector. While building the label bit vector, we also build the boundary
bit vector by storing a 1 at every index where a new label starts in the label bit vector. The
labels are stored in the same order as the k-mers in the BOSS representation.

To reduce the space required for the labeling even further, we implemented our label
encoding in the following way. Every time that the label size increases from x bits to x + 1
bits, we restart the counter of that label in label bit vector to 0. For example, we store 0
and 1 for labels 0 and 1 respectively, then we store 00, 01, 10 and 11 for labels 2, 3, 4 and 5
respectively. For label value 6 we again restart the counter to 0 and store 000 to represent 6
in the label bit vector, etc. Later, when we want to retrieve the actual value of a label, we
first recover the stored label l′ from the label bit vector and then calculate the actual label l

using the equation l = l′ + 2d − 2 where d is length of label l in bits.
As explained in Section 3.2, the 2-pass algorithm minimizes the space used to represent

color class labels by sorting the classes based on their frequencies and assigning labels to
color classes to minimize the length of the resulting code path, similar to Huffman coding.
However, one could also imagine assigning labels to color classes as we see them in the order
k-mers appear in the BOSS representation. This way, we can construct all three tables in a
single pass (i.e., a 1-pass algorithm).

However, as shown in Figure 2, this 1-pass algorithm can end up assigning long labels
to frequent k-mers, and hence produce poor (i.e., large) encodings. However, the 2-pass
algorithm always assigns labels according to the corresponding frequency distribution of the
color classes. Sometimes, the 1-pass algorithm does well, but we chose to adopt the 2-pass
algorithm in Rainbowfish.

4 Evaluation

In this section we evaluate Rainbowfish, and compare it to VARI [15], a state-of-the-art
colored de Bruijn graph representation. We evaluate both systems in terms of space and
running time. We address the following questions about the performance of Rainbowfish:
How does Rainbowfish compare to VARI in terms of the space required to represent color
information?; How does Rainbowfish compare to VARI in terms of the construction time?;
How does Rainbowfish compare to VARI in terms of typical queries (e.g., in bubble calling)?
We are particularly concerned with ensuring that Rainbowfish produces small encodings of
the color information and remains practically efficient to query.

F. Almodaresi, P. Pandey, and R. Patro 18:9

Table 2 Construction and bubble calling time for Rainbowfish and VARI for different datasets.

Datasets Construction Time (secs) Bubble Calling Time (secs)
VARI Rainbowfish VARI Rainbowfish

E. coli 10 44 31 344 366
E. coli 1000 340 270 2,610 2,356
E. coli 5598 3,141 4,021 8,796 8,201
Plant 108 339 47,040 48,537
Beef safety 15,378 30,478 NA NA
Human transcriptome 13,961 30,804 NA NA

4.1 Experimental setup
To answer the above questions, we perform two different benchmarks. First, we evaluate the
time taken to construct the color class representation. The construction time is the time
taken to construct the color class representation from a list of color classes stored in the
order of the edges in the de Bruijn graph (this is the same input used by VARI). During
construction, we adopt a two-pass algorithm. In the first pass, we use a sparse hash-table to
determine the distinct color classes and the cardinality of each such class.

We note that the space taken in this first pass is within a small constant factor of the
final space required by the final ECT table itself, since we need only store each color class
once in the hash table (as a key), and store the associated count (a machine word) as the
value. Thus, the memory required by this first pass is almost always a small fraction of the
total memory usage of the construction algorithm.

Given this information, we know exactly the number of bits that will be required to store
the label and boundary vectors. In the second pass, we fill in both the label and boundary
vectors and then save all three structures to file. As with most succinct representations, the
space required for our data structure in memory and on disk is almost the same (as the
two-pass algorithm allows us to allocate only the space we need for our final representation).
The construction time recorded here does not include (for either Rainbowfish or VARI) the
time taken to build the de Bruijn graph and color list corresponding to edges in the de Bruijn
graph (since this is the same for both methods).

We also report the space needed by both Rainbowfish and VARI to store the color class
representation on disk. We do not include the space needed to represent the actual de Bruijn
graph in our space comparisons because both Rainbowfish and VARI use BOSS to store the
actual de Bruijn graph, and the BOSS representation itself tends to take less space than the
color information.

Second, we evaluate the time taken to perform the bubble calling benchmark as described
in [16], using both the VARI and Rainbowfish representations. Finding bubbles in a colored
de Bruijn graph enables one to detect regions in the de Bruijn graph where different samples
(i.e., colors) diverge from each other. As originally suggested by Iqbal et al. [12], such
algorithms can form the basis for analyzing certain types of genetic variants in populations of
genomes. We note that we adopt the exact bubble calling algorithm implemented in VARI,
and the only variable being altered in our bubble-calling benchmark is the data structure
being used to determine the set of colors present for each k-mer. Since VARI and Rainbowfish
are both built upon the BOSS representation, which is based on the edge-centric view of de
Bruijn graph, they consider k-mers as edges in the de Bruijn graph, meaning that each edge
is associated with a k-mer, and its corresponding rank and color set. Briefly, the bubble
calling algorithm takes as input a pair c1, c2 of colors and traverses edges in the de Bruijn

WABI 2017

18:10 Rainbowfish: A Succinct Colored de Bruijn Graph Representation

graph to find bubbles in which the edges in one sub-path are colored with c1 and the edges
in the other sub-path are colored with c2 (see [16] for further details).

For all experiments in this paper, unless otherwise noted, we consider the k-mer size to be
32 to match the parameters adopted by Muggli et al. [16]. We carry out these benchmarks
on a number of datasets as described in Section 4.2. The time reported for construction
and bubble calling are averaged over two runs, and the time is measured as the wall-clock
time using the /usr/bin/time executable. All experiments were performed on an Intel(R)
Xeon(R) CPU (E5-2699 v4 @2.20GHz with 44 cores and 56MB L3 cache) with 512GB RAM
and a 4TB TOSHIBA MG03ACA4 ATA HDD running ubuntu 16.10, and were carried out
using a single thread. We note that, while the construction of the color set representation in
Rainbowfish (and VARI) are serial operations, queries are trivially parallelizable, as each
label can be queried and decoded independently.

4.2 Data
We run our benchmarks on the datasets mentioned in Table 1. The first three datasets, E.
coli, Plant, and Beef safety are slight variants of those used for evaluation in VARI [16]. Each
of these data sets exhibits different characteristics in terms of the number of k-mers, the
number of input samples (i.e., colors) and the homogeneity of the underlying samples (i.e.,
how different are the de Bruijn graph for each of the individual samples). The first dataset
consists of the assemblies of 5,598 different strains of E. coli obtained from GenBank [18].
Here, each “color” represents a specific E. coli assembly. Since these assemblies are from
different strains of the same species, they exhibit a small degree of heterogeneity. In other
words, a large fraction of the union de Bruijn graph is expected to occur in all samples.

To evaluate the scalability of Rainbowfish when primarily changing the underlying number
of input colors, we have evaluated three variants of the E. coli dataset. These consist of a
dataset containing only 10 different strains, another containing 1,000 different strains and
the final containing all 5,598 strains. We also performed experiments with k-mer size to be
63 for E. coli 1000 dataset to evaluate the space usage for higher k-mer sizes.

The second dataset (i.e., Plant) consists of the genome assemblies of four different plant
species. Hence, this dataset contains only four colors, but has more than ≈ 2 billion distinct
k-mers. The plant species considered are, A. thaliana 1 [22], Corn2 [21], Rice3 [23], and
Tomato4 [2]. These genomes exhibit considerable diversity and heterogeneity. Given the
diverse regions in the colored de Bruijn graph, this dataset is a good candidate for the bubble
calling benchmark. Further, Muggli et al. [16] found that this was the only of the three
original datasets on which they were able to construct the original Cortex representation
of the colored de Bruijn graph. They validated Cortex produces the same bubble calls as
VARI [16] (which, of course, produces the same bubble calls as Rainbowfish). For more
detailed analysis of Cortex’s construction and processing time and space on this dataset,
please refer to [16].

The third dataset, Beef safety, is considerably different from the prior data. Instead of
the input samples consisting of assembled genomes, they consist of 87 metagenomic samples

1 ftp://ftp.ensemblgenomes.org/pub/plants/release-34/fasta/arabidopsis_thaliana/dna/
Arabidopsis_thaliana.TAIR10.dna.toplevel.fa.gz

2 ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/005/GCF_000005005.1_B73_RefGen_v3/
GCF_000005005.1_B73_RefGen_v3_genomic.fna.gz

3 http://rice.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/
pseudomolecules/version_7.0/all.dir/all.con

4 ftp://ftp.solgenomics.net/tomato_genome/assembly/build_2.50/SL2.50ch00.fa.tar.gz

ftp://ftp.ensemblgenomes.org/pub/plants/release-34/fasta/arabidopsis_thaliana/dna/Arabidopsis_thaliana.TAIR10.dna.toplevel.fa.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/005/GCF_000005005.1_B73_RefGen_v3/GCF_000005005.1_B73_RefGen_v3_genomic.fna.gz
http://rice.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/pseudomolecules/version_7.0/all.dir/all.con
ftp://ftp.solgenomics.net/tomato_genome/assembly/build_2.50/SL2.50ch00.fa.tar.gz
ftp://ftp.ensemblgenomes.org/pub/plants/release-34/fasta/arabidopsis_thaliana/dna/Arabidopsis_thaliana.TAIR10.dna.toplevel.fa.gz
ftp://ftp.ensemblgenomes.org/pub/plants/release-34/fasta/arabidopsis_thaliana/dna/Arabidopsis_thaliana.TAIR10.dna.toplevel.fa.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/005/GCF_000005005.1_B73_RefGen_v3/GCF_000005005.1_B73_RefGen_v3_genomic.fna.gz
ftp://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/000/005/005/GCF_000005005.1_B73_RefGen_v3/GCF_000005005.1_B73_RefGen_v3_genomic.fna.gz
http://rice.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/pseudomolecules/version_7.0/all.dir/all.con
http://rice.plantbiology.msu.edu/pub/data/Eukaryotic_Projects/o_sativa/annotation_dbs/pseudomolecules/version_7.0/all.dir/all.con
ftp://ftp.solgenomics.net/tomato_genome/assembly/build_2.50/SL2.50ch00.fa.tar.gz

F. Almodaresi, P. Pandey, and R. Patro 18:11

sequenced from cattle in the commercial process of beef production [17]. Hence, this dataset
yields a considerably larger and more complex de Bruijn graph since it is built upon many
un-assembled (and non-error-corrected) reads. Thus, the de Bruijn graph will encode portions
of the relevant metagenomes as well as the effects of sequencing errors. This dataset also has
many more k-mers than the others, ≈ 97 billion. It exhibits a large degree of heterogeneity
and an intermediate number of input colors (87).

In addition to the three datasets used in the VARI paper, we also consider building
the colored de Bruijn graph on the human transcriptome5 (Gencode v26 protein coding
transcripts) [10]. Here, we consider each transcript as an individual sample (i.e., a distinct
input color). This data consists of ≈ 95, 000 colors, but only ≈ 159 million k-mers. Hence,
this dataset will give an idea about how the representations will perform when the number
of colors becomes very large (though the number of distinct color classes remains orders of
magnitude smaller than the number of k-mers). Further, we note that this dataset highlights
some of the similarities between the color class encoding adopted by Rainbowfish and the
k-mer-based equivalence class decomposition adopted by certain transcript quantification
methods (e.g. [19]).

4.3 Performance
Table 2 shows the time taken by Rainbowfish and VARI to construct the color class repres-
entation for different datasets. Rainbowfish uses a 2-pass algorithm to construct the color
class representation, and hence the construction time is dominated by the steps to read the
color list file twice. For small datasets like E. coli 10 and E. coli 1, 000, the input file size
is small and does not affect the overall construction time compared to VARI. However, for
large datasets like Plant and Beef safety, the time to read the color file twice dominates
the construction time and Rainbowfish is 1.9×–3× slower. We note that this time can be
considerably reduced by avoiding the uncompressed color matrix representation currently
used upstream of Rainbowfish and VARI, and integrating determination and encoding of
the color classes into the de Bruijn graph construction directly. However, this is outside the
scope of the current paper.

Space

Table 3 shows the space usage of Rainbowfish and VARI for the different datasets we consider.
Among these data, there are a range of characteristics in terms of the number of k-mers, the
number of colors, and the complexity and heterogeneity of the de Bruijn graph. We find
that, for all datasets, Rainbowfish requires less space to store the color information than
VARI. The magnitude of the improvement depends on the number of distinct equivalence
classes and their distribution, but is as large as ∼ 20×. We see the same trend with higher
values of k-mer sizes.

In particular, Rainbowfish’s space usage is particularly impressive for datasets with a
large number of input colors but a relatively small number of distinct k-mers. In this case, we
usually find that the number of distinct color classes is very small compared to the universe
of possibilities, and so each label can be encoded in much fewer than C bits. However, the
space VARI consumes depends greatly on the sparsity of the color matrix. The color matrix
itself grows rapidly as the number of k-mers and colors increases, but VARI’s compression

5 ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_26/gencode.v26.pc_transcripts.
fa.gz

WABI 2017

ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_26/gencode.v26.pc_transcripts.fa.gz
ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_26/gencode.v26.pc_transcripts.fa.gz
ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_26/gencode.v26.pc_transcripts.fa.gz

18:12 Rainbowfish: A Succinct Colored de Bruijn Graph Representation

Table 3 The space required by Rainbowfish and VARI to store the color class representation for
different datasets. The first column shows space required for the uncompressed color matrix (N × C

bits). All space is reported in MB. k = 32 unless otherwise specified.

Datasets uncompressed color matrix VARI Rainbowfish
E. coli 10 34 58 20
E. coli 1000 18,804 8,848 475
E. coli 5598 290,761 58,718 2,938
E. coli 1000 (k=63) 185,669 8,872 637
Plant 1,202 1,603 497
Beef safety 1,007,009 210,998 144,564
Human transcriptome 1,808,435 841 817

mechanism (Elias-Fano encoding) is very effective if the color matrix is sparse (e.g., each
k-mer is labeled with only a small subset of colors). This is exactly the case for the Human
transcriptome, where the color matrix has an entropy of ∼ 0.0004 (compared to E. coli
5,598 and E. coli 1,000 with entropies of ∼ 0.16 and ∼ 0.34 respectively). Thus, in the E.
coli dataset, VARI can save space up to a factor of ∼ 5 compared with the uncompressed
representation, while in the Human transcriptome it can save a factor of ∼ 2, 150 because of
the low entropy of the color matrix. Rainbowfish does well in all experiments, even when the
number of input colors is small (e.g., in the Plant dataset). Rainbowfish achieves the most
impressive compression when the color class distribution has low entropy and the number of
color classes is small relative to the upper bound. In such cases, the entropy compressed
representation of Rainbowfish is able to represent a large fraction of all labels using a very
small number of bits.

Bubble calling

Table 2 shows the time taken by Rainbowfish and VARI to perform the bubble calling
benchmark on different datasets. We run the bubble calling benchmark on the E. coli and
Plant datasets (as in the VARI paper). We note that the current bubble calling algorithm
is too slow to run on the Beef safety data set (the time in [16] was estimated at > 3, 000
hours). It is possible, however, that optimizations to the underlying algorithm might lift this
restriction. We also did not perform bubble calling on the human transcriptome dataset as
here, we were unable, given the resources on our server, to even run the de Bruijn graph
construction to completion. Specifically, due to the large amount of external memory that
VARI uses to build the uncompressed color matrix and the de Bruijn graph on these larger
(either in terms of the number of k-mers, the number of colors, or both) datasets (on order
of Terabytes), we exhausted the available disk space. For these datasets, to approximate
the relevant sizes and construction times, we produced a uncompressed color matrix that
lists the colors for each k-mer and its reverse complement, and we use this to build both
the VARI and Rainbowfish color representations. While very similar to the full color matrix
that VARI would produce, this file is slightly different in that it does not include entries for
dummy edges (a detail of the BOSS representation), and the order of the color matrix rows
can be different from what will appear in the BOSS representation. However, we still believe
these numbers, provided in Table 1, give a reasonable approximation of how the respective
methods would perform were we able to construct the de Bruijn graph completely.

For bubble calling, both representations require a very similar amount of time. This is
likely due, in part, to the fact that navigating the BOSS representation of the de Bruijn

F. Almodaresi, P. Pandey, and R. Patro 18:13

graph may be the performance bottleneck in the bubble calling algorithm. Thus, both VARI
and Rainbowfish provide sufficiently fast access to the color sets for each edge that they do
not represent bottlenecks in this regard.

5 Conclusion and Future Work

In this paper, we propose an entropy-compressed, succinct data structure to store the color
information of a colored de Bruijn graph. To represent the topology of the de Bruijn graph
itself, we adopt the BOSS [1] representation. However, we note that, for our representation
of the color sets, we only require that the underlying de Bruijn graph representation is able
to associate a unique rank between 0 and N − 1 with each edge. Hence, it is possible to use
the Rainbowfish representation with other representations of the de Bruijn graph topology
(e.g., those based on minimal perfect hashing).

We demonstrate that the inherent skewness in the distribution of color classes can be
exploited to reduce the size of the color information. This allows Rainbowfish to represent
the colored de Bruijn graph, even for large datasets with many colors, in a reasonably small
space. In fact, for representing the color information itself, we show that Rainbowfish is
succinct, and hence requires only Z + o(z) bits where Z is the number of bits required by
an information-theoretically optimal representation. Moreover, it may be possible for the
color information stored in the equivalence class table to be further compressed to reduce
the space. For example, one could imagine an encoding of color sets that takes advantage of
their shared subsets, e.g., storing the shared prefixes of membership vectors only once.

While we have described here a system for efficiently representing the color information
in a colored de Bruijn graph, our encoding scheme can be generalized to store any type of
attribute attached to the edges. For example, one could use the same (or a related) scheme
to encode information like the k-mer count or set of positions associated with a given edge.
Moreover, it will be interesting to explore how multiple attributes could be efficiently stored
simultaneously, and how potential correlations between these attributes might be exploited.
For example, there may be natural extensions of similar coding schemes to the compacted de
Bruijn graph, where one might also be able to take advantage of the coherence in annotation
(i.e., color or count information) shared among the constiuent k-mers of a contig, allowing
one to store only the information where these annotations change during traversal.

Finally, in our current implementation, the input to the system is a color matrix file
generated by VARI. This implementation requires first building the uncompressed color
matrix, and then permuting the rows of this matrix along with the edges of the de Bruijn
graph during the BOSS construction procedure. This process can require a large amount
of space, as the uncompressed color matrix can become extremely large (on the order of
Terabytes for some of the datasets we considered here). Consequently, in most cases, the
construction algorithm must resort to making extensive use of external memory (i.e., disk),
which increases building time and consumes a large amount of disk space. However, we note
that the Rainbowfish representation can be built without direct access to the uncompressed
color matrix.

Specifically, the current VARI algorithm uses a mergesort-like approach to construct the
uncompressed color matrix, where the k-mers in each sample are sorted lexicographically
(independently), and the rows of the color matrix are constructed one by one by asking for
each k-mer, in lexicographic order, which samples contain it. The working memory of this
approach is very small compared to the size of the full color matrix itself. One could imagine
using the same merge-based scheme to construct the Rainbowfish representation directly. In

WABI 2017

18:14 Rainbowfish: A Succinct Colored de Bruijn Graph Representation

the first pass, the distinct color classes and a counter for each would be stored, resulting in a
small, sparse hash table rather than a large, uncompressed color matrix. In the second pass,
one would simply associate the relevant labels, rather than uncompressed color vectors, with
each edge. This would vastly reduce the time and space required to construct the colored de
Bruijn graph.

Thus, in the future, we are interested in both incorporating the Rainbowfish represent-
ation more tightly inside the existing VARI codebase, as well as pairing the Rainbowfish
representation with other compatible representations of the de Bruijn graph topology.

Acknowledgments. We also thank Michael Bender and Robert Johnson for fruitful conver-
sations and important insight when performing this research. We would also like to thank
Rayan Chikhi for suggesting using auxiliary, rank/index-based storage for maintaining and
accessing annotations for each edge in a de Bruijn graph, and for useful feedback on an early
version of this manuscript. Finally, we would like to thank the anonymous reviewers for
constructive feedback.

References
1 Alexander Bowe, Taku Onodera, Kunihiko Sadakane, and Tetsuo Shibuya. Succinct de

Bruijn graphs. In Proceedings of the International Workshop on Algorithms in Bioinform-
atics, pages 225–235. Springer, 2012.

2 Mathilde Causse, Nelly Desplat, Laura Pascual, Marie-Christine Le Paslier, Christopher
Sauvage, Guillaume Bauchet, Aurélie Bérard, Rémi Bounon, Maria Tchoumakov, Domin-
ique Brunel, et al. Whole genome resequencing in tomato reveals variation associated with
introgression and breeding events. BMC genomics, 14(1):791, 2013.

3 Sebastian Deorowicz, Marek Kokot, Szymon Grabowski, and Agnieszka Debudaj-Grabysz.
KMC 2: Fast and resource-frugal k-mer counting. Bioinformatics, 31(10):1569–1576, 2015.

4 Erwan Drezen, Guillaume Rizk, Rayan Chikhi, Charles Deltel, Claire Lemaitre, Pierre
Peterlongo, and Dominique Lavenier. Gatb: Genome assembly & analysis tool box. Bioin-
formatics, 30(20):2959–2961, 2014.

5 Peter Elias. Efficient storage and retrieval by content and address of static files. Journal
of the ACM (JACM), 21(2):246–260, 1974.

6 Robert Mario Fano. On the number of bits required to implement an associative memory.
Massachusetts Institute of Technology, Project MAC, 1971.

7 Paolo Ferragina and Giovanni Manzini. Opportunistic data structures with applications.
In Foundations of Computer Science, 2000. Proceedings. 41st Annual Symposium on, pages
390–398. IEEE, 2000.

8 Simon Gog. Succinct data structure library. https://github.com/simongog/sdsl-lite,
2017. [online; accessed 01-Feb-2017].

9 Rodrigo González, Szymon Grabowski, Veli Mäkinen, and Gonzalo Navarro. Practical
implementation of rank and select queries. In Poster Proceedings Volume of 4th Workshop
on Efficient and Experimental Algorithms (WEA), pages 27–38, 2005.

10 J. Harrow, A. Frankish, J.M. Gonzalez, E. Tapanari, M. Diekhans, F. Kokocinski, B. L.
Aken, D. Barrell, A. Zadissa, S. Searle, I. Barnes, A. Bignell, V. Boychenko, T. Hunt,
M. Kay, G. Mukherjee, J. Rajan, G. Despacio-Reyes, G. Saunders, C. Steward, R. Harte,
M. Lin, C. Howald, A. Tanzer, T. Derrien, J. Chrast, N. Walters, S. Balasubramanian,
B. Pei, M. Tress, J. M. Rodriguez, I. Ezkurdia, J. van Baren, M. Brent, D. Haussler,
M. Kellis, A. Valencia, A. Reymond, M. Gerstein, R. Guigo, and T. J. Hubbard. GEN-
CODE: The reference human genome annotation for the ENCODE project. Genome Re-
search, 22(9):1760–1774, sep 2012. doi:10.1101/gr.135350.111.

https://github.com/simongog/sdsl-lite
http://dx.doi.org/10.1101/gr.135350.111

F. Almodaresi, P. Pandey, and R. Patro 18:15

11 Guillaume Holley, Roland Wittler, and Jens Stoye. Bloom filter trie: an alignment-free and
reference-free data structure for pan-genome storage. Algorithms Mol. Biol., 11:3, 2016.

12 Zamin Iqbal, Mario Caccamo, Isaac Turner, Paul Flicek, and Gil McVean. De novo assembly
and genotyping of variants using colored de Bruijn graphs. Nature genetics, 44(2):226–232,
2012.

13 Guy Jacobson. Space-efficient static trees and graphs. In Foundations of Computer Science,
1989., 30th Annual Symposium on, pages 549–554. IEEE, 1989.

14 Guy Joseph Jacobson. Succinct Static Data Structures. phdthesis, Carnegie Mellon Uni-
versity, 1988. AAI8918056.

15 Martin D. Muggli. Vari. https://github.com/cosmo-team/cosmo/tree/VARI, 02 2017.
Viewed Feb 3, 2017.

16 Martin D. Muggli, Alexander Bowe, Noelle R. Noyes, Paul Morley, Keith Belk, Robert
Raymond, Travis Gagie, Simon J. Puglisi, and Christina Boucher. Succinct Colored de
Bruijn Graphs. Bioinformatics, 2017.

17 Noelle R. Noyes, Xiang Yang, Lyndsey M. Linke, Roberta J. Magnuson, Adam Detten-
wanger, Shaun Cook, Ifigenia Geornaras, Dale E. Woerner, Sheryl P. Gow, Tim A. Mc-
Allister, et al. Resistome diversity in cattle and the environment decreases during beef
production. ELife, 5:e13195, 2016.

18 Nuala A. O’Leary, Mathew W. Wright, J. Rodney Brister, Stacy Ciufo, Diana Haddad,
Rich McVeigh, Bhanu Rajput, Barbara Robbertse, Brian Smith-White, Danso Ako-Adjei,
et al. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion,
and functional annotation. Nucleic acids research, pages D733–D745, 2015. doi:10.1093/
nar/gkv1189.

19 Rob Patro, Stephen M. Mount, and Carl Kingsford. Sailfish enables alignment-free isoform
quantification from RNA-seq reads using lightweight algorithms. Nature biotechnology,
32(5):462–464, 2014.

20 Rajeev Raman, Venkatesh Raman, and S. Srinivasa Rao. Succinct indexable dictionaries
with applications to encoding k-ary trees and multisets. In Proceedings of the thirteenth an-
nual ACM-SIAM symposium on Discrete algorithms, pages 233–242. Society for Industrial
and Applied Mathematics, 2002.

21 Patrick S. Schnable, Doreen Ware, Robert S. Fulton, Joshua C. Stein, Fusheng Wei, Shiran
Pasternak, Chengzhi Liang, Jianwei Zhang, Lucinda Fulton, Tina A. Graves, et al. The b73
maize genome: complexity, diversity, and dynamics. science, 326(5956):1112–1115, 2009.

22 David Swarbreck, Christopher Wilks, Philippe Lamesch, Tanya Z. Berardini, Margarita
Garcia-Hernandez, Hartmut Foerster, Donghui Li, Tom Meyer, Robert Muller, Larry Plo-
etz, et al. The arabidopsis information resource (tair): gene structure and function annota-
tion. Nucleic acids research, 36(suppl 1):D1009–D1014, 2008.

23 Tsuyoshi Tanaka, Baltazar A. Antonio, Shoshi Kikuchi, Takashi Matsumoto, Yoshiaki
Nagamura, Hisataka Numa, Hiroaki Sakai, Jianzhong Wu, Takeshi Itoh, Takuji Sasaki,
et al. The rice annotation project database (rap-db): 2008 update. Nucleic Acids Research,
36(Supp 1):D1028–D1033, 2008.

WABI 2017

https://github.com/cosmo-team/cosmo/tree/VARI
http://dx.doi.org/10.1093/nar/gkv1189
http://dx.doi.org/10.1093/nar/gkv1189

ThIEF: Finding Genome-wide Trajectories of
Epigenetics Marks∗

Anton Polishko1, Md. Abid Hasan2, Weihua Pan3,
Evelien M. Bunnik4, Karine Le Roch5, and Stefano Lonardi6

1 Department of Computer Science, University of California, Riverside,
CA, USA

2 Department of Computer Science, University of California, Riverside,
CA, USA

3 Department of Computer Science, University of California, Riverside,
CA, USA

4 University of Texas Health Science Center, San Antonio, TX, USA
5 Department of Cell Biology, University of California, Riverside CA, USA
6 Department of Computer Science, University of California, Riverside,

CA, USA

Abstract
We address the problem of comparing multiple genome-wide maps representing nucleosome po-
sitions or specific histone marks. These maps can originate from the comparative analysis of
ChIP-Seq/MNase-Seq/FAIRE-Seq data for different cell types/tissues or multiple time points.
The input to the problem is a set of maps, each of which is a list of genomics locations for
nucleosomes or histone marks. The output is an alignment of nucleosomes/histone marks across
time points (that we call trajectories), allowing small movements and gaps in some of the maps.
We present a tool called ThIEF (TrackIng of Epigenetic Features) that can efficiently compute
these trajectories. ThIEF comes into two “flavors”: ThIEF:Iterative finds the trajectories
progressively using bipartite matching, while ThIEF:LP solves a k-partite matching problem on
a hyper graph using linear programming. ThIEF:LP is guaranteed to find the optimal solution,
but it is slower than ThIEF:Iterative. We demonstrate the utility of ThIEF by providing
an example of applications on the analysis of temporal nucleosome maps for the human malaria
parasite. As a surprisingly remarkable result, we show that the output of ThIEF can be used
to produce a supervised classifier that can accurately predict the position of stable nucleosomes
(i.e., nucleosomes present in all time points) and unstable nucleosomes (i.e., present in at most
half of the time points) from the primary DNA sequence. To the best of our knowledge, this
is the first result on the prediction of the dynamics of nucleosomes solely based on their DNA
binding preference. Software is available at https://github.com/ucrbioinfo/ThIEF

1998 ACM Subject Classification G.2.1 Combinatorics, I.1.2 Algorithms, J.3 Life and Medical
Sciences

Keywords and phrases Nucleosomes, Histone Marks, Histone Tail Modifications, Epigenetics,
Genomics

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.19

∗ This work was partially supported by NSF IIS-1302134 to SL and KLR and NSF III-1526742 to SL.

© Anton Polishko, Md. Abid Hasan, Weihua Pan, Evelien M. Bunnik, Karine Le Roch,
and Stefano Lonardi;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 19; pp. 19:1–19:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://github.com/ucrbioinfo/ThIEF
http://dx.doi.org/10.4230/LIPIcs.WABI.2017.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

19:2 ThIEF: Finding Genome-wide Trajectories of Epigenetics Marks

Q1

Q2

Q3

Q4

Figure 1 An illustration of the problem of aligning epigenetic features on four maps Q1, Q2, Q3, Q4;
the input is a set of locations for the feature of interest (e.g., CHiP-seq peaks for nucleosome or specific
histone marks) illustrated as circles here; the output is an assignment of features to trajectories, in a
way that most parsimoniously explain the data; dotted circles indicate gaps or “missing features”

1 Introduction

Advancements in high-throughput DNA sequencing technology has enabled life scientists
to carry out increasingly large-scale experiments. In genomics and epigenetics, it is rela-
tively common to run multiple genome-wide experiments: for example, one can use ChIP-
Seq/MNase-Seq/FAIRE-Seq/NOMe-Seq to obtain nucleosome levels or specific histone tail
post-translational modifications (e.g., methylation, acetylation, phosphorylation, ubiquitina-
tion) at different cell types/tissues (which allows to understand cell type-specific marks), or at
different time points for a particular cell process cycle (which allows to explore the dynamics
of epigenetic marks). The ENCODE project [8], modENCODE [10, 41], phychENCODE [1],
and the NIH Roadmap Epigenomics Project [2] are notable examples of these efforts. Similar
comparative analysis of epigenetic marks could be carried out for a set of closely related
organisms (e.g., human-chimp) if the correspondences between the genomes are known (e.g.,
using liftover by [20]).

Epigenetic maps are usually obtained by (i) sequencing a DNA sample enriched for a
feature of interest, (ii) mapping short reads to the reference genome and (iii) running a
peak-calling algorithm (e.g., MACS/MACS2 [50], NOrMAL [37], Puffin [36]). In this paper
we focus on the fundamental question on how to compare multiple genome-wide epigenetic
maps, when features are expected to shift or be missing. Our model allows the possibility
of the nucleosome of physically sliding along the genome or compensate for the noise in
the peak detection process. In the example in Figure 1, the objective is to align four maps.
Circles represent features to align; dashed circle mark the gap; trajectories are indicated
with solid lines, which represent the most “likely” explanation of the data.

We propose to compare epigenetic maps by aligning them in a similar way we align DNA
sequences. We arrange multiple nucleosome/feature maps on top of each other, with the
objective to build a trajectory for each individual nucleosomes/feature across time points or
cell types, in a way that a total cost (i.e., total “traveled distance” in the case of nucleosomes)
is minimized. We call such a set of trajectories an alignment: similarly to multiple sequence
alignment we allow “insertion” or “deletions” of nucleosomes/features at specific time points
or cell types. For instance, Figure 2 illustrates the output of ThIEF in the IGV browser for
a region of chromosome 10 of P. falciparum. ThIEF aligned eight nucleosome maps over
multiple time points, where each trajectory is assigned a unique ID, using alternating colors.
Observe that in some trajectories (e.g., the one with ID 10_4546), nucleosomes are stable,
while in others (e.g., the one with ID 10_4547) nucleosomes are evicted then bind later to

A. Polishko, Md. A. Hasan, W. Pan, E.M. Bunnik, K. Le Roch, and S. Lonardi 19:3

Figure 2 IGV snapshot of nucleosomes (red and blue rectangles – 147bps long) in region [742,356-
747,829] of chromosome 10 of P. falciparum at eight time points; ThIEF assigns nucleosomes
to trajectories which can be identified by an integer ID (zoom in to see them), and displayed in
alternating colors

the same location. We should note that it not easy to tag individual nucleosomes and image
them under microscopes (see, e.g., [47]), so there is no way with current technology to obtain
the “true” trajectories of nucleosomes genome-wide.

2 Problem definition

We define a epigenetic map Q = {f1, . . . , fn} as a set of n epigenetic features fi, where a
feature could be a nucleosome or a specific histone mark. Each feature f ∈ Q is described
by vector f = (µ, a1, . . . , al) where µ is the genomic coordinate of f in the genome (e.g.,
chromosome number and position in the chromosome) and each aj , j = 1, . . . , l is an attribute
of that feature (e.g., confidence score of a nucleosome, strength of a histone mark, p-value,
peak width, “fuzziness” of a nucleosome, etc.). For convenience, we assume that features in
Q are ordered by their position µ.

Given k epigenetic maps Q1, Q2, . . . , Qk, the goal is to align them so that the total
alignment cost is minimized. For instance when k = 2, we either match feature f ∈ Q1 to a
feature g ∈ Q2 so that we minimize a cost ∆(f, g) (e.g., some distance between the vectors
f = (µf , af

1 , . . . , a
f
l) and g = (µg, ag

1, . . . , a
g
l)) or report that feature f ∈ Q1 has no match in

Q2 (insertion/deletion). In this latter case we will say that we have an alignment gap. For k
maps, the cost function is ∆(q1, q2, . . . , qk) where qi is a feature in the i-th map. Note that
∆(q1, q2, . . . , qk) is supposed to be defined for all combinations of q1, q2, . . . , qk.

While our framework allows features with l ≥ 0 attributes, in the rest of the paper we
only use the genomic coordinate (i.e., l = 0). In that case ∆(q1, q2, . . . , qk) is simply the
absolute deviation, i.e., the sum of absolute distance between the coordinate of each feature
and the mean of those k coordinates. As it is done in sequence alignment, we will not allow
swaps in the order of genomic features. In other words, we do not allow trajectories to cross
each other.

3 Previous work

The comparative analysis of a set of genome-wide epigenetic maps can be challenging, in
particular when the number of maps is large. Some bioinformatic tools are available to help
users make sense of the data. For instance, BEDTools allows users to compares multiple
maps by determining which peaks are overlapping, non-overlapping, or have a minimal
fraction of overlap [40]; Galaxy [12, 3, 11] offers a set tools for working with genomic
intervals under the “Operate on Genomic Intervals” section; ChromHMM can be also used to
summarize multiple epigenetic maps. In ChromHMM, a multivariate hidden Markov Model

WABI 2017

19:4 ThIEF: Finding Genome-wide Trajectories of Epigenetics Marks

allows users to determine chromatin states (e.g., active enhancer, heterochromatin, repressed
PolyComb, etc.) from multiple histone marks, DNA methylation, DNase I hypersensitive
sites, and gene expression [9]. Similarly, Segway uses a dynamic Bayesian network model to
identify chromatin patterns associated with transcription start sites, gene ends, enhancers,
transcriptional regulator CTCF-binding regions and repressed regions [14, 15]. Recently,
EpiCSeg was introduced to address shortcomings of ChromHMM and Segway [30]. In terms
of motivations, DGW is the closest work to ours. DGW uses dynamic time warping to align
the profiles of ChIP-seq enrichment and to cluster them into groups which share similar
shapes [28].

The problem of aligning genomic features from multiple maps is similar to the multiple
sequence alignment (MSA) problem (see, e.g., [6]). MSA is a central problem in bioinformatics
with a wide range of applications (see, e.g., [42, 39, 23, 31]). A very large corpus of literature
has been published on MSA and its applications. A direct solution for MSA uses dynamic
programming to identify the globally optimal alignment [44, 32]. The majority of efficient
methods employ sophisticated heuristics, since the global optimization problem of aligning
long sequences is computationally costly (the problem is NP-complete [7, 49, 18]). Heuristic
methods include progressive alignment construction [13, 46, 45, 25], iterative methods, hidden
Markov models, genetic algorithms [34, 33], simulated annealing [21, 16], among others. The
major difference between MSA on DNA/proteins and the problem discussed here is that
instead of a substitution matrix, we use a cost function ∆ defined between all possible
combinations of features in the k maps.

The problem of aligning genomic features is also related to the multi-target tracking
problem or data association problem. These latter problems have been known for decades
and are extensively studied. These problems arise when there is a need to track features
on video sequences, radar scans, etc. The main computational challenge is to overcome
scalability when dealing with a large number of snapshots and a relatively small number of
objects to track. In our case, we are interested in dealing with a relatively small number of
maps and a large number of objects.

4 Methods

We first describe the naïve (greedy) approach and explain its limitations, then we provide
two improved algorithms. The first builds iterative approximations of the optimal alignment,
the second computes the solution via integer linear programming [4]. To make the second
approach feasible to real-world-sized data we applied branch-and-bound technique to reduce
the size of the problem. Then, we relax the problem to a linear program, which we solve
using the off-the-shelf solver GLPK [29].

4.1 Naïve (greedy) approach

In the naïve algorithm, we consider each feature (at location µ) in the first map and check
whether we can match it to features on the other maps such that all these features are
located within a window of predefined length w, centered at µ. If a map does not have a
feature in the window [µ−w/2, µ+w/2], we introduce a gap. When a feature is assigned to
a trajectory, we mark it so that it cannot be used for other trajectories. After considering all
the features in the first map, we check whether the next map contains any feature that was
not marked; if any of the feature is still unmatched the same sliding window approach is
employed. We repeat this process until all the features are marked.

A. Polishko, Md. A. Hasan, W. Pan, E.M. Bunnik, K. Le Roch, and S. Lonardi 19:5

w

Figure 3 The naïve (greedy) method can create sub-optimal alignments (see text).

The naïve algorithm is fast, but it does not guarantee to produce an optimal solution.
First, it relies on the assumption that the alignment score of three or more features is
decomposable into the combination of pairwise alignments. Second, the algorithm can make
wrong “choices” depending on window size w. Figure 3 illustrates an example of what could go
wrong. Circles represent features to align, where a solid circle means that a feature is present,
dashed circle means that a feature is missing. The black lines represent the trajectories that
we are expected to recover. When the naïve algorithm considers the “red” feature, it will to
match it with features marked with thick-line circles. The resulting alignment is shown in
green, which is sub-optimal globally.

4.2 ThIEF:Iterative

ThIEF:Iterative iteratively constructs alignments by processing input maps pairwise. The
algorithm starts by aligning the first two maps by solving the weighted bipartite matching
problem. Then, ThIEF:Iterative aligns the resulting alignment between the first two
maps to the third map. At each iteration the algorithm solves a bipartite matching problem
between the current alignment and the next epigenetic map.

Each node in the bipartite graph is assigned a genomic location. When a genomic feature
f is mapped to a node vf ∈ V , then its location is µf . Since the algorithm needs to align
alignment to maps, we use the average of the coordinates of the features that belong to an
alignment as the “location” of that alignments. In this way, nodes corresponding to partial
alignments will have a location attribute and the cost function can be evaluated. Each edge
(w, v) is assigned weight |µw − µv|.

The bipartite graph must have an equal number of vertices in each feature map (partition),
so for every vertex in one partition we introduce a “dummy” vertex in the other one. The
presence of dummy nodes also naturally allows gaps: when a feature is matched against a
dummy node we are implicitly introducing a gap. The cost of edges connecting “dummy”
node to features is the gap penalty δ, and edges “dummy”-“dummy” are not allowed. To
solve the n − to − n assignment problem we use the Hungarian algorithm [17], which has
Θ(n3) time complexity.

The total running time of this approach is Θ(km3), where k is the number of maps and m
is an upper bound on the number of alignments. In the worst case, if we align maps such that
features on each map are aligned with corresponding gaps then we could have m ∈ O(2k−1n).
The other disadvantage of this approach is that it does not guarantee optimality, unless the

WABI 2017

19:6 ThIEF: Finding Genome-wide Trajectories of Epigenetics Marks

cost function ∆ is decomposable into sum of pairwise costs. In general, the order in which
maps are processed can give rise to different (sub-optimal) solutions.

4.3 ThIEF:LP
ThIEF:LP casts the alignment problem as a weighted k-partite matching problem. Our
problem is slightly more general than the k-partite matching problem because we need to
deal with gaps. First ThIEF:LP builds a hyper-graph H = (V,E), where each vertex v ∈ V
represent a genomic feature, and an hyper-edge e ∈ E connects a subset of vertices (i.e.,
e ⊆ V) representing a possible alignment. By construction, the graph is k-partite: each
hyper-edge contains at most one vertex from each partition (feature map). Hyper-edges can
skip a partition to model gaps in the alignment.

We build the graph H iteratively. First, we create edges between the nodes in the first
two maps (according to the criteria below), then extend them as hyper-edges to the other
maps. Given a current (hyper)edge e ∈ E, in order to limit the size of H we extend it to
a vertex v in the new partition only if (i) v has a position within [−δ,+δ] of the position
of the hyper-edge (computed as the average of the position of the nodes that belong to e)
and (ii) it does not cross other hyper-edges. Once H is built, we solve the weighted k-partite
matching via an integer linear program (ILP) [4], as follows:

minimize
|E|∑
i=1

wixi

subject to
∑
i∈Sj

xi = 1 j = 1, . . . , |V |
xi ∈ {0, 1} i = 1, . . . , |E|

where binary variable xi is associated to hyper-edge ei ∈ E, Sj is the set of hyper-edges
incident to node vj ∈ V , and weight wi is the absolute deviation of hyper-edge ei, i.e., the
sum of absolute distance between the coordinate of each feature in ei and their mean.

The integer program is relaxed to a linear program by allowing each variable to take values
in the interval [0, 1]. The linear program is solved using the off-the-shelf solver GLPK [29].

5 Experimental results on synthetic data

A synthetic dataset can be described by five parameters, namely (i) the number k of maps, (ii)
the number n of features, (iii) the minimum distance d between features, (iv) the probability
p of a gap, and (v) the allowed “movement” σ. We generate first a “master” map Q where
the features are placed at random locations so that the average distance between adjacent
features is uniformly distributed in [d, 2d]. We generate the k maps from the initial map Q,
as follows. We shift the location of each feature f ∈ Q by a random quantity drawn from
Gaussian distribution with parameters (0, σ), then assign f it to a map at the perturbed
location. Finally, we replace a feature with a gap with a small probability p. Observe that
this procedure might produce alignments that do not satisfy the assumption that trajectories
cannot cross.

5.1 Performance analysis
We analyzed the performance of ThIEF:LP and ThIEF:Iterative against the naïve
(greedy) approach on several synthetic datasets. We generated a large number of datasets

A. Polishko, Md. A. Hasan, W. Pan, E.M. Bunnik, K. Le Roch, and S. Lonardi 19:7

45

100

0

10

20

30

40

50

60

70

80

90

Se
ns

iti
vi

ty
, %

Movement variation

ThIEF:LP

ThIEF:Iterative

Naive (greedy)

15 25 35 55 65

0

10

20

30

40

50

60

70

80

90

15 25 35 45 55 65

Sp
ec

ifi
ci

ty
, %

Movement variation

ThIEF:LP

ThIEF:Iterative

Naive (greedy)

Figure 4 Sensitivity (TOP) and specificity (BOTTOM) of ThIEF:LP and ThIEF:Iterative,
and the naïve for several choices of parameter σ = [15, 65].

consisting of k = 3 maps and n = 1000 features, using different values for minimum distance
d between features, gap probability p and movement variation σ.

We compared the alignments produced by these tools against the “ground-truth” and
measured sensitivity and specificity. Figure 4-LEFT shows the average sensitivity as a
function of parameter σ. Observe that ThIEF:LP outperforms the other approaches and
ThIEF:Iterative’s performance is better then naïve approach (as expected). Also observe
that as σ increases, the performance decreases: this can be explained by the fact that with
more variability in the location of the features it becomes more likely to have crossing of
trajectories, which none of the tools is designed to capture. Specificity analysis shows a
similar behavior (see Figure 4-RIGHT). Here ThIEF:LP and ThIEF:Iterative have almost
identical performance, which is better than the naïve.

5.2 Execution time

To study the speed of the two algorithms we measured the total execution time on a variety
of input datasets. ThIEF:Iterative’s time complexity is Θ(km3), where k is the number of
maps andm is an upper bound on the total number of alignments. The functional dependency
between m and n is data-dependent, specifically on how many new alignments are introduced

WABI 2017

19:8 ThIEF: Finding Genome-wide Trajectories of Epigenetics Marks

1

10

100

1000

2 3 4 5 6 7

Ex
ec

ut
io

n
tim

e,
 s

ec

Number of maps

20

100

200

300

400

0

200

400

600

100 200 300 400

Ex
ec

ut
io

n
tim

e,
 s

ec

Number of features

5 maps

maps6

20

Figure 5 Execution time of ThIEF:Iterative. (LEFT) As a function of the number k = 2, . . . , 7
of maps to align, for different choices of the number n of features (20, 100, 200, 300, 400); (RIGHT)
As a function of the number of features (for k = 5, 6 maps).

at every iteration (instead of extending existing ones). The worst case is m ∈ O(2k−1n). As
a result, the total worst-case time-complexity could be as bad as O(2kn3). Figure 5-LEFT
shows the experimental dependency between the execution time of ThIEF:Iterative and
the number of maps k. Observe that since the Y axis is log-scale, these experiments confirm
that the actual running time is exponential. Figure 5-RIGHT shows the dependency between
the execution time of ThIEF:Iterative and the number of features n, for k = 5 and k = 6
maps. The solid lines are cubic functions of n fitted to the data. These experiments confirm
the cubic dependency on number of features in the input.

ThIEF:LP’s running time is dominated by the cost of solving a linear program, which
in the case of the simplex algorithm, has exponential worst-case running time (although in
practice, for the large majority of the instances the time-complexity of simplex is polynomial).
The size of the linear program depends on the size of the hyper-graph: in our implementation,
the size of the graph can be exponential in k. Figure 6-LEFT shows the dependency between
execution time and the number of maps k. Each curve shows a linear trend (note that Y
axis is in log-scale). The different shape of the blue curve (twenty features per map) could
be explained by the fact that with small inputs the I/O overhead of transferring the data to
the GLPK solver dominates the execution time. When we consider the blue curve for at

A. Polishko, Md. A. Hasan, W. Pan, E.M. Bunnik, K. Le Roch, and S. Lonardi 19:9

1

10

100

1000

10000

100000

Ex
ec

ut
io

n
tim

e,
 s

ec

Number of maps

20

100

200

300

400

2 3 4 5 6 7

0

40000

80000

100000

120000

Ex
ec

ut
io

n
tim

e,
 s

ec

5 maps

6 maps

7 maps

100 200 300 40020

Number of features

Figure 6 Execution time of ThIEF:LP. (TOP) As a function of the number k = 2, . . . , 7 of maps
to align, for different choices of the number n of features (20, 100, 200, 300, 400); (BOTTOM) As a
function of the number of features (for k = 5, 6, 7 maps).

least five maps the size of the hyper-graph becomes big enough so that solving the linear
program dominate the execution time. These experiments support the claim of exponential
complexity on the number of maps. Figure 6-RIGHT shows a linear dependency between
the execution time and the number of features to track, as expected from the theoretical
analysis.

6 Experimental results on real data

As mentioned previously, current imaging technology does not allow one to track nucleosomes
or specific histone marks genome-wide over time. Since real data has no “ground-truth”
about trajectories that would allows us to objectively evaluate our tool, nor we have found
other tools that solve the same problem to which we could compare ThIEF, we decided to
demonstrate the utility of ThIEF by developing a supervised classifier that can accurately
predict the position of stable and unstable nucleosomes from the primary DNA sequence.
We define a nucleosome to be stable when it appears in approximately the same position
in the genome at all time points of an experiment. We define a nucleosome to be unstable
when it appears in approximately the same position in at most half of the time points of an
experiment. Nucleosomes in the second category are expected to be the most informative

WABI 2017

19:10 ThIEF: Finding Genome-wide Trajectories of Epigenetics Marks

for investigating how chromatin structure affects gene expression. While there is significant
amount of work on predicting the binding of nucleosomes from the DNA primary sequence
(e.g., [22, 51, 26, 52, 27, 48, 35, 43]), we are not aware of any work that has addressed the
problem of predicting whether a nucleosome is expected to be stable or unstable from the
DNA sequence.

6.1 Detecting stable and unstable nucleosomes
As an example of application of ThIEF, we analyzed eight nucleosome maps from a study
on the human malaria parasite [19]. In this study, synchronized P. falciparum parasites were
collected at eight different stages of intra-erythrocytic development with five hour intervals
(T5-T40). The eight samples were digested to enrich for nucleosome-bound DNA using
the MNase protocol, then the digested samples were paired-end sequenced on an Illumina
sequencing instrument. Raw reads provided by [19] were mapped to P. falciparum 3D7
genome v13.0 (available from www.plasmoDB.org) using Bowtie2 [24] allowing a maximum
of one mismatch per read. Reads that mapped to multiple locations in the genome, reads
that were PCR duplicates, and reads that mapped to ribosomal RNA or transfer RNA were
discarded. The final datasets contained about 409 M mapped paired-end reads, with an
average read length of 100 bp.

We used PuFFIN [36] to generate nucleosomes positions (for all eight time points) from
the aligned reads. Then, we used ThIEF:LP to produce nucleosome trajectories by solving
14 independent optimization problems (one for each chromosome of P. falciparum). PuFFIN
detected a total of 770,238 nucleosomes, with an average of 96,280 nucleosomes per time
point. Nucleosome positions were consistent with the one reported in [19].

ThIEF:LP reported a total of 141,363 trajectories (average of 10,097 trajectories for
chromosome). A trajectory generated by ThIEF:LP was considered stable if it contained
nucleosomes at each time point (i.e., no missing nucleosomes). Trajectories with no more
than four nucleosomes (out of eight) were considered as unstable (i.e., at least three missing
nucleosomes). According to this definition we detected 43,122 stable trajectories (about
31% of the total) and 50,783 unstable trajectories (about 36% of the total). Trajectories
that were not stable or unstable were not used in the experiments (about 33% of the total).
Chromosomes by chromosomes, the percentage of stable trajectories ranged from 33.23%
to 35.39% of the total number of trajectories. The percentage of unstable trajectories for
all chromosomes ranged from 33.5% to 40.4%. The distribution of stable and unstable
trajectories along the P. falciparum chromosomes is shown in Figure 7. Observe that there
are regions devoid of stable nucleosomes, and regions very enriched for unstable nucleosomes
(e.g., the telomere of chromosome 13).

6.2 A classifier for stable and unstable nucleosomes binding sites
First, we extracted the binding sites from the genome of P. falciparum for each trajectory.
For each trajectory t labeled stable or unstable, we computed the average position of the
nucleosomes in t, then selected 147 bp centered at that position from the malaria genome.
Recall that a nucleosome consists of approximately 146-147 bp of DNA wrapped in superhelical
turns around a histone octamer complex. Using this procedure we produced a training
set composed of 43,122 147bp-long sequences representing stable nucleosomes, and 50,783
147bp-long sequences representing unstable nucleosomes.

We chose a Support Vector Machine (SVM) with radial basis function (RBF) kernel as
our binary classifier. We explored many features to use in the classification, including k-mer

www.plasmoDB.org

A. Polishko, Md. A. Hasan, W. Pan, E.M. Bunnik, K. Le Roch, and S. Lonardi 19:11

0

10

20

30

40

50

60

Chr 1 Chr 2 Chr 3 Chr 4 Chr 5 Chr 6 Chr 7 Chr 8 Chr 9 Chr 10 Chr 11 Chr 12 Chr 13 Chr 14

0

10

20

30

40

50

60

Chr 1 Chr 2 Chr 3 Chr 4 Chr 5 Chr 6 Chr 7 Chr 8 Chr 9 Chr 10 Chr 11 Chr 12 Chr 13 Chr 14

Figure 7 Distribution of stable (TOP) and unstable (BOTTOM) nucleosome trajectories along
the 14 human malaria chromosomes (counts in a sliding window of 50Kbp).

distributions for 2 ≤ k ≤ 5 and other physico-chemical properties of DNA (e.g., purine-
pyrimidine, amino-keto, strong-weak H-bond). By running an extensive set of cross-validation
experiments we determined that the five features described next were the most informative.

The first four features were obtained from the 3-mer distribution. For each sequence
we collected its 3-mer frequencies, then computed the eigenvalues of four 4 × 4 matrices
corresponding to 3-mers that have a middle nucleotide being A, C, G, and T, respectively.
We represented each matrix with its leading eigenvalue, for a total of four features. The
fifth feature was the DNA stability ∆G which is expressed by in terms of free energies of
di-nucleotide stacks ∆GKL, as described in [38]. The stability ∆G is measured by

∆G = x2
GC

4

[∑
A

∆GKL +
∑
B

∆GKL −
∑
C

∆GKL

]

+ xGC

2

[
1
2

∑
C

∆GKL −
∑
B

∆GKL

]
+ 1

4
∑
B

∆GKL (1)

whereA = {GG,CC,GC,CG}, B = {AA, TT,AT, TA} and C = {GA,AG,CT, TC,GT, TG,
CA,AC}; ∆GKL is the standard melting free energy parameter where di-nucleotide stacks
are calculated from stacking free energy parameters ∆GST

KL. Table 1 lists the value of ∆GST
KL

and ∆GKL, obtained from [38]. We z-normalized the feature vectors before training the
SVM.

Table 2 shows the classification results (precision, accuracy, recall, and area under the
ROC curve) when training the SVM on the DNA binding sites of stable/unstable trajectories

WABI 2017

19:12 ThIEF: Finding Genome-wide Trajectories of Epigenetics Marks

Table 1 (LEFT) Stacking free energy parameters ∆GST
KL, (RIGHT) Standard melting free energy

parameters ∆GKL.

KL A T G C
A -1.11 -1.34 -1.06 -1.81
T -0.19 -1.11 -0.55 -1.43
G -1.43 -1.81 -1.44 -2.17
C -0.55 -1.06 -0.91 -1.44

KL A T G C
A -1.04 -1.27 -1.29 -2.04
T -0.12 -1.04 -0.78 -1.66
G -1.66 -2.04 -1.97 -2.70
C -0.78 -1.29 -1.44 -1.97

Table 2 Classification results on the stable/unstable dataset for P. falciparum, by training the
SVM on the odd-numbered chromosomes, and testing on the even-numbered chromosomes; AUC is
the area under the ROC curve.

γ C precision accuracy recall F-score AUC
0.5 2 91.32% 79.60% 70.50% 0.795687 0.905418
0.5 8 92.48% 79.18% 68.64% 0.787988 0.908831
2 0.125 92.40% 79.97% 70.23% 0.798028 0.91509
2 0.5 92.59% 79.37% 68.91% 0.79015 0.913866
2 2 93.23% 79.28% 68.19% 0.787704 0.91498
8 0.03125 95.17% 80.32% 68.55% 0.797005 0.924962
8 0.125 94.08% 79.33% 67.58% 0.786582 0.921428
8 0.5 93.95% 79.14% 67.32% 0.784348 0.919447
32 0.007812 96.31% 79.79% 66.70% 0.788176 0.926078
32 0.03125 96.10% 79.39% 66.11% 0.7833 0.929091
32 0.125 94.65% 79.27% 67.00% 0.784592 0.92311
128 0.125 94.72% 79.23% 66.88% 0.78399 0.923386
512 0.125 94.71% 79.03% 66.51% 0.781401 0.923546
2048 0.03125 95.26% 79.04% 66.10% 0.780456 0.926556
8192 0.03125 94.99% 79.07% 66.36% 0.781336 0.925219

for even-numbered chromosomes of P. falciparum, and testing it on the odd-numbered
chromosomes, for several choices of the penalty parameter C and kernel parameter γ in
libSVM [5]. If TP, FP, TN and FN are true positive, false positive, true negative, and false
negative, respectively, precision is defined as TP/(TP +FP), accuracy is (TP +TN)/(TP +
TN + FP + FN), recall is TP/(TP + FN), and the F-Score (also known as the F1-score) is
(2 precision recall)/(precision + recall). Observe that the SVM classifier makes a prediction
for 66%-70% of tested nucleosome binding sites, and the precision of the prediction is very
high. In 91%-95% of the predictions, the classifier can correctly determine solely from the
DNA sequence whether the nucleosome will be stable or unstable. This is a surprisingly
remarkable result.

7 Discussion and conclusion

We described the general problem of aligning multiple genome-wide epigenetic maps. We
proposed two novel algorithms for this problem, namely ThIEF:LP and ThIEF:Iterative.
The former finds a global optimal solution by constructing a hyper-graph representing the
problem and solves it via linear programming. The latter reconstructs the final alignments
by computing pair-wise alignments using the Hungarian algorithm. We determined that
ThIEF:LP has slightly better sensitivity than ThIEF:Iterative, however the latter ap-

A. Polishko, Md. A. Hasan, W. Pan, E.M. Bunnik, K. Le Roch, and S. Lonardi 19:13

proach is more suitable for aligning a large number of maps. Both tools perform significantly
better than the naïve (greedy) approach.

We have also demonstrated how ThIEF can be used in downstream analyses. In our
example we used ThIEF to generate nucleosome trajectories for a time-course dataset on
P. falciparum. The output of ThIEF can be used directly, and for the first time, to label
nucleosome trajectories as stable or unstable. As proof of utility, we used the nucleosome-
bound DNA sequence (labeled stable or unstable) to train a SVM classifier. Surprisingly,
the classifier was able to predict with high accuracy and precision whether a particular
147 bp-long sequence is likely to contain a stable or unstable nucleosome. To the best of our
knowledge, this is the first result on the prediction of the dynamics of nucleosomes solely
based on their DNA binding preference.

Acknowledgements. The authors thank Christian Shelton (UCR) and Suhn Kyong Rhie
(USC) for helpful discussions on this manuscript, and Xueqing (Maggie) Lu (UCR) for
providing the nucleosome datasets.

References
1 Schahram Akbarian, Chunyu Liu, et al. The PsychENCODE project. Nature Publishing

Group, 2015.
2 Bradley E. Bernstein, John A. Stamatoyannopoulos, Joseph F. Costello, Bing Ren, Aleksan-

dar Milosavljevic, Alexander Meissner, Manolis Kellis, Marco A. Marra, Arthur L. Beaudet,
Joseph R. Ecker, Peggy J. Farnham, Martin Hirst, Eric S. Lander, Tarjei S. Mikkelsen, and
James A. Thomson. The NIH roadmap epigenomics mapping consortium. Nat Biotech,
28(10):1045–1048, 10 2010.

3 Daniel Blankenberg, Gregory Von Kuster, Nathaniel Coraor, Guruprasad Ananda, Ross
Lazarus, Mary Mangan, Anton Nekrutenko, and James Taylor. Galaxy: A web-based
genome analysis tool for experimentalists. Current protocols in molecular biology, pages
19–10, 2010.

4 Yuk Hei Chan and Lap Chi Lau. On linear and semidefinite programming relaxations for
hypergraph matching. Mathematical programming, 135(1-2):123–148, 2012.

5 Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector machines.
ACM Trans. Intell. Syst. Technol., 2(3):27:1–27:27, May 2011.

6 Robert C. Edgar. MUSCLE: multiple sequence alignment with high accuracy and high
throughput. Nucleic acids research, 32(5):1792–7, January 2004.

7 Isaac Elias. Settling the intractability of multiple alignment. Journal of Computational
Biology, 13(7):1323–1339, 2006.

8 ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human
genome. Nature, 2012.

9 Jason Ernst and Manolis Kellis. ChromHMM: automating chromatin-state discovery and
characterization. Nature Methods, 2012.

10 Mark B. Gerstein, Zhi John Lu, et al. Integrative analysis of the Caenorhabditis elegans
genome by the modENCODE project. Science, 2010.

11 Belinda Giardine, Cathy Riemer, Ross C. Hardison, Richard Burhans, Laura Elnitski,
Prachi Shah, Yi Zhang, Daniel Blankenberg, Istvan Albert, James Taylor, Webb C. Miller,
W. James Kent, and Anton Nekrutenko. Galaxy: a platform for interactive large-scale
genome analysis. Genome research, 15(10):1451–1455, 2005.

12 Jeremy Goecks, Anton Nekrutenko, James Taylor, and The Galaxy Team. Galaxy: a com-
prehensive approach for supporting accessible, reproducible, and transparent computational
research in the life sciences. Genome Biol, 11(8):R86, 2010.

WABI 2017

19:14 ThIEF: Finding Genome-wide Trajectories of Epigenetics Marks

13 Desmond Higgins and Paul Sharp. CLUSTAL: a package for performing multiple sequence
alignment on a microcomputer. Gene, 73(1):237–244, 1988.

14 Michael M. Hoffman, Orion J. Buske, Jie Wang, Zhiping Weng, Jeff A. Bilmes, and
William Stafford Noble. Unsupervised pattern discovery in human chromatin structure
through genomic segmentation. Nature Methods, 9:473–476, 2012.

15 Michael M. Hoffman, Jason Ernst, Steven P. Wilder, Anshul Kundaje, Robert S. Harris,
Max Libbrecht, Belinda Giardine, Paul M. Ellenbogen, Jeffrey A. Bilmes, Ewan Birney,
Ross C. Hardison, Ian Dunham, Manolis Kellis, and William Stafford Noble. Integrative
annotation of chromatin elements from ENCODE data. Nucleic Acids Research, 41(2):827–
841, 2013.

16 Masato Ishikawa, Tomoyuki Toya, Masaki Hoshida, Katsumi Nitta, Atushi Ogiwara, and
Minoru Kanehisa. Multiple sequence alignment by parallel simulated annealing. Comput.
Appl. Biosci., 9(3):267–273, 1993.

17 Roy Jonker and Ton Volgenant. Improving the Hungarian assignment algorithm. Operations
Research Letters, 5(4):171–175, 1986.

18 W. Just. Computational complexity of multiple sequence alignment with SP-score. Journal
of Computational Biology, 8(6):615–623, 2001.

19 Philip Reiner Kensche, Wieteke Anna Maria Hoeijmakers, Christa Geeke Toenhake, Maaike
Bras, Lia Chappell, Matthew Berriman, and Richárd Bártfai. The nucleosome landscape
of plasmodium falciparum reveals chromatin architecture and dynamics of regulatory se-
quences. Nucleic Acids Research, 44(5):2110–2124, 2016.

20 W. James Kent, Robert Baertsch, Angie Hinrichs, Webb Miller, and David Haussler. Evolu-
tion’s cauldron: duplication, deletion, and rearrangement in the mouse and human genomes.
Proc. Natl. Acad. Sci. U. S. A., 100(20):11484–11489, 30 September 2003.

21 Jin Kim, Sakti Pramanik, and Moon Chung. Multiple sequence alignment using simulated
annealing. Comput. Appl. Biosci., 10(4):419–426, 1994.

22 R.D. Kornberg and L. Stryer. Statistical distributions of nucleosomes: nonrandom locations
by a stochastic mechanism. Nucleic Acids Research, 16(14A):6677–6690, 07 1988.

23 Ekaterina Kotelnikova, Vsevolod Makeev, and Mikhail Gelfand. Evolution of transcription
factor DNA binding sites. Gene, 347(2):255–263, 2005.

24 Ben Langmead and Steven L. Salzberg. Fast gapped-read alignment with bowtie 2. Nat
Meth, 9(4):357–359, 04 2012.

25 M.A. Larkin, G. Blackshields, N. P. Brown, R. Chenna, P.A. McGettigan, H. McWilliam,
F. Valentin, I.M. Wallace, A. Wilm, R. Lopez, J.D. Thompson, T. J. Gibson, and D.G.
Higgins. Clustal W and Clustal X version 2.0. Bioinformatics, 23(21):2947–2948, 2007.

26 Elisa Leimgruber, Queralt Seguin-Estevez, Isabelle Dunand-Sauthier, Natalia Rybtsova,
Christoph D. Schmid, Giovanna Ambrosini, Philipp Bucher, and Walter Reith. Nucleosome
eviction from MHC class II promoters controls positioning of the transcription start site.
Nucleic Acids Res, 37(8):2514–2528, May 2009.

27 Hongde Liu, Xueye Duan, Shuangxin Yu, and Xiao Sun. Analysis of nucleosome positioning
determined by DNA helix curvature in the human genome. BMC Genomics, 12:72, Jan
2011.

28 Saulius Lukauskas, Roberto Visintainer, Guido Sanguinetti, and Gabriele B. Schweikert.
DGW: an exploratory data analysis tool for clustering and visualisation of epigenomic
marks. BMC Bioinformatics, 17(16):447, 2016.

29 Andrew Makhorin. GLPK (GNU linear programming kit), 2008.
30 Alessandro Mammana and Ho-Ryun Chung. Chromatin segmentation based on a proba-

bilistic model for read counts explains a large portion of the epigenome. Genome Biology,
16(1):151, 2015.

A. Polishko, Md. A. Hasan, W. Pan, E.M. Bunnik, K. Le Roch, and S. Lonardi 19:15

31 Alan Moses, Derek Chiang, Daniel Pollard, Venky Iyer, and Michael Eisen. MONKEY:
identifying conserved transcription-factor binding sites in multiple alignments using a bind-
ing site-specific evolutionary model. Genome biology, 5(12):R98, 2004.

32 S.B. Needleman and C.D. Wunsch. A general method applicable to the search for similar-
ities in the amino acid sequence of two proteins. J Mol Biol, 48(3):443–453, Mar 1970.

33 C. Notredame and D.G. Higgins. SAGA: Sequence alignment by genetic algorithm. Nucleic
Acids Res., 24(8):1515–1524, 1996.

34 C. Notredame, E.A. O’Brien, and D.G. Higgins. RAGA: RNA sequence alignment by
genetic algorithm. Nucleic acids research, 25(22):4570–4580, 1997.

35 Heather E. Peckham, Robert E. Thurman, Yutao Fu, John A. Stamatoyannopoulos,
William Stafford Noble, Kevin Struhl, and Zhiping Weng. Nucleosome positioning signals
in genomic DNA. Genome Res, 17(8):1170–1177, Aug 2007.

36 A. Polishko, E.M. Bunnik, K.G. Le Roch, and S. Lonardi. PuFFIN: A parameter-free
method to build nucleosome maps from paired-end reads. BMC Bioinformatics, 15(Suppl
9):S11, 2014.

37 Anton Polishko, Nadia Ponts, Karine G Le Roch, and Stefano Lonardi. NORMAL: accurate
nucleosome positioning using a modified gaussian mixture model. Bioinformatics (Oxford,
England), 28(12):i242–9, June 2012.

38 Ekaterina Protozanova, Peter Yakovchuk, and Maxim D. Frank-Kamenetskii. Stacked-
unstacked equilibrium at the nick site of DNA. J Mol Biol, 342(3):775–785, Sep 2004.

39 Rainer Pudimat, Ernst-Günter Schukat-Talamazzini, and Rolf Backofen. A multiple-feature
framework for modelling and predicting transcription factor binding sites. Bioinformatics,
21(14):3082–3088, 2005.

40 Aaron R. Quinlan and Ira M. Hall. BEDTools: a flexible suite of utilities for comparing
genomic features. Bioinformatics, 26(6):841–842, 2010.

41 S. Roy, J. Ernst, P.V. Kharchenko, and P. Kheradpour. Identification of functional elements
and regulatory circuits by Drosophila modENCODE. Science, 2010.

42 Rafik A. Salama and Dov J. Stekel. A non-independent energy-based multiple se-
quence alignment improves prediction of transcription factor binding sites. Bioinformatics,
29(21):2699–2704, 2013.

43 Eran Segal, Yvonne Fondufe-Mittendorf, Lingyi Chen, AnnChristine Thastrom, Yair Field,
Irene K. Moore, Ji-Ping Z. Wang, and Jonathan Widom. A genomic code for nucleosome
positioning. Nature, 442(7104):772–778, 08 2006.

44 T.F. Smith and M. S. Waterman. Identification of common molecular subsequences. J Mol
Biol, 147(1):195–197, Mar 1981.

45 Julie Thompson, Toby Gibson, and Des Higgins. Multiple sequence alignment using
ClustalW and ClustalX. Current protocols in bioinformatics, Chapter 2, 2002.

46 Julie Thompson, Desmond Higgins, and Toby Gibson. CLUSTALW: improving the sensitiv-
ity of progressive multiple sequence alignment through sequence weighting, position-specific
gap penalties and weight matrix choice. Nucleic Acids Research, 22(22):4673–4680, 1994.

47 Mari-Liis Visnapuu and Eric C Greene. Single-molecule imaging of DNA curtains reveals
intrinsic energy landscapes for nucleosome deposition. Nat Struct Mol Biol, 16(10):1056–
1062, 10 2009.

48 Jia Wang, Shuai Liu, and Weina Fu. Nucleosome positioning with set of key positions and
nucleosome affinity. Open Biomed Eng J, 8:166–170, 2014.

49 L. Wang and T. Jiang. On the complexity of multiple sequence alignment. Journal of
Computational Biology, 1(4):337–348, 1994.

50 Yong Zhang, Tao Liu, Clifford A. Meyer, Jérôme Eeckhoute, David S. Johnson, Bradley E.
Bernstein, Chad Nusbaum, Richard M. Myers, Myles Brown, Wei Li, and X. Shirley Liu.
Model-based analysis of ChIP-Seq (MACS). Genome Biology, 9(9):R137, 2008.

WABI 2017

19:16 ThIEF: Finding Genome-wide Trajectories of Epigenetics Marks

51 Yong Zhang, Zarmik Moqtaderi, Barbara P. Rattner, Ghia Euskirchen, Michael Snyder,
James T. Kadonaga, X. Shirley Liu, and Kevin Struhl. Intrinsic histone-DNA interac-
tions are not the major determinant of nucleosome positions in vivo. Nat Struct Mol Biol,
16(8):847–852, Aug 2009.

52 Xiujuan Zhao, Zhiyong Pei, Jia Liu, Sheng Qin, and Lu Cai. Prediction of nucleosome DNA
formation potential and nucleosome positioning using increment of diversity combined with
quadratic discriminant analysis. Chromosome Res, 18(7):777–785, Nov 2010.

Byte-Aligned Pattern Matching in Encoded
Genomic Sequences
Petr Procházka1 and Jan Holub2

1 Department of Theoretical Computer Science, Faculty of Information
Technology, Czech Technical University in Prague, Prague, Czech Republic
Petr.Prochazka@fit.cvut.cz

2 Department of Theoretical Computer Science, Faculty of Information
Technology, Czech Technical University in Prague, Prague, Czech Republic

Abstract
In this article, we propose a novel pattern matching algorithm, called BAPM, that performs search-
ing in the encoded genomic sequences. The algorithm works at the level of single bytes and it
achieves sublinear performance on average. The preprocessing phase of the algorithm is linear
with respect to the size of the searched pattern m. A simple O(m)-space data structure is used to
store all factors (with a defined length) of the searched pattern. These factors are later searched
during the searching phase which ensures sublinear time on average. Our algorithm significantly
overcomes the state-of-the-art pattern matching algorithms in the locate time on middle and long
patterns. Furthermore, it is able to cooperate very easily with the block q-gram inverted index.
The block q-gram inverted index together with our pattern matching algorithm achieve superior
results in terms of locate time to the current index data structures for less frequent patterns.
We present experimental results using real genomic data. These results prove efficiency of our
algorithm.

1998 ACM Subject Classification F.2.2 Pattern Matching

Keywords and phrases genomic sequences, pattern matching, q-gram inverted index

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.20

1 Introduction

DNA sequencing is nowadays the integral part of several disciplines like personalized medicine,
biology, biotechnology, or forensic biology. The demand for cheap sequencing induced the
evolution of High-Throughput Sequencing (HTS) technologies that can sequence large
stretches of DNA in a massively parallel fashion and that produce millions of DNA sequences
simultaneously. The public sources report the necessary time per one run in the order of
hours and the cost per one million bases lower than 0.02 USD1. General availability of the
sequencing causes producing large volumes of genomic data that needs to be stored effectively
in the form allowing extremely fast searching.

DNA molecule can be mapped one-to-one to a sequence of letters which implies that it
can be processed as a text string. The string matching problem is crucial task since early
beginnings of the text processing. The task is very simple – to find all occurrences of a given
pattern P in a large text T . However, this task is performed very frequently and over large
volumes of data (text T) which implies that very fast algorithms are necessary. To accelerate

1 https://www.genome.gov/sequencingcostsdata/

© Petr Procházka and Jan Holub;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 20; pp. 20:1–20:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.WABI.2017.20
https://www.genome.gov/sequencingcostsdata/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

20:2 Byte-Aligned Pattern Matching in Encoded Genomic Sequences

the string matching, the algorithm can preprocess either the pattern or the text or both. The
pattern preprocessing is relevant only for the given pattern and therefore it is included in
the search process. The text preprocessing (which includes especially the indexing methods)
is universal for all possible patterns, however it usually requires some extra space to store an
auxiliary data structure.

Knuth-Morris-Pratt (KMP) [11] is one of the most famous pattern matching algorithms
and the first one ensuring the worst-case time linear with the length of the text T . Boyer-
Moore (BM) [3] family algorithms represent backward pattern matching approach. BM
algorithm allows skipping of some characters which leads to lower than linear average time.
There exist also other variations of this algorithm given by Horspool [10] or Sunday [20].
Suffix automaton (often called DAWG – Deterministic Acyclic Word Graph) is the essence of
another algorithm achieving sublinear average time BDM (Backward DAWG Match) [4]. The
suffix automaton of the reversed pattern performs backward searching for the pattern. The
byproduct of the search is always the longest prefix of the pattern occurring at that position
in the text which ensures safe shifting for BDM. Another approach is to use non-deterministic
instead of deterministic automata for searching in the text. So-called bit-parallelism [5, 2]
proved to be a very simple way how to simulate the non-deterministic automaton. It exploits
the parallelism provided by bitwise operations in terms of one computer word. It can
accelerate the operations up to a factor w, where w is the number of bits in the computer
word. Bit-parallelism is particularly efficient for the patterns with size lower than the size of
the computer word m ≤ w. Navarro et al. applied the bit-parallelism to simulate the suffix
automaton and they proposed BNDM algorithm [17] that achieved 20%-25% improvement
in search time in comparison to its deterministic version BDM. Later, Durian et al. [22]
proposed an efficiency improvement of BNDM and Shift-Or algorithm residing in processing
q-grams of the input symbols. BSDM [7] is relatively recent algorithm using suffix automaton
searching for a factor with no repetitions of a condensed pattern. BSDM proved to be very
fast especially for middle-sized and longer patterns. Very recently, the algorithms (e.g., [6, 21])
exploiting SIMD (Single Instruction, Multiple Data) instructions of modern CPUs appeared.
EPSM [6] tabulates all the factors (of a given length) of the searched pattern. The factors
are easy to access using hash table whereas the hash function is provided by CRC SIMD
specialized instruction. The algorithm performs searching for any of the factors (in the
filtering phase) and any of the hits must be confirmed by direct check at the corresponding
position in the text.

We propose a novel pattern matching algorithm, called BAPM (Byte-Aligned Pattern
Matching). Our algorithm is optimized for searching in the encoded genomic sequences
only. It exploits the low alphabet size of the genomic sequences which implies a possibility
to tabulate all factors (of a given length) of the pattern achieving reasonable memory
consumption. Furthermore, a simple encoding scheme for genomic sequences allows to
process the factors as a sequence of one or more bytes. The searching phase of BAPM resides
in shifting over the encoded DNA sequence, reading a sequence of one or more bytes and
comparing its value with the tabulated factors of the searched pattern. When a factor is
found the potential occurrence of the searched pattern must be still confirmed by direct
comparison of the text to the pattern. BAPM works at the level of bytes all the time. Only
the very last step confirming a potential occurrence applies bitwise operations. This leads to
high efficiency in searching for middle-sized and long patterns.

Preprocessing of the input text is another way how to speed up searching in the text.
Suffix trees [23] are one of the fundamental index structures. Suffix array [14] is another basic
index structure that significantly improves demanding space requirements of the suffix trees.

P. Procházka and J. Holub 20:3

Other indexes like FM-index [8] or CSA (Compressed Suffix Array) [9] further improved
the space requirements of the index data structure to be the same or lower than the size of
the input text. A separate branch of research focused on indexing text files with natural
language content. In this field, so-called inverted index [15] is considered as de-facto standard.
However, the inverted index proved its efficiency also when performed on other kind of
data [18]. We supplemented our BAPM with a simple block q-gram inverted index and
experimentally compared its locate speed with state-of-the-art index data structures.

The rest of the paper is organized as follows. We give definitions of some basic notions in
Section 2. The Section 3 is dedicated to definition and detailed description of BAPM algorithm
and necessary data structures. The Section 4 summarizes experimental results performed on
real genomic data. We give the conclusion and some ideas for future work in Section 5.

2 Basic Notions

Let x = x1x2..xn be a string composed of single symbols xi of a finite ordered alphabet Σ.
The length of the string x is n = |x|. The size of the alphabet Σ is σ = |Σ| = O(1). The start
position i and the length j define so-called factor (or substring) denoted by xi,j = xi..xi+j−1.
A factor with i = 0 is called prefix and a factor with i + j − 1 = n is called suffix of the
string x. We denote by ε so-called empty string of length 0. The problem of string pattern
matching is to find all occurrences of a pattern P = p1p2..pm in a text T = t1t2..tn where
both strings are composed of symbols from the same alphabet Σ and m� n. Particularly,
we can distinguish two tasks: (i) count when number of occurrences of P in T is reported
and (ii) locate when exact positions of the occurrences of P in T are reported.

Pattern substitution method [13] is a compression method when q-grams of symbols of the
input text T (i.e., Σq) are substituted with an assigned byte value b where b ∈ {0, 1, . . . , 255}.
The pattern matching on the compressed (encoded) text means to find all occurrences of the
compressed pattern PC in the compressed text TC (both defined over the alphabet of byte
values b ∈ {0, 1, . . . , 255}).

Traditional inverted index consists of two major components: a vocabulary storing all
distinct words occurring in the text T and a set of posting lists storing positions of all
occurrences of a given word in the text T . The vocabulary of a q-gram inverted index [18]
is composed of all possible q-grams of the alphabet Σ, i.e., Σq. For the purpose of block
indexing we split the indexed text into single blocks of a defined fixed size. The posting lists
of a block inverted index then store addresses of the blocks covering the exact positions of
occurrences. The exact positions are determined in the next step when a standard pattern
matching method is performed in terms of the preselected blocks.

In later description of the algorithm, we use C-like syntax for bitwise operations. Par-
ticularly, we use | for bitwise-or, & for bitwise-and, � for shift-left operation and � for
shift-right operation.

3 Byte-Aligned Pattern Matching

Byte-Aligned Pattern Matching algorithm (BAPM) is optimized for searching in the encoded
genomic sequences. It assumes the input alphabet Σ = {A,C,G, T} and a simple substitution
encoding defined as f : Σ4 7→ B where B = {0, 1, . . . , 255} and b ∈ B represents a byte value
that is composed as a concatenation of bit couples given by the single symbols of the 4-gram
s ∈ Σ4 (A→ 00, C → 01, G→ 10, T → 11). The algorithm detects single occurrences within
two steps. In the first step, the algorithm performs searching for all factors of a defined fixed

WABI 2017

20:4 Byte-Aligned Pattern Matching in Encoded Genomic Sequences

... C

00 01 10 11 00 00 11 01 11 11 11 00 00 01

A C G T A A T ... T T A A CT

alignment = 0

... C

00 01 10 11 00 00 11 01 11 11 11 00 00 01

A C G T A A T ... T T A A CT

alignment = 1

... C

00 01 10 11 00 00 11 01 11 11 11 00 00 01

A C G T A A T ... T T A A CT

alignment = 2

... C

00 01 10 11 00 00 11 01 11 11 11 00 00 01

A C G T A A T ... T T A A CT

alignment = 3

0

27

108

127

193

195

240

252

176

dictionary

offset alignment

nB − 2 1

A → 00
C → 01
G → 10
T → 11

0 1

0 0

0 2

0nB − 1

0 3

nB − 2 3

nB − 2 2

...

...

...

...

...

...

...

...

Preprocessing phase Data structure

Figure 1 BAPM: Preprocessing phase. The length of the encoded pattern PC is nB bytes.

length that must be a multiple of 4 (in terms of the input alphabet Σ). This ensures that
each encoded factor is represented as a sequence of one or more bytes. BAPM tabulates all
possible factors of the encoded pattern during the preprocessing phase. It is reasonable to
require the set of all factors to fit into the memory cache. For this reason, the acceptable
lengths of the factors are 4 and 8 bases/symbols (in terms of the input alphabet Σ) which
implies the length of one or two bytes, respectively for the encoded factors. The first step
of the searching is only the filtering of possible occurrences. A potential occurrence must
be always confirmed using direct comparison of the encoded pattern PC with the encoded
text TC at a given position i. We have implemented two versions of BAMP tabulating 4-gram
factors (BAPM4) and 8-gram factors (BAPM8), respectively. We explain all the principles of
the algorithm using the version with 4-gram factors. However, the same principles are valid
for the version with 8-gram factors as well. From now on, BAPM reports to 4-gram version of
the algorithm if not stated other way.

Figure 1 depicts a simple data structure used to store the tabulated encoded factors of
the pattern and it demonstrates also BAPM preprocessing phase when this data structure is
filled. The dictionary data structure is depicted in the right part of the figure and its main
part is an array with 256 entries (corresponding to 256 different byte values). Every entry
can contain a pointer to a list which stores all occurrences of the factor (corresponding to the
entry) in terms of the pattern. Each element of the list is a couple (offset, alignment). The
offset o represents a byte position of the factor in the encoded pattern and it is easy deducible
from its starting position i in the raw pattern o = b i−1

4 c. The alignment a represents a
position of the factor in terms of the byte and it can be computed as a = (i − 1) mod 4.
Suppose constant size of the computer word. Then, it is obvious that the dictionary requires
O(m) space where m is a size of the raw pattern. The space of the array is constant and
the lists contain together m− 3 elements, each of them consuming O(1) space. The offset o
requires O(log m

4), however, we suppose it can be encoded within a single computer word in
all practical cases.

The left part of Figure 1 describes single steps of the preprocessing phase of the algorithm.
For every possible alignment a ∈ {0, 1, 2, 3}, consecutive byte values of the shifted encoded
pattern PC are processed. The value of the byte determines its position in the dictionary.

P. Procházka and J. Holub 20:5

For every byte, its offset and alignment are stored to the corresponding list pointed from the
dictionary. The remaining bases at the end of the shifted pattern that do not compose a
complete byte are omitted (e.g., the suffix AAC for alignment = 1 in Figure 1).

Suppose the length of the raw pattern m = 128 bases which implies 32 bytes for the
encoded pattern PC . BAPM4 needs to store 128 − 3 = 125 factors (elements of the lists).
Suppose a simple byte code used to store the offset o and the alignment a for every factor.
Only two bytes are consumed for every pair (o, a) and still all the information is encoded at
the level of bytes. Thus, for BAPM4 the total space is (128− 3)× 2 + 256 = 506 bytes, plus
some overhead needed to implement the lists. Still, the data structure easily fits into 2 kiB
of memory and it can be kept in the top level of the computer cache. For BAPM8, we can
estimate the needed space as (128− 7)× 2 + 256× 256 = 65 778 bytes, plus the overhead for
the lists. This is still acceptable space ensuring storing the data structure in the fast levels
of the computer memory.

Algorithm 1 describes preprocessing and searching phase of BAPM4. The function encode
is called in the preprocessing phase. The function performs the simple substitution encoding
described above. Its parameters are: the text to be encoded; the starting index for encoding;
and the number of bases/symbols that need to be encoded. The function returns desired
encoded factor of the text. The function buildDictionary is responsible for constituting
dictionary D and storing the shifted versions of the pattern in the array B. The while
cycle (line 4) iterates over all possible alignments a ∈ {0, 1, 2, 3}. For every alignment, the
number of bases/symbols that constitute the longest byte sequence starting at i is computed
(line 5) and the corresponding encoded pattern is obtained (line 6). The encoded pattern is
stored for the given alignment (line 7) and later is used for direct comparison of bytes (the
encoded text with the encoded pattern). Next while cycle (line 9) iterates over all bytes of
the encoded aligned pattern and it ensures storing the couples (offset, alignment) to their
corresponding lists (line 12).

The function buildMask is another part of the preprocessing. It generates all necessary
masks possibly needed in the last step of the comparison (a prefix and/or a suffix of the
encoded pattern with the corresponding part of the encoded text). Since the prefix and the
suffix are smaller than one byte the masks are necessary to minimize the bitwise operations
and therefore also the needed time. The function stores the masks in single variables. The
variable pref stores a prefix of the encoded pattern (smaller than one byte) for all possible
alignments a ∈ {0, 1, 2, 3}. The variable suf stores a suffix of the encoded pattern (smaller
than one byte) for all possible alignments a ∈ {0, 1, 2, 3}. The examples of the stored prefixes
and suffixes can be seen in Figure 1 as the symbols preceding/following the red rectangles.
Similarly, the variables prefMask and sufMask store the masks (used for bitwise-and operation
with the corresponding byte in the encoded text) needed to compare a prefix or the suffix,
respectively of the encoded pattern. The while cycle (line 22) iterates over only three
possible alignments. The pref value is stored for the alignments a ∈ {1, 2, 3} (starting from
the value 3). The prefix for the alignment a = 0 is an empty string ε and therefore it is not
stored. The pointer to the array of the suffix values suf is shifted by the value la and it
starts from the position (la+ i) mod 4. In every step of the cycle, the algorithm: (i) stores
the corresponding prefix value to pref array and the corresponding prefix mask to prefMask
array; (ii) stores the corresponding suffix value to suf array and the corresponding suffix
mask to sufMask array; (iii) shifts auxiliary variables prefM and prefB two bits right; (iv)
shifts auxiliary variables sufM and sufB two bits left.

The function search represents the main function of BAPM. After the preprocessing of
the searched pattern (lines 31 and 32) the algorithm states a safe shift as the number of

WABI 2017

20:6 Byte-Aligned Pattern Matching in Encoded Genomic Sequences

Algorithm 1 BAPM4 preprocessing and searching phase
1: function buildDictionary(P , m)
2: D ← ∅; B ← ∅;
3: i← 0;
4: while i ≤ 3 do
5: b← b(m− i)/4c × 4;
6: E ← encode(P, i + 1, b);
7: Bi ← E;
8: j ← 1;
9: while j ≤ b(m− i)/4c do

10: if DEj
= ∅ then

11: DEj
← create a new list storing offsets and alignments;

12: add a couple of offset and alignment (j − 1, i) to the list DEj
;

13: j ← j + 1;
14: i← i + 1;

15: function buildMask(P , m)
16: pref ← ∅; prefMask ← ∅; prefM ← 0x3f;
17: suf ← ∅; sufMask ← ∅; sufM ← 0xfc;
18: prefB ← encode(P, 1, 4) � 2;
19: sufB ← encode(P, m− 4, 4) � 2;
20: la ← m mod 4;
21: i← 1;
22: while i ≤ 3 do
23: prefMask4−i ← prefM ;
24: sufMask(la+i) mod 4 ← sufM ;
25: pref 4−i ← prefB;
26: suf (la+i) mod 4 ← sufB;
27: prefM ← prefM � 2; prefB ← prefB � 2;
28: sufM ← sufM � 2; sufB ← sufB � 2;
29: i← i + 1;

30: function search(T , n, P , m)
31: buildDictionary(P, m);
32: buildMask(P, m);
33: shift ← bm/4c − 1;
34: i← shift;
35: while i ≤ n do
36: if DTi

6= ∅ then
37: for each couple of offset and alignment (o, a) ∈ DTi

do
38: r ← compare all bytes starting from Ti−o with Ba;
39: if r = 0 & a 6= 0 then
40: r ← compare (Ti−o−1 & prefMaska) with pref a;
41: if r = 0 & a 6= la then
42: r ← compare (Ti−o+shift & sufMaska) with suf a;
43: if r = 0 then
44: report an occurrence at position 4× (i− o)− a + 1;
45: i← i + shift;

whole bytes of the encoded pattern minus one (line 33). The while cycle (line 35) traverses
the encoded text T of length n. It always reads a byte value Ti and the corresponding entry
in the dictionary DTi is checked (line 36). If the dictionary entry DTi is empty the algorithm
shifts (line 45) and it continues at the next position. Otherwise, the algorithm has to traverse
over all couples (o, a) stored in the corresponding list and perform three-level comparison
for every couple. The first level is comparison of the bytes in the encoded text (starting
at the position given by the offset o) with the bytes of the encoded pattern Ba according
to the shift/alignment a (see line 38). The second level (see line 40) is comparison of the
prefix and it is applied only if the first level was successful. The third level (see line 42) is

P. Procházka and J. Holub 20:7

00 01 10 11 00 00 11 11 01 11 00 10 11 10 01 ...

A C G T A A T ...

alignment = 0

A → 00
C → 01
G → 10
T → 11

T C T A G T G C

00 01 10 11 00 00 11 11 01 11 00 10 11 10 01 ...

A C G T A A T ...

alignment = 1

T C T A G T G C

00 01 10 11 00 00 11 11 01 11 00 10 11 10 01 ...

A C G T A A T ...

alignment = 2

T C T A G T G C

00 01 10 11 00 00 11 11 01 11 00 10 11 10 01 ...

A C G T A A T ...

alignment = 3

T C T A G T G C

3 954

6 927

15 819

27 709

45 303

50 140

56 505

63 278

index dictionary

0000 0000 0001 0000 ...

posting lists

1000 0000 0001 0001 ...

0000 0000 1000 0000 ...

0000 0010 0000 0000 ...

0000 0110 0001 1000 ...

0010 0000 0000 0000 ...

0000 0000 0000 0000 ...

1000 0000 0001 0000 ...

&

&

&

&

...

...

...

...

|

Figure 2 Block q-gram inverted index. Single colors (red, green, blue, yellow) represent the
alignments a ∈ {0, 1, 2, 3} of the pattern.

comparison of the suffix and it is applied only if the second level was successful. If all levels
of the comparison are successful the algorithm reports a new occurrence at the corresponding
position 4× (i− o)− a+ 1 in the raw text (line 44).

The preprocessing phase of the algorithm needs clearly O(m) time at most. In the
function buildDictionary, the algorithm consumes O(m) time to perform encoding (line 6)
and O(m

4) time to perform the while cycle (line 9). Other steps of the function are performed
in the constant time. The function buildMask contains all steps that are performed in the
constant time. The worst-case time complexity for the searching phase of the algorithm is
given by the while cycle (line 35) traversing the text and the for each cycle traversing the
list of couples (line 37). Thus, the upper bound is O(nm). However, the average time is
lower than linear for real genomic data. According to our tests on real data, the most of
the factors (especially for BAPM8) occur only once in the pattern and therefore majority of
the lists pointed from the dictionary D contain only one element. Furthermore, especially
for longer patterns where the size of the pattern is significantly greater than the size of the

WABI 2017

20:8 Byte-Aligned Pattern Matching in Encoded Genomic Sequences

tabulated factors, the algorithm jumps over majority of the processed text and so achieves
lower than linear time. We can conclude that the worst-case time of the algorithm is O(nm),
however the average expected time is lower than linear O(n).

The next logical step in improving efficiency of the searching is to add an index data
structure. Navarro et al. [16] proved the efficiency of the block inverted index in combination
with sequential scanning of the encoded text. BAPM works with the encoded q-grams (q ∈
{4, 8}) so we decided to supply it with the block q-gram inverted index. The q = 8 proved to
be optimal in our experiments. The 8-gram factors are encoded into two-byte long values
(short data type in C) which means that they are easily addressed and manipulated. Figure 2
gives a brief description of generating and applying the index. The index dictionary stores
all encoded factors of all pattern alignments a ∈ {0, 1, 2, 3}. Every engaged dictionary entry
points to a posting list implemented as a bitmap. Single bits correspond to blocks in the
encoded text and are set to one when the q-gram occurs in the block.

Searching using the inverted index has the following steps. The pattern has to be encoded.
For each alignment a ∈ {0, 1, 2, 3} (represented by different colors in Figure 2) all two-byte
long values are retrieved. The posting lists of all retrieved values (of a given alignment)
are processed and bitwise-and operation is applied. Next, bitwise-or operation is applied
among intermediate results of single alignments. Finally, the blocks of the encoded text
corresponding to the set bits contain a possible occurrences of the pattern and need to be
processed using BAPM to confirm the occurrences and report the exact positions in the text.

4 Experiments

We present experimental results that give a detailed comparison of our newly presented
algorithms BAPM4 and BAPM8 with the state-of-the-art best algorithms. We considered all
known algorithms focused especially on searching middle-sized and long patterns. The essence
of BAPM (its byte orientation and its principle of tabulating all factors) predetermines this
algorithm to search for patterns with length m ≥ 8 bases. In particular, we compared BAPM4
and BAPM8 with the following algorithms (all of them from SMART library2):

Exact Packed String Matching (EPSM) [7],
Shift-Or algorithm (SO) [1],
Backward-SRN-DAWG-Matching (BSDM4 and BSDM8) [6],
Simplified BNDM with q-grams (SBNDMQ4 and SBNDMQ8) [22].

All the tested algorithms were implemented in C programming language3. We carried
out our tests on Intel® CoreTM i7-4702MQ 2.20 GHz, 8 GB RAM. We used compiler gcc
version 5.4.0 with compiler optimization -O3. The tested patterns were chosen randomly
from the input text and their length m was ranging from 12 to 256. All experiments were run
in loop 1 000 times and we report the mean of the running time in milliseconds. All reported
times represent measured user time + sys time and they always include any necessary
preprocessing. For evaluating the algorithms, we used Ecoli.txt file from the Canterbury
corpus4 and human100MB.txt file that contains the sequence of human chromosome 15 from
the project Ensembl5.

2 http://www.dmi.unict.it/~faro/smart/
3 BAPM4 and BAPM8 implementation is available at http://www.stringology.org/bapm/bapm.zip
4 http://corpus.canterbury.ac.nz/descriptions/large/E.coli.html
5 http://www.ensembl.org/info/data/ftp/index.html

http://www.dmi.unict.it/~faro/smart/
http://www.stringology.org/bapm/bapm.zip
http://corpus.canterbury.ac.nz/descriptions/large/E.coli.html
http://www.ensembl.org/info/data/ftp/index.html

P. Procházka and J. Holub 20:9

Table 1 Ecoli.txt: Locate times in milliseconds. The best results are bolded.

m BAPM4 BAPM8 EPSM SO BSDM4 BSDM8 SBNDMQ4 SBNDMQ8
12 1.032 1.188 1.031 4.015 1.031 1.984 1.156 2.953
16 0.813 0.609 1.468 4.000 0.843 1.125 0.906 1.625
20 0.672 0.407 1.515 4.015 0.734 0.812 0.765 1.125
24 0.609 0.328 1.312 4.015 0.687 0.640 0.671 0.875
28 0.562 0.265 1.328 4.015 0.656 0.531 0.625 0.703
32 0.515 0.219 1.265 4.000 0.625 0.468 0.578 0.593
36 0.546 0.203 1.265 3.062 0.609 0.406 0.546 0.625
40 0.515 0.187 1.250 3.093 0.593 0.375 0.546 0.609
44 0.500 0.172 1.250 3.078 0.593 0.359 0.546 0.609
48 0.484 0.156 1.234 3.000 0.563 0.328 0.546 0.625
52 0.469 0.141 1.234 3.046 0.562 0.312 0.546 0.625
56 0.454 0.140 1.218 3.078 0.562 0.296 0.546 0.625
60 0.454 0.125 1.218 3.093 0.562 0.296 0.546 0.625
64 0.453 0.124 1.203 3.015 0.546 0.281 0.546 0.609
96 0.422 0.102 1.203 3.062 0.531 0.250 0.546 0.609

128 0.391 0.094 1.172 3.015 0.531 0.234 0.546 0.609
160 0.375 0.092 1.171 3.046 0.515 0.218 0.546 0.625
192 0.344 0.092 1.155 3.125 0.515 0.218 0.546 0.625
224 0.328 0.095 1.155 3.015 0.515 0.218 0.562 0.609
256 0.312 0.098 − − − − − −

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 50 100 150 200 250

L
o

ca
te

 t
im

e
 [

m
se

c]

Pattern length

BAPM4
BAPM8

EPSM
SO

BSDM4
BSDM8

SBNDMQ4
SBNDMQ8

Figure 3 Ecoli.txt: Locate time depending on the length of the searched pattern m.

Table 1 and Figure 3 report the results of single algorithms when performed on the file
Ecoli.txt. Our BAPM8 algorithm achieved the best locate time for almost all pattern lengths.
For the shortest pattern m = 12, the algorithms EPSM and BSDM4 overcame all the other
competitors. The safe shift distance is limited for BAPM. It is given as the number of complete
bytes of the encoded pattern minus one. In practise, it means shifting by b 12

4 c − 1 = 2 bytes
for a pattern of length m = 12 and thus omitting only 50 % of the input text.

At the same time, BAPM4 achieved better result than BAPM8 for m = 12. The tabulated
encoded factors of length one byte are sufficient for efficient filtration in the first step of
searching. The higher memory consumption of BAPM8 is not balanced by significantly more

WABI 2017

20:10 Byte-Aligned Pattern Matching in Encoded Genomic Sequences

Table 2 human100MB.txt: Locate times in milliseconds. The best results are bolded.

m BAPM4 BAPM8 EPSM SO BSDM4 BSDM8 SBNDMQ4 SBNDMQ8
12 21.250 22.030 22.031 79.531 21.375 38.578 24.796 59.234
16 16.560 11.250 31.562 79.547 17.890 22.766 19.531 33.656
20 14.370 7.500 32.031 79.546 16.171 16.375 16.688 23.906
24 12.650 5.940 30.171 79.547 15.047 12.828 15.141 18.312
28 11.880 4.680 30.421 79.844 14.266 10.891 14.031 15.343
32 11.100 3.900 29.876 79.562 13.969 9.875 13.250 12.828
36 11.720 3.440 29.938 59.421 13.641 9.296 12.796 13.359
40 10.940 3.130 29.734 59.437 13.343 8.828 12.812 13.359
44 10.780 2.810 29.672 59.453 13.141 8.671 12.828 13.375
48 10.620 2.650 29.922 59.422 13.000 8.562 12.750 13.375
52 10.470 2.500 29.875 59.438 12.859 8.516 12.766 13.343
56 10.310 2.340 30.296 59.453 12.672 8.468 12.781 13.360
60 9.850 2.340 30.250 59.438 12.546 8.391 12.750 13.359
64 9.840 2.190 30.219 59.453 12.500 8.375 12.796 13.360
96 9.060 2.030 29.734 59.453 12.093 8.343 12.750 13.328

128 8.590 2.030 29.078 59.438 11.860 8.375 12.812 13.359
160 7.960 2.030 28.266 59.453 11.781 8.390 12.781 13.313
192 7.500 2.030 27.703 59.422 11.656 8.391 12.781 13.343
224 7.030 2.030 26.938 59.453 11.578 8.406 12.828 13.328
256 6.560 2.030 − − − − − −

Table 3 Block inverted index: Locate time per occurrence in milliseconds (Ecoli.txt,
human100MB).

Ecoli.txt human100MB
m BAPM8 LZ77 RLCSA BAPM8 LZ77 RLCSA
12 0.717 0.077 0.156 0.087 0.096 0.175
16 0.507 0.099 0.159 0.072 0.092 0.159
20 0.287 0.127 0.170 0.104 0.092 0.155
24 0.177 0.158 0.173 0.126 0.080 0.153
28 0.115 0.177 0.177 0.127 0.074 0.126
32 0.087 0.176 0.167 0.117 0.078 0.129
36 0.056 0.195 0.180 0.109 0.101 0.134
40 0.044 0.251 0.192 0.088 0.088 0.121
44 0.043 0.271 0.181 0.070 0.111 0.123
48 0.029 0.262 0.175 0.074 0.108 0.123
52 0.030 0.283 0.175 0.055 0.126 0.127
56 0.031 0.273 0.196 0.058 0.189 0.139
60 0.044 0.301 0.195 0.048 0.187 0.136
64 0.044 0.329 0.194 0.044 0.216 0.137
96 0.044 0.460 0.222 0.035 0.550 0.200

128 0.043 0.606 0.251 0.042 0.799 0.240
160 0.044 0.775 0.268 0.047 1.215 0.295
192 0.060 0.958 0.302 0.053 1.701 0.367
224 0.060 1.108 0.329 0.060 2.021 0.401
256 0.059 1.553 0.350 0.057 2.226 0.436

efficient filtration and the search speed of BAPM8 is lower for m = 12. The more efficient
filtration outweighs for the longer patterns where m ≥ 16. Similar results were achieved also
on the file human100MB.txt (see Table 2 and Figure 4). BAPM4 achieved the best result for
m = 12 and BAPM8 proved to be superior for m ≥ 16. For m = 224, BAPM8 is more than four
times faster than the second fastest algorithm BSDM8.

We present the comparison of different indexing methods in Figure 5. Our BAPM8 works
together with block q-gram inverted index. We performed the experiments with q = 8 and
the size of the block 102 400 bytes. BAPM8 (together with the inverted index) was compared
with LZ77 self-index [12] and RLCSA [19]. The presented results prove that block q-gram

P. Procházka and J. Holub 20:11

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250

L
o

ca
te

 t
im

e
 [

m
se

c]

Pattern length

BAPM4
BAPM8

EPSM
SO

BSDM4
BSDM8

SBNDMQ4
SBNDMQ8

Figure 4 human100MB.txt: Locate time depending on the length of the searched pattern m.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1 2 3 4 5 6 7 8

L
o

c
a

te
 t

im
e

 [
m

s
e

c
/o

c
c
]

Size [MiB]

Ecoli.txt

BAPM8
LZ77

RLCSA

 0

 0.5

 1

 1.5

 2

 20 40 60 80 100 120

L
o

c
a

te
 t

im
e

 [
m

s
e

c
/o

c
c
]

Size [MiB]

human100MB.txt

BAPM8
LZ77

RLCSA

Figure 5 Comparison BAPM8 supplemented with the block q-gram inverted index with other
indexing methods. Minimum, average and maximum locate time per occurrence for different patterns
(m ranging from 12 to 256) are reported. The horizontal axis presents the spaces consumption of
single methods in MiB.

inverted index together with BAPM8 represent a very good alternative to the other indexing
methods, especially for sequences obtained using so-called De Novo Sequencing when LZ77
self-index and RLCSA cannot exploit their ability to compress highly similar sequences.

5 Conclusion and Future work

We presented a novel pattern matching algorithm, named BAPM (Byte-Aligned Pattern
Matching), optimized for searching in encoded genomic sequences. The presented algorithm
is based on two crucial properties: (i) processing at byte level of the input text; (ii) tabulating
all factors of the pattern and searching for them in the filtration step. These two principles
provide extraordinary efficiency of searching that was proved on real genomic data. We
demonstrated that BAPM together with block q-gram inverted index can overcome other
indexing methods and achieve locate time in the order of tens of microseconds per one
occurrence.

WABI 2017

20:12 Byte-Aligned Pattern Matching in Encoded Genomic Sequences

In our future work, we aim to extend BAPM to be applicable for texts of larger alphabets
(e.g., protein sequences, natural language texts). Furthermore, we intend to present a version
of the algorithm for the degenerate strings (e.g., genomic sequences composed of symbols of
IUPAC alphabet6) with its possible applications like searching for so-called Clustered-Clumps.
The solution of this problem consists in an efficient data structure allowing the access to the
sparse alphabet of the pattern factors in constant time.

References

1 Ricardo Baeza-Yates and Gaston H. Gonnet. A new approach to text searching. Commun.
ACM, 35(10):74–82, October 1992.

2 Ricardo A. Baeza-yates. Text retrieval: Theory and practice. In In 12th IFIP World
Computer Congress, volume I, pages 465–476. Elsevier Science, 1992.

3 Robert S. Boyer and J. Strother Moore. A fast string searching algorithm. Commun. ACM,
20(10):762–772, October 1977.

4 Maxime Crochemore and Wojciech Rytter. Text Algorithms. Oxford University Press, Inc.,
New York, NY, USA, 1994.

5 B. Dömölki. An algorithm for syntactical analysis. Computational Linguistics, 3:29–46,
1964. Hungarian Academy of Science, Budapest.

6 Simone Faro and M. Oğuzhan Külekci. Fast and flexible packed string matching. J. of
Discrete Algorithms, 28(C):61–72, September 2014.

7 Simone Faro and Thierry Lecroq. A fast suffix automata based algorithm for exact online
string matching. In Nelma Moreira and Rogério Reis, editors, Implementation and Applica-
tion of Automata: 17th International Conference, CIAA 2012, Porto, Portugal, July 17-20,
2012. Proceedings, pages 149–158. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

8 P. Ferragina and G. Manzini. Opportunistic data structures with applications. In Proceed-
ings of the 41st Annual Symposium on Foundations of Computer Science, FOCS’00, pages
390–398, Washington, DC, USA, 2000. IEEE Computer Society.

9 Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. In Proc. of the Thirty-second Annual
ACM Symposium on Theory of Computing, pages 397–406, New York, NY, USA, 2000.

10 R. Nigel Horspool. Practical fast searching in strings. Software: Practice and Experience,
10(6):501–506, 1980.

11 Donald E. Knuth, James H. Morris, and Vaughan R. Pratt. Fast Pattern Matching in
Strings. SIAM Journal on Computing, 6(2):323–350, March 1977.

12 Sebastian Kreft and Gonzalo Navarro. LZ77-like compression with fast random access. In
Proceedings of the 2010 Data Compression Conference, DCC’10, pages 239–248, Washing-
ton, DC, USA, 2010. IEEE Computer Society.

13 Udi Manber. A text compression scheme that allows fast searching directly in the com-
pressed file. ACM Trans. Inf. Syst., 15(2):124–136, April 1997.

14 Udi Manber and Gene Myers. Suffix arrays: A new method for on-line string searches. In
Proceedings of the First Annual ACM-SIAM Symposium on Disc. Algorithms, SODA’90,
pages 319–327, Philadelphia, USA, 1990. Society for Industrial and Applied Mathematics.

15 Udi Manber and Sun Wu. Glimpse: A tool to search through entire file systems. In
Proceedings of the USENIX Winter 1994 Technical Conference on USENIX Winter 1994
Technical Conference, WTEC’94, page 4, Berkeley, CA, USA, 1994. USENIX Association.

6 https://iupac.org/

https://iupac.org/

P. Procházka and J. Holub 20:13

16 Gonzalo Navarro, Edleno Silva de Moura, Marden S. Neubert, Nivio Ziviani, and Ricardo A.
Baeza-Yates. Adding compression to block addressing inverted indexes. Inf. Retr., 3(1):49–
77, 2000. doi:10.1023/A:1009934302807.

17 Gonzalo Navarro and Mathieu Raffinot. A bit-parallel approach to suffix automata: Fast
extended string matching. In Proceedings of the 9th Annual Symposium on Combinatorial
Pattern Matching, CPM’98, pages 14–33, London, UK, UK, 1998. Springer-Verlag.

18 Simon J. Puglisi, W.F. Smyth, and Andrew Turpin. Inverted files versus suffix arrays for
locating patterns in primary memory. In Fabio Crestani, Paolo Ferragina, and Mark Sander-
son, editors, String Processing and Information Retrieval: 13th International Conference,
SPIRE 2006, Glasgow, UK, October 11-13, 2006. Proceedings, pages 122–133. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2006.

19 J. Sirén, N. Välimäki, V. Mäkinen, and G. Navarro. Run-length compressed indexes are
superior for highly repetitive sequence collections. In Proc. of the 15th International Sym-
posium on String Processing and Information Retrieval, SPIRE’08, pages 164–175, Berlin,
Heidelberg, 2009. Springer-Verlag.

20 Daniel M. Sunday. A very fast substring search algorithm. Commun. ACM, 33(8):132–142,
August 1990.

21 J. Tarhio, J. Holub, and E. Giaquinta. Technology beats algorithms (in exact string match-
ing). CoRR, abs/1612.01506, 2016. URL: http://arxiv.org/abs/1612.01506.

22 Branislav Ďurian, Jan Holub, Hannu Peltola, and Jorma Tarhio. Tuning bndm with q-
grams. In Proceedings of the Meeting on Algorithm Engineering & Expermiments, pages
29–37, Philadelphia, USA, 2009. Society for Industrial and Applied Mathematics.

23 P. Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching
and Automata Theory (swat 1973), pages 1–11, Oct 1973.

WABI 2017

http://dx.doi.org/10.1023/A:1009934302807
http://arxiv.org/abs/1612.01506

Analysis of Min-Hashing for Variant Tolerant
DNA Read Mapping∗

Jens Quedenfeld1 and Sven Rahmann2

1 Chair of Theoretical Computer Science, Technical University of Munich,
Munich, Germany; and
Bioinformatics, Computer Science XI, TU Dortmund, Dortmund, Germany
jens.quedenfeld@in.tum.de

2 Genome Informatics, Institute of Human Genetics, University Hospital Essen,
University of Duisburg-Essen, Essen, Germany; and
Bioinformatics, Computer Science XI, TU Dortmund, Dortmund, Germany
Sven.Rahmann@uni-due.de

Abstract
DNA read mapping has become a ubiquitous task in bioinformatics. New technologies provide
ever longer DNA reads (several thousand basepairs), although at comparatively high error rates
(up to 15%), and the reference genome is increasingly not considered as a simple string over
ACGT anymore, but as a complex object containing known genetic variants in the population.
Conventional indexes based on exact seed matches, in particular the suffix array based FM index,
struggle with these changing conditions, so other methods are being considered, and one such
alternative is locality sensitive hashing.

Here we examine the question whether including single nucleotide polymorphisms (SNPs) in
a min-hashing index is beneficial. The answer depends on the population frequency of the SNP,
and we analyze several models (from simple to complex) that provide precise answers to this
question under various assumptions. Our results also provide sensitivity and specificity values
for min-hashing based read mappers and may be used to understand dependencies between the
parameters of such methods. We hope that this article will provide a theoretical foundation for
a new generation of read mappers.

1998 ACM Subject Classification F.2.2 Pattern Matching

Keywords and phrases read mapping, min-hashing, variant, SNP, analysis of algorithms

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.21

1 Introduction

In bioinformatics, DNA read mapping has become a basic first step of many sequence analysis
tasks. Formally, one is given millions of short DNA fragments (“reads”), i.e., strings of
typical length 100–300 over the DNA alphabet Σ := {A,C,G,T}, and a reference genome,
which is a long DNA sequence (approx. 3 · 109 basepairs for the human genome). For each
read, one seeks the (ideally unique) interval of the reference, where the read (or its reverse
complement) matches best, i.e., with smallest edit distance. Leaving aside problems such as
repetitive regions in the genome, structural rearrangements, split reads, etc., read mapping
is thus simply a large-scale approximate string matching problem.

∗ This work has been supported by the DFG, Collaborative Research Center SFB 876, project C1 (http:
//sfb876.tu-dortmund.de/).

© Jens Quedenfeld and Sven Rahmann;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 21; pp. 21:1–21:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.WABI.2017.21
http://sfb876.tu-dortmund.de/
http://sfb876.tu-dortmund.de/
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

21:2 Analysis of Min-Hashing for Variant Tolerant DNA Read Mapping

The most efficient methods today use an index data structure to quickly locate long
maximal exact matches (MEMs) between each read and reference. These “seed” matches
are then extended to full alignments for verification. Several popular read mappers use the
FM index (a compressed representation of a suffix array based on the Burrows Wheeler
Transform [5]) because of its small space requirements. Filtering with long MEMs works
efficiently if the number of differences between read and reference is small, but breaks down
for higher error rates, as one obtains no specific long MEMs, but many unspecific short ones.

Two trends are currently changing the landscape of read mappers. First, there are new
technologies on the market that output much longer reads (e.g., up to 60 000 basepairs),
but at higher error rates (10%–15%). Second, it is becoming more accepted that the human
reference genome is not well represented by a single string over Σ. Each person (even each
single cell) has its own individual genome, and the field of pan-genomics is exploring how to
best represent the entirety of known genomic information of a species [11]. Most (but not
all) of the genetic variation between individuals arises from single nucleotide polymorphisms
(SNPs), which are single positions in the genome at which there exist at least two different
basepair choices in the population. Other important types of variations are variable-length
insertions and deletions and rearrangements of genomic regions. As index data structures
based on suffix arrays struggle with these changing conditions, alternative types of indexes
are being explored.

One such alternative indexing method is by locality sensitive hashing on q-gram sets
of genomic windows. This approach has been already used for the genome assembly tools
MHAP [1] and Minimap [8] as well as for the read mappers BALAUR [9] and MashMap [6].
The hashing functions can be constructed to take variants into account (see Section 2). We
have recently designed and implemented a prototype of a variant tolerant read mapper called
VATRAM [10] based on min-hashing [2]. During the design, we noted the following question,
which we call the variant indexing decision problem: Given a reference genome (string) and
a variant with its frequency p in the population, should the variant be included in the index
or not? Inclusion of a variant will allow to match reads containing the variant more reliably
to the correct region, at the expense of a lower sensitivity of the region for reads that do
not contain the variant. The answer therefore depends of the population frequency of the
variant.

The purpose of this article is to present a detailed analysis of the variant indexing decision
problem for a min-hashing index. In Section 2, we present an overview of read mapping based
on min-hashing. We then analyze the variant indexing problem (Section 3), moving from a
simple model to a general one, yielding widely applicable results and a limit theorem. Note
that our results hold not only for VATRAM, but also for other window-based min-hashing
read mappers such as BALAUR [9].

2 Background: Read mapping with min-hashing

Let Q be a set of basic objects (here, the set of all 4q DNA q-grams). Locality sensitive
hashing in general (and min-hashing as a special case) is a method that assigns an integer
number (hash value) h(Q) to each object set Q ⊂ Q, such that the probability that two
sets Q,Q′ obtain the same hash value h(Q) = h(Q′) depends on a well-defined similarity
measure if the hash function h is chosen randomly among a well-defined collection of hash
functions.

Min-hashing on q-grams in particular works as follows [2]. We identify each q-gram with
its base-4 numerical representation after mapping A 7→0, C7→1, G7→2, T7→3. This provides a

J. Quedenfeld and S. Rahmann 21:3

natural (lexicographic) order among the q-grams. Let π be a permutation on Q; it induces a
different order on Q. For a q-gram set Q ⊂ Q, let minπ(Q) be the (numerical representation
of the) smallest q-gram in Q according to π. Min-hashing consists of choosing a random
permutation π and using h(Q) := minπ(Q). The following lemma states that min-hashing
is locality sensitive hashing using the Jaccard coefficient as similarity value.

I Lemma 1 (Min-hash property). Given two sets Q ⊂ Q, Q′ ⊂ Q and the set Π of all
permutations on Q, let π ∈ Π be a random permutation. For any Q ⊂ Q, define h(Q) :=
minπ(Q). The probability that Q and Q′ are hashed to the same value h(Q) = h(Q′) is equal
to the Jaccard coefficient of Q and Q′,

P (h(Q) = h(Q′)) = |Q ∩Q
′|

|Q ∪Q′|
. (1)

A proof can be found in [2].
The read mapper VATRAM [10] uses min-hashing to create an index on a given reference

genome. The genome is divided into overlapping windows of length w; here w should be
slightly larger than the typical length n of the reads (e.g. w = 1.4n [10]). The distance
between two window start positions is denoted by o; we assume o < w, so the windows
overlap. (For long reads, the reads may be divided into overlapping windows as well.) Let
a = (ai) be the sequence of genome window sequences. From each window ai, we obtain the
q-grams (substrings of length q) it contains, and we denote the resulting q-gram set by Qi.
We then apply min-hashing to each window and to each read (or read window), choosing
the same permutation π. The hash value of a window or read is also called its signature
value (with respect to π). If a read’s signature value is equal to h(Qi), there is a certain
probability that the read originates from window ai. However, this agreement may also just
be a random hit. Therefore, several different independent permutations are used to improve
sensitivity and specificity. If the number of common signature values between the read and
window ai is higher than expected by chance, the probability that the read originates from
that window is high.

The index data structure efficiently maps signature values to genome windows and may
itself be implemented using hashing. Note that the memory usage for the index grows
linearly with the number of permutations.

In practice, choosing a random permutation among all (4q)! ones is impossible even for
small q due to limitations of pseudo-random number generation with finite memory. Fur-
thermore it is important that minπ(Q) can be computed efficiently. Therefore in VATRAM
both q-grams and permutations are represented by 2q-bit vectors. Applying a permutation
is simulated by combining the q-gram bit-vector and the permutation bit-vector with an
exclusive or (XOR) operation. The signature value is the smallest of the resulting values,

hπ(Q) = min{x⊕ π | x ∈ Q}. (2)

Using 2q random bits and the XOR technique instead of a true random permutation means
that the pre-conditions of Lemma 1 do not hold and the min-hash property may be violated
[3]. However, empirical studies have shown that in practice the XOR technique approximates
the desired property well [4].

VATRAM supports single nucleotide polymorphisms where one nucleotide is replaced by
another. For each known variant in window ai of the reference genome, we may add not
only the original reference q-grams to set Qi, but also all q-grams resulting variant. In this
case Qi has a larger cardinality than sets from windows without variants.

WABI 2017

21:4 Analysis of Min-Hashing for Variant Tolerant DNA Read Mapping

3 Analysis of variant-tolerant min-hashing

Adding q-grams resulting from a variant increases the number of common q-grams between
the reference window and a read containing the variant, so the collision probability that both
are mapped to the same signature value becomes larger. However, for reads not containing
the variant, adding new q-grams increases the size of the union in Eq. (1), so the collision
probability is reduced.

The variant indexing decision problem asks how frequently a variant must occur in the
population, such that adding the variant is beneficial on average. We provide an answer to
this question under certain assumptions in each subsection. These assumptions start out
strong (and unrealistic) and are successively relaxed; this organization should allow for an
accessible exposition.

We always assume that the variant under consideration has a population frequency of
0 < p ≤ 0.5, i.e., the variant appears with a probability of p in a random read. (If p > 0.5,
we would define the variant as reference and vice versa.) We use the following notation.

The window length is w; the number of q-grams in the window is v = w − q + 1.
The read length is n; the number of q-grams in the read is m = n− q + 1.

3.1 Basic model
Our initial assumptions are as follows.

The entire read is contained in a single reference window ai.
There is a single SNP inside the window.
The SNP occurs “far” from the ends of the read and window, such that exactly q of the
q-grams are affected.
There are no sequencing errors in the read, i.e., all other positions correspond exactly to
the reference.
Each q-gram in Qi (including those stemming from the variant) occurs only once in
window ai.
Only a single signature value is used.

We compare two strategies: In the Default strategy we only use the original nucleotides
in the reference genome to build the index. In the SNP strategy we use both the original
nucleotides and those containing the variant. For both cases, the collision probabilities
PDefault and PSNP are easily calculated.

I Lemma 2. Under the above assumptions, with v = w − q + 1 and m = n− q + 1,

PDefault = (1− p) ·m/v + p · (m− q)/(v + q), (3)
PSNP = m/(v + q). (4)

Adding the variant to the index is beneficial if and only if

p > m/(m+ v). (5)

Proof. All collision probabilities follow from calculating the cardinalities of intersections
and unions of q-gram sets and applying Eq. (1).

For the Default strategy, with a probability of 1 − p (variant does not occur in the
read) all q-grams of the read belong to the window’s q-gram set, so the collision probability
is m/v. With probability p (the variant occurs in the read), the intersection’s size is reduced
by q and the union’s size is enlarged by q, leading to a collision probability of (m−q)/(v+q).

J. Quedenfeld and S. Rahmann 21:5

In the SNP strategy, the intersection size is always m and the union size is always v+ q.
Adding the variant is beneficial if and only if PSNP > PDefault, which is equivalent to

inequality (5) by the next lemma, whose proof is elementary algebra. J

I Lemma 3. If the condition

PSNP > PDefault is equivalent to s > (1− p) · d0 + p · d1 (6)

for some constants s, d0, d1 independent of p with d0 > s > 0 and d0 > d1 > 0, then the
condition is also equivalent to

p > (d0 − s)/(d0 − d1). (7)

A typical parameter configuration that produces good results for reads with a length of
n = 100 bases is w = 140 and q = 16 [10]. For these parameters the frequency threshold is
p > 40.5%. Most known variants are less frequent than that; therefore the benefits of the
SNP strategy are likely marginal in this simplified model. However, some of the assumptions
were unrealistic, and we now consider increasingly realistic models.

3.2 Consideration of errors
So far we did not take sequencing errors or unknown variants into account. Both types of
differences between the read and the reference are called errors. We assume that

exactly e < m− q of the q-grams in the read are affected by errors,
the errors occur far from the SNP position,
the q-grams produced by the errors are different from the existing q-grams in the read
and in the window.

I Lemma 4. Under the above assumptions, with v = w − q + 1 and m = n− q + 1,

PDefault = (1− p) · (m− e)/(v + e) + p · (m− q − e)/(v + q + e), (8)
PSNP = (m− e)/(v + q + e). (9)

Adding the variant to the index is beneficial if and only if

p > (m− e)/(m+ v), (10)

which is equivalent to (5) for e = 0.

Proof. The proof is similar to that of Lemma 2. Intersection sizes are reduced by e, while
union sizes grow by e in comparison to Lemma 2. With d0 = (m − e)/(v + e), d1 =
(m− q− e)/(v+ q+ e) and s = (m− e)/(v+ q+ e), the conditions of Lemma 3 are satisfied
for e < m− q, and (10) follows by elementary algebra. J

The result shows that the population frequency threshold decreases when more errors
are considered. For example, if we consider the standard configuration (n = 100, w = 140
and q = 16) and e = 0, q, 2q, corresponding to no, one and two isolated errors, the thresholds
are 40.5%, 32.9% and 25.2%, respectively. (In the extreme case e = m−q−1, the frequency
threshold becomes 8.1%. Of course, for so many errors, the indexing strategy breaks down
as a whole and the variant indexing decision problem is meaningless.)

The above analysis assumed that the errors did non interfere the q-grams generated by
the variant, which is unrealistic. Instead, errors will be distributed randomly, so we may
assume that they affect (averaging over many reads) q-grams of the variant and q-grams
outside the variant with an equal proportion. In this model, we call ε := e/m the error rate.
Using this modified error model has considerable effects on the threshold.

WABI 2017

21:6 Analysis of Min-Hashing for Variant Tolerant DNA Read Mapping

Window 1

Window 2

Read

Window 3

w

o

n

t

Figure 1 Visualization of the parameters n (read length), w (window length), o (window distance,
o < w ensures overlapping windows) and t (the number of read’s q-grams located outside of the
major window). Note that the number of bases located outside (shown in the visualization) is equal
to the number of read’s q-grams located outside if and only if t ≤ n−q +1 = m, so the read and the
major window have at least q − 1 common positions. This conditions is always fulfilled when using
realistic parameter configurations. We assume that o > w − n + 1, so there exist configurations
where the read is not contained in a single window.

I Lemma 5. Under the above assumptions,

PDefault = (1− p) · m(1− ε)
v +mε

+ p · (m− q)(1− ε)
v + q + (m− q)ε , (11)

PSNP = m(1− ε)
v + q +mε

. (12)

Adding the variant to the index is beneficial if and only if

p >
m

v +m
− eq

(v +m)(v + e+ q) . (13)

Proof. The arguments are the same as in the proof of Lemma 4, but it is not a fixed number e
that is subtracted from the intersection and added to the union, but the intersection is
reduced by a factor of (1− ε); the corresponding number is added to the union. Note that
only the constant factor of p differs between (8) and (11) and (9) is identical to (12). The
threshold (13) follows from Lemma 3; a detailed derivation is presented in Appendix A.1. J

In this model, the effect of e is marginal for typical parameter configurations, which is
different from the model considered in Lemma 4. With the same parameters as above, the
behavior for the extreme case e = m − 1 yields a threshold of 37.6%, which is close to the
threshold of 40.5% for e = 0.

3.3 Consideration of partial overlaps between read and windows
So far we assumed that the read is contained entirely in one window. Indeed, this is the
case if the distance o between two window starting points satisfies o ≤ w − n + 1. Now
we consider o > w − n + 1, where a read may overlap with two windows. We consider the
window with the larger overlap (see Fig. 1) and call it the major window.

When we slide the read over the reference, there are o different configurations how the
read overlaps two windows. For each configuration we track the number t of q-grams of the
read that do not overlap the major window. For w−n+1 configurations, the major window
contains the entire read and so t = 0. When the read moves further along the reference,
t increases until the next window becomes the major window and t decreases towards zero.
So there are o− w + n− 1 configurations with a non-zero value of t.

J. Quedenfeld and S. Rahmann 21:7

If o−w+n−1 is even, the maximum value of t that is attained is tmax = (o−w+n−1)/2
and each value is attained twice.

If o−w+n− 1 is odd, the maximum value of t that is attained is tmax = (o−w+n)/2,
this value is attained once and each lower t = 1, . . . , tmax − 1 is attained twice.

For a unified consideration of intersection and union sizes in Lemma 1, we introduce a
collision probability parameterized by t and two additional numbers I and U , which stand
for the number of q-grams by which the intersection is reduced and the union is enlarged,
respectively,

Pt,I,U,0 := m− t− I
v + t+ U

.

As in Section 3.2, we generalize this quantity by considering q-grams affected by errors,
calling again ε := e/m the q-gram error rate (typical ε of interest are ε = 0, q/m, 2q/m,
etc.) and define

Pt,I,U,ε := (m− t− I)(1− ε)
(v + t+ U) + ε(m− t− I) . (14)

If we consider each window configuration equally likely, we may obtain average collision
probabilities P+

I,U,ε by summing Pt,I,U,ε over the relevant values of t = 0, 1, . . . , tmax with
appropriate weights ωt:

P+
I,U,ε :=

tmax∑
t=0

ωt · Pt,I,U,ε, (15)

where, according to the discussion above, tmax = b(o − w + n)/2c, and the weights are
ω0 = (w − n + 1)/o, and, if o − w + n − 1 is even, ωt = 2/o for 1 ≤ t ≤ tmax, but if
o− w + n− 1 is odd, ωt = 2/o for 1 ≤ t < tmax and ωtmax = 1/o.

I Lemma 6. Under the assumptions and with the notation of this section,

PDefault = (1− p) · P+
0,0,ε + p · P+

q,q,ε,

PSNP = P+
0,q,ε.

Proof. The lemma is merely re-stating the arguments of the previous sections: For the
Default strategy we have U = I = 0 if the read does not contain the variant (an event
with probability 1−p) and U = I = q if the read does contain it (an event with probability p).
For the SNP strategy, we always have I = 0 and U = q. J

Before stating a general threshold result (Sec. 3.5), we consider an even more complex model
considering more than one signature value.

3.4 Consideration of signature length
So far we considered the collision probabilities for a single signature value. To improve
sensitivity and specificity, we may instead use S different random permutations and consider
the event where at least s out of S signature values of the read match the corresponding
ones of the window. Then the collision probability Pt,I,U,ε in (14) becomes

P
(s,S)
t,I,U,ε =

S∑
k=s

(
S

k

)
(Pt,I,U,ε)k (1− Pt,I,U,ε)S−k . (16)

WABI 2017

21:8 Analysis of Min-Hashing for Variant Tolerant DNA Read Mapping

For s = 1 (thereby only increasing sensitivity but not specificity), we obtain

P
(1,S)
t,I,U,ε = 1− (1− Pt,I,U,ε)S . (17)

Correspondingly, the average (15) over window configurations generalizes to

P
+(s,S)
I,U,ε :=

tmax∑
t=0

ωt · P (s,S)
t,I,U,ε (18)

with the same weights ωt as before, distinguishing the cases when o = w+n− 1 is odd resp.
even.

3.5 General results
The following result is the most general we present, considering errors, partial overlaps
between read and windows and signature length.

I Theorem 7. Under the assumptions and with the notation of Sec. 3.4,

PDefault = (1− p) · P+(s,S)
0,0,ε + p · P+(s,S)

q,q,ε ,

PSNP = P
+(s,S)
0,q,ε .

Adding the variant to the index is beneficial if and only if

p > T :=
P

+(s,S)
0,0,ε − P+(s,S)

0,q,ε

P
+(s,S)
0,0,ε − P+(s,S)

q,q,ε

. (19)

Proof. To see that Lemma 3 applies for the threshold, note that for every choice of (n,w, o, q,
ε, s, S), the average collision probability P+(s,S)

0,I,U,ε is a decreasing function of both I and U . J

We do not see a way to considerably simplify the threshold T in (19). Before presenting
numerical results (Sec. 3.6), we consider a limit result for large signatures.

I Theorem 8. Let (n,w, o, q) be given parameters and let s := 1. For any variant population
frequency p > 0 and for each number e of q-grams affected by errors, there exists a signature
length S such that PSNP > PDefault. In other words, for each ε := e/m, the threshold

T (1) :=
P

+(1,S)
0,0,ε − P+(1,S)

0,q,ε

P
+(1,S)
0,0,ε − P+(1,S)

q,q,ε

converges to zero for increasing signature length S.

Proof. To show PSNP > PDefault, it is sufficient to show that for large enough S, the
inequality

P
(1,S)
t,0,q,ε > (1− p) · P (1,S)

t,0,0,ε + p · P (1,S)
t,q,q,ε (20)

is satisfied for all t because PSNP and PDefault are positively weighted sums of these terms
with the same weights (ωt), cf. (18). By (17), (20) is equivalent to

p >
(1− Pt,0,0,ε)S − (1− Pt,0,q,ε)S

(1− Pt,0,0,ε)S − (1− Pt,q,q,ε)S
(21)

J. Quedenfeld and S. Rahmann 21:9

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85
0%
2%
4%
6%
8%

10%
12%
14%
16%
18%
20%
22%
24%
26%
28%
30%
32%
34%
36%
38%

number e of read q-grams affected by errors

va
ria

nt
fr
eq
ue
nc
y
th
re
sh
ol
d
T

S = 1
S = 2
S = 3
S = 5
S = 7
S = 10
S = 15
S = 20
S = 30
S = 50

Figure 2 Variant frequency threshold as a function of the number e of erroneous q-grams for
different signature lengths S (color-coded). If the probability of a SNP variant is greater than
the threshold, the SNP strategy is better than the Default strategy. Parameters are n = 100,
w = 140, o = 125 and q = 16, s = 1.

for every t. Writing `t,I,U := ln(1− Pt,I,U,ε) (for fixed ε), this is equivalent to

p >
exp(S`t,0,0)− exp(S`t,0,q)
exp(S`t,0,0)− exp(S`t,q,q)

= exp(S(`t,0,q − `t,0,0))− 1
exp(S(`t,q,q − `t,0,0))− 1 =: Tt,S (22)

With elementary means, we verify that Pt,I,U,ε is a decreasing function of both I and U , so

Pt,0,0,ε > Pt,0,q,ε > Pt,q,q,ε and `t,q,q > `t,0,q > `t,0,0. (23)

It follows that both numerator and denominator of Tt,S tend towards infinity and to find
the limit, we may apply De L’Hôpital’s rule and find

lim
S→∞

Tt,S = lim
S→∞

exp[S((`t,0,q − `t,0,0)− (`t,q,q − `t,0,0))] = 0, (24)

because `t,0,q − `t,q,q < 0. So for arbitrarily small p > 0 and each t there exists S(t) such
that p > Tt,S(t) is satisfied. Take S := maxt=0,...,tmax S(t); then (20) is satisfied, proving the
theorem. J

3.6 Numerical results
We show numerical threshold values for a realistic case, where the parameters n = 100
(read length), w = 140 (window length), o = 125 (window distance) and q = 16 result from
extensive experimentation [10]. Therefore m = n − q + 1 = 85 and v = w − q + 1 = 125.
Figure 2 shows the frequency threshold from (19) as a function of the number e of erroneous
q-grams (recall ε = e/m) for different signature lengths S using s = 1.

For S = 1, the graph looks similar to the results of Lemma 5: The threshold decreased by
about 5% points (because we consider the possibility of partial overlaps), and the influence
of errors is marginal (about 3% points between e = 0 and e = m− 1).

WABI 2017

21:10 Analysis of Min-Hashing for Variant Tolerant DNA Read Mapping

0 50 100 150 200 250 300
0%

5%

10%

15%

20%

25%

30%

35%

va
ria

nt
fr
eq
ue
nc
y
th
re
sh
ol
d
T

Read length n = 300
S = 1
S = 2
S = 3
S = 5
S = 10
S = 15
S = 30
S = 50
S = 90
S = 150

0 100 200 300 400 500 600 700 800 900 1,000
0%

5%

10%

15%

20%

25%

30%

35%

40%

va
ria

nt
fr
eq
ue
nc
y
th
re
sh
ol
d
T

Read length n = 1000
S = 1
S = 2
S = 5
S = 10
S = 20
S = 50
S = 100
S = 200
S = 500

0 500 1,000 1,500 2,000 2,500 3,000
0%

5%

10%

15%

20%

25%

30%

35%

40%

number e of read q-grams affected by errors

va
ria

nt
fr
eq
ue
nc
y
th
re
sh
ol
d
T

Read length n = 3000
S = 1
S = 2
S = 5
S = 10
S = 25
S = 60
S = 130
S = 300
S = 700
S = 1500

Figure 3 Variant frequency threshold as a function of the number e of erroneous q-grams for
different signature lengths S (color-coded) and read lengths n (see heading of the diagrams). If
the probability of a SNP variant is greater than the threshold, the SNP strategy is better than the
Default strategy. Parameters are w = 1.4n, o = 1.25n and q = 16, s = 1.

J. Quedenfeld and S. Rahmann 21:11

For larger signatures, the picture changes, and the threshold decreases rapidly with S (for
fixed e). For error-free reads, the SNP strategy is already better if the variant’s population
frequency is as small as 0.3%, if use S = 50 permutations. As the number of errors increases,
the effect of using more signatures is less important, but Theorem 8 shows that enough
signature values will always favor the SNP strategy.

Figure 3 shows the frequency threshold for longer reads (n ∈ {300, 1000, 3000}). The
window length and distance are fit to the read length, i.e. w = 1.4n and o = 1.25n, the
q-gram length is still 16. The memory consumption increases linearly with S/o, so for longer
reads we can increase the signature length S to keep the memory consumption constant.
Therefore the maximal signature length plotted in figure 3 is S = n/2. If the ratio of q-
grams affected by errors is low, then the frequency threshold is almost independent of the
read length. If much more than the half of q-grams are affected by errors, then the frequency
threshold decreases significantly with the read length. This is especially useful for very long
reads with high rates produced by third-generation sequencing machines.

4 Discussion and conclusion

As third-generation sequencing techniques produce ever longer reads with (comparatively)
high error rates and the human reference genome is about to replaced by a pan-genome
reference, the community is considering alternatives to an FM index for representing the
human genome. A fundamental question is whether adding known variants, and in partic-
ular SNPs, which represent about 90% of the known variants, should be added to a given
index data structure. We investigated this question for min-hashing, a particular form of
locality sensitive hashing and found practical decision rules that depend on the population
frequency p of a SNP. Theorem 8 shows that (under the right circumstances) it can be
beneficial to add even rare variants to a min-hashing index.

Assumptions

Our calculations are based on several assumptions that we did not relax during the devel-
opment of Theorem 7:
1. All q-grams resulting from a SNP or errors are different from all other q-grams in the

read or in the window.
2. We consider each SNP in isolation and assume that exactly q of the q-grams in the read

are affected.
3. Errors affect q-grams of the variant and in the remaining part of the read with equal

proportion ε.
We consider these assumptions reasonable in practice for the following reasons. While we
cannot rule out the possibility that one of the erroneous q-grams is equal to another q-gram in
the read, such an event occurs rarely if v � 4q, which is always the case in real applications.
The second assumption can be relaxed in our framework by choosing different values for
U and I in (16) than 0 and q to model specific configurations of SNP positions inside a
window. One could even compute weighted averages over all such configurations for a given
SNP rate, say 0.5%, across the genome. We here decided to focus on the simple case of a
single isolated SNP, which is a case common enough to be relevant. The proportional error
distribution may be criticized as averaging early over important effects such as clumping of
affected q-grams, but we found that the results obtained with this model match extensive
simulations performed in the context of the development of VATRAM (data not shown;
[10]).

WABI 2017

21:12 Analysis of Min-Hashing for Variant Tolerant DNA Read Mapping

Sensitivity and specificity analysis

We focused on the population frequency threshold of a variant above which it becomes
beneficial to add its q-grams to the index. Of course, our formulas for PSNP and PDefault
may also be used to compute sensitivity and specificity values of the min-hashing indexing
approach in the first place (see [1] for first arguments). We may define the sensitivity P ∗ as
the desired collision probability (i.e., the probability to find the correct window for a read).
Choosing the optimal strategy for each variant depending on its population frequency, we
have P ∗ = max{PSNP, PDefault}. A sensitivity close to 1 is desirable and we may optimize
free parameters (w, o, q, s, S) to achieve a desired sensitivity. On the other hand, it is in
our best interest to keep the number of false positive collisions (i.e., of collisions resulting
from random coincidence of signature values) as low as possible. By estimating the size
distribution of the intersection of the q-gram set of a random read with a random window,
we obtain a null collision probability P 0 and the expected number E = P 0 ·G/o of colliding
windows for a read, where G is the genome size. It follows that Ew basepairs must be
aligned to the read for verification. It is mainly the choice of q, S and s that influences P 0,
and choosing sufficiently large values will decrease P 0. On the other hand, the memory
requirements of the index are proportional to (4q +G/o) ·S, so we are interested in keeping
this quantity as small as possible. In the future, we aim to use the results presented in
this article to optimize the min-hashing parameters to achieve optimum sensitivity with a
tolerable false positive rate for a given amount of available memory.

Acknowledgments. This work has been supported by the DFG, Collaborative Research
Center SFB 876, project C1 (http://sfb876.tu-dortmund.de/). We thank all members
and advisors of Project Group 583 [7] for their input.

References

1 Konstantin Berlin, Sergey Koren, Chen-Shan Chin, James P. Drake, Jane M. Landolin,
and Adam M. Phillippy. Assembling large genomes with single-molecule sequencing and
locality-sensitive hashing. Nat. Biotechnol., 33(6):623–630, 2015. Corrigendum in Nat.
Biotechnol. 33(10), 1109 (2015).

2 Andrei Z. Broder. On the resemblance and containment of documents. In Compression
and Complexity of Sequences (SEQUENCES’97), pages 21–29. IEEE, 1997.

3 Andrei Z. Broder, Moses Charikar, Alan M Frieze, and Michael Mitzenmacher. Min-wise
independent permutations. In Proceedings of the 30th annual ACM symposium on Theory
of computing (STOC), pages 327–336. ACM, 1998.

4 Matthew Casperson. Minhash for dummies. http://matthewcasperson.blogspot.de/
2013/11/minhash-for-dummies.html, November 2013.

5 P. Ferragina and G. Manzini. Indexing compressed text. J. ACM, 52(4):552––581, 2005.
6 Chirag Jain, Alexander Dilthey, Sergey Koren, Srinivas Aluru, and Adam M. Phillippy.

A fast approximate algorithm for mapping long reads to large reference databases. In
International Conference on Research in Computational Molecular Biology, pages 66–81.
Springer, 2017.

7 Benjamin Kramer, Jens Quedenfeld, Sven Schrinner, Marcel Bargull, Kada Benadjemia,
Jan Stricker, and David Losch. VATRAM – VAriant Tolerant ReAd Mapper. Technical
report, Project Group PG583, Computer Science, TU Dortmund, Germany, 2015.

8 Heng Li. Minimap and miniasm: fast mapping and de novo assembly for noisy long se-
quences. Bioinformatics, page btw152, 2016.

http://sfb876.tu-dortmund.de/
http://matthewcasperson.blogspot.de/2013/11/minhash-for-dummies.html
http://matthewcasperson.blogspot.de/2013/11/minhash-for-dummies.html

J. Quedenfeld and S. Rahmann 21:13

9 Victoria Popic and Serafim Batzoglou. Privacy-preserving read mapping using locality
sensitive hashing and secure kmer voting. bioRxiv, page 046920, 2016.

10 Jens Quedenfeld and Sven Rahmann. Variant tolerant read mapping using min-hashing.
arXiv, 1702.01703, 2017.

11 The Computational Pan-Genomics Consortium. Computational pan-genomics: status,
promises and challenges. Briefings in Bioinformatics, Oct 2016. Online first,. doi:
10.1093/bib/bbw089.

A Appendix: Proof details

A.1 Detailed calculation for Lemma 5
In Lemma 5,

PSNP ≥ PDefault

is by Lemma 3 equivalent to

p >
d0 − s
d0 − d1

=
m−e
v+e −

m−e
v+e+q

m−e
v+e −

m−q−e+eq/m
v+q+e−eq/m

=
(m− e) · (v+e+q)−(v+e)

(v+e)(v+e+q)
(m−e)(mv+mq+mv−eq)−(m2−mq−me+eq/m)(v+e)

(v+e)(mv+mq+me−eq)

=
q(m−e)
v+e+q

m2q−meq+qmv−eqv
mv+mq+me−eq

= (m− e)(mv +mq +me− eq)
(v + e+ q) (m2 −me+mv − ev)

= m(v + e+ q)− eq
(v + e+ q)(m+ v)

= m

m+ v
− eq

(v +m)(v + e+ q) ,

which is the final statement of Lemma 5. J

WABI 2017

http://dx.doi.org/10.1093/bib/bbw089
http://dx.doi.org/10.1093/bib/bbw089

Efficient and Accurate Detection of Topologically
Associating Domains from Contact Maps∗

Abbas Roayaei Ardakany1 and Stefano Lonardi2

1 Department of Computer Science, University of California, Riverside,
CA, USA

2 Department of Computer Science, University of California, Riverside,
CA, USA

Abstract
Continuous improvements to high-throughput conformation capture (Hi-C) are revealing richer
information about the spatial organization of the chromatin and its role in cellular functions.
Several studies have confirmed the existence of structural features of the genome 3D organiza-
tion that are stable across cell types and conserved across species, called topological associating
domains (TADs). The detection of TADs has become a critical step in the analysis of Hi-C data,
e.g., to identify enhancer-promoter associations. Here we present East, a novel TAD identifi-
cation algorithm based on fast 2D convolution of Haar-like features, that is as accurate as the
state-of-the-art method based on the directionality index, but 75-80× faster. East is available
in the public domain at https://github.com/ucrbioinfo/EAST.

1998 ACM Subject Classification F.2.1 Numerical Algorithms and Problems I.4.6 Image Seg-
mentation J.3 Life and Medical Sciences

Keywords and phrases Chromatin, TADs, 3D genome, Hi-C, contact maps

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.22

1 Introduction

Recent studies have revealed that genomic DNA is not arbitrarily packed into the nucleus.
The chromatin has a well organized and regulated structure in accordance to the stage of
the cell cycle and environmental changes [15, 16]. The structure of chromatin in the nucleus
plays a critical role in gene expression, epigenetic organization, and DNA replication, among
others [7, 6, 18, 17].

With the advent of genome-wide DNA proximity ligation (Hi-C), life scientist have shed
new light on the way that chromatin folds and its relation to cellular functions [13, 1, 2, 10].
The analysis of Hi-C data has revealed surprising new findings including the discovery of
new structural features of chromosomes such as topologically associating domains [7] and
chromatin looping [17].

Topological associating domains (TADs) are large, megabase-sized contiguous local chro-
matin interaction domains that have a high average interaction within and a low average
interaction with their surrounding regions. Because of the role that TADs play in cellular
functions they have been widely explored since their discovery. TADs are stable across
different cell types and highly conserved across species [7]. TADs tend to interact with each
other in a tree-like structure and form a hierarchy of domains-within-domains (metaTAD),

∗ This work was partially supported by NSF IIS-1526742.

© Abbas Roayaei Ardakany and S. Lonardi;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 22; pp. 22:1–22:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://github.com/ucrbioinfo/EAST
http://dx.doi.org/10.4230/LIPIcs.WABI.2017.22
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

22:2 Efficient and Accurate Detection of TADs from Contact Maps

which can scale up to the size of chromosomes [9]. metaTADs show correlation with genetic
and epigenomic features. TAD boundaries are enriched for the insulator binding protein
CTCF, housekeeping genes, transfer RNAs and histone modifications [7, 8]. More impor-
tantly, enhancers tend to interact with gene promoters within the same TAD [11]. Disruption
of TAD boundaries can affect the expression of nearby genes and lead to developmental
disorders or cancer [14].

Several methods have been developed to identify TADs genome-wide. Dixon et al. were
the first group to define and identify TADs [7]. In their seminal work, they proposed an
identification method based on the directionality index (DI) which measures the frequency of
interaction of a genomic locus with a fixed-sized neighborhood. Drastic changes of the DI
score are expected at TAD boundaries where the region tends to have a high rate of both
upstream and downstream interactions.

Filippova et al. [8] introduced a single parameter, two-step dynamic programming method.
Assuming that there exist a few characteristic resolutions across which TADs are similar,
they identify a set of non-overlapping domains that are persistent across the resolutions.

Crane et al. [4] proposed a method based on the insulation index (IS). For each chromo-
some segment, IS score is the average number of interactions that cross the segment in a
pre-specified size neighborhood. Given that interactions tend to be isolated within TADs,
IS local minima are expected to occur at TAD boundaries. The IS score can be computed
efficiently by sliding a window across the diagonal of the contact matrix and computing the
average number of interactions that fall inside the window.

Chen et al. [3] translated the TAD identification problem into a graph segmentation/-
clustering problem. In this method, domains at different scales are identified by running the
spectral graph cuts algorithm recursively until the connectivity of the graph reaches some
predefined threshold.

In this paper, we present a novel TAD calling algorithm called East (for “Efficient
and Accurate Summed-area-table-based TAD calling”) that takes advantage of fast 2D
convolution. Experimental results show that East is as accurate in detecting TADs as the
DI method [7], which is accepted as the state-of-the art algorithm. East is however, 75-80×
faster than DI.

2 Methods

Each chromosome is segmented into evenly sized fragments, where the size of the segment
is based on the resolution of the data. In a Hi-C contact map (or interaction matrix) A,
each entry A[i, j] represents the number of times segments i and j are observed together in a
DNA proximity ligation experiment. Larger values of A[i, j] indicate closer loci i and j in
3D space inside the nucleus. Segments that are close in genomic 1D distance tend to form
dense areas which can be seen as isolated high frequency blocks along the matrix diagonal,
namely, TADs. TADs have high intra-frequency within and low inter-frequency with their
neighboring blocks. The aim is to identify TADs efficiently and accurately.

We propose an algorithm called East that utilizes rectangular Haar-like features [21] and
dynamic programming to identify TADs. Genomic regions are scored based on an objective
function that measures their likelihood of containing a TAD with respect to the characteristics
mentioned above. We use Haar-like features to describe such a scoring function.

2.1 Summed area table and Haar-like features
A Haar-like feature is a set of adjacent rectangular regions each of which has a certain
weight. Weights of rectangular regions indicate certain characteristics of a particular area of

A.R. Ardakany and S. Lonardi 22:3

Figure 1 If the summed area table ASAT is available, computing the sum of values in any
rectangular region takes O(1) time.

the image. By convolving Haar-like features, i.e., by computing the weighted sum of pixel
values for a particular location, we obtain a value that represents how well a region (window)
satisfies the characteristics we are looking for. To compute the weighted sum efficiently we
use the summed area table.

A summed area table (SAT), also known as integral image in computer vision, is a data
structure used for efficiently calculating the sum of values in a rectangular region. By
precomputing the summed area table one can obtain the sum of values in any arbitrary
rectangular region using only a constant number of operations. SAT was first introduced to
computer graphics in 1984 by Frank Crow [5] and later to computer vision in 2001 by Lewis
[21] in a popular face detection framework called Viola-Jones. The value of a point (x, y) in
a summed area table ASAT is the sum of all pixels above and to the left of that point in the
original grid A, including the (x, y) point itself.

ASAT(x, y) =
∑

x′≤x, y′≤y

A(x′, y′) .

Since the value of each point in the SAT can be computed based on the values of neighboring
points, the formula can be rewritten as

ASAT(x, y) = A(x, y) +ASAT(x− 1, y) +ASAT(x, y − 1)−ASAT(x− 1, y − 1) .

Given the summed area table, computing the sum of values in an arbitrary size rectangular
region can be done in O(1) time (see Figure 1).

2.2 TAD objective function
To score TADs we need to define a function f that quantifies the quality of an arbitrary
region along the matrix diagonal with respect to the following properties:
1. The average frequency inside the region must be “high”.
2. The average frequency with the neighborhood must be “low”.
3. The average frequency between start and end segments of the region must be higher than

the average frequency inside the region.

WABI 2017

22:4 Efficient and Accurate Detection of TADs from Contact Maps

Figure 2 Objective function f . (LEFT) Representation of a TAD of size 2w. High interaction
frequency expected inside the TAD’s domain (green) while low interaction frequency is expected
between the TAD and surrounding domains (red) (RIGHT) Coordinates of Haar-like representation
of a TAD.

The last property derives from the fact that TADs are the result of a compact locality or
loop formation in the chromatin. To explain the design of the objective function f we refer
to Figure 2, where different colors indicates different weighting. The area in green color is
the region we expect to have a high frequency of interaction (intra-frequency), as opposed to
the area in red where lower frequency is expected (inter-frequency). The corner region which
is colored in blue in Figure 2 has a higher weight in order to account for the last property in
the list above. Using the SAT data structure, function f can be computed as follows.

f([i, j]) = CDEF � − α · (ABGH� − CDEF �) + β · IDJK�

N

where CDEF �, ABGH� and IDJK� represent the sum of pixel values inside the rectangular
regions CDEF (defined by interval [i, j]), ABGH and IDJK respectively, which can be
computed in O(1) time from the SAT of the interaction matrix A. Parameters α and β

are dataset-independent, and they can be determined experimentally. Parameter N is a
normalization factor discussed in Subsection 3.1.

2.3 Finding the optimal set of domains
Given a n× n interaction matrix A, the problem of TAD identification is an optimization
problem aimed at identifying the set of contiguous non-overlapping domains for which the∑

di∈D

f(di)

is maximized, where D = {di|di = [si, ei]} is a set of non-overlapping intervals, i.e., ej < si

or ei < sj for i6=j.
We use dynamic programming to solve this optimization problem. The optimal solution

OPT (i) for the sub-problem [1, i] can be expressed by following recurrence relation

OPT (i) = max
0≤k≤i−1

{OPT (k) + f([k + 1, i])} .

By gradually increasing the size of the sub-problem and keeping track of the set of extracted
domains, the optimal set of TADs for the entire interaction matrix can be computed. As
we grow the size of the sub-problem, for each bin i, we need to find the optimal location

A.R. Ardakany and S. Lonardi 22:5

to break the sub-problem [1, i] into a sub-problem [1, k] and a domain d = [k + 1, i]. The
overall time-complexity is O(n2), where n is the number of bins/segments.

If we do not allow TADs to be larger than L, the optimal break point for a sub-problem
[1, i] can always be found in the interval [max{i− L, 0}, i− 1]. Therefore, the overall time
complexity decreases to O(nL).

I Theorem 1. Let D∗ = {[a1, a2], [a2, a3], . . . , [as−1, as]} be an optimal set of domains for
the interaction matrix A for which∑

di∈D∗

f(di)

is maximized. Then,

OPT ∗(n) = OPT (n)

where

OPT∗(i) = max
max{i−L,0}≤k≤i−1

{OPT ∗(k) + f([k + 1, i])} .

Proof. We prove the theorem by induction. For the base case OPT ∗(a1) = OPT (a1) = 0.
Now, suppose OPT ∗(ai−1) = OPT (ai−1) then we have

OPT ∗(ai) = OPT ∗(ai−1) + f([ai−1 + 1, ai])
= OPT (ai−1) + f([ai−1 + 1, ai])
= OPT (ai) for k = ai−1

where k satisfies the inequality max{ai − L, 0} ≤ k ≤ ai − 1. J

3 Experimental results

We performed the analysis on Hi-C data for two mouse cell types (cortex and embryonic
stem cell), and one human cell type (embryonic stem cell) at bin resolution of 40kb. The
Hi-C data was obtained from [7].

3.1 Parameter settings
In addition to α, β and L, East relies on two additional parameters. The first is the
minimum quality threshold τ that is used to filter out low-quality TADs. If we assume
that TAD quality scores are distributed according to a Gaussian distribution, we define the
threshold τ = µ− σ where µ and σ are the mean and standard deviation of the distribution
of scores. Observe that parameter τ can be computed from the analysis of the dataset.

The second parameter is the normalization parameter N for the function f . Since the
quality measure f is proportional to the sum of interactions inside the domains, f grows as
the TAD size increases. Figure 3 illustrates how the sum of interactions inside a domain grows
as the size of the TAD increases for the three datasets used in the experimental results below
and for a synthetic interaction matrix. In the synthetic data, the number of interactions was
set to be inversely proportional to the genomic distance. For purpose of comparison, the
sum of interactions is normalized by the sum of the largest domain.

Observe that the curve for the mouse embryonic data roughly matches the curve for
the synthetic data. This suggests that the average interaction frequency of two loci in the

WABI 2017

22:6 Efficient and Accurate Detection of TADs from Contact Maps

1Mb 2Mb 3Mb 4Mb

Domain size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o

rm
a
li
z
e
d

 s
u

m
 o

f
in

te
ra

c
ti

o
n

s
 %

mESc

Mouse Cortex

hESc

Synthetic

Figure 3 Growth of the quality measure f as the size of the TAD increases on the three datasets
used in the experimental results and for a synthetic interaction matrix (see text).

mESC dataset is inversely proportional to their genomic distance. The growth function of
the synthetic data can be estimated by (n/L)1.2 where L is the largest domain size we are
evaluating.

Also observe the hESC and mouse cortex curves are slightly different from the curve
for the synthetic data, and they can be estimated by (n/L)1.36 and (n/L)1.4 respectively.
We experimentally determined that as the curves diverge from the curve for the synthetic
data, the normalization factor needs to adjusted accordingly. We set N = n0.4, N = n0.43

and N = n0.38 for hESC, mESC and mouse cortex, respectively. Parameters α and β were
optimized experimentally to values α = 0.2 and β = 0.2, and they are dataset-independent.

3.2 Comparison with existing methods
Based on the availability and popularity of TAD calling methods, we decided to compare
East with the directionality index method [7], insulation score method [4] and multiscale
method in [8]. We hereafter refer to these methods as DI, INS and MR respectively.

East, DI, INS and MR were ran on an Intel Core-i7 2.7GHz CPU with 16GB of memory.
For the DI method we ran the experiments with posterior marginal probability threshold
0.99 and up/downstream span size of 2Mb (default parameters according to [7]). For the INS
method, we set the insulation delta span to 200kb and the insulation square size to 500kb.
For the MS method, we set the highest resolution parameter to 0.5.

In our experiment we investigated the enrichment of epigenetic characteristics of chromatin
near the TAD boundaries. Although the mechanism behind the formation of TADs and
their role in gene regulation are not fully understood, multiple studies have shown that some
proteins and histone marks are enriched at the TAD boundary regions, implying that these
boundaries play a role in gene transcription. As it was done in other studies [8, 20, 3], we
can therefore use these genomic markers to evaluate the quality of the computed TADs.

To produce enrichment plots, we used each method to determine the boundary locations
of TADs. Then, the frequency of each marker was calculated in 10kb bins in a window of
1Mb centered at the TAD boundaries. Each plot show the distribution of specific markers
for each tool in the region centered at the TAD boundaries.

For mouse cortex and stem cells we evaluated the enrichment of transcription factor
CTCF, promoter related marks RNA Polymerase II and H3K4me3, and enhancer-related
histone modification H3K27ac. This marker data was collected from [19]. For human stem

A.R. Ardakany and S. Lonardi 22:7

Table 1 Running time of East, INS, MS and DI on the three datasets used in this work.

hESC mESC Cortex
East 58s 50s 48s

INS 52s 44s 42s
DI 4,721s 3,845s 3,628s

MS 762s 545s 520s

cells we assessed the enrichment of CTCF near TAD boundaries. The CTCF data was
obtained from [12].

Figure 4 shows that CTCF binding sites are almost twice as enriched near the TAD
boundaries than the surrounding regions, suggesting that TAD boundaries are associated
with insulator genomic regions and their mediator protein CTCF. Figure 5 and Figure 6 show
that promoter marks RNA Polymerase II and H3K4me3 peak within the TAD boundaries for
both mouse cortex and embryonic stem cells. Observe in Figure 7 that histone modification
mark H3K27ac is highly enriched around TAD boundaries in mouse embryonic stem cells but
not in mouse cortex cells. Also observe in Figure 8 that enhancer marks are highly depleted
around TAD boundaries in mouse cortex cells but not in mouse embryonic stem cells.

Overall, observe in Figures 4–8 that the blue curve for East is almost always higher than
the other three tools, suggesting that our tool generates TADs with very accurate boundaries.
The closest competitor is DI (green curve), but East is significantly faster than DI.

We compared the running time of East with that of DI, MS and INS on Hi-C data for
human embryonic stem cells, mouse embryonic stem cells and mouse cortex [7]. Table 1
shows that East and INS are comparable in speed, MS is 10–14× slower, DI is 75-80×
slower.

Figure 9 illustrates the size distribution of TADs for all four methods for the human
embryonic stem cells. The numbers of TADs extracted by East, DI, MS and INS are 2229,
2429, 12427 and 4708 respectively. Observe that East and DI roughly produce the same
size distribution.

In summary, these experimental results show that while East can identify the TAD
boundaries as accurately as the best method (DI), but it is much more time efficient.

4 Conclusion

In this paper, we introduced an efficient algorithm called East, to accurately identify
topological associating domains in chromatin from interaction matrices obtained from high-
throughput chromosome conformation capture (Hi-C). East can be downloaded from https:
//github.com/ucrbioinfo/EAST.

We performed a comparative evaluation of East on Hi-C data for human stem cells,
mouse stem cells and mouse cortex cells. We showed that our algorithm extracts TADs as
accurately as the state-of-the art. TADs identified by East show substantial enrichment
of various epigenetic modification factors at their boundaries, confirming similar findings
in previous studies. By comparing the running time of East with the other published
methods, we showed that our method is very time efficient. For a given Hi-C dataset, the
only parameter in East that might need to be tuned by the user is the normalization factor
for which we have given some guidance in Subsection 3.1.

The framework we presented here for TAD identification is based on fast 2D-convolution
of Haar-like features. We believe that this framework could be adapted to other chromatin
feature detection problems such as chromatin loops [17]. We also plan to extend our work to
efficiently identify chromatin features at arbitrary scales.

WABI 2017

https://github.com/ucrbioinfo/EAST
https://github.com/ucrbioinfo/EAST

22:8 Efficient and Accurate Detection of TADs from Contact Maps

-500kb boundary 500kb
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

A
v
e
ra

g
e
 #

 p
e
a
k
s
 p

e
r

1
0
k
b

EAST

DI

MS

INS

-500kb boundary 500kb
0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
v
e
ra

g
e
 #

 p
e
a
k
s
 p

e
r

1
0
k
b

EAST

DI

MS

INS

-500kb boundary 500kb
0.1

0.15

0.2

0.25

0.3

0.35

0.4

A
v
e
ra

g
e
 #

 p
e
a
k
s
 p

e
r

1
0
k
b

EAST

DI

MS

INS

Figure 4 CTCF enrichment in human embryonic stem cells, (left) mouse embryonic stem cells
(center) and mouse cortex cells (right).

-500kb boundary 500kb
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

A
v

e
ra

g
e

 #
 p

e
a

k
s

 p
e

r
1

0
k

b

EAST

DI

MS

INS

-500kb boundary 500kb
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

A
v

e
ra

g
e

 #
 p

e
a

k
s

 p
e

r
1

0
k

b
EAST

DI

MS

INS

Figure 5 H3K4me3 enrichment in mouse embryonic stem cells (left) and mouse cortex cells
(right).

-500kb boundary 500kb
0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

A
v

e
ra

g
e

 #
 p

e
a

k
s

 p
e

r
1

0
k

b

EAST

DI

MS

INS

-500kb boundary 500kb

0.05

0.1

0.15

0.2

0.25

0.3

0.35

A
v

e
ra

g
e

 #
 p

e
a

k
s

 p
e

r
1

0
k

b

EAST

DI

MS

INS

Figure 6 polII enrichment in mouse embryonic stem cells (left) and mouse cortex cells (right).

A.R. Ardakany and S. Lonardi 22:9

-500kb boundary 500kb
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

A
v

e
ra

g
e

 #
 p

e
a

k
s

 p
e

r
1

0
k

b

EAST

DI

MS

INS

-500kb boundary 500kb
0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

A
v

e
ra

g
e

 #
 p

e
a

k
s

 p
e

r
1

0
k

b

EAST

DI

MS

INS

Figure 7 H3K27ac enrichment in mouse embryonic stem cells (left) and mouse cortex cells (right).

-500kb boundary 500kb
0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

A
v

e
ra

g
e

 #
 p

e
a

k
s

 p
e

r
1

0
k

b

EAST

DI

MS

INS

-500kb boundary 500kb
0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

A
v

e
ra

g
e

 #
 p

e
a

k
s

 p
e

r
1

0
k

b

EAST

DI

MS

INS

Figure 8 Enhancer enrichment in mouse embryonic stem cells (left) and mouse cortex cells
(right).

EAST

0 1Mb 2Mb 3Mb 4Mb

0

0.05

0.1

0.15

0.2

0.25

%
 o

f
id

e
n

ti
fi

e
d

 d
o

m
a

in
s

DI

0 1Mb 2Mb 3Mb 4Mb

0

0.05

0.1

0.15

%
 o

f
id

e
n

ti
fi

e
d

 d
o

m
a

in
s

MS

0 1Mb 2Mb 3Mb 4Mb

0

0.2

0.4

0.6

0.8

%
 o

f
id

e
n

ti
fi

e
d

 d
o

m
a

in
s

INS

0 1Mb 2Mb 3Mb 4Mb

0

0.05

0.1

0.15

0.2

0.25

%
 o

f
id

e
n

ti
fi

e
d

 d
o

m
a

in
s

Figure 9 Comparison of the distribution of TAD size.

WABI 2017

22:10 Efficient and Accurate Detection of TADs from Contact Maps

References
1 Giacomo Cavalli and Tom Misteli. Functional implications of genome topology. Nat. Struct.

Mol. Biol., 20(3):290–299, 5 March 2013.
2 Haiming Chen, Jie Chen, Lindsey A. Muir, Scott Ronquist, Walter Meixner, Mats Ljung-

man, Thomas Ried, Stephen Smale, and Indika Rajapakse. Functional organization of the
human 4D nucleome. Proc. Nat’l Acad. Sci. USA, 112(26):8002–8007, 30 June 2015.

3 Jie Chen, Alfred O. Hero, 3rd, and Indika Rajapakse. Spectral identification of topological
domains. Bioinformatics, 32(14):2151–2158, 15 July 2016.

4 Emily Crane, Qian Bian, Rachel Patton McCord, Bryan R. Lajoie, Bayly S. Wheeler, Ed-
ward J. Ralston, Satoru Uzawa, Job Dekker, and Barbara J. Meyer. Condensin-driven re-
modelling of X chromosome topology during dosage compensation. Nature, 523(7559):240–
244, 9 July 2015.

5 Franklin C. Crow. Summed-area tables for texture mapping. In Proceedings of the 11th An-
nual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’84, pages
207–212, New York, NY, USA, 1984. ACM.

6 Jesse R. Dixon, Inkyung Jung, Siddarth Selvaraj, Yin Shen, Jessica E. Antosiewicz-Bourget,
Ah Young Lee, Zhen Ye, Audrey Kim, Nisha Rajagopal, Wei Xie, Yarui Diao, Jing Liang,
Huimin Zhao, Victor V. Lobanenkov, Joseph R. Ecker, James A. Thomson, and Bing
Ren. Chromatin architecture reorganization during stem cell differentiation. Nature,
518(7539):331–336, 19 February 2015.

7 Jesse R. Dixon, Siddarth Selvaraj, Feng Yue, Audrey Kim, Yan Li, Yin Shen, Ming Hu,
Jun S. Liu, and Bing Ren. Topological domains in mammalian genomes identified by
analysis of chromatin interactions. Nature, 485(7398):376–380, 17 May 2012.

8 Darya Filippova, Rob Patro, Geet Duggal, and Carl Kingsford. Multiscale identification
of topological domains in chromatin. In Algorithms in Bioinformatics, pages 300–312.
Springer, Berlin, Heidelberg, 2 September 2013.

9 James Fraser, Carmelo Ferrai, Andrea M. Chiariello, Markus Schueler, Tiago Rito, Giovanni
Laudanno, Mariano Barbieri, Benjamin L. Moore, Dorothee C.A. Kraemer, Stuart Aitken,
Sheila Q. Xie, Kelly J. Morris, Masayoshi Itoh, Hideya Kawaji, Ines Jaeger, Yoshihide
Hayashizaki, Piero Carninci, Alistair R.R. Forrest, FANTOMConsortium, Colin A. Semple,
Josée Dostie, Ana Pombo, and Mario Nicodemi. Hierarchical folding and reorganization
of chromosomes are linked to transcriptional changes in cellular differentiation. Mol. Syst.
Biol., 11(12):852, 23 December 2015.

10 David U. Gorkin, Danny Leung, and Bing Ren. The 3D genome in transcriptional regulation
and pluripotency. Cell Stem Cell, 14(6):762–775, 5 June 2014.

11 Daniel Jost, Cédric Vaillant, and Peter Meister. Coupling 1D modifications and 3D nuclear
organization: data, models and function. Curr. Opin. Cell Biol., 44:20–27, 2017.

12 Galih Kunarso, Na-Yu Chia, Justin Jeyakani, Catalina Hwang, Xinyi Lu, Yun-Shen Chan,
Huck-Hui Ng, and Guillaume Bourque. Transposable elements have rewired the core regu-
latory network of human embryonic stem cells. Nat. Genet., 42(7):631–634, 6 June 2010.

13 Erez Lieberman-Aiden, Nynke L van Berkum, Louise Williams, Maxim Imakaev, Tobias
Ragoczy, Agnes Telling, Ido Amit, Bryan R. Lajoie, Peter J. Sabo, Michael O. Dorschner,
Richard Sandstrom, Bradley Bernstein, M.A. Bender, Mark Groudine, Andreas Gnirke,
John Stamatoyannopoulos, Leonid A Mirny, Eric S. Lander, and Job Dekker. Compre-
hensive mapping of long-range interactions reveals folding principles of the human genome.
Science, 326(5950):289–293, 9 October 2009.

14 Darío G Lupiáñez, Malte Spielmann, and Stefan Mundlos. Breaking TADs: How alterations
of chromatin domains result in disease. Trends Genet., 32(4):225–237, 1 April 2016.

15 Yiqin Ma, Kiriaki Kanakousaki, and Laura Buttitta. How the cell cycle impacts chromatin
architecture and influences cell fate. Front. Genet., 6:19, 3 February 2015.

A.R. Ardakany and S. Lonardi 22:11

16 T. Pederson. Chromatin structure and the cell cycle. Proc. Nat’l Acad. Sci. USA,
69(8):2224–2228, August 1972.

17 Suhas S. P. Rao, Miriam H. Huntley, Neva C. Durand, Elena K. Stamenova, Ivan D.
Bochkov, James T. Robinson, Adrian L. Sanborn, Ido Machol, Arina D. Omer, Eric S.
Lander, and Erez Lieberman Aiden. A 3D map of the human genome at kilobase resolu-
tion reveals principles of chromatin looping. Cell, 159(7):1665–1680, 18 December 2014.

18 Tom Sexton, Eitan Yaffe, Ephraim Kenigsberg, Frédéric Bantignies, Benjamin Leblanc,
Michael Hoichman, Hugues Parrinello, Amos Tanay, and Giacomo Cavalli. Three-
dimensional folding and functional organization principles of the drosophila genome. Cell,
148(3):458–472, 3 February 2012.

19 Yin Shen, Feng Yue, David F. McCleary, Zhen Ye, Lee Edsall, Samantha Kuan, Ulrich
Wagner, Jesse Dixon, Leonard Lee, Victor V. Lobanenkov, and Bing Ren. A map of the
cis-regulatory sequences in the mouse genome. Nature, 488(7409):116–120, 2 August 2012.

20 Hanjun Shin, Yi Shi, Chao Dai, Harianto Tjong, Ke Gong, Frank Alber, and Xianghong Jas-
mine Zhou. TopDom: an efficient and deterministic method for identifying topological
domains in genomes. Nucleic Acids Res., 44(7):e70, 20 April 2016.

21 P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple features.
In Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition. CVPR 2001, volume 1, pages I–511–I–518 vol.1, 2001.

WABI 2017

Outlier Detection in BLAST Hits∗

Nidhi Shah1, Stephen F. Altschul2, and Mihai Pop3

1 Department of Computer Science and Center for Bioinformatics and
Computational Biology, University of Maryland, College Park, MD, USA
nidhi@cs.umd.edu

2 Computational Biology Branch, NCBI, NLM, NIH, Bethesda, MD, USA
altschul@ncbi.nlm.nih.gov

3 Department of Computer Science and Center for Bioinformatics and
Computational Biology, University of Maryland, College Park, MD, USA
mpop@umiacs.umd.edu

Abstract
An important task in a metagenomic analysis is the assignment of taxonomic labels to sequences
in a sample. Most widely used methods for taxonomy assignment compare a sequence in the
sample to a database of known sequences. Many approaches use the best BLAST hit(s) to assign
the taxonomic label. However, it is known that the best BLAST hit may not always correspond
to the best taxonomic match. An alternative approach involves phylogenetic methods which take
into account alignments and a model of evolution in order to more accurately define the taxonomic
origin of sequences. The similarity-search based methods typically run faster than phylogenetic
methods and work well when the organisms in the sample are well represented in the database. On
the other hand, phylogenetic methods have the capability to identify new organisms in a sample
but are computationally quite expensive. We propose a two-step approach for metagenomic
taxon identification; i.e., use a rapid method that accurately classifies sequences using a reference
database (this is a filtering step) and then use a more complex phylogenetic method for the
sequences that were unclassified in the previous step. In this work, we explore whether and when
using top BLAST hit(s) yields a correct taxonomic label. We develop a method to detect outliers
among BLAST hits in order to separate the phylogenetically most closely related matches from
matches to sequences from more distantly related organisms. We used modified BILD (Bayesian
Integral Log Odds) scores, a multiple-alignment scoring function, to define the outliers within a
subset of top BLAST hits and assign taxonomic labels. We compared the accuracy of our method
to the RDP classifier and show that our method yields fewer misclassifications while properly
classifying organisms that are not present in the database. Finally, we evaluated the use of our
method as a pre-processing step before more expensive phylogenetic analyses (in our case TIPP)
in the context of real 16S rRNA datasets. Our experiments demonstrate the potential of our
method to be a filtering step before using phylogenetic methods.

1998 ACM Subject Classification B.2.4 Algorithms

Keywords and phrases Taxonomy classification, Metagenomics, Sequence alignment, Outlier
detection

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.23

∗ S.F.A. was supported by the Intramural Research Program of the National Library of Medicine at the
National Institutes of Health. N.S. and M.P. were partly supported by the NSF, award IIS-1513615
to M.P.

© Nidhi Shah, Stephen Altschul, and Mihai Pop;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 23; pp. 23:1–23:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.WABI.2017.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Outlier Detection in BLAST Hits

1 Introduction

One of the goals of metagenomic analyses is to characterize the biological diversity of microbial
communities. This is usually achieved by targeted amplicon sequencing of the 16S rRNA
gene, either as a whole gene or focused on a hypervariable region within the gene [21]. The
16S rRNA gene is commonly used for this purpose because it is universally found in bacteria
and contains a combination of highly conserved and highly variable regions. Advances in
sequencing technology, targeted to a specific gene, have generated millions to hundreds of
millions of reads per study [6]. Assigning accurate taxonomic labels to these reads is one of
the critical steps for downstream analyses.

The most common approach for assigning taxonomic labels to reads involves comparing
them to a database of sequences from known organisms. These similarity-based methods
typically run rapidly and work well when organisms in the sample are well represented in the
database. However, a majority of microorganisms cannot be easily cultured in laboratories,
and even if they are culturable, a smaller number have been sequenced. Thus, not all
environmental organisms may be represented in the sequence database. This prevents the
similarity-based methods from accurately characterizing organisms within a sample that are
only distantly related to the sequences in the reference database. Phylogenetic-tree based
methods can characterize novel organisms within a sample by statistically modeling the
evolutionary processes that generated these sequences [15, 13]. However, such methods incur
a high computational cost, limiting their applicability in the context of the large datasets
generated in current studies. Ideally, we would want to use similarity-based methods to
assign labels to sequences from known organisms, and to use phylogenetic methods to assign
labels to sequences from unknown organisms.

We propose a two-step method for taxonomy assignment where we use a rapid assignment
method that can accurately assign labels to sequences that are well represented in the
database, and then use more complex phylogenetic methods to classify only those sequences
unclassified in the first step. In this work, we study whether and when a method can assign
accurate taxonomic labels using a similarity search of a reference database. We employ
BLAST because it is one of the most widely used similarity search methods [1]. However, it
has been shown that the best BLAST hit may not always provide the correct taxonomic
label [11]. Most taxonomic-assignment methods utilizing BLAST employ ad-hoc techniques
such as recording the consensus label among the top five hits, or using a threshold based on
E-value, percent identity, or bit-score [20, 22, 16, 8]. Here we propose an alternative approach
for detecting whether and when the top BLAST hits yield correct taxonomic labels. We
model the problem of separating phylogenetically correct matches from matches to sequences
from similar but phylogenetically more distant organisms as a problem of outlier detection
among BLAST hits. Our preliminary results involving simulated and real metagenomic
datasets demonstrate the potential of employing our method as a filtering step before using
phylogenetic methods.

2 Background

2.1 Taxonomy assignment using BLAST
Several metagenomic analyses use BLAST to assign taxonomic labels to uncharacterized
reads in a sample [20, 22, 16]. BLAST is a sequence similarity search tool, and it calculates
an E-value and a bit-score to assess the quality of each match. An E-value represents the
number of hits of equal or greater score expected to arise by chance. A bit-score can be

N. Shah, S. Altschul, and M. Pop 23:3

understood as representing the size of the space one would need to search in order to find as
strong a match by chance. However all 16S sequences are related, and therefore these scores,
derived from a model of random sequences, do not provide simple information for separating
sequences from different phylogenetic categories.

2.2 BILD scores for multiple sequence alignment

Multiple sequence alignments employ scoring functions to assess the quality of columns of
aligned letters. Such functions have included Sum-of-the-Pairs (SP) scores [14], entropy
scores [19], tree scores [17, 18] and the recently developed Bayesian Integral Log-Odds (BILD)
score [2, 3]. For local pairwise alignment, substitution scores are implicitly of log-odds form
[10]. BILD scores extend the log-odds formalism to multiple sequence alignments. They may
be used in numerous contexts such as the construction of hidden Markov model profiles, the
automated selection of optimal motifs, and the selection of insertion and deletion locations,
and they can inform the decision of whether to include a sequence in a multiple sequence
alignment. BILD scores can also be used to classify related sequences into subclasses, as we
describe below.

3 Methods

Broadly, our approach constructs a multiple alignment from all the top hits obtained by
comparing a query sequence to a database. We use BILD scores to determine whether the
multiple alignment can be split into two groups that model the data better than does a
single group. In essence, we find a subset of the sequences that are more closely related to
one another and to the query than to the rest of the sequences in the multiple alignment.
When there is no such subset i.e. when the single alignment models the data better, we leave
the query unclassified and such a query sequence is then classified in the second step by a
phylogenetic method.

3.1 Processing query sequences

Let S be the set of sequences in the reference database, each with a taxonomic label, and
Q be a set of uncharacterized reads (i.e. query sequences). We first align each sequence
in Q to sequences in S using BLAST (-max_target_seqs 100 -outfmt 5 -task megablast).
For each q ∈ Q, we construct the ordered set Sq that contains the segments yielding the
top 100 bit-scores, in decreasing order of their score. We discard all segments l ∈ Sq where
the BLAST alignment of q and l covers ≤ 90% of q. We use the BLAST-generated local
alignments involving q to impose a multiple alignment (Mq) on the sequences in q ∪ Sq.
Where several segments in Sq involves insertions at the identical location in q, we align these
insertions to one another by left justification.

3.2 Scoring for Multiple Sequence Alignments and Cuts

We base our score for a multiple alignment (Mq) on the Bayesian Integral Log-Odds (BILD)
scores described in [2]. For each alignment column, we take the prior for the nucleotide
probabilities to be a Dirichlet distribution with parameters ~α, and define α∗ =

∑4
k=1 αk.

(Here, we always use Jeffreys’ prior [9], for which all αk = 0.5, and α∗ = 2.) For the jth

column Mq
j of the alignment and ignoring null characters, the log-probability of observing

WABI 2017

23:4 Outlier Detection in BLAST Hits

1 ... j ... m

0

1

.

.

i-1

i

i+1

.

.

.

Mq

(n sequences)

Xq
i

Yq
i

Cut at row i

Column index

Figure 1 An example of how a cut divides an MSA into two disjoint groups.

the particular collection of c∗j nucleotides, with count vector ~cj , is then given by

L(Mq
j) = log

[
Γ(α∗)

Γ(α∗ + c∗j)

4∏
k=1

Γ(αk + cjk)
Γ(αk)

]
.

Here, Γ is a gamma function. As suggested in [2], the log-odds score for preferring a cut,
at row i, of the column Mq

j into the two sub-columns Xq
ji and Y q

ji, as illustrated in Figure 1,
is given by

V q
ji = L(Xq

ji) + L(Y q
ji)− L(Mq

j). (1)

Taking all columns into account, the log-odds score for preferring a cut at row i is simply
formula 1 summed over all columns. However, we have found it useful to give greater weight
to columns with greater diversity. Thus we adopt the score V q

i for a cut at row i given by
the formula

V q
i =

m∑
j=1

ea
jV

q
ji,

where Mq has m columns, ej = −
∑4

k=1 (cjk/c
∗
j) log4(cjk/c

∗
j) is the entropy (base 4) of

column j, and a is an arbitrary positive parameter. Note that, using this formula, perfectly
conserved columns have entropy 0 and thus weight 0, whereas columns with uniform nucleotide
usage have entropy 1 and thus weight 1. We have found, by experimentation, that a useful
value for the parameter a is 2.7.

3.3 Outlier detection and taxonomy assignment
We are interested in finding the phylogenetically most closely related matches in the database
to the query sequence q. We proceed by computing V q

i for cuts with increasing i, from i = 0,
and identify first i′ for which V q

i′ ≥ 0, V q
i′ > V q

(i′−1), and V
q

i′ > V q
(i′+1). In other words, we

N. Shah, S. Altschul, and M. Pop 23:5

Full length 16S sequences V3 region V4 region V3-V4 region

Figure 2 Leave-one-sequence-out validation of our outlier method using a simulated 16S rRNA
dataset (RTS) for full-length, V3, V4, and V3-V4 regions.

find the first peak among those scores that imply the data are better explained by a split
alignment. (Scores below zero favor a single alignment.) The first i′ − 1 sequences from Sq

we take as forming an outlier set Oq = Sq[1 : i′ − 1] for q. We extract the taxonomic labels
of all sequences in Oq and assign the lowest common ancestor (LCA; [8]) of these labels to q.
In the case when scores favor a single alignment, we leave the query sequence unclassified.
The unclassified query sequences then should be classified, in step two of a two-step process,
using a phylogenetic method.

4 Evaluation

4.1 Datasets
We used the RDP 16S rRNA gene v16 dataset (RTS), which has taxonomy annotated for
each of its 13,212 sequences [5], considering only the 12,320 sequences that had taxonomic
labels for all six levels - Kingdom, Phylum, Class, Order, Family, and Genus. These sequences
belong to 2,320 genera with, on average, 6 sequences per genus. To evaluate our outlier
detection method, we compared taxonomic labels assigned to query sequences by our method
to their true labels as given in RTS. First, we used V-Xtractor with default parameters to
extract the V3, V4 and V3-V4 hypervariable regions of the sequences [7]. We then used these
V3 (SIM-2), V4 (SIM-3), V3-V4 (SIM-4) and full (SIM-1) sequences as query datasets and
RTS sequences as a reference database. We also used a real metagenomic dataset (Dataset-1)
to study the effectiveness of our method in actual practice. Dataset-1 has 58,108 sequences
from the V1-V2 hypervariable region.

4.2 Leave-one-out validation
In the RTS simulated dataset, we know true taxonomic labels for all query sequences. For
each taxonomic level, we compare the taxonomic labels assigned by our method to the true
labels to find the number of queries that are correctly classified, misclassified or falsely
unclassified. To identify correctly classified query sequences at each level, we compare, for all
query sequences, the taxonomic labels assigned by our method to the true taxonomic label
at that level. If the label assigned to a query by our method matches its true label, or if
our method leaves the query sequence unassigned when there are no other sequences in the
database with its particular label, we consider the query sequence as properly classified. For
each taxonomic level, we consider misclassified those query sequences for which the assigned
taxonomic label does not match the true label. We also consider falsely unclassified those
sequences that were not assigned a taxonomic label at a particular level when the true label
existed independently in the database.

WABI 2017

23:6 Outlier Detection in BLAST Hits

Full length 16S sequences V3 region V4 region V3-V4 region

(a)
Full length 16S sequences V3 region V4 region V3-V4 region

(b)

Figure 3 (a) Leave-one-genus-out validation of our outlier method using a simulated 16S rRNA
dataset (RTS) for full-length, V3, V4, and V3-V4 regions. (b) Leave-one-genus-out validation of the
RDP classifier on same 16S rRNA datasets.

Figure 2 shows the number of correctly classified, misclassified and falsely unclassified
sequences calculated by leave-one-out cross-validation, where we assign a taxonomic label
to a query sequence (full or hypervariable region) after removing its associated sequence
from the database. For all query datasets, our method rarely misclassified at all taxonomic
levels, generally assigned correct labels at higher levels, but tended not to assign labels at
lower levels. This may be because our method uses the LCA of taxonomic labels of outlier
sequences. When there are closely related sequences in the database, our method chooses to
be conservative by not assigning labels at lower taxonomic levels.

To study the effectiveness of our method in classifying sequences with taxonomy unrepres-
ented in the database, we performed genus-level leave-one-out cross-validation. Specifically,
for each query, we removed all sequences from the database belonging to the same genus,
and assigned taxonomic labels with our method and the RDP classifier [23]. We ran the
RDP classifier using the QIIME [4] pipeline with the default confidence threshold of 80%.
We calculated the number of queries that were correctly classified, misclassified and falsely
unclassified as explained above. Figures 3a and 3b show results for our method and RDP
respectively. Because the genus to which a query sequence belongs is never present in the
database, any label assigned at genus level will result in a misclassification error, and no
assignment will result in correct classification. We observed that for higher taxonomic levels
(down to Order) RDP and our method have comparable misclassification rates. However, at
the Family and Genus levels, our method has a lower misclassification rate. For all datasets,
RDP misclassified more query sequences at the Genus level than did our method. This is
primarily because RDP aggressively tries to classify as many sequences as it can, whereas
our method prefers to classify only when it can do so accurately, leaving other sequences
to be dealt with later by a phylogenetic method. This experiment shows that even when
sequences from the same genus as the query are absent from the database, our method has
high precision and makes few mistakes.

N. Shah, S. Altschul, and M. Pop 23:7

(a) Number of query sequences for which our method’s
classification agrees with TIPP’s classification

(b) Number of query sequences classified by
our method and TIPP vs. unclassfied by both

Figure 4 Evaluation of our outlier method using TIPP on a real metagenomic dataset.

Figure 5 Box plot of percent identity of the best BLAST hit for all query sequences that were
assigned label at genus level by our method and TIPP vs. queries that remained unassigned by both
methods.

4.3 Validation using Phylogenetic-tree based assignment

To study the effectiveness of our outlier detection method in a realistic setting, we tested it
on a real metagenomic dataset. Since we do not know the true taxonomic label for all query
sequences, we compared our results with those produced by TIPP [15], a phylogenetic-tree
based taxonomic assignment method. We used the RDP 2014 16S reference database for
both methods. In this dataset, there were 58,108 query sequences for which our method
assigned 41,256 sequences at the Family level or below. Figure 4a shows that our method
has a high precision for all taxonomic levels. Also, Figure 4b suggests that using our outlier
method to make taxonomic assignments (at least down to the Family level) can significantly
reduce the workload of a phylogenetic-tree based method like TIPP. To classify 58,108 query
sequences, our method required about 29 CPU hours (including BLAST time), whereas
for the same dataset TIPP needed about 300 CPU hours. This shows the potential of our
method as a filtering step before using phylogenetic-tree based methods. About 11,000
sequences remained unclassified by both TIPP and our method, and we investigated whether
the best BLAST hit’s percent identity correlates with the ability of these programs to make
classifications; see Figure 5. Unfortunately, there is no clear percent-identity cutoff one can
employ to recognize sequences that will remain unassigned by both methods, although a large
number of the unassigned sequences have low similarity to the nearest database sequence.

WABI 2017

23:8 Outlier Detection in BLAST Hits

Figure 6 Box plot showing the variation in the number of outliers detected per query sequence
in DATASET-1, SIM-1, SIM-2, SIM-3 and SIM-4.

(A)

(B)

Figure 7 Phylogenetic tree showing outliers detected for two example query sequences.

4.4 Distribution of outliers

Since prior approaches restrict the analysis to just a fixed number of top hits, we evaluated
the number of outliers proposed by our method. As seen in Figure 6, the number of outliers
has large variance, so a single cutoff (say, the best or top five BLAST hits) will not identify
all phylogenetically related matches from the database. In this case, we relied on data for
which the true taxonomic label is not known. To validate whether the set of outliers detected
by our method is reasonable, and to better understand the performance of our approach, we
evaluated the placement of the outlier sequences within a phylogenetic tree of the database.
For this, we used the phylogenetic tree for the RDP 2014 database that was bundled in
the TIPP reference package, and used the Interactive Tree Of Life web tool to visualize
outliers [12]. In general, we noticed that the outliers are grouped close to each other in the
phylogenetic tree (see examples in Figure 7), suggesting that our method produces reasonable
results. This analysis also revealed insights into the resolution level of the annotations
provided by our method. When the outlier sequences cluster tightly within the phylogeny
(Figure 7A), a reliable classification can be made at a low taxonomic level. When the outliers

N. Shah, S. Altschul, and M. Pop 23:9

are distributed along a broader section of the tree (Figure 7B), the classification can only be
made at a higher taxonomic levels.

5 Conclusion and Discussion

We propose a two-step approach for taxonomic assignment, in which we gain as much
information as we reliably can from BLAST output before using computationally expensive
phylogenetic-tree based methods on sequences that are difficult to classify. In this paper,
we developed an outlier detection method for taxonomy assignment using BLAST hits that
separates phylogenetically correct matches from matches to sequences from similar but
phylogenetically more distant organisms. This method can thus be used for step one of a
two-step approach, to identify sequences that can be assigned accurate labels using just a
BLAST search of a reference database.

Because all 16S rRNA sequences are related, statistics like BLAST’s E-value or bit-
score do not provide ready information for separating sequences from different phylogenetic
categories. Our experiments show also that there isn’t any single cutoff that can be used
to select BLAST hits for correctly assigning taxonomic labels. We have experimented with
finding outliers using bit-score distributions, but found they provided insufficient information
to detect phylogenetically correct matches (data not shown). Our experiments also show
that although the percent identity of its best BLAST hit is correlated to a sequence’s being
assigned a taxonomic label, no particular percent-identity cutoff can separate those sequences
that can be classified from those that cannot. This has motivated our development of a
BILD-score based method to identify when the top BLAST hits will yield accurate taxonomic
labels.

Because our method is used as a filtering step, we seek to accurately classify as many
query sequences as possible while making few misclassifications. The sequences that we leave
unclassified are then to be handled by a phylogenetic method. Our results on simulated
and real 16S rRNA metagenomic datasets show that our method has high precision at all
taxonomic levels, assigning correct labels at higher levels to a majority of sequences, and that
it is computationally efficient compared to phylogenetic-tree based taxonomic assignment
methods. This demonstrates the promise of a two-step taxonomic assignment approach,
using our method as a filtering step.

In the future, we plan to study sequences that were classified correctly by phylogenetic
methods but not by ours, to gain insight for possible improvements. We also plan to study
the effectiveness of restricting phylogenetic-tree based methods to the subtree spanned by
our method’s outliers. Finally, note that our method was developed for and tested on 16S
rRNA data, and is not applicable as it stands to whole genome sequencing (WGS) datasets.
However, the idea of using a two-step approach for taxonomy assignment in WGS datasets is
an interesting avenue for research.

Acknowledgement. We wish to thank anonymous reviewers for helpful comments.

References
1 Stephen F. Altschul, Warren Gish, Webb Miller, Eugene W. Myers, and David J. Lipman.

Basic local alignment search tool. Journal of molecular biology, 215(3):403–410, 1990.
2 Stephen F. Altschul, John C. Wootton, Elena Zaslavsky, and Yi-Kuo Yu. The construction

and use of log-odds substitution scores for multiple sequence alignment. PLoS Comput Biol,
6(7):e1000852, 2010.

WABI 2017

23:10 Outlier Detection in BLAST Hits

3 Michael Brown, Richard Hughey, Anders Krogh, I. Saira Mian, Kimmen Sjölander, and
David Haussler. Using Dirichlet mixture priors to derive hidden markov models for protein
families. In Ismb, volume 1, pages 47–55, 1993.

4 J. Gregory Caporaso, Justin Kuczynski, Jesse Stombaugh, Kyle Bittinger, Frederic D. Bush-
man, Elizabeth K. Costello, Noah Fierer, Antonio Gonzalez Peña, Julia K. Goodrich, Jef-
frey I. Gordon, et al. QIIME allows analysis of high-throughput community sequencing
data. Nature methods, 7(5):335–336, 2010.

5 James R. Cole, Qiong Wang, Jordan A. Fish, Benli Chai, Donna M. McGarrell, Yanni
Sun, C. Titus Brown, Andrea Porras-Alfaro, Cheryl R. Kuske, and James M. Tiedje. Ri-
bosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic
acids research, page gkt1244, 2013.

6 Jack A. Gilbert, Janet K. Jansson, and Rob Knight. The Earth Microbiome project: suc-
cesses and aspirations. BMC biology, 12(1):69, 2014.

7 Martin Hartmann, Charles G. Howes, Kessy Abarenkov, William W. Mohn, and R. Henrik
Nilsson. V-Xtractor: an open-source, high-throughput software tool to identify and extract
hypervariable regions of small subunit (16s/18s) ribosomal RNA gene sequences. Journal
of Microbiological Methods, 83(2):250–253, 2010.

8 Daniel H. Huson, Alexander F. Auch, Ji Qi, and Stephan C. Schuster. MEGAN analysis
of metagenomic data. Genome research, 17(3):377–386, 2007.

9 Harold Jeffreys. An invariant form for the prior probability in estimation problems. Pro-
ceedings of the Royal Society of London a: mathematical, physical and engineering sciences,
186(1007):453–461, 1946.

10 Samuel Karlin and Stephen F. Altschul. Methods for assessing the statistical significance of
molecular sequence features by using general scoring schemes. Proceedings of the National
Academy of Sciences, 87(6):2264–2268, 1990.

11 Liisa B. Koski and G. Brian Golding. The closest BLAST hit is often not the nearest
neighbor. Journal of molecular evolution, 52(6):540–542, 2001.

12 Ivica Letunic and Peer Bork. Interactive Tree Of Life (iTOL): an online tool for phylogenetic
tree display and annotation. Bioinformatics, 23(1):127–128, 2007.

13 Frederick A. Matsen, Robin B. Kodner, and E. Virginia Armbrust. pplacer: linear time
maximum-likelihood and Bayesian phylogenetic placement of sequences onto a fixed refer-
ence tree. BMC bioinformatics, 11(1):538, 2010.

14 Michio Murata, Jane S. Richardson, and Joel L. Sussman. Simultaneous comparison of
three protein sequences. Proceedings of the National Academy of Sciences, 82(10):3073–
3077, 1985.

15 Nam-phuong Nguyen, Siavash Mirarab, Bo Liu, Mihai Pop, and Tandy Warnow. TIPP:
taxonomic identification and phylogenetic profiling. Bioinformatics, 30(24):3548–3555,
2014.

16 Mihai Pop, Alan W. Walker, Joseph Paulson, Brianna Lindsay, Martin Antonio, M. Anowar
Hossain, Joseph Oundo, Boubou Tamboura, Volker Mai, Irina Astrovskaya, et al. Diarrhea
in young children from low-income countries leads to large-scale alterations in intestinal
microbiota composition. Genome biology, 15(6):R76, 2014.

17 David Sankoff. Minimal mutation trees of sequences. SIAM Journal on Applied Mathem-
atics, 28(1):35–42, 1975.

18 David Sankoff and Robert J. Cedergren. Simultaneous comparison of three or more se-
quences related by a tree. Time warps, string edits, and macromolecules: the theory and
practice of sequence comparison/edited by David Sankoff and Joseph B. Krustal, 1983.

19 Thomas D. Schneider, Gary D. Stormo, Larry Gold, and Andrzej Ehrenfeucht. Information
content of binding sites on nucleotide sequences. Journal of molecular biology, 188(3):415–
431, 1986.

N. Shah, S. Altschul, and M. Pop 23:11

20 Raúl Y. Tito, Simone Macmil, Graham Wiley, Fares Najar, Lauren Cleeland, Chunmei Qu,
Ping Wang, Frederic Romagne, Sylvain Leonard, Agustín Jiménez Ruiz, et al. Phylotyping
and functional analysis of two ancient human microbiomes. PLoS One, 3(11):e3703, 2008.

21 Susannah G. Tringe and Philip Hugenholtz. A renaissance for the pioneering 16S rRNA
gene. Current opinion in microbiology, 11(5):442–446, 2008.

22 Susannah Green Tringe, Christian Von Mering, Arthur Kobayashi, Asaf A. Salamov, Kevin
Chen, Hwai W. Chang, Mircea Podar, Jay M. Short, Eric J. Mathur, John C. Detter, et al.
Comparative metagenomics of microbial communities. Science, 308(5721):554–557, 2005.

23 Qiong Wang, George M. Garrity, James M. Tiedje, and James R. Cole. Naive bayesian
classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Applied
and environmental microbiology, 73(16):5261–5267, 2007.

WABI 2017

Finding Local Genome Rearrangements∗

Pijus Simonaitis1 and Krister M. Swenson2

1 ENS Lyon, Lyon, France
pijus.simonaitis@ens-lyon.fr

2 LIRMM, CNRS – Université Montpellier, Montpellier, France; and
Institut de Biologie Computationnelle (IBC), Montpellier, France
swenson@lirmm.fr

Abstract
The Double Cut and Join (DCJ) model of genome rearrangement is well studied due to its math-
ematical simplicity and power to account for the many events that transform genome architec-
ture. These studies have mostly been devoted to the understanding of minimum length scenarios
transforming one genome into another. In this paper we search instead for DCJ rearrangement
scenarios that minimize the number of rearrangements whose breakpoints are unlikely due to
some biological criteria. We establish a link between this Minimum Local Scenario (MLS)
problem and the problem of finding a Maximum Edge-disjoint Cycle Packing (MECP) on
an undirected graph. This link leads us to a 3/2-approximation for MLS, as well as an exact
integer linear program. From a practical perspective, we briefly report on the applicability of our
methods and the potential for computation of distances using a more general DCJ cost function.

1998 ACM Subject Classification G.2.1 Combinatorial Algorithms, G.2.2 Graph Algorithms,
J.3 Life and Medical Sciences

Keywords and phrases genome rearrangement, double cut and join, maximum edge-disjoint
cycle packing, Hi-C, NP-complete, approximation algorithm

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.24

1 Overview

The problem of sorting genomes by a prescribed set of biologically plausible rearrangements
has been a central problem in comparative genomics for roughly a quarter century. The
Double Cut and Join (DCJ) model covers a diverse set of these possible rearrangements
while being grounded in a very simple mechanism [15, 2]. An important step forward is
the development of methodology to find plausible rearrangement scenarios using biological
constraints.

We recently introduced a model for weighting DCJs that is suitable for representing
certain biological constraints. The model groups breakpoint regions between adjacent genes
(or syntenic blocks) into equivalence classes that are likely to participate in a rearrangement
[14]. The 3D spacial proximity of breakpoint regions could be used as such, and the data is
becoming increasingly available due to an experiment called Hi-C [9, 13]. (The pertinence of
this model is discussed in Section 7.) The model colors adjacencies for use with a binary
cost function, where a DCJ acting on adjacencies with the same color is of zero cost while
those acting on different colors are of cost one. We showed that the problem of finding – out

∗ This work is partially supported by the IBC (Institut de Biologie Computationnelle) (ANR-11-BINF-
0002), by the Labex NUMEV flaship project GEM, and by the CNRS project Osez l’Interdisciplinarité.

© Pijus Simonaitis and Krister M. Swenson;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 24; pp. 24:1–24:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.WABI.2017.24
http://www.ibc-montpellier.fr
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

24:2 Finding Local Genome Rearrangements

of all minimum length rearrangement scenarios – a scenario that minimizes the number of
costly moves, takes polynomial time [14].

In this paper we disregard the length of the scenario and instead focus solely on the
number of costly moves. We show that the Minimum Local Scenario problem is NP-Hard,
while admitting a 3/2-approximation. This is done by exploiting a relationship to the
Maximum Edge-disjoint Cycle Packing problem, a problem which was first linked to
genome rearrangement in a different way by Alberto Caprara (sorting by unsigned reversals
is NP-Hard [4]).

In our method, MLS is transformed into an edge elimination problem on a junction
graph, representing the transitions between colors encountered when traversing the connected
components of the adjacency graph. We give an exact formula for the number of costlyy
moves based solely on the number of edges and the number of cycles in the MECP of the
junction graph. We also propose an exact algorithm for MLS that is exponential in the
number of colors and not in the number of genes and discuss an example where this algorithm
is computationally feasible. Finally, we show how to bound the number of non-parsimonious
moves when using a more general cost function.

The paper is organized as follows. Section 2 introduces basic definitions. In Section 3
our main result, relating MLS to MECP by way of the junction graph, is described in the
simplified realm of sets of pairs. In this context, the junction graph is Eulerian. Section 4
extends the results to the general case where the junction graph is not Eulerian. Section 5
presents our algorithmic results. Finally, Section 6 discusses a more general cost function,
while Section 7 reports on practical aspects of coloring adjacencies.

2 Genome and DCJ rearrangements

A genome consists of chromosomes that are linear or circular molecules partitioned into
uniquely labeled directed genes (or equivalently syntenic blocks of genes) and intergenic
regions separating them.

1
2

3 4

The genome depicted above consists of a linear and a circular chromosome each having two
genes. Arrows in the picture indicate the head extremities of the genes. We can represent a
genome by a set of adjacencies between the gene extremities and such a set for a genome from
our example is

{
{1h}, {1t, 2t}, {2h}, {3h, 4t}, {4h, 3t}

}
. Here 1h denotes the head extremity

of a gene 1. An adjacency is either an unordered pair of gene extremities that are adjacent
on a chromosome, called internal adjacency, or a single gene extremity adjacent to one of
the two ends of a linear chromosome, called an external adjacency.

I Definition 1 (Double Cut and Join). DCJ move acts on one or two adjacencies as follows:
1. {a, b}, {c, d} → {a, c}, {b, d} or {a, d}, {b, c}
2. {a, b}, {c} → {a, c}, {b} or {b, c}, {a}
3. {a, b} → {a}, {b}
4. {a}, {b} → {a, b}

P. Simonaitis and K.M. Swenson 24:3

We first treat a simplified instance of sets of pairs where all the adjacencies are internal
and DCJs can only swap the elements between them in Section 3. Then in Section 4 we show
how genomes can be extended to the sets of pairs and use the previously obtained results to
solve the Minimum Local Scenario problem.

3 Minimum Local Scenario for sets of pairs

3.1 Cost of a DCJ scenario
Given two sets of pairs:

A =
{
{1, 2}, . . . , {2n− 1, 2n}

}
, and

B =
{
{q1, q2}, . . . , {q2n−1, q2n}

}
,

with pairs being unordered and (q1, . . . , q2n) being a permutation of (1, . . . , 2n), our goal
is to transform A into B with a sequence of DCJ moves {a, b}, {c, d} → {a, c}, {b, d} and
{a, b}, {c, d} → {a, d}, {b, c}.

A coloring of a set of pairs A over a set of colors ∆ is a function col : A→ ∆ partitioning
A into the subsets of different colors. A coloring is used to define the cost of a DCJ move. A
move is local and of zero cost if it acts on the pairs with equal colors and it is non-local and
of cost 1 otherwise. The cost of a sequence of DCJ moves, a DCJ scenario, is the sum of the
costs of its constituent moves.

A DCJ move A→ A′ transforming a set of pairs A into A′ will also transform col into
col′, a coloring of A′. This means that a DCJ scenario transforming A into B will transform
A’s coloring col into B’s coloring colB. For a pair p ∈ A we use notation (p, col(p)) of a
colored pair. Four different DCJ moves on colored pairs ({a, b}, x) and ({c, d}, y) are allowed
in our model giving four possible outcomes:

({a, c}, x), ({b, d}, y), or ({a, d}, x), ({b, c}, y), or
({a, c}, y), ({b, d}, x), or ({a, d}, y), ({b, c}, x).

The biological interpretation of this model is that intergenic regions are broken and repaired
at their borders with the gene extremities. We discuss the applicability of such a model in
Section 7.

In our previous work [14] we have treated the Minimum Local Parsimonious Scenario
problem.

I Problem 1 (MLPS). For two sets of pairs A, B and a coloring of A find a minimum cost
scenario among the DCJ scenarios of minimum length transforming A into B.

We have shown that MLPS takes polynomial time, however the real evolutionary scenario
might be non-parsimonious. In this paper we study the Minimum Local Scenario problem
which asks for such non-parsimonious scenarios.

I Problem 2 (MLS). For two sets of pairs A, B and a coloring of A find a minimum cost
DCJ scenario transforming A into B.

MLS has the following combinatorial interpretation. Pairs of uniquely labeled balls (set
of pairs A) are partitioned into the bins (coloring of A). Given a partition T of the balls into
pairs (set of pairs B), find a minimum length sequence of ball swaps between the bins (DCJ
moves) so that for all pairs {a, b} ∈ T , a and b end up in the same bin (A is transformed
into B).

WABI 2017

24:4 Finding Local Genome Rearrangements

3.2 Adjacency and junction graphs
The Adjacency graph was introduced in [2] for the study of DCJ rearrangements. We
introduce a transformation of the adjacency graph, called a junction graph, that incorporates
the information on a coloring.

I Definition 2 (Adjacency graph). For two sets of pairs A and B the adjacency graph
AG(A,B) is defined as a bipartite multi-graph whose vertices are A ∪B and for each p ∈ A
and q ∈ B there are exactly |p ∩ q| edges joining these two vertices.

I Definition 3 (Junction graph). For two sets of pairs A, B and a coloring col of A over ∆
we define a multi-graph J(A,B, col) = (∆, E). For every pair {a, b} ∈ B we add an edge
(x, y) to E such that x and y are the colors of the pairs of A adjacent to {a, b} in AG(A,B).

I Example 4. For two sets of pairs A, B and a coloring col of A we present below AG(A,B)
on the left and J(A,B, col) on the right.

A =
{

({1, 2}, t), ({3, 4}, x), ({5, 6}, y), ({7, 8}, z), ({9, 10}, x)
}

B =
{
{2, 3}, {4, 5}, {6, 7}, {8, 1}, {9, 10}

}
A

B

t
1 2

x
3 4

y
5 6

z
7 8

x
9 10

2 3 4 5 6 7 8 1 9 10 t

x y

z

A DCJ move ({1, 2}, t), ({5, 6}, y)→ ({5, 2}, t), ({1, 6}, y) transforming A into A′ transforms
adjacency and junction graphs as follows.

A′

B

t
5 2

x
3 4

y
1 6

z
7 8

x
9 10

2 3 4 5 6 7 8 1 9 10 t

x y

z

All connected components of AG(B,B) are cycles of length 2 thus at the end of a DCJ
scenario transforming A into B we are left with a junction graph whose edges are all loops,
we call such a graph terminal.

I Definition 5 (A DCJ move on a graph). Edges (x, y) and (z, t) of a graph are deleted and
replaced by either (x, z) and (y, t) or (x, t) and (y, z).

I Lemma 6. For a DCJ scenario of cost w transforming A into B there exists a DCJ
scenario of length at most w transforming J(A,B, col) into a terminal graph and vice versa.

Proof. From Example 4 it should be clear that for every DCJ move A→ A′ we have that
a transformation J(A,B, col) to J(A′, B, col′) is a DCJ move on a graph. If a DCJ move
A → A′ is of zero cost, then J(A,B, col) = J(A′, B, col′) and such moves will be omitted
from a DCJ scenario on a graph. This means that a DCJ scenario of cost w transforming A
(and its coloring col) into (B and its coloring colB) provides us with a DCJ scenario of length
at most w on a graph transforming J(A,B, col) into a terminal graph J(B,B, colB). On
the other hand for every DCJ move on a graph J → J ′ a DCJ move A→ A′ can be found
such that J(A′, B, col′) = J ′. For any DCJ scenario on a graph of length w transforming

P. Simonaitis and K.M. Swenson 24:5

J(A,B, col) into a terminal graph we obtain a DCJ scenario of length w, thus of cost at most
w, transforming A and its coloring col into C and its coloring colC such that J(C,B, colC) is
terminal. This means that C’s pairs belonging to the same connected component of AG(C,B)
are of the same color. A DCJ scenario transforming C into B and only acting on the pairs
belonging to the same connected components of an adjacency graph can be easily found.
Such a scenario is of zero cost and at the end we obtain a DCJ scenario transforming A into
B of cost at most w. J

3.3 Linking DCJ scenarios and Maximum Edge-disjoint Cycle Packings
Using Lemma 6 we can shift our attention from a DCJ scenario on a set of pairs to a DCJ
scenario on a junction graph J . From now on we will shorten “DCJ move on a graph” to
“DCJ move”.

I Definition 7 (Maximum Edge-disjoint Cycle Packing (MECP)). Maximum Edge-
disjoint Cycle Packing of a graph G is a largest set of edge-disjoint cycles in G.

For a graph G = (V,E) we note E(G) = |E| and c(G) the size of its MECP. For a junction
graph J we write w(J) to indicate the minimum length of a DCJ scenario transforming J
into a terminal graph.

I Theorem 8. For a junction graph J we have w(J) = E(J)− c(J).

Proof. It is easy to transform a cycle of length n > 1 into n loops in n−1 DCJ moves. Given
a cycle packing C of J we construct a DCJ scenario transforming J into a terminal graph
while transforming all of its cycles separately. The length of such a scenario is E(J)−|C|, and
if we take a Maximum Edge-disjoint Cycle Packing we obtain w(J) ≤ E(J)− c(J).

Now take a scenario of m DCJ moves transforming J = J0 into a terminal graph Jm,
with Jk being the junction graph after k ≥ 0 moves of the scenario. We enumerate J ’s edges
E = {e1, . . . , eE(J)} and define their partition into singletons P0 = {{1}, . . . , {E(J)}}. A
move k of a scenario acts on two edges ei and ej of Jk−1, deleting them and introducing
two new edges to give Jk. We call one of these edges ei and another ej , preserving the
enumeration of the edges of Jk. Let Si and Sj be the subsets of a partition Pk−1 including
ei and ej respectively. We define a partition Pk of {e1, . . . , eE(J)} obtained from Pk−1 by
merging Si and Sj into Si ∪ Sj . At the end we obtain a partition Pm of cardinality at least
E(J) −m as there were at most m merges on the way. We will show that Pm is a cycle
packing of J .

For J ’s vertices V , a subset S ⊂ {e1, . . . , eE(J)} and k ∈ {0, . . . ,m}, we define SJk
= (V, S)

a subgraph of Jk. For any graph G and its vertex v we denote dG(v) the degree of v in G.

I Lemma 9. For k ∈ {0, . . .m}, a subset S in a partition Pk, and a vertex v of J we have

dSJ
(v) = dSJk

(v).

Proof. J0 = J , thus the equality is true for k = 0. We suppose that equality is true for every
S and v with k − 1 and proceed by induction on k. We fix a vertex v and a subset S ∈ Pk.
The k-th move of a scenario acts on the edges ei and ej that by construction belongs to the
same subset S′ ∈ Pk. There are three possibilities:
1. (S′ 6= S) In this case S ∈ Pk−1 and SJk

= SJk−1 , as the edges in S are unaffected by a
DCJ move. Using the inductive hypothesis we obtain

dSJk
(v) = dSJk−1

(v) = dSJ
(v) .

WABI 2017

24:6 Finding Local Genome Rearrangements

2. (S′ = S and S = Si ∪ Sj with Si and Sj being the different subsets in Pk−1 including ei

and ej respectively) SJk
is obtained from SJk−1 via a DCJ move and, as a DCJ move

does not affect the degrees of the vertices we obtain, we use the inductive hypothesis and
the fact that S = Si ∪ Sj to get

dSJk
(v) = dSJk−1

(v) = dSi
Jk−1

(v) + dSj
Jk−1

(v) = dSi
J
(v) + dSj

J
(v) = dSJ

(v) .

3. (S′ = S and ei, ej already present in the same subset S of Pk−1) SJk
is obtained from

SJk−1 via a DCJ move which does not affect the degrees of the vertices and thus we
obtain (using inductive hypothesis)

dSJk
(v) = dSJk−1

(v) = dSJ
(v) .

As equality is preserved by a DCJ move and true for k = 0 we obtain the result by
induction. J

All edges of Jm are loops, thus for every subset S in Pm and vertex v of J , dSJm
(v) is

even and so, using Lemma 9, we know that dSJ
(v) is even as well. This means that the

connected components of SJ are Eulerian and thus S is a union of J ’s cycles. As Pm contains
at least E(J)−m subsets, we know that it partitions the edges of J into at least E(J)−m
cycles. If we take a scenario of length w(J) we obtain the inequality c(J) ≥ E(J)− w(J),
which ends the proof of Theorem 8. J

4 Minimum Local Scenario for genomes

4.1 Cost of a DCJ scenario

Given two genomes with enumerated extremities

A =
{
{1, 2}, . . . , {2n− 1, 2n}, {2n+ 1}, . . . , {2n+ 2m}

}
,

B =
{
{q1, q2}, . . . , {q2l−1, q2l}, {q2l+1}, . . . , {q2n+2m}

}
,

and (q1, . . . , q2n+2m) being a permutation of (1, . . . , 2n+ 2m). Our goal is to transform A

into B using DCJ moves defined in Definition 1. As in the case of pairs-only, we define a
coloring col : A→ ∆ which is transformed by DCJ moves as follows:
1. ({a, b}, x), ({c, d}, y)→ ({a, c}, x), ({b, d}, y) or ({a, d}, x), ({b, c}, y) or

({a, c}, y), ({b, d}, x) or ({a, d}, y), ({b, c}, x)
2. ({a, b}, x), ({c}, y)→ ({a, c}, x), ({b}, y) or ({a, c}, y), ({b}, x) or

({b, c}, x), ({a}, y) or ({b, c}, y), ({a}, x)
3. ({a, b}, x)→ ({a}, x), ({b}, z) or ({a}, z), ({b}, x) with any color z
4. ({a}, x), ({b}, y)→ ({a, b}, x) or ({a, b}, y)

The cost of a DCJ move is equal to 0 if z = x or x = y, 1 otherwise.

4.2 Genome extensions

A genome can be extended into a set of pairs by adding artificial gene extremities that
represent telomeres marking the ends of each linear chromosome.

P. Simonaitis and K.M. Swenson 24:7

I Definition 10 (Genome extensions). For a genome A we define a set A+ of the sets of pairs
that are genome extensions of A. Â ∈ A+ is of a form:{

{1, 2}, . . . , {2n− 1, 2n}, {2n+ 1, ◦1}, . . . , {2n+ 2m, ◦2m},
{◦2m+1, ◦2m+2}, . . . , {◦2m+2l−1, ◦2m+2l}

}
with l ∈ N and (◦1, . . . , ◦2m+2l) being a permutation of (2n+ 2m+ 1, . . . , 2n+ 4m+ 2l).

A pair {i, j} with i, j > 2n + 2m will be called a telomeric pair. By construction,
adjacencies of a genome and non-telomeric pairs of a genome extension can be mapped one
to one as internal adjacencies of a genome are present in the genome extension, and external
adjacencies are simply complemented by an artificial gene extremity. A coloring col of A can be
trivially extended to a coloring ĉol of Â ∈ A+ by keeping the same colors for the non-telomeric
pairs and choosing any colors for the telomeric ones. For every DCJ move A→ A′ acting on
two adjacencies of a genome there is an induced DCJ move Â→ Â′ of the same cost with Â′ ∈
A′+ acting on the corresponding pairs of a genome extension. For example ({a}, x), ({b}, y)→
({a, b}, x) induces ({a, ◦1}, x), ({b, ◦2}, y)→ ({a, b}, x), ({◦1, ◦2}, y) and ({a, b}, x)({c}, y)→
({a, c}, x), ({b}, y) induces ({a, b}, x), ({c, ◦1}, y) → ({a, c}, x), ({b, ◦1}, y). A DCJ move of
the form ({a, b}, x) → ({a}, x), ({b}, z) or ({a}, z), ({b}, x) acting on a single adjacency is
different, as in this case we need a telomeric adjacency of color z to be present in a genome
extension. For example ({a, b}, x) → ({a}, x), ({b}, z) induces ({a, b}, x), ({◦1, ◦2}, z) →
({a, ◦1}, x), ({b, ◦2}, z) on a genome extension including ({◦1, ◦2}, z).

I Lemma 11. For a DCJ scenario transforming genome A into B and a coloring of A there
exist genome extensions Â ∈ A+, B̂ ∈ B+ and a scenario of the same cost transforming Â
into B̂.

Proof. In a DCJ scenario there is a certain number l of the DCJ moves acting on a single
adjacency. We take a genome extension Â ∈ A+ with l telomeric pairs. Every DCJ move
({a, b}, x) → ({a}, x), ({b}, z) or ({a}, z), ({b}, x) will induce a move acting on a different
telomeric pair of a genome extension and its color will be a color z required by that DCJ
move on a genome. In this way every DCJ move on a genome will induce a move on a genome
extension and after a scenario of cost w we will end up with B̂, an extension of genome
B. J

I Lemma 12. For a DCJ scenario transforming Â ∈ A+ into B̂ ∈ B+ and a coloring of A
there exists a DCJ scenario of the same cost or smaller transforming A into B.

Proof. We start with a couple (A, Â) and apply a scenario transforming Â into B̂ step by
step, transforming A on the way. After the first k moves of a scenario whose cost is wk

we get a couple (Ak, Âk) with Âk ∈ Ak
+ and Ak obtainable from A by a scenario of cost at

most wk. A couple (Ak+1, Âk+1) is constructed as follows. The k + 1st move of a scenario is
Âk → Âk+1.
1. If Âk+1 ∈ Ak

+, then output (Ak, Âk+1).
2. If Âk+1 /∈ Ak

+, then we can easily find a genome C such that Âk+1 ∈ C+ and there is a
DCJ move Ak → C of the same cost as Âk → Âk+1. Output (C, Âk+1).

Now Âk+1 ∈ Ak+1
+ and the scenario transforming A into Ak+1 is of cost at most wk+1. We

continue until we obtain (B, B̂) with a scenario transforming A into B of cost at most w. J

I Definition 13 (Adjacency graph). For two genomes A and B the adjacency graph AG(A,B)
is defined as a bipartite multi-graph whose vertices are A ∪B and for each p ∈ A and q ∈ B
there are exactly |p ∩ q| edges joining these two vertices.

WABI 2017

24:8 Finding Local Genome Rearrangements

I Definition 14 (Junction graph). For two genomes A, B and a coloring col of A over ∆ we
define a multi-graph J(A,B, col) = (∆, E). For every internal adjacency {a, b} ∈ B we add
an edge (x, y) to E such that x and y are the colors of the pairs of A adjacent to {a, b} in
AG(A,B).

We define an Eulerian extension of a graph to be an Eulerian graph obtained from the
initial one by adding some edges. By construction J(Â, B̂, ĉol) is an Eulerian extension of
J(A,B, col). We close this section by relating Eulerian extensions of J(A,B, col) to the
junction graphs of genome extensions, the proof is provided in the appendix.

I Lemma 15. For every Eulerian extension J ′ of J(A,B, col) there exists genome extensions
Â ∈ A+ and B̂ ∈ B+ such that J(Â, B̂, ĉol) and J ′ have exactly the same non-loop edges.
We say that such graphs are loop-equal.

4.3 Minimum Local Scenario
I Theorem 16. The minimum cost w of a DCJ scenario transforming genome A into B is
E(J)− c(J) with J = J(A,B, col).

Proof. For a cycle packing C of J of cardinality c(J) we define an Eulerian extension J ′
with every edge of J not belonging to C duplicated, we denote the number of such edges
by k. A union of C and k cycles of length 2 created by the added edges will be a cycle
packing C ′ of J ′. Using Theorem 8 we obtain a DCJ scenario of length E(J ′) − |C ′| =
E(J) + k − c(J)− k = E(J)− c(J) transforming J ′ into a terminal graph. Using Lemma 15
we obtain the sets of pairs Â ∈ A+ and B̂ ∈ B+ such that J(Â, B̂, ĉol) is loop-equal to J ′.
Using Lemma 6 we obtain a DCJ scenario of cost at most E(J)− c(J) transforming Â into
B̂ from which we obtain a DCJ scenario of cost at most E(J)− c(J) transforming A into B
while using Lemma 12, meaning that w ≤ E(J)− c(J).

For a DCJ scenario of cost w transforming A into B we use Lemma 11 to obtain the sets
of pairs Â ∈ A+ and B̂ ∈ B+, and a scenario of cost w transforming Â into B̂. This leads to
a DCJ scenario transforming J ′ = J(Â, B̂, ĉol) into a terminal graph in at most w moves
using Lemma 6. Theorem 8 gives us a cycle packing C ′ of J ′ such that w ≥ E(J ′) − |C ′|.
We then define C to be the union of the cycles in C ′ consisting entirely of the edges of
J = J(A,B, colA). While counting edges and cycles we obtain

w ≥ E(J ′)− |C ′| = E(J)− |C|+ E(J ′)− E(J)− |C ′ \ C|.

Due to the construction of C every cycle in C ′ \ C admits at least one edge from J ′ not
belonging to J and thus E(J ′)− E(J) ≥ |C ′ \ C|. So we have inequality w ≥ E(J)− |C| ≥
E(J)− c(J), which ends the proof. J

5 Algorithms for MLS

5.1 NP-completeness of MLS
I Theorem 17. The decision version of Minimum Local Scenario is NP-complete.

Proof. The decision version of MLS is clearly in NP. We reduce the decision version of
MECP on Eulerian graphs, which is NP-hard [7] (and APX-hard [5]), to MLS. Without loss
of generality, take an instance G = (V,E) and a bound k of MECP, where G is Eulerian

P. Simonaitis and K.M. Swenson 24:9

and connected. Consider an Eulerian cycle u1, u2, . . . , un, u1 of G and construct genomes

A =
{
{1, 2}, {3, 4}, . . . , {2n− 1, 2n}

}
, and

B =
{
{2, 3}, {4, 5}, . . . , {2n, 1}

}
,

and a coloring col over the set V such that col
(
{2i − 1, 2i}

)
= ui for all i ∈ {1, . . . , n} to

obtain J(A,B, col) = G. Theorem 16 says that an optimal solution to MLS of cost w(G)
implies the existence of a cycle packing of size E(G)− w(G). Thus there is an MECP of
size k if and only if E(G)− w(G) ≥ k. J

5.2 3/2-approximation for MLS
For a graph G we denote the number of edges by E(G), the number length one and two
cycles by L(G) and B(G) respectively. A simple counting argument leads to the following
theorem proved in the appendix.

I Theorem 18. For genomes A, B and a coloring col of A, the cost wMLS of a MLS
transforming A into B respects

wMLS ≥
2
3E(J)− 1

3B(J)− 2
3L(J),where J = J(A,B, col).

In Theorem 16 we have shown how a cycle packing C of J = J(A,B, col) gives a DCJ
scenario of cost w ≤ E(J) − |C| transforming A into B. If we take C consisting of B(J)
pairwise edge-disjoint cycles of length two and L(J) loops, we obtain a scenario of cost
w ≤ E(J)−B(J)− L(J) = w′. Using Theorem 18 we have

wMLS ≥
2
3E(J)− 1

3B(J)− 2
3L(J) = 2

3(w′ + 1
2B(J))

and obtain

α = w

wMLS
≤ 3

2
w

w′ + 1
2B(J)

≤ 3
2 .

5.3 An exact algorithm for MLS
Consider a junction graph J with L(J) loops and B(J) length two cycles. A simple observation
that there exists a MECP of J that includes all of these cycles allows us to simplify the
problem by removing them from J . This leaves us with a simple graph J̄ such that the cost
of MLS is equal to E(J)− L(J)−B(J)− c(J̄). A straightforward way to compute c(J̄) is
to take all of J̄ ’s simple cycles and solve the Maximum Set Packing problem on their sets
of edges formulated as an integer linear program. The number of simple cycles might be
exponential, but it depends on the size of a simple graph J̄ having |∆| vertices and not the
number of genes. We see in Section 7 that our algorithm solves MLS on instances between
drosophila melanogaster and yakuba.

6 Towards a more general cost function

Our work opens the door to the development of a more general model for genome rear-
rangements with positional constraints, where local moves are attributed nonzero cost. In
such a model the costs of local and non-local moves would be respectively ωL and ωN with
0 < ωL < ωN . For any DCJ scenario ρ we will denote ω(ρ), N(ρ) and L(ρ) as its cost, its

WABI 2017

24:10 Finding Local Genome Rearrangements

number of non-local, and local moves respectively. We categorize the different DCJ problems
based on the cost pair (ωL, ωN) with 0 ≤ ωL ≤ ωN where we look for a ρ that minimizes the
cost function ω(ρ) = ωLL(ρ) + ωNN(ρ):

(0, 1) is the Minimum Local Scenario problem,
(1, 1) is the traditional Double Cut and Join problem,
(ωL, ωN) with ωL

ωN−ωL
> n, where n is the number of adjacencies, is the Minimum Local

Parsimonious Scenario problem,
(ωL, ωN) with 0 < ωL < ωN is the problem that we consider in this section.

It is clear that for positive k the cost pairs (ωL, ωN) and (kωL, kωN) define the same
minimum scenarios, thus for 0 < ωL < ωN it suffices to treat the normalized pair (1, 1 + α)
with a positive α. For a scenario ρ we denote δ(ρ) = N(ρ) + L(ρ)− dDCJ the difference of
its length and the length of a parsimonious DCJ scenario. If δ were small we would have an
algorithmic tool in the search for the genomic distances. For (ωL, ωN) = (1, 1 + α), we have

ω(ρ) = L(ρ) +N(ρ) +N(ρ)α = δ(ρ) + dDCJ +N(ρ)α,

By dMLP S and dMLS we denote the numbers of non-local moves in Minimum Local
Parsimonious Scenario and Minimum Local Scenario respectively. For a scenario ρ∗
minimizing the cost L(ρ)+(1+α)N(ρ) we have dDCJ +dMLP Sα ≥ ω(ρ∗) as dDCJ +dMLP Sα

is the cost of a MLPS and subtracting dDCJ we obtain dMLP Sα ≥ δ(ρ∗) + N(ρ∗)α. By
definition N(ρ∗) ≥ dMLS and thus we obtain

(dMLP S − dMLS)α ≥ δ(ρ∗).

In general dMLP S − dMLS can be large. For the experiments in Section 7, however, it was
found to be smaller than 0.8 on average. This means that finding a scenario of minimum
cost among those with a small δ, for example δ = 1, might be of interest in practice.

7 The practice of coloring adjacencies

In this section we address the applicability of our model that colors adjacencies. We summarize
our experimental results on drosophila melanogaster and yakuba reported in [12].

We use the Hi-C data for drosophila as a similarity function on the pairs of the adjacencies
of a genome. We generate colorings using a centroid-based clustering [10]; the adjacencies
are clustered based on Hi-C similarity, and two adjacencies get the same color if they are in
the same cluster. Weights are assigned to the colorings based on how well they respect the
within-clusters similarity. MLS is then computed on the colorings.

The first positive result reported in [12] is that, despite the NP-hardness of the Minimum
Local Scenario problem, it can be computed exactly (using our algorithms from Section 5.3)
for all of the colorings encountered between drosophila melanogaster and yakuba (the DCJ
distance being roughly 90).

We find that colorings created uniformly at random have high MLS cost, while colorings
created using the Hi-C data have low MLS cost. As we introduce randomness to the good
colorings, a significant correlation between MLS and the weights of the colorings is observed
no matter how many clusters are created. Indeed, the Pearson’s correlation is better than
0.77 for all reasonable k, and is as high as 0.92 in some cases.

A significant correlation is also found between the differences dMLP S − dMLS , and the
weights of the colorings. Further, for the colorings that were optimized on the similarity
function this difference never exceeded 4, and no matter the number of colors assigned, it is

P. Simonaitis and K.M. Swenson 24:11

less than 0.8 on average for both species. The implication is that in many cases MLPS is an
optimal solution for both MLS and the problem considered in Section 6. In all cases J̄ has
less than 25 simple cycles on average, and never more than 300. The hope is that MLS will
remain tractable for the more distant genomes.

8 Conclusion and further work

Aside from problems that consider rearrangement length, little is known about weighted
rearrangement problems [3, 11, 8, 1, 6]. In [14], we showed that with a simple cost function
based on a partition of the adjacencies of one of the genomes into equivalence classes,
one can choose – from the exponentially large set of shortest scenarios – a scenario that
minimizes the number of moves acting across classes. In this paper we showed that the
genome rearrangement problem with an objective function based solely on the cost of DCJs
is NP-Hard, even for a simple binary cost function. We gave a 3/2-approximation derived
from bounds on the sizes of cycles in a cycle packing of the junction graph. We also presented
an exact algorithm and found that an exact solution can be computed between drosophila.

This work opens the door to the development of more complex models of genome
rearrangement with positional constraints, where local moves would be attributed nonzero
cost. To this end we established a useful link between the weighted distance, and the difference
between Minimum Local Parsimonious Scenario and Minimum Local Scenario.
Experimental results indicate that a problem of finding a minimum cost scenario among those
of length only slightly greater than that of a parsimonious scenario might be of practical
interest, however further experiments must be conducted to confirm this.

References
1 M.A. Bender, D. Ge, S. He, H. Hu, R.Y. Pinter, S. Skiena, and F. Swidan. Improved bounds

on sorting by length-weighted reversals. J. of Comp. and System Sciences, 74(5):744–774,
2008.

2 Anne Bergeron, Julia Mixtacki, and Jens Stoye. A Unifying View of Genome Rearrange-
ments, pages 163–173. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

3 M. Blanchette, T. Kunisawa, and D. Sankoff. Parametric genome rearrangement. Gene,
172(1):GC11–GC17, 1996.

4 Alberto Caprara. Sorting by reversals is difficult. In Proceedings of the First Annual
International Conference on Computational Molecular Biology, RECOMB ’97, pages 75–
83, New York, NY, USA, 1997. ACM.

5 Alberto Caprara, Alessandro Panconesi, and Romeo Rizzi. Packing cycles in undirected
graphs. J. of Algorithms, 48(1):239–256, 2003.

6 G.R. Galvão and Z. Dias. Approximation algorithms for sorting by signed short reversals.
In Proc. of the 5th ACM Conf. on Bioinformatics, Comp. Biology, and Health Informatics,
pages 360–369. ACM, 2014.

7 Ian Holyer. The NP-completeness of some edge-partition problems. SIAM Journal on
Computing, 10(4):713–717, 1981.

8 J.-F. Lefebvre, N. El-Mabrouk, E.R.M. Tillier, and D. Sankoff. Detection and validation
of single gene inversions. In Proc. 11th Int’l Conf. on Intelligent Systems for Mol. Biol.
(ISMB’03), volume 19 of Bioinformatics, pages i190–i196. Oxford U. Press, 2003.

9 Erez Lieberman-Aiden, Nynke L. van Berkum, Louise Williams, Maxim Imakaev, Tobias
Ragoczy, Agnes Telling, Ido Amit, Bryan R. Lajoie, Peter J. Sabo, Michael O. Dorschner,
Richard Sandstrom, Bradley Bernstein, M.A. Bender, Mark Groudine, Andreas Gnirke,

WABI 2017

24:12 Finding Local Genome Rearrangements

John Stamatoyannopoulos, Leonid A. Mirny, Eric S. Lander, and Job Dekker. Compre-
hensive mapping of long-range interactions reveals folding principles of the human genome.
Science, 326(5950):289–293, Oct 2009.

10 Hae-Sang Park and Chi-Hyuck Jun. A simple and fast algorithm for k-medoids clustering.
Expert Systems with Applications, 36(2, Part 2):3336 – 3341, 2009.

11 R.Y. Pinter and S. Skiena. Genomic sorting with length-weighted reversals. Genome
Informatics, 13:103–111, 2002.

12 Sylvain Pulicani, Pijus Simonaitis, and Krister M. Swenson. Rearrangement scenarios
guided by chromatin structure. Uploaded to bioRxiv, 2017.

13 Tom Sexton, Eitan Yaffe, Ephraim Kenigsberg, Frédéric Bantignies, Benjamin Leblanc,
Michael Hoichman, Hugues Parrinello, Amos Tanay, and Giacomo Cavalli. Three-
dimensional folding and functional organization principles of the drosophila genome. Cell,
148(3):458–472, Feb 2012.

14 Krister M. Swenson, Pijus Simonaitis, and Mathieu Blanchette. Models and algorithms
for genome rearrangement with positional constraints. Algorithms for Molecular Biology,
11(1):13, 2016.

15 S. Yancopoulos, O. Attie, and R. Friedberg. Efficient sorting of genomic permutations by
translocation, inversion and block interchange. Bioinformatics, 21(16):3340–3346, 2005.

A Proof of Lemma 15

Proof. We will demonstrate with a help of an example how to obtain such Â ∈ A+ and
B̂ ∈ B+. We will augment AG(A,B) with adjacencies to obtain a graph AG′ which at the
end will turn out to be AG(Â, B̂). Our working example will consist of the following graphs:

x y x yA

B

x y z

x

y

z

x

y

z

Figure 1 AG(A, B), J(A, B, col) = J and J ′.

We first include into AG′ every cycle of AG(A,B). Other connected components of AG(A,B)
are paths and to these we add new adjacencies at their end points copying their colors to
obtain the paths for AG′. In our example AG(A,B) has no cycles and its three paths give
paths for AG′

x x y z z x x y y xxyy

For graphs G′ = (V,E ∪ E′) and G = (V,E) we will note G′ − G = (V,E′). We take an
Eulerian subgraph H of J ′ − J such that F = (J ′ − J) −H is a forest. For H we create
a union of cycles in AG′ giving H as its junction graph. F can be partitioned into paths
joining the vertices of an odd degree and for each path in F we create a path consisting of
new adjacencies of corresponding colors in AG′. In our example H is a cycle (z, y, z) and F
has a single path (z, x) and these add a cycle and a path to AG′.

z y z x

P. Simonaitis and K.M. Swenson 24:13

The vertices of J ′ have even degrees as it is an Eulerian graph. This guarantees that for
every color the number of the pairs added at the ends of the paths in AG′ is even. We can
group these pairs at the ends of the paths into monochromatic couples and merging these
couples we obtain an AG′ which is an Eulerian extension of AG(A,B) giving a junction
graph loop-equal to J ′. A possible grouping of the added end points into monochromatic
couples and their merge leads to AG′

x x y z z x x y xyy z y

x

y

z

Figure 2 A junction graph obtained from AG′ is loop-equal to J ′.

Now it is easy to reconstruct B̂ ∈ B+, Â ∈ A+ and its coloring ĉol such that AG′ =
AG(Â, B̂, ĉol), which guarantees that J(Â, B̂, ĉol) is loop-equal to J ′. J

B Proof of Theorem 18

Proof. For a cycle packing C, we denote the number of loops in it by L(C), the number
of the cycles of length 2 by B(C) and the number of longer cycles by R(C). We start by
proving Lemma 19

I Lemma 19. For every Eulerian graph G

w(G) ≥ 2
3E(G)− 1

3B(G)− 2
3L(G).

Proof. Using Theorem 8 we obtain a cycle packing C of G such that w(G) = E(G)− |C|.
We have |C| = L(C) +B(C) +R(C) and E(G) ≥ L(C) + 2B(C) + 3R(C) and from this we
get

w(G)− 2
3E(G) = 1

3E(G)− |C| ≥ −1
3B(C)− 2

3L(C), so

w(G) ≥ 2
3E(G)− 1

3B(C)− 2
3L(C) ≥ 2

3E(G)− 1
3B(G)− 2

3L(G). J

Now we take a MECP C of J . It covers an Eulerian subgraph J ′ of J . Using Theorem 16
we have wMLS = E(J)− |C| and by counting edges and using Theorem 8 we obtain

wMLS = E(J)− |C| = E(J ′)− |C|+ E(J)− E(J ′) = w(J ′) + E(J)− E(J ′)

from which using Lemma 19 and a simple counting argument we obtain

wMLS ≥
2
3E(J ′)− 1

3B(J ′)− 2
3L(J ′) + E(J)− E(J ′) ≥ 2

3E(J)− 1
3B(J)− 2

3L(J). J

WABI 2017

Seed-driven Learning of Position Probability
Matrices from Large Sequence Sets∗

Jarkko Toivonen1, Jussi Taipale2, and Esko Ukkonen1

1 Department of Computer Science, University of Helsinki, Helsinki, Finland
jarkko.toivonen@cs.helsinki.fi

2 Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm,
Sweden
jussi.taipale@ki.se

3 Department of Computer Science, University of Helsinki, Helsinki, Finland
esko.ukkonen@cs.helsinki.fi

Abstract
We formulate and analyze a novel seed-driven algorithm SeedHam for PPM learning. To learn
a PPM of length `, the algorithm uses the most frequent `-mer of the training data as a seed,
and then restricts the learning into the `-mers of training data that belong to a Hamming neigh-
bourhood of the seed. The PPM is constructed from background corrected counts of such `-mers
using an algorithm that estimates a product of ` categorical distributions from a (non-uniform)
Hamming sample. The SeedHam method is intended for PPM learning from large sequence
sets (up to hundreds of Mbases) containing enriched motif instances. A variant of the method
is introduced that decreases contamination from artefact instances of the motif and thereby al-
lows using larger Hamming neighbourhoods. To partially solve the motif orientation problem in
two-stranded DNA we propose a novel seed finding rule, based on analysis of the palindromic
structure of sequences. Test experiments are reported, that illustrate the relative strengths of
different variants of our methods, and show that our algorithm outperforms two popular earlier
methods.
Availability and implementation: A C++ implementation of the method is available from
https://github.com/jttoivon/seedham/
Contact: jarkko.toivonen@cs.helsinki.fi

1998 ACM Subject Classification I.2.6 Learning, G.2.1 Combinatorics, I.5.1 Models, J.3 Life
and Medical Sciences

Keywords and phrases motif finding, transcription factor binding site, sequence analysis, Ham-
ming distance, seed

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.25

1 Introduction

Position probability matrix (PPM), introduced by Stormo et al [13, 12], is a simple prob-
abilistic model for motifs in biological sequences. PPM represents a product of mutually
independent categorical variables, and it is currently the most popular representation, for
example, of the DNA motifs for binding sites of transcription factors (collected in motif
databases such as Transfac [18] and Jaspar [11]) as well as of motifs in RNA and in pro-
tein sequences. Besides PPMs, several other representations of sequence motifs have been

∗ This work was supported by EU FP7 project SYSCOL (UE7-SYSCOL-258236).

© Jarkko Toivonen, Jussi Taipale, and Esko Ukkonen;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 25; pp. 25:1–25:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://github.com/jttoivon/seedham/
http://dx.doi.org/10.4230/LIPIcs.WABI.2017.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2 Seed-driven Learning of Position Probability Matrices from Large Sequence Sets

proposed, most of them being various generalizations of the consensus sequence of a motif.
Motif representations and their discovery from sequence data is surveyed, e.g., in [9, 14].

In this paper we formulate and analyze a seed-driven algorithm SeedHam for PPM
learning. Seed-driven means that a selected seed sequence is used as a starting point of a
search that constructs the PPM by analyzing the segments of training data which are similar
to the seed. This is in contrast with the well-known alignment method to learn a PPM of
length `. This method takes a collection of `-mers, that are supposed to be (somehow verified)
instances of the motif, and aligns the `-mers which gives ` columns of bases A, C, G, and
T. The frequency of each base on each column is counted which gives a position frequency
matrix of size 4× `. When normalized column-wise, this matrix gives the probability matrix
θ for the motif. Assuming that the collection of `-mers is an unbiased sample from the
distribution of the motif instances and assuming mutual independence of different positions
of the motif, this very simple procedure gives an unbiased estimate of motif distribution.

While verified samples of motif instances are not easily available, there is currently lots of
sequence data in which instances of motif(s) are enriched within longer background sequences.
Such sequence sets are produced, for example, by high-throughput SELEX [5, 8, 15] or by
variants of ChIP-seq [10]. It is possible to learn PPMs from such sequences, by analyzing
their over-represented `-mers that are considered instances of the motif. This is what we do
in our seed-driven approach to learning PPMs.

We assume that the training data D for learning a PPM is a collection of one or several
DNA sequences that contain a relatively high number of instances of the target motif X.
Different instance variants should be present in D according to the probability distribution
to be learned but the exact locations of the instances within D are not known. The rest of
D outside the motif instances is assumed neutral background (although in practice it may
contain instances of some other motifs).

Our method locates plausible motif instances in D using the following rule. A most
frequent `-mer s of D is taken as the seed. Here the motif length ` is a user-given constant.
Then s as well as the `-mers of D within a short Hamming distance d from s are taken
as instances of the target motif X. Using background corrected counts of such `-mers we
estimate a PPM that represents X. The aforementioned simple alignment method cannot
be used as such because the restriction to a Hamming neighbourhood yields a non-uniform
sample of the target distribution.

Our algorithm, called SeedHam, does not contain an iterative search. It is therefore very
fast and can learn from large high-throughput sequence sets. An early version of SeedHam
method was used for learning PPMs from HT-SELEX sequence sets [5]. Here we present
a complete formal definition of a general version of the algorithm as well as extensions for
correcting self-overlaps and how to decide the orientation of the motif in two-stranded case.
The ’seed-and-wobble’ procedure [2] independently developed for the analysis of protein
microarray data is analogous to (restricted) SeedHam.

Learning a PPM is complicated by two issues of combinatorial nature. First, if motif X
is strongly self-similar, then D may contain lots of artefact instances that overlap the true
instances of X [3]. We give an instance elimination technique and associated background
correction that decrease contamination from artefacts. Second, in two-stranded DNA the
orientation of instances has to be decided. If the Hamming neighbourhoods with radius d
of s and its reverse complement s do not intersect, we get a heuristic rule for deciding the
orientation. We show that if the so-called palindromic index of the seed is large enough, then
the neighbourhoods become separate for a given d. Algorithm SeedHam+ finds a seed that
has high-enough palindromic index at the expense of having sub-maximal count.

J. Toivonen, J. Taipale, and E. Ukkonen 25:3

The experimental tests illustrate relative strengths of different variants of our methods.
We demonstrate the algorithms’ capacity to relearn the PPM from simulated data that
contains implanted instances of the motif represented by the PPM. The experiments show
that the accuracy depends on the Hamming radius d such that the optimal d increases when
motif length ` increases but decreases when the number of training instances increases.

We compared our methods experimentally with two earlier algorithms, DREME [1] and
DECOD [4]. Both are seed-driven, discriminative PPM learning methods that start from
a seed and make a heuristic search (beam search in DREME and hill-climbing search in
DECOD) to find a PPM that maximizes the discriminative power of the motif to separate
between positive and negative training data sets. In a large majority of cases, SeedHam and
SeedHam+ relearned the PPM from generated data more accurately than the two other
methods.

The paper is organized as follows. After preliminaries in Section 2, Section 3 gives
the basic SeedHam algorithm and its artefact eliminating variant. Section 4 introduces
palindromic index and its application in selecting orientation, implemented in algorithm
SeedHam+. Experimental tests are reported in Section 5.

2 Preliminaries of PPM models

A PPM representing a motif of length ` in the DNA alphabet Σ = {A, C, G, T} is a 4 × `
matrix θ = (θaj)a∈Σ,j=1,...,` such that θaj gives the occurrence probability of base a ∈ Σ in
position j of the motif. Hence each column θj = (θ·j) of θ defines a categorical distribution
Cat(θj) of Σ. The entire matrix θ represents a random variable X = X(θ) which is a product
of ` mutually independent categorical random variables Xj :

X = X1 ×X2 × . . .×X`,

where Xj ∼ Cat(θj), and the values of X are in Σ`.
As the component variables are assumed mutually independent, the probability P (u) =

Pθ(u) of u = u1 . . . u` ∈ Σ` of X is

P (X = u1 . . . u`) = P (X1 = u1)P (X2 = u2) · · ·P (X` = u`) = θu1,1θu2,2 . . . θu`,`.

Learning of PPMs from DNA sequence data is complicated by the two-stranded structure
of DNA. The reverse complement u of a sequence u = u1 . . . u` ∈ Σ` is sequence u` . . . u1 where
uj denotes the complementary base of base uj . Sequence u is palindromic if uj = u`−j+1 for
j = 1, . . . , d`/2e. Similarly, a PPM θ is palindromic if θaj = θa,`−j+1 for all (a, j). Note that
P (u) = P (u) if θ is palindromic.

3 SeedHam Algorithm

3.1 Finding a seed and locating motif instances from training data
Let D be the training data (a collection of sequences in Σ∗) that contains enriched amounts
of instances of a target PPM motif X of length `, and let s be a sequence of length `. Let
Hd(s) = {u ∈ Σ`|h(s, u) ≤ d} be the Hamming d-neighbourhood of the sequence s. Here
h(s, u) is the Hamming distance of (equal-length) sequences s and u, and the radius d is an
integer ≤ `. If the given training data is of two-stranded origin, we always denote by D the
original data and its reverse complement combined.

Seed-driven motif discovery then proceeds in the following general steps.

WABI 2017

25:4 Seed-driven Learning of Position Probability Matrices from Large Sequence Sets

1. s← a most frequent `-mer of D. Sequence s is selected as the seed.
2. For each `-mer u ∈ Hd(s), count(u)← number of occurrences of u in D.
3. Estimate PPM θ for motif X from the sequences u ∈ Hd(s) and their counts count(u).

Detailed implementation of above steps 1 and 2 is possible using elementary techniques
that often are fast enough in practice. For big D or ` more elaborate implementation
techniques from string algorithmics may be needed. We will describe such methods in
Subsection 3.3.

The more interesting step 3 is the topic of the next subsection.

3.2 Learning PPM in Hamming neighbourhoods
As the target motifX(θ) is a product of mutually independent categorical variablesX1, . . . , X`,
it follows that, for any 1 ≤ j ≤ `,

P (Xj) = P (X|X1 · · ·Xj−1Xj+1 · · ·X`). (1)

Consider now the multiset of all `-mers of D. This multiset is a mixture sample of `-mers,
some of which are coming from X and the rest come, fully or partially, from the background.
Our goal is to learn column θj of θ, i.e., we want to estimate the parameters of Xj , for some
fixed j. It follows from Equation (1), that by conditioning X on `-mer positions other than j,
we get a sample of Xj , possibly contaminated by the background. Let a j-condition be any
w = (wL, wR) such that wL ∈ Σj−1 and wR ∈ Σ`−j . We let countj(a,w) denote the number
of `-mers wLawR in the data, that is, the number times the symbol a ∈ Σ occurs in context
(wL, wR) in D.

Then, omitting for a moment the correction for background, we could estimate

θaj ≈
countj(a,w)

Σc∈Σ countj(c, w) . (2)

This immediately generalizes to a set of j-conditions, i.e., to several different w combined.
We will use conditions taken from a Hamming neighbourhood of the seed s. To minimize
contamination from background noise, we restrict the learning to `-mers of D that belong to
a small Hamming neighbourhood of s. By the properties of products of categorical variables,
such `-mers are likely to have a relatively high count which comes mostly from X and not
only from the background as they are small variants of s whose count is the highest.

We restrict the learning of θ to a Hamming neighbourhood Hd(s) of s in D, by using the
implied set of j-conditions. For learning θj , the set of j-conditions becomes

Wj,d(s) = {(wL, wR) ∈ Σj−1 × Σ`−j | h(s, wLcwR) ≤ d for all c ∈ Σ}.

As samples for different j-conditions can be combined, (2) becomes

θaj ≈
countj(a)

Σc∈Σ countj(c)
, (3)

where we have written countj(c) = Σw∈Wj,d(s) countj(c, w).
We have to evaluate (3) for all j = 1, . . . , `. It is convenient to organize this such that the

contribution of each u ∈ Hd(s) to the counts is accumulated in one pass that scans through
u. Recall that count(u) denotes the number of occurrences of u = u1 · · ·u` ∈ Hd(s) in D.
Then it is not difficult to see that the rule for accumulating variables countj(c) becomes
as follows: if h(s, u) < d, then u contributes count(u) to countj(uj) for all j; if h(s, u) = d,
then it contributes count(u) to countj(uj) only for j such that uj 6= sj .

J. Toivonen, J. Taipale, and E. Ukkonen 25:5

As data D is only partially covered by `-mers from signal X, and the rest is background,
we have at first to correct the counts count(u) by subtracting estimated contribution from
the background. We use here a simple 0-order background model q = (qA, qC, qG, qT) where
each qc is the frequency of c in D. The background probability of a `-mer u = u1 · · ·u` is
Pq(u) =

∏
j quj

, and the expected number of occurrences of u in a random dataset of the
same size as D is Ecount(u) = NPq(u), where N is the number of `-mer positions in D.

So we get the following PPM learning algorithm. We say that this algorithm uses basic
counting of `-mer occurrences, to separate from the counting used in the algorithm variant
to be given in Section 3.4.

Algorithm SeedHam

Input: Set of sequences (with reverse complements) D, length of PPM `, Hamming radius d
Output: PPM θ

1. s← a most frequent `-mer of D
2. for all u ∈ Hd(s) do count(u)← max(0, number of occurrences of u in D − Ecount(u))
3. for j ← 1, . . . , ` and a ∈ Σ do countj(a)← 0
4. for all u = u1 · · ·u` ∈ Hd(s) do

if h(s, u) < d then
for j ← 1, . . . , ` do countj(uj)← countj(uj) + count(u)

else
for j ← 1, . . . , ` do if uj 6= sj then countj(uj)← countj(uj) + count(u)

5. for all j ← 1, . . . , ` and a ∈ Σ do θaj ← countj(a)/
∑
b∈Σ countj(b)

Note that SeedHam algorithm differs from the basic alignment method already mentioned in
the introduction that aligns the `-mers in the sample, counts the number of occurrences of
each element of Σ on each column, and normalizes these counts to get θ. That this algorithm
would not estimate θ correctly in a Hamming neighbourhood can be seen, for example, by
considering data D that has no motif embedded, the data being background only. A seed s
can still be found, but then the standard algorithm applied on, say, H1(s) would produce a
PPM that gives for s a clearly higher probability than for the other `-mers while the correct
model should give uniform distribution. Algorithm SeedHam produces such a uniform model
in this case; an illustration is given in Figs 1a and 1b. The standard algorithm does so only
if the Hamming neighbourhood does not leave any data out, that is, if H`(s) is used.

3.3 Implementation and complexity
A most frequent `-mer s as well as the counts count(u) for `-mers u ∈ Hd(s) can be found
in linear time O(|D|) using for example suffix-trees (or suffix arrays): First, construct the
suffix-tree of D, and associate with each node x of the tree the number S(x) of leaves in the
subtree of x and the length L(x) of the sequence represented by the path from the root to
x. This can be done in linear time using well-known algorithms [17, 7, 16]. Second, find
from the suffix-tree the most frequent `-mer s of D. This can be done by finding the node
x such that L(x) ≥ ` and S(x) is largest possible. Then s is the prefix of length ` of the
sequence represented by the path from the root to x. This again takes linear time. Third,
find the counts of `-mers u ∈ Hd(s) by a depth-first traversal of the tree. Each branch is
followed until the Hamming distance between s and the sequence spelled out by the current

WABI 2017

25:6 Seed-driven Learning of Position Probability Matrices from Large Sequence Sets

depth-first search node is > d, or a `-mer u ∈ Hd(s) is found. Then count(u) = S(x) where
x is the node corresponding to u.

Obviously, this search finds all members of Hd(s) that occur in D. Then the learning part
(Steps 3, 4) of Algorithm SeedHam can be performed. The search and learning takes time
proportional to the total length of different `-mers of D. Hence the total time requirement
becomes O(|D|+ ` ·min(|D|,

∑d
h=0

(
`
h

)
(|Σ| − 1)h)).

As the overhead of suffix-tree algorithms may be large, a straightforward tabulating
algorithm, possibly with hashing techniques, can be used for D of modest size to find
counts count(u) and the seed s, after which the learning part of Algorithm SeedHam can be
performed. Again, the running time becomes O(`|D|).

3.4 Elimination of artefact instances
Here we make a more accurate analysis of the mixing of instances of X and the background
on training data D. The multiset of `-mers of D consists of three types of `-mers: (i) `-mers
that are instances of X; (ii) `-mers that are completely outside the instances of X; (iii) `-mers
that overlap both an instance of X and background.

When X has strong self-overlaps, D has tendency to have artefact instances of X in
category (iii). As an extreme example, consider X = AAAAAAAA, i.e, each position of
X has A with probability 1. Then D has lots of 8-mers AAAAAAAA and, by one-symbol
shift, lots of 8-mers CAAAAAAA, GAAAAAAA, and TAAAAAAA. If not eliminated, such
artefact instances at distance 1 from the seed would leak to the learned X such that C, G,
and T will get clearly non-zero probability at position 1.

To avoid counting self-overlapping artefact instances, we introduce a dominance relation
of `-mers. Let g be a positive integer giving maximum shift in a self-overlap that is still
considered significant (note that if a shift is large and hence the self-overlap is short, then
the implied bias in counts rapidly gets very small). We say that the `-mer u in position i of
D dominates, if h(s, u) < h(s, v) for all `-mers v that are located in ±g proximity of i in D,
that is, in positions i− g, . . . , i− 1, i+ 1, . . . , i+ g of D.

For an example of dominance, consider a single-stranded data in the setting ` = 4,
s = AACG, g = 2, and d = 2. When counting the dominating occurrences of the 4-mer
AGTG ∈ Hd(s), we need to take the context of the occurrence into account. If we see a
string TTAGTGAA in the data, we count this occurrence of AGTG as it dominates here: all
the other 4-mers of this string obviously have Hamming distance from the seed greater than
2. But in the context TAAGTGAA the 4-mer AGTG is not counted, because, for instance,
h(TAAG, s) = 2 as well.

We then slightly modify the SeedHam algorithm: for each `-mer u, include into its
occurrence count only the dominating occurrences of u in D. This way of counting is called
dominance counting, and the resulting count of an `-mer u is denoted as countdominant(u).
Intuitively, this rule means that the true instances of X are assumed to locate in D more
than g positions apart and to dominate in their ±g proximity.

Dominance counting needs an accordingly modified background correction. We denote by
λ ∈ [0, 1] the relative abundance of the motif instances in D. Hence λN of the N `-mer sites
of D are from X. Then the expected artefact count of an `-mer u can be written as the sum
of occurrence counts in `-mer categories (ii) and (iii):

Ecountdominant,λ(u) = (1− λ(2(`+ g)− 1))N · Pq(u) + λN

j=`+g−1∑
j=−(`+g−1)

j 6=0

PTj ,dominant(u),

J. Toivonen, J. Taipale, and E. Ukkonen 25:7

where `∗ = `+ 2g and Tj is a 4× `∗ PPM built from θ and q as described below. Note that
j = 0, which defines the category (i), is excluded. For any `-mer u and a 4 × `∗ PPM T ,
PT,dominant(u) is defined as

PT,dominant(u) =
∑
v∈Σ`∗

[v(0) = u]
g∏

j=−g
j 6=0

∏
k∈{−1,1}

[h(v(j), sk) > h(u, s)]PT (v),

where [·] are Iverson’s brackets, sk is the seed in direction k, and v(j) is the `-mer that
starts from position j of v. The PPMs Tj , j = −(` + g − 1), . . . , ` + g − 1, are models for
the alternative ways how a string of length `∗ can overlap in D the boundary between motif
instance and background. PPM T0 has θ in the middle, with g columns of q before and after
it. PPM Tj for j > 0 has θ shifted j positions to the left from the center and for j < 0, j
positions to the right. Note that our technique here is similar to DECOD [4].

As θ is still unknown when the background correction has to be made, we use uncorrected
θ to build models Tj . We solve the parameter λ numerically from the equation

count(u) = Ecountλ(u) := (1− λ(2`− 1))N · Pq(u) + λN

j=`−1∑
j=−(`−1)

PRj ,λ(u),

where Rj,λ is the background corrected PPM generated from corrected counts

countdominant(u)− Ecountdominant,λ(u).

The running time of background correction is exponential in `∗ = `+ 2g. Therefore in
our implementation we do the correction only for ` ≤ 10. Since for longer motifs the effect
of background is very small for typical data sizes, this restriction has no big effect on the
accuracy of the learned models. We have used g = 4 as a default.

Figs 1c and 1d give an example of the effect of dominance counting: for a PPM
AAAAAAAA, 10 000 instances were generated to create a total data of length 400 000
bp (hence λ = 0.025). The PPM relearned by basic SeedHam shows clear contamination
from artifact instances while SeedHam with dominance counting removes it.

4 Motif Orientation in Two-Stranded Case: SeedHam+ algorithm

PPM discovery is in practice complicated by the two-strandedness of DNA. Although the
motif itself may have direction (for example, a transcription factor binds to DNA in a specific
orientation), it is not possible to infer the direction from motif instances that may occur
equally in both strands of the DNA. Moreover, an instance in one strand means that we see
the reverse complement of it in the other strand. In fact, the counts of a `-mer u and its
reverse complement u are always equal if the counts are taken along both strands of DNA.

This symmetry should be broken such that we use in the PPM learning only `-mers that
have the same direction with respect to the underlying motif. Otherwise we would always
get palindromic PPMs.

4.1 Selection of the orientation
The following heuristic could be used for resolving the orientations: To select between u and
u, take the one whose Hamming distance to the seed s is shorter, that is, if h(s, u) < h(s, u)
then take u, and if h(s, u) < h(s, u) then take u.

For this rule to work it is necessary that h(s, u) 6= h(s, u), which means that s may not
be a palindrome. For palindromic seeds we have the following observation.

WABI 2017

25:8 Seed-driven Learning of Position Probability Matrices from Large Sequence Sets

(a) Alignment algorithm. (c) Basic counting.

(b) SeedHam algorithm. (d) Dominance counting.

Figure 1 (a&b) Learning a PPM from training data that has only uniform background but
no motif. Using a seed ACGGTTGG, the alignment algorithm finds a PPM in which the seed
dominates while SeedHam correctly finds a PPM that represents the uniform background. (c&d)
Contamination of the learned model due to artefact occurrences. SeedHam algorithm with basic
counting (above) and with dominance counting (below) was used. Both methods used Hamming
radius one, and the training data consisted of a single sequence that had the single motif instance
AAAAAAAA implanted at every 40th position 10 000 times. Other positions were filled with random
uniform background. Dominance counting effectively removes the contamination due to artefact
occurrences.

I Theorem 1. If the seed s in Algorithm SeedHam is a palindrome, then the resulting PPM
θ is palindromic.

Proof. Let s be a palindrome. Then Hd(s) = Hd(s), and a sequence u = u1 . . . u` is in
Hd(s) iff u is in Hd(s). Then u = u1 . . . uj . . . u` contributes 1 to the count of θuj ,j iff
u = u` . . . uj . . . u1 contributes 1 to the count of θuj ,`−j+1 which is the element of θ that is
palindrome symmetric to θuj ,j . This is because h(s¬j , u¬j) = h(s¬j , u¬j), and hence u¬j
is used as a condition iff u¬j is used, where u¬j denotes the sequence u1 . . . uj−1uj+1 . . . u`.
Palindrome symmetric elements of θ get equal counts which proves our claim. J

Palindromic index Pi(u) of a sequence u ∈ Σ` is defined as Pi(u) = h(u, u). If |u| = ` is
odd then Pi(u) ≥ 1 as the symbols in the center position of u and u are always different. For
even |u|, Pi(u) has an even value 0, 2, . . . , |u|. For odd |u|, Pi(u) has an odd value 1, 3, . . . , |u|.

If Pi(u) = 0 (and hence |u| is even), then u is a (DNA) palindrome.
We call a set Q ⊆ Σ` conflict-free if Q∩Q is empty, i.e., if u ∈ Q then u /∈ Q. So if Hd(s)

is conflict-free then all u ∈ Hd(s) are such that h(s, u) < h(s, u). Hence Algorithm SeedHam
with such an Hd(s) implicitly applies our rule for choosing between u and u.

I Theorem 2.
(a) If d < Pi(s)/2 then Hd(s) is conflict-free.
(b) If Pi(s) = 2 and d = 1, then Hd(s) ∩Hd(s) contains exactly two sequences and these

sequences are palindromes.

Proof. (a) To derive a contradiction, let d < Pi(s)/2 and assume that there is a sequence
u in Hd(s) ∩ Hd(s). Then Pi(s) = h(s, s) ≤ h(s, u) + h(u, s) ≤ 2d which contradicts the
assumption that d < Pi(s)/2.

(b) Pi(s) = 2 implies that ` must be even and that sj = s`−j+1 except for one value
j ≤ `/2. Then sj 6= s`−j+1 and hence sj 6= s`−j+1. Then sequences s(sj |s`−j+1) and
s(s`−j+1|sj) are different palindromes and have distance 1 from both s and s.

A sequence in H1(s) ∩H1(s) should be the intermediate sequence on the two step path
from s to s that transforms s to s using one symbol changes. There are exactly two such

J. Toivonen, J. Taipale, and E. Ukkonen 25:9

paths, one changing first sj and then s`−j+1, and the other changing first s`−j+1 and then
sj . This gives the above two sequences. J

According to Theorem 2 (a), a conflict-free Hd(s) for Hamming radius d ≥ 3 requires a
seed s such that Pi(s) ≥ 2d+ 1. To achieve this, one could use in Algorithm SeedHam as
seed s the `-mer that has the largest count among the `-mers whose palindromic index is
≥ 2d+ 1, provided that the count of such a `-mer is sufficiently large. Note that increasing
the palindromic index of s may make the count of s smaller, which means that Algorithm
SeedHam would utilize a smaller fraction of the data.

For a large data D already Hamming radius d = 1 can give an accurate estimate of the
PPM. Then, by Theorem 2 (b), we only need a seed s such that Pi(s) ≥ 2. However, H1(s)
is not conflict-free as H1(s) ∩H1(s) is not empty but contains palindromes. Fortunately,
deciding their orientation is not needed, as palindromes are symmetric and hence there is
only one orientation for them. One only has to divide their observed counts by two as each
occurrence of a palindrome also appears on the opposite DNA strand and hence is counted
twice.

To conclude the above discussion we give Algorithm SeedHam modified such that it uses
a seed with high-enough palindromic index to avoid orientation conflicts. Only step 1 needs
changes.

Algorithm SeedHam+

Input: Set of sequences (with reverse complements) D, length of PPM `, Hamming radius d,
count threshold m = max(20, N4−` + 2

√
N4−`(1− 4−`)), i.e., two standard deviations more

than expected by uniform background and at least 20.
Output: PPM θ

1. r ← if d = 1 then 2 else 2d+ 1.
s← `-mer u such that Pi(u) = r and the count of u in D is largest possible. However, if
this count is < m then s← `-mer u with largest palindromic index among `-mers whose
count is ≥ m.

2.-5. As Algorithm SeedHam.

5 Experimental evaluation

To compare the performance of algorithms SeedHam and SeedHam+ we randomly selected
from the article of Jolma et al [6] altogether 24 PPMs, eight PPMs of each of lengths ` = 8, 13,
and 18. For each PPM, four data sets were randomly generated: number of motif occurrences
being either 100 or 10 000 and occurrences oriented either in single direction or in both
directions. The occurrences were placed starting at every 40th base in a single sequence.
Between motif occurrences uniform random background was used. This long sequence was
then used as training data D for SeedHam and SeedHam+ using either basic or dominance
counting. The learned PPMs were compared against the originals, and the learning error
was measured using the maximum norm (i.e., maximum absolute value of the difference of
the corresponding entries of the original and the learned PPM; a shift of -1, 0, +1 columns
was allowed and minimum of the max-norm over these shifts was taken as the learning error).
Hamming radii d ∈ {1, . . . , 5} were used in the experiments.

The results from these experiments are reported in Fig. 2. When comparing Figs 2a
and 2b, the difficulty of learning the model in the two-directional case is clearly visible.

WABI 2017

25:10 Seed-driven Learning of Position Probability Matrices from Large Sequence Sets

Table 1 Changes of palindromic index in the SeedHam+ experiments on generated data. For
each length, eight factors and two data set sizes and five Hamming radii give 80 experiments in total.
The table shows that the required palindromic index is difficult to reach. It is easier for d = 1 but
rapidly gets difficult with larger d.

Length 8 Length 13 Length 18
Need for increase 52/80 28/80 24/80
No increase possible 42/52 12/28 12/24
Did not increase enough 4/52 8/28 8/24
Increased enough 6/52 8/28 4/24

Introducing the seed with optimized palindromic index (Fig. 2c) does help a little bit, but
with the motif length and dataset sizes we used, it was not always possible to optimize the
seed, see Table 1. This is because moving far away (in Hamming distance) from the most
common `-mer, decreases the count of seed s (and counts in Hd(s)) too much, and hence
gives inaccurate estimate of the motif.

Algorithms are fast in practice. On average it took less than a second of CPU time for
the basic counting method and 7 minutes of CPU time for the dominance counting method
per PPM, when SeedHam was run on a generated data set with 10 000 occurrences (400 000
bp). The longer running time of dominance counting is due to the relatively slow background
correction. For motifs of length larger than 10 this correction can be lifted. Performance
testing was done using a single thread on Intel Xeon CPU X7350 running at 2.93 GHz.

We also applied SeedHam to real SELEX data. We used data sets from [6] that were
used by Jolma et al to obtain the previously mentioned 24 PPMs. SeedHam showed in these
experiments consistent and robust performance with quite small differences between different
variants of the method.

Our experimental evaluation suggests that in practice for large data already Hamming
radius d = 2 gives accurate results and larger d do not improve too much. For small data
this holds true for short motifs but for longer ones using larger d would improve accuracy.
For larger d the dominance version of SeedHam clearly improves accuracy.

Results of comparison of SeedHam with earlier algorithms DREME [1] and DECOD [4]
are given in Table 2. SeedHam used dominance counting in these experiments. The generated
training data contained 1000 instances of the motif, implanted into sequences of length 40.
The same motifs were used as in the experiments of Fig. 2. Hamming radius d used in the
experiments was 1, 3, and 5 for motif lengths 8, 13, and 18, respectively. SeedHam gives the
most accurate result in 21 cases out of 24, often with clear margin. We also tested SeedHam+
with dominance counting. Then the learning accuracy of the LMX1B motif improved to 0.14,
making this, too, the best among the compared results.

6 Discussion

We gave a general formulation and analyzed the PPM learning algorithm SeedHam that
restricts the use of the training data only to a small Hamming neighbourhood Hd(s) of a seed
s. We also introduced a dominance counting technique to correct for artifact occurrences of
self-similar motifs, as well as a novel seed selection rule, based on the palindromic index, that
gives seeds such that the orientation of the motif instances restricted to Hd(s) in two-stranded
DNA is unambiguous.

Even if we have chosen a seed with optimal palindromic index, there is still another source
of inaccuracy due to the two-strandedness of DNA. When we see a (putative) motif occurrence

J. Toivonen, J. Taipale, and E. Ukkonen 25:11

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Length 8

Hamming radius

M
ax

 n
or

m
Basic 100
Basic 10000
Dominance 100
Dominance 10000

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Length 13

Hamming radius

M
ax

 n
or

m

Basic 100
Basic 10000
Dominance 100
Dominance 10000

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Length 18

Hamming radius

M
ax

 n
or

m

Basic 100
Basic 10000
Dominance 100
Dominance 10000

1 2 3 4 5

(a) Single direction.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Length 8

Hamming radius

M
ax

 n
or

m

Basic 100
Basic 10000
Dominance 100
Dominance 10000

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Length 13

Hamming radius

M
ax

 n
or

m

Basic 100
Basic 10000
Dominance 100
Dominance 10000

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Length 18

Hamming radius

M
ax

 n
or

m

Basic 100
Basic 10000
Dominance 100
Dominance 10000

1 2 3 4 5

(b) Both directions.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Length 8

Hamming radius

M
ax

 n
or

m

Basic 100
Basic 10000
Dominance 100
Dominance 10000

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Length 13

Hamming radius

M
ax

 n
or

m

Basic 100
Basic 10000
Dominance 100
Dominance 10000

1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Length 18

Hamming radius

M
ax

 n
or

m

Basic 100
Basic 10000
Dominance 100
Dominance 10000

1 2 3 4 5

(c) Both directions using SeedHam+.

Figure 2 Two data sets were generated for each given PPM: one with 100 random occurrences
and another with 10 000 random occurrences of the motif. The occurrences were placed in the
same orientation starting at every 40th position. The gaps between the occurrences were filled
with uniform random background. The three columns of the figure correspond to experiments with
sets of 8 motifs of lengths 8, 13, and 18, respectively. The average maximum error between the
original and the relearned models is shown for each Hamming radius, each size of data set, and
both methods of counting the number of occurrences of sequences in the Hamming neighbourhood,
namely, the basic and dominance counting. Background subtraction was only applied to motif length
8. (a) Accuracy of SeedHam algorithm for data with single direction of motif occurrences. For motif
lengths 8 and 13 the benefits of the dominance counting over the basic counting becomes visible as
the Hamming radius increases. For length 18, the used Hamming radii were not large enough to
show any difference between the two counting methods. The accuracy of the learned models is very
good. Different motif lengths show different behaviour with respect to the Hamming radius. With
every motif length, increasing the Hamming radius initially gives more accurate result, but after
some point the increased contamination from the background starts to weaken the result. With
factor length 18, however, the dataset would have to be very large for the background to have an
effect on the learned motif. (b) Accuracy of SeedHam algorithm for data with motif occurrences in
random orientation. As expected, the learning error is larger than in the case of single direction;
note, however, that for ` = 13, data size 100, the accuracy is here better! (c) Accuracy of SeedHam+
algorithm for the same data as in panel (b), i.e., optimization of the palindromic index of the seed
enabled. The effect of higher palindromic index is in general minor, except for ` = 8, d = 1 in which
case we get here the best accuracy.

WABI 2017

25:12 Seed-driven Learning of Position Probability Matrices from Large Sequence Sets

Table 2 Comparison of SeedHam to DREME and DECOD. Data sets of 1000 sequences of length
40 were generated using original motifs of TFs indicated below (note that the factor RARA had
two distinct motifs). One occurrence of the motif was planted in each sequence. The distances
are maximum element-wise distances between the original PPM and the PPM relearned from the
generated data. DREME was only run for motifs of length 8 which is its maximum recommended
motif length.

Factor DREME DECOD SeedHam
dominance

DLX5 0.16 0.26 0.32
GATA3 0.38 0.50 0.10
ISL2 0.22 0.41 0.08
LMX1B 0.44 0.24 0.32
MEIS2 0.16 0.46 0.03
MSX1 0.08 0.35 0.08
NR2F1 0.04 0.55 0.04
OTX1 0.20 0.97 0.06

(a) Motif length 8.

Factor DECOD SeedHam
dominance

DUXA 0.38 0.07
EOMES 0.55 0.05
LBX2 0.16 0.13
LHX9 0.37 0.36
NFKB1 0.88 0.05
NR2F1 0.50 0.06
PRDM4 1.00 0.01
ZNF238 0.50 0.05

(b) Motif length 13.

Factor DECOD SeedHam
dominance

CUX1 0.18 0.23
E2F3 0.44 0.03
ETS1 0.22 0.09
KLF13 0.50 0.04
MGA 0.14 0.06
MSX1 0.35 0.06
RARA 0.50 0.02
RARA 0.55 0.01

(c) Motif length 18.

u, that belongs to Hd(s), on a DNA strand, it is not possible to decide, without additional
information, whether or not the motif occurrence really is this u or the reverse complement
u on the opposite strand. In the latter case the occurrence should not be used when building
the model. Hence, the occurrence count is necessarily a mixture of counts from u and u. It
is not possible to directly resolve the mixture as the mixing proportions of how much of the
count comes from u and how much from u are unknown. Mixing proportion depends on the
probabilities P (u) and P (u) of u and u to occur as motif instances. A subject for further
study is to incorporate into the SeedHam algorithm a maximum likelihood estimator for
improved resolution of the mixture.

References

1 Timothy L. Bailey. Dreme: motif discovery in transcription factor chip-seq data. Bioin-
formatics, 27(12):1653, 2011.

2 Michael F. Berger, Anthony A. Philippakis, Aaron M. Qureshi, Fangxue S. He, Preston W.
Estep, and Martha L. Bulyk. Compact, universal DNA microarrays to comprehensively
determine transcription-factor binding site specificities. Nature Biotech., 24(11):1429–1435,
2006.

J. Toivonen, J. Taipale, and E. Ukkonen 25:13

3 Mathieu Blanchette and Saurabh Sinha. Separating real motifs from their artifacts. Bioin-
formatics, 17(SUPPL. 1), 2001.

4 Peter Huggins, Shan Zhong, Idit Shiff, Rachel Beckerman, Oleg Laptenko, Carol Prives,
Marcel H. Schulz, Itamar Simon, and Ziv Bar-Joseph. DECOD: fast and accurate discrim-
inative DNA motif finding. Bioinformatics, 27(17):2361, 2011.

5 Arttu Jolma, Teemu Kivioja, Jarkko Toivonen, et al. Multiplexed massively parallel SELEX
for characterization of human transcription factor binding specificities. Genome Res.,
20(6):861–873, 2010.

6 Arttu Jolma, Jian Yan, Thomas Whitington, Jarkko Toivonen, et al. DNA-binding spe-
cificities of human transcription factors. Cell, 152(1–2):327–339, 2013.

7 Edward M. McCreight. A space-economical suffix tree construction algorithm. J. ACM,
23(2):262–272, 1976.

8 Arnold R. Oliphant, Christopher J. Brandl, and Kevin Struhl. Defining the sequence
specificity of DNA-binding proteins by selecting binding sites from random-sequence oligo-
nucleotides: analysis of yeast GCN4 protein. Mol. Cell. Biol., 9(7):2944–2949, 1989.

9 Giulio Pavesi, Giancarlo Mauri, and Graziano Pesole. In silico representation and discovery
of transcription factor binding sites. Brief. Bioinformatics, 5(3):217–236, 2004.

10 Gordon Robertson, Martin Hirst, Matthew Bainbridge, Misha Bilenky, Yongjun Zhao,
Thomas Zeng, Ghia Euskirchen, Bridget Bernier, Richard Varhol, Allen Delaney, Nina
Thiessen, Obi L. Griffith, Ann He, Marco Marra, Michael Snyder, and Steven Jones.
Genome-wide profiles of STAT1 DNA association using chromatin immunoprecipitation
and massively parallel sequencing. Nat. Methods, 4(8):651–657, 2007.

11 Albin Sandelin, Wynand Alkema, Par Engstrom, Wyeth W. Wasserman, and Boris Len-
hard. JASPAR: an open-access database for eukaryotic transcription factor binding profiles.
Nucleic Acids Res., 32(Database issue):D91–94, 2004.

12 Gary D Stormo. DNA binding sites: representation and discovery. Bioinformatics, 16(1):16–
23, 2000.

13 Gary D. Stormo, Thomas D. Schneider, Larry Gold, and Andrzej Ehrenfeucht. Use of the
‘Perceptron’ algorithm to distinguish translational initiation sites in E. coli. Nucleic Acids
Res., 10(9):2997–3011, 1982.

14 Martin Tompa, Nan Li, Timothy L. Bailey, George M. Church, Bart De Moor, Eleazar
Eskin, Alexander V. Favorov, Martin C. Frith, Yutao Fu, W. James Kent, et al. Assessing
computational tools for the discovery of transcription factor binding sites. Nature biotech-
nology, 23(1):137–144, 2005.

15 Craig Tuerk and Larry Gold. Systematic evolution of ligands by exponential enrichment:
RNA ligands to bacteriophage T4 DNA polymerase. Science, 249(4968):505–510, 1990.

16 Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.
17 Peter Weiner. Linear pattern matching algorithms. In Switching and Automata Theory,

1973. SWAT’08. IEEE Conference Record of 14th Annual Symposium on, pages 1–11, 1973.
18 Edgar Wingender. The TRANSFAC project as an example of framework technology that

supports the analysis of genomic regulation. Brief. Bioinformatics, 9(4):326–332, 2008.

WABI 2017

Improved De Novo Peptide Sequencing using LC
Retention Time Information
Yves Frank†1, Tomas Hruz2, Thomas Tschager∗3, and
Valentin Venzin†4

1 Department of Computer Science, ETH Zürich, Zürich, Switzerland
2 Department of Computer Science, ETH Zürich, Zürich, Switzerland
3 Department of Computer Science, ETH Zürich, Zürich, Switzerland
4 Department of Computer Science, ETH Zürich, Zürich, Switzerland

Abstract
Liquid chromatography combined with tandem mass spectrometry (LC-MS/MS) is an important
tool in proteomics for identifying the peptides in a sample. Liquid chromatography temporally
separates the peptides and tandem mass spectrometry analyzes the peptides, that elute one after
another, by measuring their mass-to-charge ratios and the mass-to-charge ratios of their prefix
and suffix fragments. De novo peptide sequencing is the problem of reconstructing the amino
acid sequences of the analyzed peptide from this measurement data. While previous approaches
solely consider the mass spectrum of the fragments for reconstructing a sequence, we propose
to also exploit the information obtained from liquid chromatography. We study the problem of
computing a sequence that is not only in accordance with the experimental mass spectrum, but
also with the retention time of the separation by liquid chromatography. We consider three models
for predicting the retention time of a peptide and develop algorithms for de novo sequencing
for each model. An evaluation on experimental data from synthesized peptides for two of these
models shows an improved performance compared to not using the chromatographic information.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity, J.3 Life
and Medical Sciences: Biology and Genetics

Keywords and phrases Computational proteomics, Peptide identification, Mass spectrometry,
De novo peptide sequencing, Retention time prediction

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.26

1 Introduction

The amino acid sequences of peptides in a sample can be analyzed with the following tandem
mass spectrometry experiment [7]. First, the peptides are separated temporally by liquid
chromatography. Then, the mass spectrometer measures the mass-to-charge ratio of a peptide
and fragments multiple copies of it at random positions. Finally, the mass spectrometer
measures the mass-to-charge ratio of the resulting fragments. The peptide sequencing
problem is to reconstruct the amino acid sequence of the peptide from the experimental data.
This problem has been extensively studied [5, 18]. Nevertheless, when analyzing unknown
peptides the otherwise very successful database search approach is not applicable and de
novo sequencing, which is the reconstruction of the whole sequence from scratch, is necessary.

∗ Corresponding author: thomas.tschager@inf.ethz.ch.
† Preliminary work for this study was carried out during the bachelor theses of Y. Frank and V. Venzin.

© Yves Frank, Tomas Hruz, Thomas Tschager, and Valentin Venzin;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 26; pp. 26:1–26:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.WABI.2017.26
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

26:2 Improved De Novo Peptide Sequencing using LC Retention Time Information

Several algorithms for de novo sequencing [2, 1, 6, 10] consider the differences of the
peptide’s fragment masses to reconstruct the peptide’s sequence. Various scoring functions
have been proposed that try to exploit as much information as possible from the mass
spectrum of the fragments to find a sequence that explains the observed spectrum as well as
possible. However, the information obtained from the chromatographic separation in the
first step of the experiment is not considered by these scoring functions.

In liquid chromatography, the peptides in a sample have to pass through a column.
The time a peptide needs to traverse the column is called retention time and depends on
the chemical properties of the peptide. This process results in the temporal separation of
the peptides in a sample. Predicting the retention time of a peptide from its amino acid
sequence is a challenging task [14, 11]. Several studies use retention time prediction models
for peptide sequencing as a filtering step after a database search to increase the confidence of
identification and to identify false positive identifications [12, 16].

However, to the best of our knowledge, the retention time information has not been
considered by de novo peptide sequencing algorithms. This information can be useful, because
it allows to reconstruct parts of a sequence that cannot be resolved by mass spectrometry
(e.g. amino acids and fragments with equal masses). Moreover, it is available without
additional experimental effort. However, simply filtering the solutions of a standard de novo
sequencing algorithm by predicted retention time is not an option, as it requires to compute
all possible solutions in the worst case to find an optimal solution. We formulate and study
a de novo sequencing problem that integrates the retention time as an additional constraint
and does not require filtering many candidates. We are interested in a sequence that both
matches the experimental spectrum and the measured retention time. We consider three
additive retention time prediction models and develop algorithms for each model.

In this study, we do not aim for a replacement for available de novo sequencing tools,
but rather explore ways of exploiting the retention time information in de novo sequencing
algorithms. We evaluate the performance of two algorithms on experimental measurements
from synthesized peptides. In our evaluation, we consider a basic scoring function to clearly
expose the impact of using retention time prediction models. We compare our algorithms to
DeNovo∆ [4, 17], an algorithm that considers the same symmetric difference scoring model
but no retention time information. This scoring model shows improved identification rates
compared to the prevalent shared peak count scoring model [1]. For the third prediction
model, we present some preliminary results.

Considering the retention time information comes at the cost of higher computational
effort and requires additional parameters for retention time prediction (either estimated from
suitable datasets or taken from the literature). Yet, we believe that it is useful to exploit
retention time information for peptide identification and to further study the integration of
retention time information in algorithms for de novo peptide sequencing.

2 Notation and Problem Definition

In this paper, we model amino acids by characters and peptides by strings. We consider
an alphabet Σ of characters. A string S = a1 . . . an is a sequence of characters. The empty
string is denoted by S∅. Every character a ∈ Σ has a mass m(a) ∈ R+. The mass of a string
S = a1 . . . an is the sum of its character’s masses m(S) =

∑n
i=1 m(ai). The empty string S∅

has mass 0. A substring of S is denoted by Si,j = ai . . . aj for 1 ≤ i ≤ j ≤ n. The prefix set
Pre(S) contains all prefixes of S including the empty string, i.e. Pre(S) = dni=1S1,i ∪ {S∅}.
The theoretical spectrum of S is the union of all its prefix and suffix masses TS(S) =

Y. Frank, T. Hruz, T. Tschager, and V. Venzin 26:3

(a) Linear: tlin(S) = t(A) + t(I) + t(A) + t(G) + t(A) + t(K)

(b) Position-dependent: tpos(S) = tpre(A, 1) + tpre(I, 2) + t(A) + t(G) + tsuf(A, 2) + tsuf(K, 1)

(c) Neighborhood-based: tnei(S) = t(−, A) + t(A, I) + t(I, A) + t(A, G) + t(G, A) + t(A, K) + t(K,−)

Figure 1 Retention time prediction for string S = AIAGAK. (a) In the linear model, the retention
time of a string is the sum of its character’s coefficients. (b) In the position-dependent model (with
γ = 2), the position of the first and the last two characters is considered additionally. (c) The
neighborhood-based model considers all pairs of consecutive characters in a string. The first and the
last character have additional coefficients, as they only have one adjacent character.

{m(T),m(S)−m(T) | T ∈ Pre(S)}. Note that for every prefix T ∈ Pre(S) the string S has a
complementary suffix of mass m(S)−m(T). We say a mass m is explained by S if m ∈ TS(S).

We define three simple models for predicting the retention time of a string S = a1 . . . an

(Figure 1). The first model is a simple additive model with one coefficient for each character
in Σ assuming the retention time of a string mainly depends on the composition of its
characters [9]. The second model additionally considers the position of the characters at
the beginning and the end of the string [9, 8]. The last model uses coefficients for pairs of
consecutive characters to model the influence of a character’s direct neighborhood [8, 15].

Linear model. Every character a ∈ Σ has a retention time coefficient t(a) ∈ Z. The retention
time of a string S is the sum of the retention time coefficient of its characters,

tlin(S) =
n∑
i=1

t(ai). (1)

Position-dependent model. We define distinct retention time coefficients for the first γ and
the last γ positions of a string, where 1 ≤ γ ≤ bn2 c. The retention time coefficient of the
i-th character for i ≤ γ is denoted by tpre(ai, i) ∈ Z and the retention time coefficient
of the (n− j + 1)-th character for j ≤ γ by tsuf(an−j+1, j) ∈ Z. The retention time of a
string S is the sum of the corresponding retention time coefficients

tpos(S) =
γ∑
i=1

tpre(ai, i) +
n−γ∑
j=γ+1

t(aj) +
γ∑
k=1

tsuf(an−k+1, k). (2)

Neighborhood-based model. We define retention time coefficients t(a, b) ∈ Z for pairs of
consecutive characters a, b ∈ Σ. The first and the last character a1 and an of a string
S have additional coefficients t(−, a1), t(an,−) ∈ Z, as these characters have only one
adjacent character in S. The retention time of S is the sum of all these coefficients,

tnei(S) = t(−, a1) +
(
n−1∑
i=1

t(ai, ai+1)
)

+ t(an,−). (3)

The coefficients for all three models need to be estimated based on a training dataset
(Sections 4.1 and Appendix Section B) or taken from the available literature.

We recall the de novo peptide sequencing problem with respect to the symmetric difference
scoring model [17]: Given a mass M and a set of fragment masses X (measured by the
mass spectrometer), find a string S of mass M that minimizes |TS(S)4X|. Equivalently to
computing a string with mass M that minimizes |TS(S)4X|, we can compute a string that
maximizes |TS(S)∩X| − |TS(S) \X|, as X is a fixed input and S can be chosen. Throughout
this paper, we assume that 0,M ∈ X.

WABI 2017

26:4 Improved De Novo Peptide Sequencing using LC Retention Time Information

We consider a variant of this problem that also considers the measured retention time
and a retention time prediction function t∗ : Σ∗ → Z. A function t∗() can return negative
values, as a substring can have a negative effect on the retention time of a string.

I Problem 1 (De Novo Sequencing Problem). Let Σ be an alphabet of characters, with a
mass m(a) ∈ R+ for each a ∈ Σ. Given a peptide mass M ∈ R+, a retention time T ∈ N,
a tolerance parameter ε ≥ 0 and a set X = {xi ∈ R+ | i = 1, . . . , k}, find a string S of
characters in Σ with m(S) = M and |t(S)− T | ≤ ε that minimizes |TS(S)4X| among all
strings with mass M and a retention time t∗(S) ∈ [T − ε, T + ε].

2.1 Model Simplifications

The model used in this paper simplifies several aspects of experimental data. First, the peptide
molecule contains an H2O molecule in addition to the amino acid molecules. Therefore, the
peptide mass has an offset of 18 Dalton compared to the sum of the amino acid masses.
To simplify the description of the algorithms, we do not consider this offset (i.e. the mass
M is the sum of only the amino acid masses) and the mass offsets of different ion types.
However, we do consider both offsets in the implementation of our algorithms using techniques
described in [17]. Moreover, the mass spectrometer measures masses-to-charge ratios. Charge
state deconvolution [7] is required as a preparatory step to convert mass-to-charge ratios
to masses if multiply charged fragments should be considered. Our model can consider
fixed modifications by altering the amino acid masses and variable modifications by adding
new characters to the alphabet. Finally, we consider integer values in the description of
the algorithm and ignore the mass accuracy of the mass spectrometer. We discuss in the
appendix how we account for the mass accuracy and also refer to [17].

3 Algorithms for De Novo Sequencing with Retention Time

We briefly describe the algorithm DeNovo∆ [17] for computing a string of mass M that
minimizes |TS(S)4X| without considering retention times. We refer to [17] for a detailed
description and a proof of correctness. Then, we describe algorithms based on DeNovo∆ for
solving the de novo sequencing problem for each considered prediction model.

The search space of DeNovo∆ is modeled by a directed acyclic multigraph G = (V,E)
based on the given set X. A vertex in G represents a mass and a path in G represents a string.
For every massm ∈ X there are two verticesm andM−m in G, i.e. V = {m,M−m |m ∈ X}.
An edge in G is always directed from the smaller to the larger mass. Two vertices v and
w are connected by an edge if there exists a string with mass w − v. For each such string
with mass w− v, we add an edge from v to w to the multigraph and label it with this string.
That is, if v and w are connected by an edge with label l(v, w), there is also an edge from v

to w for every permutation of l(v, w). In practice, we only consider edges with a maximal
label length p. We denote the concatenation of the edge labels along a path P by l(P).

Given a path P that starts at vertex 0, every traversed vertex represents the mass of a
prefix of the string l(P). If P additionally ends in vertex M , the path label both explains
v and M − v for every traversed vertex v. We find a string S of mass M that minimizes
|TS(S)4X| by iteratively extending two paths both starting at vertex 0. One path represents
a prefix and the other path a reversed suffix. We extend both paths until the sum of their
labels’ masses is equal to M and then concatenate the prefix and the reversed suffix to a
string of mass M .

Y. Frank, T. Hruz, T. Tschager, and V. Venzin 26:5

0

p1 v

w = M − bq1 a b

A G A

K I GD

Figure 2 Multigraph G with two paths P = (0, p1, v) and Q = (0, q1, a, b). P and Q form a path
pair, as there exists a sequence of balanced extensions leading to P and Q. A balanced extension of
(P,Q) by (v, w) results in a path pair (P ′, Q), with P ′ = (0, p1, v, w) and m(l(P ′)) +m(l(Q)) = M .
The path labels represent a prefix and a reversed suffix and can be combined to a string AGADGIK.

I Definition 2 (Balanced extension). Given two paths P and Q, a balanced extension extends
the path that represents the string of smaller mass by a single edge, unless the resulting
paths represent strings with a total mass larger than M . An arbitrary path is extended if
both paths represent strings with equal masses.

I Definition 3 (Path pair). A path pair is a pair of paths P = (0, . . . , v) and Q = (0, . . . , a, b)
in G that results from a sequence of balanced extensions starting from two paths P0 = (0)
and Q0 = (0).

Figure 2 depicts an example for a path pair and a balanced extension. The set of masses
that are explained by a path pair (P,Q) is the partial theoretical spectrum

PTS(P,Q,M) ={ m(T),M −m(T) | T ∈ Pre(l(P)) ∪ Pre(l(Q)) }. (4)

The score of the path pair is the number of masses explained by (P,Q) that are in X minus the
number of explained masses that are not in X, i.e. |PTS(P,Q,M)∩X|− |PTS(P,Q,M)\X|.
The set of masses explained by an edge (v, w) is denoted by

TSe((v, w),M) = { m(T) + v, M − (m(T) + v) | T ∈ Pre(l(v, w)), m(T) 6= 0 }. (5)

I Lemma 4. For every path pair P = (0, . . . , v) and Q = (0, . . . , a, b) with v ≤ b and
v + b ≤ M it holds that a ≤ v ≤ b. The balanced extension of (P,Q) by an edge (v, w)
additionally explains all masses in N((v, w), (a, b)) = TSe((v, w),M) \ TSe((a, b),M).

Proof. Assume that there exists a path pair (P,Q) with v ≤ a. This path pair results by
definition from a sequence of balanced extensions. Consider the balanced extension in this
sequence, where the last edge (a, b) of Q is added. In this step, either P ended in v or in
some vertex v′ < v. In both cases, a is the larger mass and Q represents the heavier string.
Hence, the extension by (a, b) is not a balanced extension and (P,Q) is not a path pair.

Consider a balanced extension of (P,Q) by an edge (v, w). The edge (v, w) explains
all masses in TSe((v, w),M). However, some of these masses might also be explained by
(P,Q). We show that TSe((v, w),M) \ PTS(P,Q,M) = N((v, w), (a, b)), i.e. that all masses
explained by (v, w) that are also explained by (P,Q), are explained by the last edge (a, b)
of Q. We note that all masses in TSe((v, w),M) are larger than v and smaller than M − v.
Moreover, all masses in PTS(P,Q,M) that are larger than v and smaller than M − v are
explained by the edge (a, b). Therefore, it follows that the balanced extension with (v, w)
additionally explains all masses in N((v, w), (a, b)). J

Using Lemma 4, the algorithm DeNovo∆ [17] (Algorithm 1) computes a dynamic pro-
gramming table DP . An entry DP [v, (a, b)] contains the optimal score of a path pair ending
at the vertex v, respectively at the edge (a, b). As a base case, we add a loop edge (0, 0) to the

WABI 2017

26:6 Improved De Novo Peptide Sequencing using LC Retention Time Information

Algorithm 1 DeNovo∆ [17]
1 DP[v,(a,b)] = −∞ for all (a,b) ∈ E and all v ∈ V
2 DP [0 ,(0 ,0)] = 2
3 for (v ∈ V in ascending order):
4 for ((a,b) ∈ E in lexicograph . asc. order with DP[v,(a,b)] 6= −∞):
5 for ((v,w) ∈ E with w + b ≤M):
6 if (w ≤ b):
7 DP[w,(a,b)] = max(
8 DP[w,(a,b)], DP[v,(a,b)] + gain ((v,w),(a,b))
9)

10 else:
11 DP[b,(v,w)] = max(
12 DP[b,(v,w)], DP[v,(a,b)] + gain ((v,w),(a,b))
13)

graph and initialize DP [0, (0, 0)] = 2. Given the optimal score DP [v, (a, b)], the algorithm
considers all possible balanced extensions of the corresponding path pair with outgoing edges
of v. By Lemma 4, the additionally explained masses of such a balanced extension can be
computed only given the last vertex v and the last edge (a, b) of the two paths. The score of
the resulting new path pair can be computed by adding

gain((v, w), (a, b)) = |N((v, w), (a, b)) ∩X| − |N((v, w), (a, b)) \X| (6)

to the score DP [v, (a, b)]. The corresponding entry in the table is updated if the new score
exceeds the value stored in this entry at this step of the algorithm. The optimal score for a
string of mass M is equal to the maximum value of an entry DP [M − b, (a, b)] among all
edges (a, b) in G. The corresponding paths can be reconstructed starting from this entry.
The combination of the resulting prefix and reversed suffix then leads to the desired string of
mass M . The time complexity of DeNovo∆ is in O (|V | · |E| · d · p), where d is the maximal
out-degree of a vertex in G and p is the maximal length of an edge label [17].

3.1 Linear Prediction Model

In this section, we extend DeNovo∆ for the de novo sequencing problem with the linear
retention time prediction model. First, we note that the retention time of a path pair
P = (0, . . . , v) and Q = (0, . . . , a, b) with a ≤ v ≤ b is the sum of the retention times of
both substrings t = tlin(l(P)) + tlin(l(Q)). The retention time t′ of a path pair obtained
from (P,Q) by applying a balanced extension by some edge (v, w) can be computed as
t′ = t+ tlin(l(v, w)). That is, we only need t and the edge label l(v, w) for computing t′.

However, it is not sufficient to only store the optimal score DP [v, (a, b)] of any path
pair ending in v, respectively (a, b), and its retention time to reconstruct a solution for our
problem. There can be multiple path pairs ending in the same vertex and the same edge
with different retention times. If we consider an optimal solution and its sequence of path
pairs computed by the algorithm, a path pair P = (0, . . . , v) and Q = (0, . . . , a, b) in this
sequence does not necessarily have an optimal score among all path pairs ending in v and
(a, b). Nevertheless, its score is optimal among all path pairs with the same retention time
that end in v and (a, b). Therefore, we need to store for each possible retention time t the
optimal score of a path pair ending in vertex v and edge (a, b).

Y. Frank, T. Hruz, T. Tschager, and V. Venzin 26:7

DeNovo∆Lin (Algorithm 2) stores for each entry DP [v, (a, b)] an array containing a score
for every possible retention time t. DP [v, (a, b)][t] is the optimal score for a path pair ending
in v, respectively (a, b), with retention time t. For a given vertex v and an edge (a, b), the
algorithm performs balanced extensions by all outgoing edges (v, w) of v. For every balanced
extension and every feasible retention time t, the algorithm then computes the new retention
time t′ and the new score of the resulting path pair and updates the corresponding entry
in the table. We can see by an inductive argument that the optimal scores in the table are
computed correctly. As the base case, we note that DP [0, (0, 0)][0] = 2 is correct, as an
empty path pair explains the masses {0,M} ⊆ X and has retention time 0. As soon as the
entry DP [v, (a, b)] is reached in line 7, all optimal scores for path pairs ending in vertex v
and edge (a, b) have been computed. This holds by induction, as every possible balanced
extension leading to a path pair ending in v and (a, b) has already been considered (given the
optimal score of a preceding path pair). Moreover, the array in DP [v, (a, b)] is not further
modified as soon as the algorithm reaches the vertex v and the edge (a, b) in line 7. Therefore,
the invariant holds that, if the algorithm considers a vertex v and an edge (a, b) in line 7, the
corresponding entry DP [v, (a, b)] contains the optimal score for each feasible retention time.

After computing all entries DP [v, (a, b)], we can find the optimal score of a solution by
iterating over all entries DP [M − b, (a, b)][t] for (a, b) ∈ E and all feasible retention times
t ∈ [T − ε, T + ε]. We can reconstruct a corresponding string starting from this entry.

The running time of DeNovo∆ is in O (|V | · |E| · d · p) [17], where d is the maximal
out-degree of a vertex in G and p is the maximal length of an edge label. The additional
overhead of DeNovo∆Lin (highlighted lines in Algorithm 2) is to iterate over all feasible
retention times t for each entry DP [v, (a, b)] and compute the new retention time t′. The
number of scores to be stored varies depending on the entry and the retention time coefficients.
For a path pair ending in v, respectively (a, b), we have to consider all retention times in
[rtmin · (v + b), rtmax · (v + b)], where rtmin and rtmax are the minimum and the maximum
retention time per mass unit. For example, we only store one optimal score in entry
DP [0, (0, 0)], but up to drtmax · M − rtmin · Me scores in entries DP [M − b, (a, b)] for
(a, b) ∈ E. The time complexity of DeNovo∆Lin is in O (|V | · |E| · |RTM | · d · p), where
|RTM | denotes the number of possible retention times for a string of mass M . In practice,
most entries DP [v, (a, b)] contain only few scores and it is advisable to use a memory-efficient
data structure instead of an array to reduces the memory consumption of the algorithm.

3.2 Position-dependent Prediction Model
In the position-dependent prediction model, the retention time of a string S is not equal to
the retention time of all permutations of S. The retention time coefficient of a character in
the first and the last γ positions of the string may be different from the coefficient of the same
character at another position. To compute the retention time of a path pair P = (0, . . . , v)
and Q = (0, . . . , a, b) with a ≤ v ≤ b, we first have to distinguish the prefix and the suffix
path. We compute the retention time of (P,Q) by summing the retention times tP and tQ of
the path labels. Assuming that P is the prefix path and Q the suffix path,

tP =
∑

ai∈ l(P)

{
tpre(ai, i) i ≤ γ
t(ai) i > γ

and tQ =
∑

aj∈ l(Q)

{
tsuf(aj, j) j ≤ γ
t(aj) j > γ.

(7)

If we want to update the retention time after a balanced extension of (P,Q) by an edge
(v, w), we have to compute the retention time of the edge label l(v, w). This retention time
depends on whether the edge label contains some of the first or the last γ characters of a

WABI 2017

26:8 Improved De Novo Peptide Sequencing using LC Retention Time Information

Algorithm 2 DeNovo∆Lin – Linear retention time prediction model
1 for ((a,b) ∈ E and v ∈ V)
2 DP[v,(a,b)] = array with entries −∞ for each feasible ret. time
3 DP [0 ,(0 ,0)][0] = 2
4 for (v ∈ V in ascending order):
5 for ((a,b) ∈ E in asc. lex. order with a ≤ v ≤ b):
6 for ((v,w) ∈ E with w + b ≤M):
7 for (entry t in DP[v,(a,b)]):
8 t’ = t + tlin(l(v, w))
9 if (w ≤ b):

10 DP[w,(a,b)][t’] = max(
11 DP[w,(a,b)][t’], DP[v,(a,b)][t] + gain ((v,w),(a,b))
12)
13 else:
14 DP[b,(v,w)][t’] = max(
15 DP[b,(v,w)][t’], DP[v,(a,b)][t] + gain ((v,w),(a,b))
16)

solution string S of mass M . However, there can be multiple such solution strings resulting
from different further balanced extensions of this path pair. Independently of the solution
string S, we can decide whether l(v, w) contains some of the first γ characters given the
length k of l(P). If k ≥ γ, the edge label clearly does not contain any of the first γ characters
of any solution resulting from extending (P,Q). Likewise, we know that l(v, w) contains
none of the γ last characters if l(Q) has more than γ characters. However, if l(Q) has less
than γ characters, we cannot decide whether l(v, w) contains some of the last γ characters
without knowing the length of the solution string. Let us assume for now that l(v, w) does
not contain some of the last γ characters of the solution. The retention time of the new path
pair resulting the balanced extension of (P,Q) by the edge (v, w) is

t′ = t+
∑

ai∈l(v,w)

{
tpre(ai, i) i+ k ≤ γ
t(ai) i+ k > γ.

(8)

If P would be the suffix path, tpre(ai, i) would be replaced by tsuf(ai, i) in the above equation.
It is important that the above assumption holds for every balanced extension leading

to a solution string S. Otherwise, the retention time of the new path pair is not computed
correctly. We cannot check if our assumption holds for an individual balanced extension.
However, given a solution string S and a path pair that represents a prefix and a suffix of
S, we can check if either the balanced extension leading to this path pair or a preceding
balanced extension did not satisfy the assumption. If so, either the prefix or the suffix path
label has at least n − γ characters, where n is the length of S. This does also hold for all
subsequent path pairs, as we only add characters to path labels in a balanced extension.

When reconstructing a solution from the dynamic programming table, we have to
additionally check, if one of the path labels has n− γ or more characters, before we combine
them to a solution string. If so, the assumption was not fulfilled at some step and we discard
this solution, as its retention time was not computed correctly. Note that we cannot consider
these strings, unless they can be constructed by another sequence of balanced extensions. It
is very unlikely that the assumption is not fulfilled in practice, as we consider small values of
γ. We never observed such a situation in our evaluation with γ = 2.

In our dynamic program, we have to store some additional information to compute a
solution with respect to the position-dependent prediction model. First, we have to store

Y. Frank, T. Hruz, T. Tschager, and V. Venzin 26:9

l(P) = p1 p2

l(P ′) = p1 p2 l1 l2

l(Q) = q1 q2 q3

S = p1p2l1l2q3q2q1

t = tnei (P,Q) = t(−, p1) + t(p1, p2) + t(q3, q2)+
t(q2, q1) + t(q1,−)

t′ = tnei (P
′, Q) = t+ t(p2, l1) + t(l1, l2)

tnei(S) = tnei (P
′, Q) + t(l2, q3)

Figure 3 The retention time t of a path pair (P,Q) is the sum of the retention time coefficients
up to the last characters p2 and q3. The path pair (P ′, Q) resulting from a balanced extension of
(P,Q) by an edge with label l1l2 has retention time t + t(p2, l1) + t(l1, l2). A path pair (P ′, Q)
with m(l(P ′)) +m(l(Q′)) = M can be combined to a solution string S by concatenating l(P ′) and
the reversed string of l(Q′). The retention time of S is tnei(P ′, Q′) + t(l2, q3).

whether P is a prefix or a suffix path. Second, we have to store the length of both path
labels, unless they are larger than γ. DeNovo∆Pos (Algorithm A.1 in the appendix) stores
the optimal scores of path pairs ending in v and (a, b) in an array with an entry for every
retention time t, the length α and β of the path labels and a Boolean flag bit indicating
if the path ending in v is the prefix or the suffix path. Given the optimal score of a path
pair, the algorithm performs every possible balanced extension with an outgoing edge of
v, computes the new score and retention time, and updates the corresponding entries. We
reconstruct a solution starting from a path pair ending in some vertex M − b and some edge
(a, b) and the algorithm additionally verifies that both the prefix and the suffix path label
have more than γ characters. DeNovo∆Pos considers at most γ2 · |RTM | optimal scores for
each table entry DP [v, (a, b)], where |RTM | is the number of possible retention times for a
string of mass M . Therefore, the running time is in O

(
|V | · |E| · |RTM | · γ2 · d · p

)
, where d

is the maximal out-degree of a vertex in G and p is the maximal length of an edge label.

3.3 Neighborhood-based Prediction Model

The neighborhood-based model predicts the retention time of a string S by considering all
pairs of consecutive characters. We define the retention time of a prefix of S as the sum of the
retention time coefficients of the pairs of consecutive characters and the additional coefficient
of the first character. Note that we consider only one coefficient for the last character in the
prefix. The other coefficient depends on the next character in S that is not part of the prefix.
We define the retention time of a suffix analogously and compute the retention time of (P,Q)
by summing the retention times of the path labels (Figure 3): We denote the two substrings
by l(P) = p1, . . . , pn and l(Q) = q1, . . . , qm. The retention time of (P,Q) is

tnei(P,Q) = t(−, p1) +
(
n−1∑
i=1

t(pi, pi+1)
)

+
(2∑
i=m

t(qi, qi−1)
)

+ t(q1,−). (9)

We can update the retention time after a balanced extensions of (P,Q) as follows. Consider
a balanced extension of the prefix path P by an edge (v, w) with l(v, w) = l1 . . . lk. Let pn

be the last character of l(P). The retention time t′ of the new path pair resulting from the
balanced extension is t′ = tnei(P,Q)+ t(pn, l1) +

∑k−1
i=1 t(li, li+1). The retention time of a

solution S is not the sum of the retention times of a prefix of S and its complementary suffix.
We have to additionally consider the coefficient of the last character of the prefix and the
first character of the suffix, which are consecutive in S. If we combine the path labels of a
path pair (P ′, Q) to a string S (Figure 3), the retention time of S is tnei(P,Q) + t(pn, qm),
where pn and qm are the last characters of P and Q.

WABI 2017

26:10 Improved De Novo Peptide Sequencing using LC Retention Time Information

DeNovo∆Nei (Algorithm A.2 in the appendix) extends the algorithm DeNovo∆ and
computes a solution with respect to the neighborhood-based prediction model as follows.
Instead of storing the optimal score DP [v, (a, b)] of a path pair ending in vertex v and edge
(a, b), we distinguish prefix and suffix path and store an optimal score for each retention
time t, last character p of the path ending in v. The algorithm considers at most |Σ| · |RTM |
optimal scores for each pair of a vertex v and an edge (a, b), where |RTM | is the number
of possible retention times for a string of mass M and |Σ| is the size of the considered
alphabet. The running time of DeNovo∆Nei is in O (|V | · |E| · |RTM | · |Σ| · d · p). We refer
to the appendix for a more detailed description of the algorithm.

4 Experimental Evaluation and Discussion

In this section, we study the performance of our algorithms for de novo peptide sequencing
with retention time prediction. We first describe the considered dataset and a method for
estimating the parameters of the three models. Then, we compare the identification rates of
the proposed algorithms to the identification rate of DeNovo∆ [17].

4.1 Dataset and Parameter Estimation
We use the SWATH-MS Gold Standard (SGS) dataset (peptideatlas.org, identifier
PASS00289, [13]). Specifically, we consider the 944 spectra of synthesized peptides from
DDA-experiments that have also been considered in [17]. The database search tool Comet [3]
identified a sequence for each of these spectra using the very restricted database containing
only the 422 synthesized peptides (see [17] for a detailed explanation). We randomly split
the dataset into a training set with 80% of the spectra (755 spectra) and a test set with
the remaining 20% of the spectra (189 spectra). We use the training set to estimate the
retention time coefficients by linear regression and choose the tolerance parameter ε for
each model using the test set. We choose the tolerance parameter ε based on the minimum
and maximum prediction error (Appendix B) and set ε = 1000 (in seconds) for the linear
prediction model and ε = 750 for the position-dependent model. The neighborhood-based
prediction model requires many retention time coefficients for each character. Due to the
small training dataset, the estimate of some coefficients is based on few observations and some
cannot be estimated and are set to 0. A much larger training dataset would be necessary to
train this model. We analyze all spectra for the linear and position-dependent model, but
limit our evaluation of the neighborhood-based prediction model to some exemplary spectra.
It is also be possible to use retention time coefficients reported in the literature (e.g. [9] and
references therein), if training data is not available.

4.2 Comparison of DeNovo∆Lin and DeNovo∆Pos
We analyzed the 944 considered spectra with DeNovo∆Lin and DeNovo∆Pos. Both algorithms
compute all solutions with a score of at least 90% of the optimal score and a predicted
retention time within the tolerance range. Figure 4 shows a comparison of the identification
rates of DeNovo∆ [17], DeNovo∆Lin, and DeNovo∆Pos. Without considering the retention
time, DeNovo∆ reported the annotated sequence as best-scoring sequence for 586 spectra
(62.1%). Considering the linear retention time prediction model, DeNovo∆Lin computed the
annotated sequence with an optimal score for 610 spectra (64.6%). DeNovo∆Pos considers
the position-dependent prediction model and achieved the highest identification rate. The
annotated sequence was reported as best-scoring sequence for 629 spectra (66.6%). A filtering

peptideatlas.org

Y. Frank, T. Hruz, T. Tschager, and V. Venzin 26:11

Top 1 Top 5 Top 10 Top 100 not in list

Position of annotated sequence in the list of solutions

N
um

be
r

of
 s

pe
ct

ra

0
20

0
40

0
60

0
80

0

586
610

629

693
712 723 728 742 753

793 798 808

125 127 124

62.1%
64.6%

66.6%

73.4%
75.4% 76.6% 77.1%

78.6% 79.8%

84.0% 84.5% 85.6%

13.2% 13.5% 13.1%

DeNovo∆
DeNovo∆Lin
DeNovo∆Pos

Figure 4 Position of annotated sequence in the list of reported sequences (sorted by score).
DeNovo∆ reported the annotated sequence among the top 5 sequences in 73.4% of the spectra,
DeNovo∆Lin in 75.4% and DeNovo∆Pos in 76.6% of the spectra.

approach that considers the top 100 sequences reported by DeNovo∆, would not be as
successful as the proposed algorithms. While the annotated sequence was reported by
DeNovo∆ for 793 spectra among the top 100 sequences, DeNovo∆Lin reported it in 798 cases
and DeNovo∆Pos in 808 cases. Even an optimal filtering approach by retention time would
miss the sequences that have not been reported by DeNovo∆. For few spectra, DeNovo∆Lin
and DeNovo∆Pos did not report the annotated sequence, where DeNovo∆ did report it, as
the predicted retention time of the annotated sequence was not in the chosen tolerance range.

4.3 Discussion
We develop algorithms for three additive retention time prediction models. However, we
did not study the predictive robustness of our models and efficient methods for parameter
estimation in detail. In the experimental evaluation, we especially studied the effect of
considering the retention time information. We compare the performance of our algorithms
to the algorithm DeNovo∆ [17] that uses the same scoring model, but no retention time
information. An accurate retention time prediction model is crucial for exploiting the retention
time information successfully, as the identification rates of our algorithms depend on the choice
of the tolerance parameter ε. Increasing ε diminishes the effect of considering the retention
time, while decreasing ε might exclude the correct sequence from the search space. This is
especially an issue if the prediction model is not accurate, as for the neighborhood-based
retention time model with our small training dataset. To get a glimpse on the performance
of DeNovo∆Nei, we set ε = 500 (in seconds) and analyzed the spectra from the test set,
where the correct sequence was not excluded due to the predictive error. In three cases, the
annotated sequence was reported by DeNovo∆Nei, but by no other considered algorithm.
The position of the annotated sequence improved compared to the position reported by
DeNovo∆Pos for 12 spectra.

The running time of our prototypical implementations is in some cases not yet practical.
DeNovo∆Lin needs less than 3 seconds per spectra for half of the considered spectra, but
several hours in exceptional cases. In general, DeNovo∆Pos is more time-consuming. Half
of the spectra were analyzed within about 2 minutes. However, we note that we did not
optimize our implementations for speed and memory usage.

WABI 2017

26:12 Improved De Novo Peptide Sequencing using LC Retention Time Information

5 Conclusion

In this paper, we propose the first algorithms for exploiting the retention time information
in de novo peptide sequencing. We study three retention time prediction models and develop
algorithms for computing a sequence that matches the experimental mass spectrum as
well as possible and is in accordance with the observed retention time. The experimental
evaluation of our algorithms shows that identification rates can definitively be improved by
exploiting this additional information. Yet, the proposed algorithms score sequences with a
very simplistic scoring function that only counts explained and measured masses, but does
not consider any other available information. For real-world applications, a more evolved
scoring function using all available information needs to be integrated. While [17] introduces
a new scoring model, we explore ways of exploiting the retention time information. The
proposed algorithms open room for developing new scoring functions that consider both the
retention time information and the symmetric difference scoring model.

Acknowledgments. We would like to thank Peter Widmayer, Christian Panse, Witold
Wolski, and Ludovic Gillet for helpful discussions. Moreover, we thank the reviewers for
their constructive criticism.

References
1 Ting Chen, Ming-Yang Kao, Matthew Tepel, John Rush, and George M. Church. A dy-

namic programming approach to de novo peptide sequencing via tandem mass spectrometry.
Journal of Computational Biology, 8(3):325–337, 2001. doi:10.1089/10665270152530872.

2 Vlado Dančík, Theresa A. Addona, Karl R. Clauser, James E. Vath, and Pavel A. Pevzner.
De novo peptide sequencing via tandem mass spectrometry. Journal of Computational
Biology, 6(3-4):327–342, 1999. doi:10.1089/106652799318300.

3 Jimmy K. Eng, Tahmina A. Jahan, and Michael R. Hoopmann. Comet: an open-source
MS/MS sequence database search tool. Proteomics, 13(1):22–24, 2013. doi:10.1002/pmic.
201200439.

4 Ludovic Gillet, Simon Rösch, Thomas Tschager, and Peter Widmayer. A better scor-
ing model for de novo peptide sequencing: The symmetric difference between explained
and measured masses. In 16th International Workshop on Algorithms in Bioinformat-
ics, WABI 2016, volume 9838, pages 185–196, 2016. (extended version: [17]). doi:
10.1007/978-3-319-43681-4.

5 Christopher Hughes, Bin Ma, and Gilles A. Lajoie. De novo sequencing methods in proteom-
ics. Proteome Bioinformatics, 604:105–121, 2010. doi:10.1007/978-1-60761-444-9_8.

6 Kyowon Jeong, Sangtae Kim, and Pavel A. Pevzner. UniNovo: a universal tool for de
novo peptide sequencing. Bioinformatics (Oxford, England), 29(16):1953–1962, 2013. doi:
10.1093/bioinformatics/btt338.

7 Michael Kinter and Nicholas E. Sherman. Protein Sequencing and Identification Using Tan-
dem Mass Spectrometry. Wiley-Interscience, New York, 2000. doi:10.1002/0471721980.

8 Oleg V. Krokhin. Sequence-specific retention calculator. Algorithm for peptide retention
prediction in ion-pair RP-HPLC: Application to 300- and 100-A pore size C18 sorbents.
Analytical chemistry, 78(22):7785–95, 2006. doi:10.1021/ac060777w.

9 Oleg. V Krokhin, Robertson Craig, Vic Spicer, Werner Ens, Kenneth G. Standing, Ron-
ald C. Beavis, and John A. Wilkins. An improved model for prediction of retention times of
tryptic peptides in ion pair reversed-phase HPLC: its application to protein peptide map-
ping by off-line HPLC-MALDI MS. Molecular & cellular proteomics : MCP, 3(9):908–19,
2004. doi:10.1074/mcp.M400031-MCP200.

http://dx.doi.org/10.1089/10665270152530872
http://dx.doi.org/10.1089/106652799318300
http://dx.doi.org/10.1002/pmic.201200439
http://dx.doi.org/10.1002/pmic.201200439
http://dx.doi.org/10.1007/978-3-319-43681-4
http://dx.doi.org/10.1007/978-3-319-43681-4
http://dx.doi.org/10.1007/978-1-60761-444-9_8
http://dx.doi.org/10.1093/bioinformatics/btt338
http://dx.doi.org/10.1093/bioinformatics/btt338
http://dx.doi.org/10.1002/0471721980
http://dx.doi.org/10.1021/ac060777w
http://dx.doi.org/10.1074/mcp.M400031-MCP200

Y. Frank, T. Hruz, T. Tschager, and V. Venzin 26:13

10 Bin Ma. Novor: Real-time peptide de novo sequencing software. Journal of
The American Society for Mass Spectrometry, 26(11):1885–1894, 2015. doi:10.1007/
s13361-015-1204-0.

11 Luminita Moruz and Lukas Käll. Peptide retention time prediction. Mass spectrometry
reviews, 2016. doi:10.1002/mas.21488.

12 Magnus Palmblad, Margareta Ramström, Karin E. Markides, Per Håkansson, and Jonas
Bergquist. Prediction of chromatographic retention and protein identification in liquid
chromatography/mass spectrometry. Analytical Chemistry, 74(22):5826–5830, 2002. doi:
10.1021/ac0256890.

13 Hannes L Röst, George Rosenberger, Pedro Navarro, Ludovic Gillet, Saša M. Miladinović,
Olga T. Schubert, Witold Wolski, Ben C Collins, Johan Malmström, Lars Malmström, and
Ruedi Aebersold. OpenSWATH enables automated, targeted analysis of data-independent
acquisition MS data. Nature biotechnology, 32(3):219–223, 2014. doi:10.1038/nbt.2841.

14 Kosaku Shinoda, Masahiro Sugimoto, Masaru Tomita, and Yasushi Ishihama. Informatics
for peptide retention properties in proteomic LC-MS. Proteomics, 8(4):787–98, 2008. doi:
10.1002/pmic.200700692.

15 Vic Spicer, Marine Grigoryan, Alexander Gotfrid, Kenneth G. Standing, and Oleg V.
Krokhin. Predicting retention time shifts associated with variation of the gradient slope in
peptide RP-HPLC. Analytical chemistry, 82(23):9678–85, 2010. doi:10.1021/ac102228a.

16 Eric F. Strittmatter, Lars J. Kangas, Konstantinos Petritis, Heather M. Mottaz, Gordon A.
Anderson, Yufeng Shen, Jon M. Jacobs, David G. Camp, and Richard D. Smith. Ap-
plication of peptide LC retention time information in a discriminant function for peptide
identification by tandem mass spectrometry. Journal of Proteome Research, 3(4):760–769,
2004. doi:10.1021/pr049965y.

17 Thomas Tschager, Simon Rösch, Ludovic Gillet, and Peter Widmayer. A better scoring
model for de novo peptide sequencing: The symmetric difference between explained and
measured masses. Algorithms for Molecular Biology, 12(1), 2017. (extended version of [4]).
doi:10.1186/s13015-017-0104-1.

18 Susan K. Van Riper, Ebbing P. de Jong, John V. Carlis, and Timothy J Griffin. Mass
spectrometry-based proteomics: Basic principles and emerging technologies and direc-
tions. Advances in experimental medicine and biology, 990:1–35, 2013. doi:10.1007/
978-94-007-5896-4_1.

A Pseudocode of DeNovo∆Pos and DeNovo∆Nei

DeNovo∆Pos (Algorithm A.1) computes the optimal score for a path pair with retention
time t, a prefix path with label length α ending in vertex v and a suffix path with label
length β ending in edge (a, b). The algorithm distinguishes prefix and suffix path, as the
retention time of a string is different to the retention time of its reversed string. We store
the length of the path labels only up to length γ, as the exact length is only important
as long as the path labels have less than γ characters. If the algorithm reaches an entry
DP [v, (a, b)] in line 7, all optimal scores for path pairs ending in vertex v and edge (a, b)
have been computed correctly, as all balanced extensions leading to such path pairs have
already been considered. The algorithm then considers all balanced extensions by outgoing
edges of v and computes the score and the retention time of the resulting path pairs. After
computing all entries of the table, the solution can be reconstructed starting from an entry
in some array DP [M − b, (a, b)] for (a, b) ∈ E with optimal score and a feasible retention
time. The algorithm additionally has to check if the prefix and the suffix path label of the
reconstructed solution have more than γ characters.

DeNovo∆Nei (Algorithm A.2) computes and stores the optimal score for a path pair
that ends in a given vertex v and a given edge (a, b) with a retention time t, where the path
ending in v is a prefix (suffix) and p is the last character of the corresponding path label. As

WABI 2017

http://dx.doi.org/10.1007/s13361-015-1204-0
http://dx.doi.org/10.1007/s13361-015-1204-0
http://dx.doi.org/10.1002/mas.21488
http://dx.doi.org/10.1021/ac0256890
http://dx.doi.org/10.1021/ac0256890
http://dx.doi.org/10.1038/nbt.2841
http://dx.doi.org/10.1002/pmic.200700692
http://dx.doi.org/10.1002/pmic.200700692
http://dx.doi.org/10.1021/ac102228a
http://dx.doi.org/10.1021/pr049965y
http://dx.doi.org/10.1186/s13015-017-0104-1
http://dx.doi.org/10.1007/978-94-007-5896-4_1
http://dx.doi.org/10.1007/978-94-007-5896-4_1

26:14 Improved De Novo Peptide Sequencing using LC Retention Time Information

Algorithm A.1 DeNovo∆Pos – Position-dependent retention time prediction model
1 for ((a,b) ∈ E and v ∈ V):
2 DP[v,(a,b)] = (|RTM | × γ × γ × 2)-array initialized with −∞
3 DP [0 ,(0 ,0)][0 ,0 ,0 ,0] = 2
4 for (v ∈ V in ascending order):
5 for ((a,b) ∈ E asc. lex. order with a ≤ v ≤ b):
6 for (entry (t,α,β,bit) in DP[v,(a,b)]):
7 for ((v,w) ∈ E with w + b ≤M):
8 t’ = retention time of resulting path pair
9 if (bit == 1):

10 α′ = max(γ, α+ |l(v, w)|); β′ = β

11 else:
12 α′ = α; β′ = max(γ, β + |l(v, w)|)
13
14 if (w ≤ b):
15 DP[w,(a,b)][t’,α′ ,β′ ,bit] = max(
16 DP[w,(a,b)][t’,α′ ,β′ ,bit],
17 DP[v,(a,b)][t,α,β,bit] + gain ((v,w) ,(a,b))
18)
19 else:
20 DP[b,(v,w)][t’,α′ ,β′ ,¬bit] = max(
21 DP[b,(v,w)][t’,α′ ,β′ ,¬bit],
22 DP[v,(a,b)][t,α,β,bit] + gain ((v,w) ,(a,b))
23)

a base case, the algorithm computes the optimal score for a path pair ending in vertex 0 and
the loop edge (0, 0) as DP [0, (0, 0)][0,−, 0]. Note that there exists only one such path pair
with retention time t = 0 and we define the last character as −. The algorithm considers the
vertices and edges of G in ascending order. Whenever the algorithm reaches a vertex v and
an edge (a, b), it has already computed the optimal score of path pairs ending in this vertex
and this edge for any combination of retention time t, last character p. Given these scores,
the algorithm considers all possible balanced extensions by outgoing edges of v and computes
the score and the retention time of the resulting path pair. The algorithm updates the
corresponding entries in the table and continues with the next pair of endpoints of a path pair.
Finally, the optimal score can be computed by iterating over all entries DP [M − b, (a, b)] and
considering the feasible retention time interval and all possible last characters of the path
ending in M − b. In contrast to DeNovo∆, which has a running time in O (|V | · |E| · d · p),
where d is the maximal out-degree of a vertex in G and p is the maximal length of an edge
label, DeNovo∆Nei has to consider for each pair v and (a, b) all possible retention times and
all possible last characters. That is, the algorithm considers for each pair v and (a, b) at
most |RTM | · |Σ| optimal scores and performs for each optimal score all possible balanced
extensions. Therefore, the running DeNovo∆Nei is in O (|V | · |E| · |RTM | · |Σ| · d · p), where
|RTM | is the number of feasible retention times for a string of mass M and |Σ| is the size of
the alphabet.

B Parameter Estimation

In this work, we are mainly interested in the algorithmic problem of using retention time
information for de novo sequencing and do not focus on efficient procedures for estimating

Y. Frank, T. Hruz, T. Tschager, and V. Venzin 26:15

Algorithm A.2 DeNovo∆Nei – Neighborhood-based retention time prediction model
1 for ((a,b) ∈ E and v ∈ V):
2 DP[v,(a,b)] = (|RTM | × |Σ| × 2)-array initialized with −∞
3 DP [0 ,(0 ,0)][0 , - ,0] = 2
4 for (v ∈ V in ascending order):
5 for ((a,b) ∈ E in ascending order of a and b):
6 for (entry (t,p,bit,score) in DP[v,(a,b)]):
7 for ((v,w) ∈ E with w + b ≤M):
8 t’ = retention time of resulting path pair
9

10 if (w ≤ b):
11 p’ = last character of l(v, w)
12 DP[w,(a,b)][t’,p’,bit] = max(
13 DP[w,(a,b)][t’,p’,bit],
14 DP[v,(a,b)][t,p,bit] + gain ((v,w),(a,b))
15)
16 else:
17 p’ = last character of l(a, b)
18 DP[b,(v,w)][t’,p’,¬bit] = max(
19 DP[b,(v,w)][t’,p’,¬bit],
20 DP[v,(a,b)][t,p,bit] + gain ((v,w),(a,b))
21)

the coefficients of our models. We use linear regression for estimating the coefficients for our
three retention time models. Even with these simple models and estimation procedures, our
method shows improved identification rates and an increased performance might be achieved
by considering a larger dataset.

We consider 944 spectra from the SGS dataset and partition the dataset randomly into a
training set containing 80% of the spectra for estimating the retention time coefficients and a
test set containing the remaining 20% of the spectra for selecting the tolerance parameter ε.
The retention time coefficients are estimated by linear regression. We choose the coefficients
such that the sum of the squared loss

∑
Si,Ti

(Ti − t(Si))2 is minimized, where Ti is the
measured retention time, and t(Si) the predicted retention time of the annotated sequence
Si. For example, for estimating the coefficients of the linear model, we first compute the
occurrence vector for each sequence in the dataset. The occurrence vector of a sequence is a
vector of length |Σ| that indicates how often a character occurs in the sequence; e.g., the
occurrence vector of the string AGA has value 2 at entry A, value 1 at entry G and value 0 at
all other entries. Then, the retention time of a sequence S is the product of its occurrence
vector occ(S) and the vector of the retention time coefficients t. Standard software tools for
statistical methods can be used to compute t, such that

∑
i(Ti − t · occ(S))2 is minimized.

In order to choose the tolerance parameter ε, we analyzed the difference between the
measured and the predicted retention time of the sequences in the test set. Figure B.1 shows
the differences between the predicted and the measured retention times for all three models
on the test dataset. Especially for the neighborhood-based prediction model, we have to
predict many retention time coefficients for each character. Several coefficients are estimated
based on few observations and others cannot be estimated at all. Therefore, we cannot
extensively evaluate the identification rates of our algorithm with the neighborhood-based
prediction model, as a much larger training dataset for estimating all parameters would
be necessary. Our comparison of the identification rates regarding this prediction model is

WABI 2017

26:16 Improved De Novo Peptide Sequencing using LC Retention Time Information

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●●

linear position−dependent neighborhood−based

−
10

00
−

50
0

0
50

0
10

00

se
co

nd
s

Figure B.1 Retention time prediction models – Difference between predicted and measured
retention time of all sequences in the test set with respect to the three prediction model.

limited to some examples, where the prediction model works well.
We chose the tolerance parameter ε independently for each prediction model as half

the difference between the maximum error emax and the minimum error emin, i.e. ε =
(emax − emin)/2. Concretely, we set ε = 1000 for the linear prediction model and ε = 750
for the position-dependent model. The neighborhood-based prediction model has a very
large predictive error for several sequences due to the small training dataset. For our limited
evaluation, we ignore the 5 largest and the 5 smallest retention time errors when picking the
tolerance parameter and use ε = 500.

C Experimental Evaluation – Supplementary Figures

In our experiments, we only considered spectra from peptides with an assumed (precursor)
charge state 2 (as reported by Comet). Moreover, we assume that all measured fragment
masses are singly charged, i.e. the mass-to-charge ratio is equal to the mass of a fragment.
While it is possible to also consider spectra with higher charge states, the analysis of such
spectra requires additional data preprocessing to convert the measured mass-to-charge ratios
of the fragments to the corresponding masses (charge state deconvolution). Figure C.2
shows a distribution of the number of identified spectra with respect to the length of the
corresponding peptide sequence. The position-dependent prediction model improves the
identification rates on peptides with less than 15 amino acids, while the linear prediction
model is favorable for longer amino acid sequences.

In the description of our algorithms, we only consider integer values and ignore the
measurement accuracy. For our evaluation, we consider two masses two be equal if they
differ by at most 0.02 Da. Moreover, as described in [17], we use a simple merging algorithm
to reduce the size of the graph. We observed a great variation of spectrum graph sizes in
our experiments. The spectrum graphs contained roughly 8400 edges on average, whereas
the largest observed graph contained 23000 edges. Spectra measured on low resolution lead
to denser spectrum graph, i.e. to a larger number of edges, but a lower number of vertices.
However, we did not study the performance and runtime of our algorithms on this type of
spectra.

Y. Frank, T. Hruz, T. Tschager, and V. Venzin 26:17

>15

15

14

13

12

11

10

9

8

7

Number of identified spectra

Le
ng

th
 o

f a
nn

ot
at

ed
 s

eq
ue

nc
e

0 50 100 150 200

12 (1.3%)

14 (1.5%)

13 (1.4%)

31 (3.3%)

18 (1.9%)

21 (2.2%)

20 (2.1%)

48 (5.1%)

44 (4.7%)

43 (4.6%)

37 (3.9%)

88 (9.3%)

93 (9.9%)

89 (9.4%)

84 (8.9%)

165 (17.5%)

96 (10.2%)

95 (10.1%)

86 (9.1%)

137 (14.5%)

90 (9.5%)

86 (9.1%)

89 (9.4%)

126 (13.3%)

146 (15.5%)

134 (14.2%)

132 (14.0%)

185 (19.6%)

78 (8.3%)

77 (8.2%)

72 (7.6%)

99 (10.5%)

40 (4.2%)

40 (4.2%)

40 (4.2%)

49 (5.2%)

12 (1.3%)

11 (1.2%)

13 (1.4%)

16 (1.7%)
considered spectra
DeNovo∆
DeNovo∆Lin
DeNovo∆Pos

Figure C.2 Identified spectra with respect to the length of the annotated sequence.

WABI 2017

Optimal Completion of Incomplete Gene Trees in
Polynomial Time Using OCTAL∗

Sarah Christensen1, Erin K. Molloy2, Pranjal Vachaspati3, and
Tandy Warnow4

1 University of Illinois at Urbana-Champaign, Urbana, IL, USA
sac2@illinois.edu

2 University of Illinois at Urbana-Champaign, Urbana, IL, USA
emolloy2@illinois.edu

3 University of Illinois at Urbana-Champaign, Urbana, IL, USA
vachasp2@illinois.edu

4 University of Illinois at Urbana-Champaign, Urbana, IL, USA
warnow@illinois.edu

Abstract
Here we introduce the Optimal Tree Completion Problem, a general optimization problem that
involves completing an unrooted binary tree (i.e., adding missing leaves) so as to minimize its
distance from a reference tree on a superset of the leaves. More formally, given a pair of unrooted
binary trees (T, t) where T has leaf set S and t has leaf set R ⊆ S, we wish to add all the leaves
from S \R to t so as to produce a new tree t′ on leaf set S that has the minimum distance to T .
We show that when the distance is defined by the Robinson-Foulds (RF) distance, an optimal
solution can be found in polynomial time. We also present OCTAL, an algorithm that solves this
RF Optimal Tree Completion Problem exactly in O(|S|2) time. We report on a simulation study
where we complete estimated gene trees using a reference tree that is based on a species tree
estimated from a multi-locus dataset. OCTAL produces completed gene trees that are closer to
the true gene trees than an existing heuristic approach, but the accuracy of the completed gene
trees computed by OCTAL depends on how topologically similar the estimated species tree is to
the true gene tree. Hence, under conditions with relatively low gene tree heterogeneity, OCTAL
can be used to provide highly accurate completions of estimated gene trees. We close with a
discussion of future research.

1998 ACM Subject Classification G.2.1 Combinatorics, G.2.2 Graph Theory, J.3 Life and Med-
ical Sciences

Keywords and phrases phylogenomics, missing data, coalescent-based species tree estimation,
gene trees

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.27

1 Introduction

Species tree estimation from multi-gene datasets is now increasingly common. One challenge
is that the evolutionary history for a single locus (called a “gene tree”) may differ from the
species phylogeny due to a variety of different biological processes. Some of these processes,

∗ This work was partially supported by US National Science Foundation Graduate Research Fellowship
Program under Grant Number DGE-1144245 to PV and EKM, US National Science Foundation grant
CCF-1535977 to TW, and by the University of Illinois.

© Sarah Christensen, Erin K. Molloy, Pranjal Vachaspati, and Tandy Warnow;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 27; pp. 27:1–27:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.WABI.2017.27
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 Optimal Completion of Incomplete Gene Trees in Polynomial Time Using OCTAL

such as hybridization and horizontal gene transfer, result in non-treelike evolution and
so require phylogenetic networks for proper analysis. However, other biological processes,
such as gene duplication and loss, incomplete lineage sorting (ILS), and gene flow, produce
heterogeneity across the genome but are still properly modeled by a single species tree [8]. In
the latter case, species tree estimation methods must account for discordance or heterogeneity
across the genome.

Much of the recent focus in the mathematical and statistical phylogenetics literature has
been on developing methods for species tree estimation in the presence of incomplete lineage
sorting (ILS), which is modelled by the multi-species coalescent (MSC) model [15]. One
popular approach for estimating species trees under the MSC model is to estimate trees on
individual loci and then combine these gene trees into a species tree. Some of these “summary
methods”, such as ASTRAL-II and ASTRID, have been shown to scale well to datasets with
many taxa (i.e., >100 species) and provide accurate species tree estimates [12, 20].

A common challenge to species tree estimation methods is that sequence data may not
be available for all genes and species of interest, creating conditions with missing data (see
discussion in [6, 18]). For example, gene trees can be missing species simply because some
species do not contain a copy of a particular gene; in some cases, no common gene will be
shared by every species in the set of taxa [7]. Additionally, not all genomes may be fully
sequenced and assembled, as this can be operationally difficult and expensive [3, 18].

Although summary methods are statistically consistent under the MSC model [1], the
proofs of statistical consistency assume that all gene trees are complete, and so may not apply
when the gene trees are missing taxa. Furthermore, multi-gene datasets with missing data
can be “phylogenetically indecisive”, meaning more than one tree topology can be optimal
[16]. Because of concerns that missing data may reduce accuracy in multi-locus species tree
estimation, many phylogenomic studies have restricted their analyses to only include genes
with most of the species (see discussion by [6, 13, 18]).

Another way in which missing data impacts phylogenetics is that it is not that obvious
how to evaluate the topological similarity between two trees when they are on different sets
of species. A common approach is to constrain the two trees to the shared species and then
compute the topological distance between the induced subtrees. However, it may be more
interesting to ask how close the two trees could be if they were both completed (via the
addition of the missing species) so that they are on the same species set.

Therefore, we formulate a class of optimization problems we refer to as Optimal Tree
Completion problems, where we seek to add missing species to a tree to minimize the
distance (defined in some way) to another tree. A natural version of this problem uses the
Robinson-Foulds (RF) [14] distance between two trees, where the RF distance is the total
number of unique bipartitions in the two trees. In Section 2, we formalize the RF Optimal
Tree Completion problem. The Optimal Completion of incomplete gene Tree ALgorithm (or
OCTAL) is a simple algorithm that incrementally adds the missing species one at a time
into the tree, and which we prove solves the RF Optimal Tree Completion problem exactly.
In Section 3, we present results from a experimental study on simulated datasets comparing
OCTAL to a heuristic for tree completion within ASTRAL-II. Finally, we conclude with a
discussion of results and future research in Section 6.

S. Christensen, E.K. Molloy, P. Vachaspati, and T. Warnow 27:3

2 Optimal Tree Completion

2.1 Terminology
Each edge e in an unrooted phylogenetic tree defines a bipartition πe on the leaves of the
tree induced by the deletion of e (but not its endpoints). Each bipartition is thus a split
A|B of the leaf set into two non-empty parts, A and B. The set of bipartitions of a tree T is
given by C(T) = {πe : e ∈ E(T)}, where E(T) is the set of edges for tree T . When two trees
T and T ′ have the same leaf set, then the Robinson-Foulds (RF) distance [14] between T
and T ′, denoted by RF(T, T ′), is |C(T)∆C(T ′)|. Thus, every bipartition in T or T ′ is either
shared between the two trees or is unique to one tree, and the RF distance counts just the
unique bipartitions. When two trees are binary and on the same leaf set, as is the case in
this study, the numbers of bipartitions that are unique in each tree are equal, and each is
half the RF distance.

Given tree T on leaf set S, T restricted to R ⊆ S, denoted by T |R, is the minimal
subgraph of T that connects all elements of R, suppressing nodes of degree two. Note that if
T contains the bipartition A|B, T |R contains the restricted bipartition (A∩R)|(B ∩R). If T
and T ′ are two trees with R as the intersection of their leaf sets, their shared edges are edges
whose bipartitions restricted to R are in the set C(T |R) ∩ C(T ′|R). Correspondingly, their
unique edges are edges whose bipartitions restricted to R are not in the set C(T |R)∩C(T ′|R).

2.2 The RF Optimal Tree Completion problem
The problem we address in this paper is the RF Optimal Tree Completion Problem,
where the distance between trees is defined by the Robinson-Foulds distance, as follows:

Input: An unrooted binary tree T on the full taxon set S and an unrooted binary tree t
on a subset of taxa R ⊆ S
Output: An unrooted binary tree T ′ on the full taxon set S with two key properties:
1. T ′ is a S-completion of t (i.e., T ′ contains all the leaves of S and T ′|R = t) and
2. T ′ minimizes the RF distance to T among all S-completions of t

Note that t and T |R are both on taxon set R, but need not be identical. In fact, the RF
distance between these two trees is a lower bound on the RF distance between T and T ′.

2.3 OCTAL: Optimal Completion of incomplete gene trees ALgorithm
The algorithm begins with input tree t and adds leaves one at a time from the set S \R until
a tree on the full set of taxa S is computed. To add the first leaf, we choose an arbitrary
taxon x to add from the set S \R. We root the tree T |R∪{x} (i.e., T restricted to the leaf
set of t plus the new leaf being added) at x, and then remove x and the incident edge; this
produces a rooted binary tree we will refer to as T (x) that has leaf set R.

We perform a depth-first traversal down T (x) until a shared edge e (i.e., an edge where
the clade below it appears in tree t) is found. Since every edge incident with a leaf in T (x) is
a shared edge, every path from the root of T (x) to a leaf has a distinct first edge e that is a
shared edge. Hence, the other edges on the path from the root to e are unique edges.

After we identify the shared edge e in T (x), we identify the edge e′ in t defining the same
bipartition, and we add a new node v(e′) into t so that we subdivide e′. We then make x
adjacent to v(e′). Note that since t is binary, the modification t′ of t that is produced by
adding x is also binary and that t′|R = t. These steps are then repeated until all leaves from
S \R are added to t. This process is shown in Fig. 1 and given in pseudocode below.

WABI 2017

27:4 Optimal Completion of Incomplete Gene Trees in Polynomial Time Using OCTAL

Algorithm 1: RF Optimal Tree Completion Algorithm (OCTAL)
1: procedure AddLeaf(Taxon x, binary tree T1 on taxon set K, binary tree T2 on taxon

set K ∪ {x}, set E of shared edges between T1 and T2|K)
2: Root T2 at v, the neighbor of x, and delete x to produce a rooted version of T2|K
3: Pick an arbitrary leaf y in T2|K and find first edge e ∈ E on path from v to y
4: Find e′ in T1 defining the same bipartition as e
5: Attach x to e′ in T1 by subdividing e′ and making x adjacent to the newly created

node; call the resulting tree T ′1
6: return T ′1
7: end procedure
1: procedure OCTAL(Binary tree t on taxon set R ⊆ S, Binary tree T on taxon set S)
2: if R=S then
3: return t
4: else
5: E ← Preprocess and initialize set of shared edges between t and T |R
6: R′ ← R . Initialize R′ by setting it equal to input R
7: t′ ← t . Initialize t′ by setting it equal to input t
8: for x ∈ S rR do
9: R′ ← R′ ∪ {x}
10: T ′ ← T |R′

11: t′ ← AddLeaf(x, t′, T ′, E)
12: E ← Update shared edges between t′ and T ′
13: end for
14: return t′

15: end if
16: end procedure

We begin by preprocessing the two trees to identify shared edges; this takes O(|S|2) time.
After this preprocessing is done, it is easy to see that AddLeaf takes O(|S|) time to add a
single taxon to t. Hence, OCTAL runs in O(|S|2) time, since there are O(|S|) leaves to add.

2.4 Proof of Correctness
In what follows, let T be an arbitrary binary tree on taxon set S and t be an arbitrary binary
tree on taxon set R ⊆ S. Let T ′ denote the tree returned by OCTAL given T and t. We set
r = RF (T |R, t). As we have noted, OCTAL returns a binary tree T ′ that is an S-completion
of t. Hence, to prove that OCTAL solves the RF Optimal Tree Completion problem exactly,
we only need to establish that RF (T, T ′) is the smallest possible of all binary trees on leaf
set S that are S-completions of t. While the algorithm works by adding a single leaf at a
time, we use two types of subtrees, denoted as superleaves, to aid in the proof of correctness.

I Definition 1. We define the superleaves of T with respect to t as follow (see Figure 2).
The set of edges in T that are on a path between two leaves in R define the backbone; if this
backbone is removed, the remainder of T breaks into pieces. The components of this graph
that contain vertices from S \ R are the superleaves. Each superleaf X is rooted at the
node that was incident to one of the edges in the backbone, and is one of two types:

Type I superleaves: the edge e in the backbone to which the superleaf was attached is a
shared edge in T |R and t.
Type II superleaves: the edge e in the backbone to which the superleaf was attached is a
unique edge in T |R and t

S. Christensen, E.K. Molloy, P. Vachaspati, and T. Warnow 27:5

Figure 1 Trees T and t with edges in the backbone (defined to be the edges on paths between
nodes in the common leaf set) colored green for shared, and red for unique; all other edges are
colored black. After rooting T |R with respect to u, the edges in T |R that could be identified by the
algorithm for “placement” are indicated with an asterisk (*). Note that any path in T |R from the
root to a leaf will encounter a shared edge, since the edges incident with leaves are always shared.
In this scenario, the edge e above the least common ancestor of leaves w and x is selected; this edge
defines the same bipartition as edge e′ in t. Hence, AddLeaf will insert leaf u into t by subdividing
edge e′, and making u adjacent to the newly added node.

Figure 2 Trees T and t with edges in the backbone (defined to be the edges on paths between
nodes in the common leaf set) colored green for shared, and red for unique; all other edges are colored
black. The deletion of the backbone edges in T defines the superleaves; one is a Type I superleaf
because it is attached to a shared (green) edge and the other is a Type II superleaf because it is
attached to a unique (red) edge. The RF distance between t and T |R is equal to 2, the number of
red edges. The Type I superleaf containing leaves r and s can be added to the shared edge incident
to leaf x in tree t without increasing the RF distance. However, notice that adding the Type II
superleaf to any edge in t creates at least one new unique edge in each tree and therefore increases
the RF distance by at least 2, independent of how r and s are placed in t. This example motivates a
more general result about elements of Type I and Type II superleaves proved in Section 2.4.

WABI 2017

27:6 Optimal Completion of Incomplete Gene Trees in Polynomial Time Using OCTAL

Observe that these intuitive definitions are equivalent to the following more formal definitions
we sometimes invoke below. A superleaf X is a Type I superleaf if and only if there exists a
bipartition A|B in C(t) ∩ C(T |R) where A|(B ∪X) and (A ∪X)|B are both in C(T |R∪X).
Furthermore, a superleaf X is a Type II superleaf if and only if there does not exist such a
bipartition in C(t) ∩ C(T |R).

Now we begin our proof by establishing a lower bound on the RF distance to T for all
binary, S-completions of t.

I Lemma 2. Let Y be a Type II superleaf for the pair (T, t), and let x ∈ S \ R. Let t∗ be
the result of adding x into t arbitrarily (i.e., we do not attempt to minimize the resulting RF
distance). If x 6∈ Y , then Y is a Type II superleaf for the pair (T, t∗). Furthermore, if x ∈ Y ,
then RF (T |R∪{x}, t∗) ≥ RF (T |R, t) + 2.

Proof. It is easy to see that if x 6∈ Y , then Y remains a Type II superleaf after x is added
to t. Now suppose x ∈ Y . We will show that we cannot add x into t without increasing the
RF distance by at least 2. Since Y is a Type II superleaf, it is attached to a unique edge
in T |R∪Y , and this is the same edge that x is attached to in T |R∪{x}. So suppose that x is
added to t by subdividing an arbitrary edge e′ in t with bipartition C|D; note that we do not
require that x is added to a shared edge in t. After adding x to t we obtain tree t∗ whose
bipartition set includes C|(D ∪ {x}) and (C ∪ {x})|D. If C|D corresponds to a unique edge
relative to t and T |R, then both of these bipartitions correspond to unique edges relative
to t∗ and T |R∪{x}. If C|D corresponds to a shared edge, then at most one of the two new
bipartitions can correspond to a shared edge, as otherwise we can derive that Y is a Type I
superleaf. Hence, the number of unique edges in t must increase by at least one no matter
how we add x to t, where x belongs to a Type II superleaf. Since t is binary, the tree that is
created by adding x is binary, so that RF (T |R∪{x}, t∗) ≥ RF (T |R, t) + 2. J

I Lemma 3. Let T ∗ be an unrooted binary tree that is a S-completion of t. Then RF (T ∗, T) ≥
r+ 2m, where r = RF (T |R, t) and m is the number of Type II superleaves for the pair (T, t).

Proof. We note that adding a leaf can never reduce the total RF distance. The proof follows
from Lemma 2 by induction. J

Now that we have established a lower bound on the best achievable RF distance (i.e.,
the optimality criterion for the RF Optimal Tree Completion problem), we show OCTAL
outputs a tree T ′ that is guaranteed to achieve this lower bound. We begin by noting that
when we add x to t by subdividing some edge e′, creating a new tree t′, all the edges other
than e′ in t continue to “exist” in t′ although they define new bipartitions. In addition, e′
is split into two edges, which can be considered new. Thus, we can consider whether edges
that are shared between t and T remain shared after x is added to t.

I Lemma 4. Let t′ be the tree created by AddLeaf given input tree t on leaf set R and tree T
on leaf set R ∪ {x}. If x is added to tree t by subdividing edge e′ (thus creating tree t′), then
all edges in t other than e′ that are shared between t and T remain shared between t′ and T .

Proof. Let T (x) be the rooted tree obtained by rooting T at x and then deleting x. Let e be
the edge in T (x) corresponding to e′, and let πe = A|B; without loss of generality assume A
is a clade in T (x). Note that C(T) contains bipartition A|(B ∪ {x}) (however, C(T) may not
contain (A ∪ {x})|B, unless e is incident with the root of T (x)). Furthermore, for subclade
A′ ⊆ A, A′|(R \ A′) ∈ C(T |R) and A′|(R \ A′ ∪ {x}) ∈ C(T). Now suppose e∗ in t is a
shared edge between t and T |R that defines bipartition C|D 6= A|B. Since A|B and C|D

S. Christensen, E.K. Molloy, P. Vachaspati, and T. Warnow 27:7

are both bipartitions of t, without loss of generality either C ⊂ A or A ⊂ C. If C ⊂ A, then
C is a clade in T (x), and so e∗ defines bipartition C|(D ∪ {x}) within t′. But since C ⊂ A,
the previous analysis shows that C|(D ∪ {x}) is also a bipartition of T , and so e∗ is shared
between T and t′. Alternatively, suppose A ⊂ C. Then within t′, e∗ defines bipartition
(C ∪ {x})|D, which also appears as a bipartition in T . Hence, e∗ is also shared between T
and t′. Therefore, any edge e∗ other than e′ that is shared between t and T remains shared
between t′ and T , for all leaves x added by AddLeaf. J

I Lemma 5. OCTAL(T, t) preserves the topology of superleaves in T.

Proof. We will show this by induction on the number of leaves added. The lemma is trivially
true for the base case when just one leaf is added to t. Let the inductive hypothesis be that
the lemma holds for adding up to n leaves to t for some arbitrary n ∈ N+. Now consider
adding n + 1 leaves, and choose an arbitrary subset of n leaves to add to t, creating an
intermediate tree t′ on leaf set K using the algorithm OCTAL. Let x be the next additional
leaf to be added by OCTAL.

If x is the first element of a new superleaf to be added, it is trivially true that the topology
of its superleaf is preserved, but we need to show that x will not break the monophyly of an
existing superleaf in t′. By the inductive hypothesis, the topology of each superleaf already
placed in t′ has been preserved. Thus, each superleaf placed in t′ has some shared edge
in t′ and T |K incident to that superleaf. If x were placed onto an edge contained in some
existing superleaf, that edge would change its status from being shared to being unique,
which contradicts Lemma 4.

The last case is where x is part of a superleaf for the pair (T, t) that already has been
added in part to t. AddLeaf roots T |K∪{x} at x and removes the edge incident to x, creating
rooted tree T (x). The edge incident to the root in T (x) must be a shared edge by the inductive
hypothesis. Thus, OCTAL will add x to this shared edge and preserve the topology of the
superleaf. J

I Lemma 6. OCTAL(T, t) returns binary tree T ′ such that RF (T, T ′) = r + 2m, where m
is the number of Type II superleaves for the pair (T, t) and r = RF (T |R, t).

Proof. We will show this by induction on the number of leaves added.

Base Case: Assume |S \ R| = 1. Let x be the leaf in S\R. AddLeaf adds x to a shared
edge of t corresponding to some bipartition A|B, which also exists in T (x).
1. First we consider what happens to the RF distance on the edge x is attached to.

If x is a Type I superleaf, the edge incident to the root in T (x) will be a shared edge
by the definition of Type I superleaf, so AddLeaf adds x to the corresponding edge e′ in
t. The two new bipartitions that are created when subdividing e′ will both exist in T by
the definition of Type I superleaf so the RF distance does not change.

If x is a Type II superleaf, either (A∪ {x})|B or A|(B ∪ {x}) must not exist in C(T).
Since AddLeaf adds x to a shared edge, exactly one of those new bipartitions must exist
in C(T).

2. Now we consider what happens to the RF distance on the edges x is not attached to.
Lemma 4 shows that AddLeaf (and therefore OCTAL) preserves existing shared edges
between t and T |R, possibly excluding the edge where x is added.

Thus, the RF distance will only increase by 2 if x is a Type II superleaf, as claimed.

WABI 2017

27:8 Optimal Completion of Incomplete Gene Trees in Polynomial Time Using OCTAL

Inductive Step: Let the inductive hypothesis be that the lemma holds for up to n leaves
for some arbitrary n ∈ N+. Assume |S \ R| = n + 1. Now choose an arbitrary subset of
leaves Q ⊆ S \ R, where |Q| = n, to add to t, creating an intermediate tree t′ using the
algorithm OCTAL. By the inductive hypothesis, assume t′ is a binary tree with the RF
distance between T |Q∪R and t′ equal to r+2m, where m is the number of Type II superleaves
in Q. AddLeaf adds the remaining leaf x ∈ S \R to a shared edge of t′ and T |Q∪R.
1. Lemma 4 shows that AddLeaf (and therefore OCTAL) preserves existing shared edges

between t′ and T |Q∪R, possibly excluding the edge where x is added.
2. Now we consider what happens to the RF distance on the edge x is attached to. There

are three cases: (i) x is not the first element of a superleaf (ii) x is the first element of a
Type I superleaf or (iii) x is the first element of a Type II superleaf.

Case (i): If x is not the first element of a superleaf to be added to t, it directly
follows from Lemma 5 that OCTAL will not change the RF distance when adding x.

Case (ii): If x is the first element of a Type I superleaf to be added, then x is attached
to a shared edge in the backbone corresponding to some bipartition A|B existing in both
C(t) and C(T |R). Let e′ be the edge in t s.t. πe′ = A|B. Note there must exist an edge
e in T |Q∪R producing A|B when restricted to just R. Hence, the bipartition πe has the
form M |N where (M ∩R) = A and (N ∩R) = B. We need to show that M |N ∈ C(t′).

By Lemma 4, any leaves from Q not attached to e′ by OCTAL will preserve this shared
edge in t′.
Now consider when leaves from Q are added to e′ by OCTAL. We decompose M and
N into the subsets of leaves existing in either R or Q: let M = A∪W and N = B ∪Z.
OCTAL will not cross a leaf from W with a leaf from Z along e′ because this would
require crossing the shared edge dividing these two groups: any leaf w ∈W has the
property that (A ∪ {w})|B is a shared edge and any leaf z ∈ Z has the property that
A|(B ∪ {z}) is a shared edge. Hence, any leaves added from Q that subdivide e′ will
always preserve an edge between leaves contained in W and Z on e′.

Thus, M |N ∈ C(t′). Moreover, (M ∪ {x})|N and M |(N ∪ {x}) are bipartitions in C(T).
AddLeaf roots T at x and removes the edge incident to x, creating rooted tree T (x). We
have shown that the edge incident to the root in T (x) must be a shared edge, so adding x
does not change the RF distance.

Case (iii): If x is the first element of a Type II superleaf to be added, we have
shown in Lemma 2 that the RF distance must increase by at least two. Since AddLeaf
always attaches x to some shared edge e′, the RF distance increases by exactly 2 when
subdividing e′.

Thus, OCTAL will only increase the RF distance by 2 if x is a new Type II superleaf. J

Combining the above results, we establish our main theorem:

I Theorem 7. Given unrooted binary trees t and T with the leaf set of t a subset of the leaf
set of T , OCTAL(T, t) returns an unrooted binary tree T ′ that is a completion of t and that
has the smallest possible Robinson-Foulds distance to T . Hence, OCTAL finds an optimal
solution to the RF Optimal Tree Completion problem. Furthermore, OCTAL runs in O(n2)
time, where T has n leaves.

Proof. The running time bound was described above in Section 2.3. To prove that OCTAL
solves the RF Optimal Tree Completion problem optimally, we need to establish that OCTAL
returns an S-completion of the tree t, and that the RF distance between the output tree T ′
and the reference tree T is the minimum among all S-completions. Since OCTAL always
returns a binary tree and only adds leaves into t, by design it produces a completion of t and

S. Christensen, E.K. Molloy, P. Vachaspati, and T. Warnow 27:9

so satisfies the first property. By Lemma 6, the tree T ′ output by OCTAL has an RF score
that matches the lower bound established in Lemma 3. Hence, OCTAL returns a tree with
the best possible score among all S-completions. J

3 Methods

We compare OCTAL to the heuristic used in ASTRAL-II [12] for completing incomplete gene
trees, as described in [10], noting however that the ASTRAL-II technique is used to expand
the search space explored by ASTRAL-II and does not explicitly attempt to minimize the
distance to a reference tree.

Datasets used in this simulation study have 26 species (one outgroup) and 200 genes.
The simulation protocol is as follows.
(1) SimPhy [9] was used to simulate a model species tree and a collection of gene trees (with

branch lengths deviating from a molecular clock) under the MSC model. Note that we
refer to these simulated trees as the “true” gene and species trees. Under this process,
the true gene trees differ topologically from the true species tree due only to ILS and
not to any other processes.

(2) For each individual true gene tree, INDELible [5] was used to simulate DNA sequences
under the GTR+Γ model of evolution without insertions or deletions. Model parameters
varied across the gene trees and were determined by drawing from a distribution.

(3) Of the 200 genes, 150 genes were randomly selected to be missing data, created by
deleting the sequences corresponding to randomly selected species. The number of
species missing varies across gene trees from 2 to 20, and on average the estimated gene
trees were missing approximately 60% of the species.

(4) RAxML [17] was then used to estimate gene trees from each (often incomplete) gene
alignment under the GTRGAMMA model.

(5) ASTRID [20] was run on the 200 estimated gene trees to get a fast estimate of the
species tree to be used as a reference tree by OCTAL.

(6) OCTAL (using the ASTRID tree as a reference) and ASTRAL-II were used to complete
the estimated gene trees.

(7) The completed gene trees computed by OCTAL and ASTRAL-II were compared to the
true gene trees, and the normalized RF error distance between the 150 completed gene
trees and the true gene trees was recorded.

Overall we completed 6000 gene trees using OCTAL and ASTRAL-II for this study (20
replicates for 2 model conditions, and each replicate has 150 genes that are incomplete).

These datasets were originally generated for the ASTRAL-II study [12], and full de-
tails of this protocol (Steps 1 and 2) are provided in [12]. Data can be downloaded at
[4]. OCTAL was scripted using the Python library DendroPy [19] and can be found at
https://github.com/pranjalv123/OCTAL-2.

We explored two model conditions which vary in the degree of gene tree heterogeneity
due to ILS. The two different levels of ILS can be characterized by the average normalized
topological distance (AD) between true gene trees and the true species tree. The moderate
ILS condition has AD of 10%, and the high ILS condition has AD of 35%. There were
20 replicate datasets for each of the two model conditions. We used one-sided paired
Wilcoxon Signed-Rank tests to determine whether using OCTAL was significantly better
than ASTRAL-II on each replicate dataset (200 genes). As 20 replicate datasets were tested
per model condition, a Bonferroni multiple comparison correction was applied (i.e., p-values
indicating significance are less than 0.0025).

WABI 2017

27:10 Optimal Completion of Incomplete Gene Trees in Polynomial Time Using OCTAL

4 Results

Moderate ILS (10% AD): OCTAL frequently produced more accurate gene trees than
ASTRAL-II: the average RF error rate for ASTRAL-II was 0.18± 0.10 and the average RF
error rate for OCTAL was 0.16± 0.09. OCTAL had better accuracy than ASTRAL-II on
1,247 genes, ASTRAL-II had better accuracy on 319, and the methods were tied on the
remaining 1,434 genes. The degree of improvement in RF rate varied, but was as great as
20% on some replicates. The improvement obtained by using OCTAL over ASTRAL-II was
statistically significant in 18 out of 20 of the replicates (Fig. 3). The degrees of missing data
and gene tree error did not impact whether OCTAL improved over ASTRAL-II (Fig. 4).

High ILS (35% AD): OCTAL and ASTRAL-II achieved similar levels of accuracy on high
ILS condition: the average RF error rate for ASTRAL-II was 0.39± 0.11 and the average
RF error rate for OCTAL was 0.38 ± 0.11. OCTAL was more accurate than ASTRAL-II
on 945 genes, ASTRAL-II was more accurate on 568 genes, and the methods were tied
on the remaining 1,487 genes. OCTAL provided a statistically significant advantage over
ASTRAL-II in 8 of the 20 replicates, and the differences between the two methods was not
statistically significant on the remaining 12 replicates (Fig. 5). Similar to the moderate ILS
condition, whether OCTAL or ASTRAL-II performed best appears to be unrelated to the
degree of missing data or gene tree error (Fig. 6).

5 Discussion

These results show that OCTAL can be more accurate than ASTRAL-II at completing gene
trees and that the degree and frequency of improvement depends on the level of ILS. Under
low to moderate ILS, a reasonably accurate estimate of the species tree will be close to the
true gene trees, and hence be useful as a reference tree for OCTAL. However, under higher
ILS, estimated species trees will be further from the true gene trees, impairing their utility
as reference trees for OCTAL.

Therefore, it may make sense to only use OCTAL in conditions with sufficiently low
gene tree heterogeneity (i.e., when ILS levels are at most moderate), so that the computed
reference tree is topologically close to the gene trees. However, another strategy is to define
a set of reference trees rather than a single reference tree, and complete each gene tree
based on an appropriately selected reference tree. Statistical binning [11] and its variant
weighted statistical binning [2] are examples of this kind of technique. In statistical binning,
the genes are clustered into sets (called “bins”) on the basis of gene tree similarity taking
bootstrap support into account. Then, for each bin, a concatenated maximum likelihood
tree is computed and used as the new gene tree for the genes in the bin. As shown in
[11], statistical binning improves gene tree estimation and leads to improved species tree
estimation in downstream analyses using summary methods. The same basic approach could
be combined with OCTAL, so that after clustering the genes, a reference tree for the genes in
each bin could be computed based only on the genes in the bin, and then the gene trees could
be completed using the reference tree for their bin. Given the high accuracy obtained by
OCTAL when the gene tree heterogeneity is low, this may well produce improved accuracy
when the overall heterogeneity is high.

S. Christensen, E.K. Molloy, P. Vachaspati, and T. Warnow 27:11

0.00

0.25

0.50

0.75

1.00

G
en

e
tr

ee
 e

rr
or

*
*

*
*

* *

*

*

*
*

*

*
*

*

*
*

*

*

0

50

100

150

Replicate Datasets

N
um

be
r

of
 g

en
es

ASTRAL−II OCTAL

Figure 3 The relative performance of OCTAL and ASTRAL-II under the moderate ILS condition
(10% AD) is shown. The top subfigure shows the amount of gene tree estimation error in each of
the 150 completed genes for each of the 20 replicates. The bottom subfigure shows the relative
performance of OCTAL and ASTRAL-II. The number of gene trees for which OCTAL is better than
ASTRAL-II is shown in red, the number of gene trees for which ASTRAL-II is better is shown in
blue, and ties are indicated by empty space. OCTAL has a statistically significant improvement
over ASTRAL-II on replicates indicated with an asterisk (*).

N=159 N=200 N=547 N=2094

OCTAL better

ASTRAL−II better
−0.2

−0.1

0.0

0.1

0.2

0.3

Percent missing data

D
iff

er
en

ce
 b

et
w

ee
n

m
et

ho
ds

N=1696 N=727 N=384 N=112 N=81
−0.2

−0.1

0.0

0.1

0.2

0.3

Percent gene tree error

(0%, 20%] (20%, 40%] (40%, 60%] (60%, 80%] (80%, 100%]

Figure 4 The relative performance of OCTAL and ASTRAL-II under the moderate ILS condition
(10% AD) is shown. The y-axis shows the difference in the RF error rate between trees completed
using OCTAL and ASTRAL-II. Positive values indicate that OCTAL is better than ASTRAL-II,
and negative values indicate that ASTRAL-II is better. The violin plots show that for many genes
(indicated by thickness of the violin plot), there is no difference in accuracy between OCTAL and
ASTRAL-II. However, when there is a difference between the two methods, OCTAL frequently
outperforms ASTRAL-II. This finding holds regardless of the degree of missing data or amount
of gene tree estimation error. In the left subfigure, each violin plot includes genes with a certain
percent of missing data, e.g., red indicates genes are missing 0-20% of the species. In the right
subfigure, each violin plot includes genes with a certain percent gene tree estimation error. The
number of genes in each violin plot is provided on the x-axis.

WABI 2017

27:12 Optimal Completion of Incomplete Gene Trees in Polynomial Time Using OCTAL

0.00

0.25

0.50

0.75

1.00

G
en

e
tr

ee
 e

rr
or

*
* *

*
*

*

*

*

0

50

100

150

Replicate Datasets

N
um

be
r

of
 g

en
es

ASTRAL−II OCTAL

Figure 5 The relative performance of OCTAL and ASTRAL-II under the high ILS condition
(35% AD) is shown. The top subfigure shows the amount of gene tree estimation error in each of
the 150 completed genes for each of the 20 replicates. The bottom subfigure shows the relative
performance of OCTAL and ASTRAL-II. The number of gene trees for which OCTAL is better than
ASTRAL-II is shown in red, the number of gene trees for which ASTRAL-II is better is shown in
blue, and ties are indicated by empty space. OCTAL has a statistically significant improvement
over ASTRAL-II on replicates indicated with an asterisk (*).

N=164 N=390 N=590 N=1856

OCTAL better

ASTRAL−II better
−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Percent missing data

D
iff

er
en

ce
 b

et
w

ee
n

m
et

ho
ds

N=1119 N=792 N=630 N=261 N=198
−0.3

−0.2

−0.1

0.0

0.1

0.2

0.3

Percent gene tree error

(0%, 20%] (20%, 40%] (40%, 60%] (60%, 80%] (80%, 100%]

Figure 6 The relative performance of OCTAL and ASTRAL-II under the high ILS condition
(35% AD) is shown. The y-axis shows the difference in the RF error rate between the 150 gene
trees computed using OCTAL and ASTRAL-II. Positive values indicate that OCTAL is better than
ASTRAL-II, and negative values indicate that ASTRAL-II is better. In the left subfigure, each
violin plot includes genes with a certain percent of missing data, e.g., red indicates genes are missing
0-20% of the species. In the right subfigure, each violin plot includes genes with a certain percent
gene tree estimation error. The number of genes in each violin plot is provided on the x-axis.

S. Christensen, E.K. Molloy, P. Vachaspati, and T. Warnow 27:13

6 Conclusions

OCTAL is a simple polynomial time algorithm that can add species into an estimated gene tree
and minimize the RF distance with respect to a reference tree. As we saw, OCTAL frequently
produces more accurate completed gene trees than ASTRAL-II under both moderate and
high ILS conditions; however, the improvement under high ILS conditions is much lower
and less frequent than under the low to moderate ILS condition. The results shown here
suggest that OCTAL (or some modification of OCTAL) might be useful for coalescent-based
species tree estimation using summary methods, especially for those summary methods that
are impacted by missing data. As OCTAL only adds missing species and does not provide
statistical support for the placements, future work should address this issue. In addition, the
current approach assumes that the gene tree is accurate, but typically gene trees have some
estimation error; hence, another approach would allow the low support branches in gene
trees to be collapsed and then seek a complete gene tree that refines the collapsed gene tree.
Finally, this paper addresses tree completion when the distance to be minimized was the
Robinson-Foulds distance; yet, many other tree distances have been considered. For example,
the Minimize Deep Coalescence (MDC) distance [8] between two trees is a measure of the
amount of incomplete lineage sorting, and adding missing species to produce the minimum
MDC distance may be more suitable than minimizing the RF distance when datasets have
high ILS.

Acknowledgements The authors would like to thank Michael Nute for helpful discussions
regarding statistical testing. SC and TW are supported by National Science Foundation Grant
Number CCF-1535977. SC is also supported by the Chirag Foundation Graduate Fellowship
in Computer Science. EKM and PV are supported by the National Science Foundation
Research Fellowship Program under Grant Number DGE-1144245. This research made use
of the Illinois Campus Cluster, a computing resource that is operated by the Illinois Campus
Cluster Program in conjunction with the National Center for Supercomputing Applications
and which is supported by funds from the University of Illinois at Urbana-Champaign.

References
1 Elizabeth S. Allman, James H. Degnan, and John A. Rhodes. Split Probabilities and

Species Tree Inference under the Multispecies Coalescent Model. arXiv:1704.04268, 2017.
2 Md. Shamsuzzoha Bayzid, Siavash Mirarab, Bastien Boussau, and Tandy Warnow.

Weighted statistical binning: enabling statistically consistent genome-scale phylogenetic
analyses. PLOS One, 10(6):30129183, 2015. doi:10.1371/journal.pone.0129183.

3 J. Gordon Burleigh, Khidir W. Hilu, and Douglas E. Soltis. Inferring Phylogenies with
Incomplete Data Sets: A 5-gene, 567-taxon analysis of angiosperms. BMC Evolutionary
Biology, 9(1):61, 2009. doi:10.1186/1471-2148-9-61.

4 Sarah Christensen, Erin Molloy, Pranjal Vachaspati, and Tandy Warnow. Datasets from
the study: Optimal completion of incomplete gene trees in polynomial time using OCTAL,
2017. doi:10.13012/B2IDB-8402610_V1.

5 William Fletcher and Ziheng Yang. INDELible: A Flexible Simulator of Biological Sequence
Evolution. Molecular Biology and Evolution, 26(8):1879–1888, 2009. doi:10.1093/molbev/
msp098.

6 Peter A. Hosner, Brant C. Faircloth, Travis C. Glenn, Edward L. Braun, and Rebecca T.
Kimball. Avoiding Missing Data Biases in Phylogenomic Inference: An Empirical Study
in the Landfowl (Aves: Galliformes). Molecular Biology and Evolution, 33(4):1110–1125,
2016. doi:10.1093/molbev/msv347.

WABI 2017

http://dx.doi.org/10.1371/journal.pone.0129183
http://dx.doi.org/10.1186/1471-2148-9-61
http://dx.doi.org/10.13012/B2IDB-8402610_V1
http://dx.doi.org/10.1093/molbev/msp098
http://dx.doi.org/10.1093/molbev/msp098
http://dx.doi.org/10.1093/molbev/msv347

27:14 Optimal Completion of Incomplete Gene Trees in Polynomial Time Using OCTAL

7 Martyn Kennedy and Roderic D.M. Page. Seabird Supertrees: Combining Partial Es-
timates of Procellariiform Phylogeny. The Auk, 119(1):88–108, 2002. doi:10.1642/
0004-8038(2002)119[0088:SSCPEO]2.0.CO;2.

8 Wayne Maddison. Gene Trees in Species Trees. Systematic Biology, 46(3):523–536, 1997.
doi:10.1093/sysbio/46.3.523.

9 Diego Mallo, Leonardo De Oliveira Martins, and David Posada. SimPhy: phylogenomic
simulation of gene, locus, and species trees. Systematic biology, 65(2):334–344, 2016. doi:
doi:10.1093/sysbio/syv082.

10 Siavash Mir arabbaygi (Mirarab). Novel Scalable Approaches for Multiple Sequence Align-
ment and Phylogenomic Reconstruction. PhD thesis, The University of Texas at Austin,
2015. URL: http://hdl.handle.net/2152/31377.

11 Siavash Mirarab, Md. Shamsuzzoha Bayzid, Bastien Boussau, and Tandy Warnow. Stat-
istical binning enables an accurate coalescent-based estimation of the avian tree. Science,
346(6215), 2014. doi:10.1126/science.1250463.

12 Siavash Mirarab and Tandy Warnow. ASTRAL-II: Coalescent-based Species Tree Estim-
ation with Many Hundreds of Taxa and Thousands of Genes. Bioinformatics, 31(12):i44,
2015. doi:10.1093/bioinformatics/btv234.

13 Erin Molloy and Tandy Warnow. To include or not to include: The impact of gene filtering
on species tree estimation methods. bioRxiv, 2017. doi:10.1101/149120.

14 David F. Robinson and Leslie R. Foulds. Comparison of Phylogenetic Trees. Mathematical
Biosciences, 53(1-2):131–147, 1981. doi:10.1016/0025-5564(81)90043-2.

15 Sébastien Roch and Mike Steel. Likelihood-based Tree Reconstruction on a Concatenation
of Alignments can be Positively Misleading. arXiv:1409.2051, 2014.

16 Michael J. Sanderson, Michelle M. McMahon, and Mike Steel. Phylogenomics with in-
complete taxon coverage: the limits to inference. BMC Evolutionary Biology, 10, 2010.
doi:10.1186/1471-2148-10-155.

17 Alexandros Stamatakis. RAxML Version 8: A tool for Phylogenetic Analysis and
Post-Analysis of Large Phylogenies. Bioinformatics, 30(9), 2014. doi:10.1093/
bioinformatics/btu033.

18 Jeffrey W. Streicher, James A. Schulte, II, and John J. Wiens. How Should Genes and
Taxa be Sampled for Phylogenomic Analyses with Missing Data? An Empirical Study in
Iguanian Lizards. Systematic Biology, 65(1):128, 2016. doi:10.1093/sysbio/syv058.

19 Jeet Sukumaran and Mark T. Holder. Dendropy: a Python library for phylogenetic com-
puting. Bioinformatics, 26(12):1569–1571, 2010. doi:10.1093/bioinformatics/btq228.

20 Pranjal Vachaspati and Tandy Warnow. ASTRID: Accurate Species Trees from Internode
Distances. BMC Genomics, 16(10):S3, 2015. doi:10.1186/1471-2164-16-S10-S3.

http://dx.doi.org/10.1642/0004-8038(2002)119[0088:SSCPEO]2.0.CO;2
http://dx.doi.org/10.1642/0004-8038(2002)119[0088:SSCPEO]2.0.CO;2
http://dx.doi.org/10.1093/sysbio/46.3.523
http://dx.doi.org/doi: 10.1093/sysbio/syv082
http://dx.doi.org/doi: 10.1093/sysbio/syv082
http://hdl.handle.net/2152/31377
http://dx.doi.org/10.1126/science.1250463
http://dx.doi.org/10.1093/bioinformatics/btv234
http://dx.doi.org/10.1101/149120
http://dx.doi.org/10.1016/0025-5564(81)90043-2
http://dx.doi.org/10.1186/1471-2148-10-155
http://dx.doi.org/10.1093/bioinformatics/btu033
http://dx.doi.org/10.1093/bioinformatics/btu033
http://dx.doi.org/10.1093/sysbio/syv058
http://dx.doi.org/10.1093/bioinformatics/btq228
http://dx.doi.org/10.1186/1471-2164-16-S10-S3

	p00-frontmatter
	Preface

	p01-alipanahi
	Introduction
	Background and Related Work
	Methods
	Error Correction and Alignment of Long Reads
	Succinct Positional de Bruijn Graph
	Construction of the Positional de Bruijn Graph
	Graph Traversal and Contig Recovery

	Results
	Datasets
	The Effect of Filtering and Error Correction
	Comparison Between Assemblies
	Time and Memory Usage
	The Simplicity of the Positional De Bruijn Graph

	Discussion and Conclusions
	Appendix

	p02-bayzid
	Introduction
	Basics
	Notation and terminology
	The standard formula for computing losses
	Incompleteness due to gene birth and death

	How to calculate losses
	Algorithms to find species trees
	Basic material
	Subtree-bipartitions
	Deep coalescence and the MDC problem

	Deriving L-bd(gt,ST) and L*-bd(gt,ST)
	Assigning weights to subtree-bipartitions
	Dynamic programming algorithm
	Extensions

	Conclusion

	p02-ZZZ-Blank
	p03-brubach
	Introduction
	Related Work
	Preliminaries
	Distance metric
	Intervals
	Greedy clustering

	Our Contributions

	Recruiting algorithm
	Banded Four Russians approach
	Warm-up: classic Four Russians speedup
	Our approach to the Four Russians speedup
	Theoretical bound on the running time of our approach

	The Edit Distance Interval Trie (EDIT)
	Recruiting to a center

	Experimental results
	Properties of our recruitment algorithm and data structure
	Comparison with UCLUST
	Running time analysis
	Evaluation of clusters

	Conclusion and future directions

	p03-ZZZ-Blank
	p04-almirantis
	Introduction
	Terminology and Technical Background
	Definitions and Notation
	Suffix Trees

	Combinatorial Properties
	Algorithm
	Experimental Results: Effectiveness, Efficiency, and Applications
	Open Question

	p05-ciach
	Introduction
	Definitions
	Locus gain Problems
	Ranked Trees and Rank-based Mappings
	Computing mappings

	Classification of Gene Duplications
	Heuristic for CLTI
	Experimental validation

	Example of evolutionary history decomposition
	Discussion

	p05-ZZZ-Blank
	p06-bayegan
	Introduction
	MS-2 distance between secondary structures
	RNA conflict digraph

	Discussion and an application
	Conclusion and discussion

	p07-girotto
	Introduction
	Methods
	Spaced Seed Hashing
	Efficient Spaced Seed Hashing
	Efficient Multiple Spaced Seed Hashing

	Results and discussion
	Spaced seeds and datasets description
	Analysis of the time performances
	Multiple spaced seed hashing
	Spaced Seeds with Different Weights

	Conclusions
	Appendix

	p08-el-mabrouk
	Introduction
	Preliminaries on gene tree correction methods
	A unifying view on gene tree correction problems
	Relating gene tree correction problems to triplets
	Algorithm for the LabelGTC Problem
	Accounting for the 0-1 edge labelling in partial subtrees
	Conclusion
	Proofs

	p09-crochemore
	Introduction
	Closest pairs in linear time
	Step 1: Profile indexing
	Step 2: Candidate profile pairs enumeration
	Step 3: Pairs verification
	Average-case analysis

	Use case: goeBURST algorithm
	Experimental evaluation
	Synthetic datasets
	Real datasets

	Concluding remarks

	p10-gunady
	Introduction
	Methodology
	Transcriptome Segments Properties
	Segmentation Algorithm Overview
	Preprocessing
	Segments Graph
	Quantification Analysis

	Experiments
	Segment Analysis
	Use Case: Differential Exon Skipping

	Discussion and Conclusion
	Transcriptome Segmentation Algorithm

	p11-hu
	Introduction
	Methods
	Problem Formulation
	Properties and Rationale
	Shrinkage Clustering: Base Algorithm
	Shrinkage Clustering with Cluster Size Constraints

	Results
	Experiments on Similarity Data
	Testing with Simulated Similarity Matrices
	Biological Case Study: TCGA Dataset

	Experiments on Feature-based Data
	Testing with Simulated and Standardized Data
	Biological Case Study 1: Breast Cancer Wisconsin Diagnostic (BCWD)
	Biological Case Study 2: Allen Institute Brain Tissue (AIBT)

	Discussion

	p11-ZZZ-Blank
	p12-jabbari
	Introduction
	The original CCJ pseudoknot prediction algorithm
	Sparsification of the CCJ algorithm
	Space Complexity Analysis
	Results
	Implementation
	Data sets
	Benchmark Results

	Conclusion

	p12-ZZZ-Blank
	p13-kim
	Introduction
	Methods
	Breakpoint and structural variation identification
	Candidate merging: SE + PE
	Realignment of soft-clipped reads: SE + PE + CE
	Calculation of depth discrepancy
	Combined evidence
	SE + PE + CE
	Voting based metric for candidate selection
	Prioritization by rank aggregation

	Result
	Preliminaries
	Datasets and variant callers
	Validation process

	Performance comparison using simulation data
	Performance comparison using real datasets
	Overlap between variant callers
	Trio analysis

	Runtime performance

	Discussion and conclusion

	p14-abramova
	Introduction
	Methods
	Probabilistic model of a spectrum of an arbitrary peptide
	Monte Carlo and the Importance Sampling Approach
	Metropolis-Hastings Algorithm with Wang-Landau weighting
	Variance Estimation
	Stopping Rule
	Outline of the Algorithm

	Results
	Summary

	p14-ZZZ-Blank
	p15-mao
	Introduction
	Method
	Problem Statement
	Assumptions

	Definitions
	Overall Flow
	MAPQ Filtering
	SNP Calling Algorithm
	Shadow SNP Filtering

	Results
	Discussion

	p16-nikumbh
	Introduction
	Methods
	Segment Instantiation with Complementary Views
	Conformal Multi-Instance Kernels for Complimentary Set of Segments
	Multi-Instance Kernels
	Conformal Multi-Instance Kernels
	Oligomer Distance Histograms (ODH) Kernel as Base Kernel

	Choosing an appropriate segment-size
	Interpretation and Visualization of Features
	Obtaining the SVM Weight Vector for CoMIK
	Visualizing Features from the CoMIK Weight Vector

	Materials
	Experimental Setup
	Results
	Discussion

	p17-nojgaard
	Introduction
	Notation and Preliminaries
	Observable Scenarios
	Time-Consistent Reconciliation Maps
	Outlook and Summary

	p18-almodaresi
	Introduction and Related Work
	Background and definitions
	Method
	Design
	Space analysis
	Lower bound for color representation
	Implementation

	Evaluation
	Experimental setup
	Data
	Performance

	Conclusion and Future Work

	p18-ZZZ-Blank
	p19-polishko
	Introduction
	Problem definition
	Previous work
	Methods
	Naïve (greedy) approach
	ThIEF:Iterative
	ThIEF:LP

	Experimental results on synthetic data
	Performance analysis
	Execution time

	Experimental results on real data
	Detecting stable and unstable nucleosomes
	A classifier for stable and unstable nucleosomes binding sites

	Discussion and conclusion

	p20-prochazka
	Introduction
	Basic Notions
	Byte-Aligned Pattern Matching
	Experiments
	Conclusion and Future work

	p20-ZZZ-Blank
	p21-quedenfeld
	Introduction
	Background: Read mapping with min-hashing
	Analysis of variant-tolerant min-hashing
	Basic model
	Consideration of errors
	Consideration of partial overlaps between read and windows
	Consideration of signature length
	General results
	Numerical results

	Discussion and conclusion
	Appendix: Proof details
	Detailed calculation for Lemma 5

	p21-ZZZ-Blank
	p22-ardakany
	Introduction
	Methods
	Summed area table and Haar-like features
	TAD objective function
	Finding the optimal set of domains

	Experimental results
	Parameter settings
	Comparison with existing methods

	Conclusion

	p22-ZZZ-Blank
	p23-shah
	Introduction
	Background
	Taxonomy assignment using BLAST
	BILD scores for multiple sequence alignment

	Methods
	Processing query sequences
	Scoring for Multiple Sequence Alignments and Cuts
	Outlier detection and taxonomy assignment

	Evaluation
	Datasets
	Leave-one-out validation
	Validation using Phylogenetic-tree based assignment
	Distribution of outliers

	Conclusion and Discussion

	p23-ZZZ-Blank
	p24-simonaitis
	Overview
	Genome and DCJ rearrangements
	Minimum Local Scenario for sets of pairs
	Cost of a DCJ scenario
	Adjacency and junction graphs
	Linking DCJ scenarios and Maximum Edge-disjoint Cycle Packings

	Minimum Local Scenario for genomes
	Cost of a DCJ scenario
	Genome extensions
	Minimum Local Scenario

	Algorithms for MLS
	NP-completeness of MLS
	3/2-approximation for MLS
	An exact algorithm for MLS

	Towards a more general cost function
	The practice of coloring adjacencies
	Conclusion and further work
	Proof of Lemma 15
	Proof of Theorem 18

	p24-ZZZ-Blank
	p25-toivonen
	Introduction
	Preliminaries of PPM models
	SeedHam Algorithm
	Finding a seed and locating motif instances from training data
	Learning PPM in Hamming neighbourhoods
	Implementation and complexity
	Elimination of artefact instances

	Motif Orientation in Two-Stranded Case: SeedHam+ algorithm
	Selection of the orientation

	Experimental evaluation
	Discussion

	p25-ZZZ-Blank
	p26-frank
	Introduction
	Notation and Problem Definition
	Model Simplifications

	Algorithms for De Novo Sequencing with Retention Time
	Linear Prediction Model
	Position-dependent Prediction Model
	Neighborhood-based Prediction Model

	Experimental Evaluation and Discussion
	Dataset and Parameter Estimation
	Comparison of DeNovoDeltaLin and DeNovoDeltaPos
	Discussion

	Conclusion
	Pseudocode of DeNovoDeltaPos and DeNovoDeltaNei
	Parameter Estimation
	Experimental Evaluation – Supplementary Figures

	p26-ZZZ-Blank
	p27-christensen
	Introduction
	Optimal Tree Completion
	Terminology
	The RF Optimal Tree Completion problem
	OCTAL: Optimal Completion of incomplete gene trees ALgorithm
	Proof of Correctness

	Methods
	Results
	Discussion
	Conclusions

