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Abstract
The problem of (approximately) counting the independent sets of a bipartite graph (#BIS) is
the canonical approximate counting problem that is complete in the intermediate complexity
class #RHΠ1. It is believed that #BIS does not have an efficient approximation algorithm but
also that it is not NP-hard. We study the robustness of the intermediate complexity of #BIS by
considering variants of the problem parameterised by the size of the independent set. We map the
complexity landscape for three problems, with respect to exact computation and approximation
and with respect to conventional and parameterised complexity. The three problems are counting
independent sets of a given size, counting independent sets with a given number of vertices in
one vertex class and counting maximum independent sets amongst those with a given number
of vertices in one vertex class. Among other things, we show that all of these problems are NP-
hard to approximate within any polynomial ratio. (This is surprising because the corresponding
problems without the size parameter are complete in #RHΠ1, and hence are not believed to
be NP-hard.) We also show that the first problem is #W[1]-hard to solve exactly but admits
an FPTRAS, whereas the other two are W[1]-hard to approximate even within any polynomial
ratio. Finally, we show that, when restricted to graphs of bounded degree, all three problems
have efficient exact fixed-parameter algorithms.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-
binatorics, G.2.2 Graph Theory

Keywords and phrases approximate counting, parameterised complexity, independent sets

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.13

∗ Part of this work was done while the authors were visiting the Simons Institute for the Theory of
Computing. RC is supported by ERC grant PARAMTIGHT (No. 280152). The research leading to
these results has received funding from the European Research Council under the European Union’s
Seventh Framework Programme (FP7/2007-2013) ERC grant agreement no. 334828. The paper reflects
only the authors’ views and not the views of the ERC or the European Commission. The European
Union is not liable for any use that may be made of the information contained therein.

† The full version containing detailed proofs is available at http://arxiv.org/abs/1702.05543. The
theorem numbering here matches the full version.

© Radu Curticapean, Holger Dell, Fedor V. Fomin, Leslie Ann Goldberg, and John Lapinskas;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 13; pp. 13:1–13:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.13
http://arxiv.org/abs/1702.05543
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


13:2 A Fixed-Parameter Perspective on #BIS

1 Introduction

The problem of (approximately) counting the independent sets of a bipartite graph, called
#BIS, is one of the most important problems in the field of approximate counting. This
problem is known [6] to be complete in the intermediate complexity class #RHΠ1. Many
approximate counting problems are equivalent in difficulty to #BIS, including those that
arise in spin-system problems [10, 11] and in other domains. These problems are not believed
to have efficient approximation algorithms, but they are also not believed to be NP-hard.

In this paper we study the robustness of the intermediate complexity of #BIS by
considering relevant fixed parameters. It is already known that the complexity of #BIS
is unchanged when the degree of the input graph is restricted (even if it is restricted to
be at most 6) [2] but there is an efficient approximation algorithm when a stronger degree
restriction (degree at most 5) is applied, even to the vertices in just one of the parts of the
vertex partition of the bipartite graph [14].

We consider variants of the problem parameterised by the size of the independent set.
We first show that all of the following problems are #P-hard to solve exactly and NP-hard
to approximate within any polynomial factor.

#Size-BIS: Given a bipartite graph G and a non-negative integer k, count the size-k
independent sets of G.
#Size-Left-BIS: Given a bipartite graph G with vertex partition (U, V ) and a non-negative
integer k, count the independent sets of G that have k vertices in U , and
#Size-Left-Max-BIS: Given a bipartite graph G with vertex partition (U, V ) and a non-
negative integer k, count the maximum independent sets amongst all independent sets
of G with k vertices in U .

The NP-hardness of these approximate counting problems is surprising given that the
corresponding problems without the parameter k (that is, the problem #BIS and also the
problem #Max-BIS, which is the problem of counting the maximum independent sets of a
bipartite graph) are both complete in #RHΠ1, and hence are not believed to be NP-hard.
Therefore, it is the introduction of the parameter k that causes the hardness.

To gain a more refined perspective on these problems, we also study them from the
perspective of parameterised complexity, taking the number of vertices, n, as the size of the
input and k as the fixed parameter. Our results are summarised in Table 1, and stated in
detail later in the paper. Rows 1 and 3 of the table correspond to the conventional (exact
and approximate) setting that we have already discussed. Rows 2 and 4 correspond to the
parameterised complexity setting, which we discuss next. As becomes apparent from the
table, we have mapped the complexity landscape for the three problems in all four settings.

In parameterised complexity, the central goal is to determine whether computational
problems have fixed-parameter tractable (FPT) algorithms, that is, algorithms that run
in time f(k) · nO(1) for some computable function f . Hardness results are presented using
the W -hierarchy [8], and in particular using the complexity classes W[1] and W[2], which
constitute the first two levels of the hierarchy. It is known (see [8]) that FPT ⊆W[1] ⊆W[2]
and these classes are widely believed to be distinct from each other. It is also known [4,
Chapter 14] that the Exponential Time Hypothesis (see [12]) implies FPT 6= W[1]. Analogous
classes #W[1] and #W[2] exist for counting problems [7].

As can be seen from the table, we prove that all of our problems are at least W[1]-hard
to solve exactly, which indicates that they cannot be solved by FPT algorithms. Moreover,
#Size-Left-BIS and #Size-Left-Max-BIS are W[1]-hard to solve even approximately. It is
known [16] that each parameterised counting problem in the class #W[i] has a randomised
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Table 1 Our results. Each of the three problems that we consider (#Size-BIS, #Size-Left-BIS,
#Size-Left-Max-BIS) has one column here, in which we list our results in all four settings (exact
polynomial-time, exact FPT-time, approximate polynomial-time, approximate FPT-time).

#Size-BIS #Size-Left-BIS #Size-Left-Max-BIS
Exact poly #P-complete even in

graphs of max-degree 3.
(Thm 1 full version)

#P-complete even in
graphs of max-degree 3.
(Thm 1 full version)

#P-hard even in graphs
of max-degree 3. (Thm
2 full version)

Exact FPT #W[1]-complete. (Thm 4
full version)

#W[2]-hard. (Thm 5) W[1]-hard. (Thm 6)

FPT for bounded-degree
graphs. (Thm 14(i))

FPT for bounded-degree
graphs. (Thm 14(ii))

FPT for bounded-degree
graphs. (Thm 14(iii))

Approx
poly

NP-hard to approximate
within any polynomial
factor. (Thm 9)

NP-hard to approximate
within any polynomial
factor. (Thm 7)

NP-hard to approximate
within any polynomial
factor. (Thm 6)

Approx
FPT

Has FPTRAS. (Thm 11) W[1]-hard to approxim-
ate within any polyno-
mial factor. (Thm 7)

W[1]-hard to approxim-
ate within any polyno-
mial factor. (Thm 6)

FPT approximation algorithm using a W[i] oracle, so W[i]-hardness is the appropriate
hardness notion for parameterised approximate counting problems. By contrast, we show
that #Size-BIS can be solved approximately in FPT time. In fact, it has an FPT randomized
approximation scheme (FPTRAS).

Motivated by the fact that #BIS is known to be #P-complete to solve exactly even on
graphs of degree 3 [19], we also consider the case where the input graph has bounded degree.
While the conventional problems remain intractable in this setting (Row one of the table),
we prove that all three of our problems admit linear-time fixed-parameter algorithms for
bounded-degree instances (Row two). Note that Theorem 14(i) is also implicit in independent
work by Patel and Regts [17].

2 Preliminaries

For a positive integer n, we let [n] denote the set {1, . . . , n}. We consider graphs G to be
undirected. For a vertex set X ⊆ V (G), denote by G[X] the subgraph induced by X. For a
vertex v ∈ V (G), we write Γ(v) for its open neighbourhood (that is, excluding v itself).

Given a graph G, we denote the size of a maximum independent set of G by µ(G).
We denote the number of all independent sets of G by IS(G), the number of size-k in-
dependent sets of G by ISk(G), and the number of size-µ(G) independent sets of G by
MIS(G). A bipartite graph G is presented as a triple (U, V,E) in which (U, V ) is a par-
tition of the vertices of G and E is a subset of U × V . If G = (U, V,E) is a bipartite
graph then an independent set S of G is said to be an “`-left independent set of G” if
|S ∩ U | = `. The size of a maximum `-left independent set of G is denoted by µ`-left(G).
An `-left independent set of G is said to be “`-left-maximum” if and only if it has size
µ`-left(G). Finally, IS`-left(G) denotes the number of `-left independent sets of G and
IS`-left-max(G) denotes the number of `-left-maximum independent sets of G. Using these
definitions, we now give formal definitions of #BIS and of the three problems that we study.

IPEC 2017



13:4 A Fixed-Parameter Perspective on #BIS

Name: #BIS.
Input: Bipartite graph G.
Output: IS(G).

Name: #Size-BIS Name: #Size-Left-BIS Name: #Size-Left-Max-BIS
Input: Bipartite G and k ∈ N. Input: Bipartite G and ` ∈ N. Input: Bipartite G and ` ∈ N.
Output: ISk(G). Output: IS`-left(G). Output: IS`-left-max(G).
Parameter: k. Parameter: `. Parameter: `.

For each of our computational problems, we add “[∆]” to the end of the name of the
problem to indicate that the input graph G has degree at most ∆. For example, the input of
#BIS[∆] is a bipartite graph G with degree at most ∆, and the desired output is IS(G).

When stating quantitative bounds on running times of algorithms, we assume the standard
word-RAM machine model with logarithmic-sized words.

3 Exact computation: fixed-parameter intractability

Our #P-hardness results (from Row 1 of Table 1) are in the full version. For the rest of the
paper, we use standard definitions of reductions and complexity classes which are in Flum
and Grohe [8] and in the full version. We defer the proof of Theorem 4, which shows that
#Size-BIS is #W[1]-complete, to the full version. We give the following, stronger, hardness
result for #Size-Left-BIS.

I Theorem 5. #Size-Left-BIS is #W[2]-hard.

Proof. Recall that if G is a graph, a set D ⊆ V (G) is called a dominating set of G if every
vertex v ∈ V (G) is either contained in D or adjacent to a vertex of D. We reduce from #Size-
Dominating-Set, which is the problem of computing the number of size-k dominating sets
given a graph G = (U,E) and a positive integer k. (The parameter of #Size-Dominating-Set
is k.) Note that #Size-Dominating-Set is #W[2]-complete, as proved in Flum and Grohe [7,
Theorem 19].

Write U = {u1, . . . , un}. The reduction computes the bipartite split graph of G; formally,
let V = {v1, . . . , vn}, let E′ = {(ua, vb) | a = b or {ua, ub} ∈ E}, and let G′ = (U, V,E′).

For non-negative integers ` and r, we define an (`, r)-set of G′ to be a size-` subset X of
U that has exactly r neighbours in V . Let Z`,r be the number of (`, r)-sets of G′. Note that
a size-k subset X of U is a dominating set of G if and only if it is a (k, n)-set of G′, so there
are precisely Zk,n size-k dominating sets of G.

The algorithm applies polynomial interpolation to determine Zk,r for all r ∈ {0, . . . , n}.
For every positive integer i, let Vi = V × [i], let E′i = {(u, (v, b)) ∈ U × Vi | (u, v) ∈ E′}, and
let G′i = (U, Vi, E′i). For each (k, r)-set X of G′, there are exactly 2i(n−r) k-left independent
sets S of G′i with S ∩ U = X. Thus for all i ∈ [n+ 1],

ISk-left(G′i) =
n∑
r=0

2i(n−r)Zk,r. (1)

Let M be the (n+ 1)× (n+ 1) matrix whose rows are indexed by [n+ 1] and columns
are indexed by {0, . . . , n} such that Mi,r = 2i(n−r) holds. Then (1) can be viewed as a
linear equation system w = Mz, where w = (ISk-left(G′1), . . . , ISk-left(G′n+1))T and z =
(Zk,0, . . . , Zk,n)T . The oracle for #Size-Left-BIS can be used to compute w, and M is
invertible since it is a (transposed) Vandermonde matrix. Thus the reduction can compute
z, and in particular Zk,n, as required. J
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We defer the proof of the remaining hardness result in Row 2 of Table 1 (W[1]-hardness of
#Size-Left-Max-BIS) to the next section, as it is implied by the corresponding approximation
hardness result.

4 Approximate computation: Hardness results

In this section, we prove the hardness results in Rows 3 and 4 of Table 1. Note that the
reductions from the first row of the table cannot be used here, since they are ultimately from
#BIS, which is not known to be NP-hard to approximate. In order to state our hardness
results formally, we introduce approximation versions of the problems that we consider.

Name: Deg-c-#ApxSizeLeftMaxBIS. Parameter: `.
Input: A bipartite graph G on n vertices and a non-negative integer `.
Output: A number z such that n−c · IS`-left-max(G) ≤ z ≤ nc · IS`-left-max(G).

Name: Deg-c-#ApxSizeLeftBIS. Parameter: `.
Input: A bipartite graph G on n vertices and a non-negative integer `.
Output: A number z such that n−c · IS`-left(G) ≤ z ≤ nc · IS`-left(G).

Name: Deg-c-#ApxSizeBIS. Parameter: k.
Input: A bipartite graph G on n vertices and a non-negative integer k.
Output: A number z such that n−c · ISk(G) ≤ z ≤ nc · ISk(G).

We also require the following problem for reductions.

Name: Size-Clique. Parameter: k.
Input: A graph G and a positive integer k.
Output: True if G contains a k-clique, false otherwise.

We first prove our #Size-Left-Max-BIS results, then establish the others by reduction.

I Theorem 6. For all c ≥ 0, Deg-c-#ApxSizeLeftMaxBIS is both NP-hard and W[1]-hard.

Proof. Let c be any non-negative integer. We will give a reduction from Size-Clique to
Deg-c-#ApxSizeLeftMaxBIS which is both an FPT Turing reduction and a polynomial-time
Turing reduction. The claim then follows from the fact that Size-Clique is both NP-hard [18,
Theorem 7.32]) and W[1]-hard [5, Theorem 21.3.4].

Let (G, k) be an instance of Size-Clique with G = (V,E) and n = |V |. We use a
standard powering construction to produce an intermediate instance (G′, k) of Size-Clique
with G′ = (V ′, E′). More precisely, let t = n2c, let C be a set of k new vertices, and let
V ′ = (V × [t]) ∪ C. We define E′ such that

E′ =
{
{(u, i), (v, j)} | {u, v} ∈ E, i, j ∈ [t]

}
∪
{
{u, v} | u, v ∈ C, u 6= v

}
.

From (G′, k), we construct an instance (G′′, `) of Deg-c-#ApxSizeLeftMaxBIS with
G′′ = (U, V ′, E′′) and ` =

(
k
2
)
. For this, let U = {ue | e ∈ E′} be a set of vertices and let

E′′ = {(ue, v) | e ∈ E′, v ∈ e}. The reduction queries the oracle for (G′′, `), which yields an
approximate value z for the number IS`-left-max(G′′). If z ≤ nc, the reduction returns ‘no’,
there is no k-clique in G, and otherwise it returns ‘yes’. It is obvious that the reduction runs
in polynomial time.

It remains to prove the correctness of the reduction. Let CLk(G) be the number of
k-cliques in G. The `-left-maximum independent sets X of G′′ correspond bijectively to
the size-` edge sets {e | ue ∈ X ∩ U} of G′ which span a minimum number of vertices.

IPEC 2017
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Note that any set of ` =
(
k
2
)
edges must span at least k vertices, with equality only in

the case of a k-clique. Since G′ contains at least one k-clique (induced by C), we have
IS`-left-max(G′′) = CLk(G′). Moreover, each k-clique X in G corresponds to a size-tk family
of k-cliques in G′. Each k-clique in the family consists of exactly one vertex from each set
{x} × [t] such that x ∈ V (X). This accounts for all k-cliques in G′ except G′[C]. Thus
IS`-left-max(G′′) = CLk(G′) = tkCLk(G) + 1.

Let z be the result of applying our oracle to (G′′, `). If G contains no k-cliques, then
we have z ≤ nc · IS`-left-max(G′′) = nc and the reduction returns ‘no’. Otherwise, we have
z ≥ n−c · IS`-left-max(G′′) ≥ n−c(tk + 1) > nc and the reduction returns ‘yes’. Thus the
reduction is correct and the claim follows. J

I Theorem 7. For all c ≥ 0, Deg-c-#ApxSizeLeftBIS is both NP-hard and W[1]-hard.

Proof. Let c ≥ 0 be an integer. We will give a reduction from the problem Deg-(c + 1)-
#ApxSizeLeftMaxBIS to the problem Deg-c-#ApxSizeLeftBIS which is both an FPT Turing
reduction and a polynomial-time Turing reduction. The result then follows by Theorem 6.

Let (G, `) be an instance of Deg-c-#ApxSizeLeftMaxBIS. Write G = (U, V,E), let
n = |V (G)|, and let t = 6n. Without loss of generality, suppose n ≥ 5 and n is sufficiently
large that nc2−n ≤ 1. Let V ′ = V × [t], let E′ = {(u, (v, i)) | (u, v) ∈ E, i ∈ [t]}, and let
G′ = (U, V ′, E′). Let µ = µ`-left(G), and let z be the result of applying our oracle to (G′, `).

For any non-negative integers i and j, we define ISi, j(G) to be the number of independent
sets X ⊆ V (G) with |X ∩ U | = i and |X ∩ V | = j. Each `-left independent set X of G
corresponds to the family of `-left independent sets of G′ consisting of X ∩ U together with
at least one vertex from each set {x}× [t] such that x ∈ X ∩ V . Thus by the definition of µ,

IS`-left(G′) =
µ−∑̀
r=0

IS`, r(G)(2t − 1)r. (2)

Since G contains at most 2n independent sets and IS`, µ−`(G) ≥ 1, we have (2t − 1)µ−` ≤
IS`-left(G′) ≤ 2n(2t − 1)µ−`. Since nc ≤ 2n ≤ (2t − 1)1/5, it follows that (2t − 1)µ−`−1/5 ≤
z ≤ (2t − 1)µ−`+2/5, and hence the algorithm can obtain µ by rounding `+ lg(z)/ lg(2t − 1)
to the nearest integer. Moreover, by (2) we have

IS`-left(G′) ≤ IS`, µ−`(G)(2t − 1)µ−` + 2n(2t − 1)µ−`−1 ≤ 2IS`, µ−`(G)(2t − 1)µ−`.

It follows that IS`, µ−`(G) ≤ IS`-left(G′)/(2t−1)µ−` ≤ 2IS`, µ−`(G). Hence n−c−1IS`, µ−`(G) ≤
z/(2t − 1)µ−` ≤ nc+1IS`, µ−`(G). The algorithm therefore outputs z/(2t − 1)µ−`. J

I Theorem 9. For all c ≥ 0, Deg-c-#ApxSizeBIS is NP-hard.

Proof. For all c ≥ 0, we give a polynomial-time Turing reduction from the problem Deg-
(c + 1)-#ApxSizeLeftBIS to the problem Deg-c-#ApxSizeBIS. The former is NP-hard by
Theorem 7.

Fix c ≥ 0 and let (G, `) be an instance of Deg-(c+ 1)-#ApxSizeLeftBIS. Suppose that
G = (U, V,E) where U = {u1, . . . , up}. Note from the problem definition that n = |U ∪ V |
and suppose without loss of generality that ` ∈ [p] and that n ≥ 40 (otherwise, (G, `) is an
easy instance of Deg-(c+ 1)-#ApxSizeLeftBIS, so the answer can be computed, even without
using the oracle).

Let s = 2n6 and t = bs log2 3c − s. For each i ∈ [p], let Ui, Vi and U ′i be disjoint sets of
vertices with |U ′i | = |Vi| = s and |Ui| = t. Write U ′i = {ui,1, . . . , ui,s} and Vi = {vi,1, . . . , vi,s}.
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u1

u2

v1

v2

s

s

s

s

t

t

v1

v2

U ′1 V1
U1

U ′2 V2
U2

Figure 1 An example of the reduction from Deg-(c + 1)-#ApxSizeLeftBIS to Deg-c-
#ApxSizeLeftBIS used in the proof of Theorem 9 when G = P3. Each vertex ui ∈ U is replaced
by three vertex sets U ′

i , Vi and Ui in the resulting graph G′. Note that G′ does not depend on the
input parameter `.

Then let U ′ =
⋃
i∈[p](Ui ∪ U ′i), V ′ =

⋃
i∈[p] Vi ∪ V , and

E′ =
⋃
i∈[p]

(
(Ui × Vi) ∪ {(ui,j , vi,j) | j ∈ [s]}

)
∪

⋃
(uj ,v)∈E(G)

(Uj × {v}).

Let G′ = (U ′, V ′, E′), as depicted in Figure 1.
Intuitively, the proof will proceed as follows. We will map independent sets X ′ of G′ to

independent sets X of G by taking X ∩V = X ′ ∩V and adding each ui ∈ U to X if and only
if Ui∩X ′ 6= ∅. We will show that roughly half the independent sets of each gadget U ′i ∪Vi∪Ui
have this form. We will also show that within each gadget, almost all independent sets with
vertices in Ui have size roughly (s+ t)/2, and almost all others have size roughly 2s/3. Thus
the independent sets in G with ` vertices in U roughly correspond to the independent sets in
G′ of size roughly ` · (s+ t)/2 + (p− `) · 2s/3, which we count using a #Size-BIS oracle.

We start by defining disjoint sets of independent sets of G′. For x ∈ {0, . . . , p}, let
E(x) = 2s

3 (p− x) + s+t
2 x and let

Ax =
{
X ′ ⊆ V (G′)

∣∣∣ X ′ is an independent set of G′ and
∣∣|X ′| − E(x)

∣∣ ≤ s
20 + n

}
.

Note that since n ≥ 3, we have t > 17s/30 and 120n ≤ s. Thus, if x′ > x,

E(x′)− E(x) = (t/2− s/6) (x′ − x) > (17/60− 1/6) s = s/10 + s/60 ≥ s/10 + 2n.

We conclude that the sets A0, . . . ,Ap are disjoint.
Next, we connect the independent sets of G′ with those of G. Each independent set

X ′ of G′ projects onto the independent set (X ′ ∩ V ) ∪ {ui | X ′ ∩ Ui 6= ∅} of G. Given an
independent set X of G, let ϕ(X) be the set of independent sets X ′ of G′ which project onto
X. If ui ∈ X, then there are 2t − 1 possibilities for X ′ ∩ Ui and 2s possibilities for X ′ ∩ U ′i ,
but X ′ ∩ Vi is empty. If ui /∈ X, then X ′ ∩ Ui is empty and there are 3s possibilities for
X ′ ∩ (U ′i ∪ Vi). For x ∈ {0, . . . , p}, let F (x) = (2s+t − 2s)x · 3(p−x)s. It follows that, for any
x-left independent set X of G, |ϕ(X)| = F (x), which establishes the first of the following
claims.

Claim 1. For any `-left independent set X of G, |ϕ(X) ∩ A`| ≤ F (`).

IPEC 2017
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Claim 2. For any `-left independent set X of G, |ϕ(X) ∩ A`| ≥ F (`)/2.
Claim 3. For any x ∈ {0, . . . , p} \ {`} and any x-left independent set X of G, |ϕ(X)∩A`| ≤

F (`)/2n.

The proofs of Claims 2 and 3 are mere calculation, so before proving them we use the
claims to complete the proof of the lemma. Recall that (G, `) is an instance of Deg-(c+ 1)-
#ApxSizeLeftBIS with ` ∈ [p] and n ≥ 2. Together, the claims imply

(F (`)/2) · IS`-left(G) ≤ |A`| ≤ F (`)IS`-left(G) + F (`), (3)

where the final F (`) comes from the contribution to |A`| corresponding to the (at most
2n) independent sets of G that are not `-left independent sets. Since ` ∈ [p], the quantity
IS`-left(G) is at least 1, which means that the right-hand side of (3) is at most 2F (`)IS`-left(G).
Also, F (`) > 0. Thus, (3) implies IS`-left(G)/2 ≤ |A`|/F (`) ≤ 2IS`-left(G).

The oracle for Deg-c-#ApxSizeBIS can be used to compute a number z such that
n−c|A`| ≤ z ≤ nc|A`|. (To do this, just call the oracle repeatedly with input G′ and with
every non-negative integer k such that |k − E(`)| ≤ s

20 + n, adding the results.) Thus,

n−cIS`-left(G)/2 ≤ n−c|A`|/F (`) ≤ z/F (`) ≤ nc|A`|/F (`) ≤ 2ncIS`-left(G),

so the desired approximation of IS`-left(G) can be achieved by dividing z by F (`). We now
complete the proof by proving Claims 2 and 3.

Claim 2: Consider any x ∈ {0, . . . , p} and let X be an x-left independent set of G. We
will show |ϕ(X) ∩ Ax| ≥ F (x)/2, which implies the claim by taking ` = x. In fact, we will
establish the much stronger inequality

|ϕ(X) ∩ Ax| ≥ (1− 3ne−n
2
)F (x), (4)

which will also be useful in the proof of Claim 3. To establish Equation (4) we will show
that the probability that a random element Y of ϕ(X) satisfies

∣∣|Y | − E(x)
∣∣ ≤ s

20 + n is at
least 1− 3ne−n2 .

So let Y be a uniformly random element of ϕ(X). We will show that, with probability at
least 1− 3ne−n2 , the following bullet points hold.

For all i ∈ [p] with ui /∈ X, we have
∣∣|Y ∩ (Ui ∪ Vi ∪ U ′i)| − 2s

3
∣∣ ≤ s

n2 , and
for all i ∈ [p] with ui ∈ X, we have

∣∣|Y ∩ (Ui ∪ Vi ∪ U ′i)| − s+t
2
∣∣ ≤ s+t

n2 ,
Since n ≥ 40, we have (p− x)s/n2 + x(s+ t)/n2 ≤ 2ps/n2 ≤ s/20 and |Y ∩ V | ≤ n, so the
claim follows. To obtain the desired failure probability, we will show that, for any i ∈ [p], the
probability that the relevant bullet point fails to hold is at most 3e−n2 (so the total failure
probability is at most 3ne−n2 , by a union bound).

First, consider any i ∈ [p] with ui /∈ X. In this case, Y ∩ (Ui ∪ Vi ∪ U ′i) is generated by
including (independently for each j ∈ [s]) one of three possibilities: (i) ui,j but not vi,j , (ii)
vi,j but not ui,j , or (iii) neither ui,j nor vi,j . Each of the three choices is equally likely. Thus
|Y ∩ (Ui ∪ Vi ∪ U ′i)| is distributed binomially with mean 2s/3, so by a Chernoff bound (see
Janson, Łuczak and Rucinski [13, Corollary 2.3]), the probability that the first bullet point
fails for i is at most 2e−s/2n4

< 3e−n2 , as desired.
Second, consider any i ∈ [p] with ui ∈ X. In this case, Y ∩(Ui∪Vi∪U ′i) is chosen uniformly

from all subsets of Ui ∪ U ′i that contain at least one element of Ui. The total variation
distance between the uniform distribution on these subsets and the uniform distribution on
all subsets of Ui ∪ U ′i is at most 2−t. Also, again by [13, Corollary 2.3]), the probability that
a uniformly-random subset of Ui ∪ U ′i has a size that differs from its mean, (s+ t)/2, by at
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least (s+ t)/n2 is at most 2e−2(s+t)/(3n4). Thus, the probability that the second bullet point
fails for i is at most 2−t + 2e−2(s+t)/(3n4) ≤ 3e−n2 , as desired.

Claim 3: Suppose that x ∈ {0, . . . , p} \ {`} and that X is an x-left independent set of G.
We know from Equation (4) that |ϕ(X) ∩ A`| ≤ 3ne−n2

F (x). We wish to show that this is
at most F (`)/2n. Note that t ≥ 1 and 3s−1 ≤ 2s+t ≤ 3s, so for all y ∈ {0, . . . , p},

F (y) = (2s+t − 2s)y · 3ps−ys ≤ 2y(s+t) · 3ps−ys ≤ 3ps, and

F (y) ≥ 2y(s+t)−y · 3ps−ys ≥ 3ps−2y ≥ 3ps−2n.

The claim follows from F (x) ≤ 3ps ≤ 32nF (`) and from the fact that n ≥ 40. J

5 Algorithms

In this final section, we give our algorithmic results: An FPT randomized approximation
scheme (FPTRAS) for #Size-BIS, and an exact FPT-algorithm for all three problems in
bounded-degree graphs. The definition below follows Arvind and Raman [1].

I Definition 10. An FPTRAS for #Size-BIS is a randomised algorithm that takes as input
a bipartite graph G, a non-negative integer k, and a real number ε ∈ (0, 1) and outputs a
real number z. With probability at least 2/3, the output z must satisfy (1− ε)ISk(G) ≤ z ≤
(1 + ε)ISk(G). Furthermore, there is a function f : R→ R and a polynomial p such that the
running time of the algorithm is at most f(k) p(|V (G)|, 1/ε).

I Theorem 11. There is an FPTRAS for #Size-BIS with time complexity O
(
2k · k2/ε2)

for input graphs with n vertices.

Note that the running time in Theorem 11 does not depend on n, as various logarithmic
factors are absorbed by the word-RAM model. We defer the proof to the full version. We
now turn to our algorithms for bounded-degree graphs. We require the following definitions.
For any positive integer s, an s-coloured graph is a tuple (G, c) where G is a graph and
c : V (G) → [s] is a map. Suppose G = (G, c) and G′ = (G′, c′) are coloured graphs with
G = (V,E) and G′ = (V ′, E′).

We say a map φ : V → V ′ is a homomorphism from G to G′ if φ is a homomorphism from
G to G′ and, for all v ∈ V , c(v) = c′(φ(v)). If φ is also bijective, we say φ is an isomorphism
from G to G′, that G and G′ are isomorphic, and write G ' G′. For all X ⊆ V , we define
G[X] = (G[X], c|X), and say G[X] is an induced subgraph of G. Given coloured graphs H
and G, we denote the number of sets X ⊆ V (G) with G[X] ' H by #Ind(H → G). Finally,
we define V (G) = V and E(G) = E and we define ∆(G) to be the maximum degree of G.

For each positive integer ∆, we consider a counting version of the induced subgraph
isomorphism problem for coloured graphs of degree at most ∆.

Name: #Induced-Coloured-Subgraph[∆]. Parameter: |V (H)|.
Input: Two coloured graphs H and G, each with maximum degree bounded by ∆.
Output: #Ind(H → G).

We will later reduce our bipartite independent set counting problems to #Induced-
Coloured-Subgraph[∆]. Note that this problem can be expressed as a first-order model-
counting problem in bounded-degree structures. A well-known result of Frick [9, Theorem 6]
yields an algorithm for #Induced-Coloured-Subgraph[∆] with running time g(k) · n, where
k = |V (H)| and n = |V (G)|. However, the function g of Frick’s algorithm may grow faster
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than any constant-height tower of exponentials. In the following, we provide an algorithm for
#Induced-Coloured-Subgraph[∆] that is substantially faster: It runs in time O(nk(2∆+3)k).

The algorithm follows the strategy of [3] to count small subgraphs: Instead of counting
(coloured) induced subgraphs, we can count (coloured) homomorphisms and recover the
number of induced subgraphs via a simple basis transformation. Given coloured graphs H
and G, we denote the number of homomorphisms from H to G by #Hom(H → G).

I Lemma 12. There is an algorithm to compute #Hom(H → G) in time O(nkk(∆ + 1)k),
where G is a coloured graph with n vertices, H is a coloured graph with k vertices, and both
graphs have maximum degree at most ∆.

Proof. The algorithm works as follows: If H is not connected, let H1, . . . ,H` be its connected
components. Then it is straightforward to verify that #Hom(H → G) =

∏`
i=1 #Hom(Hi →

G) . Thus it remains to describe the algorithm for connected pattern graphs H.
Let H be connected. A sequence of vertices v1, . . . , vk in a graph F is a traversal if,

for all i ∈ {1, . . . , k − 1}, the vertex vi+1 is contained in {v1, . . . , vi} ∪ Γ({v1, . . . , vi}). Let
u1, . . . , uk be an arbitrary traversal of H with {u1, . . . , uk} = V (H); the latter property can
be satisfied since H is a connected graph with k vertices. Note that if f : V (H)→ V (G) is a
homomorphism fromH to G, then f(u1), . . . , f(uk) is a traversal in G, and this correspondence
is injective. Thus the algorithm computes the number of traversals v1, . . . , vk in G for which
the mapping f with f(ui) = vi for all i is a homomorphism from H to G. This number is
equal to #Hom(H → G), which the algorithm seeks to compute.

Since the maximum degree of G is ∆, any set S ⊆ V (G) satisfies |Γ(S)| ≤ ∆|S|. Thus there
are at most n · (∆k + k)k−1 traversal sequences in G, which can be generated in linear time
in the number of such sequences. For each traversal sequence, verifying whether the sequence
corresponds to a homomorphism takes time O(k∆) (in the word-RAM model with incidence
lists for H already prepared). Overall, we obtain a running time of O(n · kk · (∆ + 1)k). J

I Theorem 13. For all positive integers ∆, there is a fixed-parameter tractable algorithm for
#Induced-Coloured-Subgraph[∆] with time complexity O(n · k(2∆+3)·k) for n-vertex coloured
graphs G and k-vertex coloured graphs H.

Proof. Let (H,G) be an instance of #Induced-Coloured-Subgraph[∆], write G = (G, c) and
H = (H, c′), and let k = |V (H)|. Without loss of generality, suppose that the ranges of c
and c′ are [q] for some positive integer q ≤ k. Namely, if any vertices of G receive colours
not in the range of c′, then our algorithm may remove them without affecting #Ind(H → G);
if any vertices of H receive colours not in the range of c, then #Ind(H → G) = 0.

For coloured graphs K and B, let #Surj(K → B) be the number of vertex-surjective
homomorphisms from K to B, i.e., the number of those homomorphisms from K to B that
contain all vertices of B in their image.

Let S be the set of all q-coloured graphs K such that ∆(K) ≤ ∆ and, for some t ∈ [k],
V (K) = [t]. Let S′ be a set of representatives of (coloured) isomorphism classes of S.

Let x be the vector indexed by S′ such that xK = #Ind(K → G) for all K ∈ S′. This
vector contains the number of induced subgraph copies of H in G, but it also contains the
number of subgraph copies of all other graphs in S′ in G. Let b be the vector indexed by S′
such that bK = #Hom(K → G) for all K ∈ S′; each entry of this vector can be computed via
the algorithm of Lemma 12. Then we will show that x and b can be related to each other
via an invertible matrix A such that Ax = b. By calculating A and b, we can then output
#Ind(H → G) = (A−1b)H.
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To elaborate on this linear relationship between induced subgraph and homomorphism
numbers, let us first consider some arbitrary graph K ∈ S′. By partitioning the homomorph-
isms from K to G according to their image, we have

#Hom(K → G) =
∑

X⊆V (G)
|X|≤k

#Surj(K → G[X]).

In the right-hand side sum, we can collect terms with isomorphic induced subgraphs G[X],
since we clearly have #Surj(K → B) = #Surj(K → B′) if B ' B′. Hence, we obtain

#Hom(K → G) =
∑
K′∈S′

#Surj(K → K′) ·#Ind(K′ → G). (5)

Thus let A be the matrix indexed by S′ with AK,K′ = #Surj(K → K′) for all K,K′ ∈ S′.
Then (5) implies that Ax = b. (An uncoloured version of this linear system is folklore, and
originally due to Lovász [15].)

We next prove that A is invertible. Indeed, given K,K′ ∈ S′, write K . K′ if K admits a
vertex-surjective homomorphism to K′. Since . is a partial order, as is readily verified, it
admits a topological ordering π. Permuting the rows and columns of A to agree with π does
not affect the rank of A, and it yields an upper triangular matrix with non-zero diagonal
entries, so it follows that A is invertible.

The algorithm is now immediate. It first determines S by listing all q-coloured graphs
on at most k vertices with at most b∆k/2c edges, then checking each one to see whether it
satisfies the degree condition. It then determines S′ from S by testing every pair of coloured
graphs in S for isomorphism (by brute force). It then determines each entry AK,K′ of A (by
brute force) by listing the vertex-surjective maps K → K′. It then determines b by invoking
Lemma 12 to compute each entry bK = #Hom(K → G) for K ∈ S′. Finally, it outputs
#Ind(H → G) = (A−1b)H. We defer the running time analysis to the full version. J

We note that the above algorithm can be generalised to any host graph class for which
counting homomorphisms from (vertex-coloured) patterns with k vertices has an f(k) · nO(1)

time algorithm. To this end, simply use this algorithm as a sub-routine instead of Lemma 12
in the algorithm constructed in the proof of Theorem 13. Examples for such classes of host
graphs are planar graphs or, more generally, any graph class of bounded local treewidth [9].

Recent independent work by Patel and Regts [17] implicitly contains an algorithm for
counting independent sets of size k in graphs of maximum degree ∆ in time O(ckn), where c
is a constant depending on ∆. This implies Theorem 14(i).

I Theorem 14. For all positive integers ∆:
(i) #Size-BIS[∆] has an algorithm with time complexity O(|V (G)| · k(2∆+3)k);
(ii) #Size-Left-BIS[∆] has an algorithm with time complexity O(|V (G)| · `(2∆2+8∆+4)`);
(iii) #Size-Left-Max-BIS[∆] has an algorithm with time complexity O(|V (G)| · `(2∆2+8∆+4)`).

Proof. Part (i) of the result is immediate from Theorem 13, since #Size-BIS[∆] is a special
case of #Induced-Coloured-Subgraph[∆] (taking G to be monochromatic and H to be a
monochromatic independent set of size k).

For any bipartite graph G = (U, V,E) with degree at most ∆ and any non-negative
integers ` and r, let N`,r(G) be the number of sets X ⊆ U with |X| = ` and |Γ(X)| = r.
Let N ′`,r(G) be the number of pairs of sets X ⊆ U , Y ⊆ V such that |X| = `, |Y | = r and
Y ⊆ Γ(X). Then we have

N`,r(G) = N ′`,r(G)−
∆∑̀

i=r+1

(
i

r

)
N`,i(G). (6)
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For any bipartite graph J = (UJ , VJ , EJ), we define the corresponding 2-colouring by
cJ(v) = 1 for all v ∈ UJ and cJ(v) = 2 for all v ∈ VJ . We define the corresponding
coloured graph by φ(J) = ((UJ ∪ VJ , {{u, v} | (u, v) ∈ EJ}), cJ). Let S`,r be the set of all
bipartite graphs J = (UJ , VJ , EJ) with UJ = [`], VJ = {` + 1, . . . , ` + r}, degree at most
∆ and no isolated vertices in VJ . Let S`,r be the corresponding set of coloured graphs,
and let S ′`,r be a set of representatives of (coloured) isomorphism classes in S`,r. Then
N ′`,r(G) =

∑
K∈S′

`,r
#Ind(K → φ(G)), and hence by (6) we have

N`,r(G) =
∑
K∈S′

`,r

#Ind(K → φ(G))−
∆∑̀

i=r+1

(
i

r

)
N`,i(G). (7)

Now suppose that (G, `) is an instance of #Size-Left-BIS[∆]. Then we have

IS`-left(G) =
∑
X⊆U
|X|=`

2|V |−|Γ(X)| =
∑

0≤r≤∆`

N`,r(G)2|V |−r. (8)

To compute N`,∆`(G), . . . , N`,0(G), our algorithm applies (7). For each r ∈ {∆`, . . . , 0}, it
determines the #Ind(K → φ(G)) terms of (7) using the #Induced-Coloured-Subgraph[∆]
algorithm of Theorem 13, and the remaining terms of (7) recursively with dynamic program-
ming. Finally, it computes IS`-left(G) using (8). Thus part (ii) of the result follows, except
for the running time analysis which we defer to the full version.

Finally, suppose that (G, `) is an instance of #Size-Left-Max-BIS[∆]. Let µ = min{r |
N`,r(G) 6= 0}, and note that IS`-left-max(G) = N`,µ(G). As above, our algorithm determines
N`,∆`(G), . . . , N`,0(G) using (7), and thereby determines and outputs N`,µ(G). The overall
running time is again O(|V (G)| · `(2∆2+8∆+4)`), so part (iii) of the result follows. J
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