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Abstract
Problems related to finding induced subgraphs satisfying given properties form one of the most
studied areas within graph algorithms. Such problems have given rise to breakthrough results and
led to development of new techniques both within the traditional P vs NP dichotomy and within
parameterized complexity. The Π-Subgraph problem asks whether an input graph contains an
induced subgraph on at least k vertices satisfying graph property Π. For many applications, it
is desirable that the found subgraph has as few connections to the rest of the graph as possible,
which gives rise to the Secluded Π-Subgraph problem. Here, input k is the size of the desired
subgraph, and input t is a limit on the number of neighbors this subgraph has in the rest of the
graph. This problem has been studied from a parameterized perspective, and unfortunately it
turns out to be W[1]-hard for many graph properties Π, even when parameterized by k + t. We
show that the situation changes when we are looking for a connected induced subgraph satisfying
Π. In particular, we show that the Connected Secluded Π-Subgraph problem is FPT when
parameterized by just t for many important graph properties Π.
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1 Introduction

Vertex deletion problems are central in parameterized algorithms and complexity, and they
have contributed hugely to the development of new algorithmic methods. The Π-Deletion
problem, with input a graph G and an integer `, asks whether at most ` vertices can be
deleted from G so that the resulting graph satisfies graph property Π. Its dual, the Π-
Subgraph problem, with input G and k, asks whether G contains an induced subgraph on
at least k vertices satisfying Π. The problems were introduced already in 1980 by Yannakakis
and Lewis [11], who showed their NP-completeness for almost all interesting graph properties
Π. During the last couple of decades, these problems have been studied extensively with
respect to parameterized complexity and kernelization, which has resulted in numerous new
techniques and methods in these fields [4, 5].
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18:2 Finding Connected Secluded Subgraphs

In many network problems, the size of the boundary between the subgraph that we are
looking for and the rest of the graph makes a difference. A small boundary limits the
exposure of the found subgraph, and notions like isolated cliques have been studied in this
respect [7, 8, 10]. Several measures for the boundary have been proposed; in this work we
use the open neighborhood of the returned induced subgraph. For a set of vertices U of a
graph G and a positive integer t, we say that U is t-secluded if |NG(U)| ≤ t. Analogously, an
induced subgraph H of G is t-secluded if the vertex set of H is t-secluded. For a given graph
property Π, we get the following formal definition of the problem Secluded Π-Subgraph.

Input: A graph G and nonnegative integers k and t.
Task: Decide whether G contains a t-secluded induced subgraph H on at least k vertices,

satisfying Π.

Secluded Π-Subgraph

Lewis and Yannakakis [11] showed that Π-Subgraph is NP-complete for every hereditary
nontrivial graph property Π. This immediately implies that Secluded Π-Subgraph is
NP-complete for every such Π. As a consequence, the interest has shifted towards the
parameterized complexity of the problem, which has been studied by van Bevern et al. [14]
for several classes Π. Unfortunately, in most cases Secluded Π-Subgraph proves to be
W[1]-hard, even when parameterized by k+t. In particular, it is W[1]-hard to decide whether
a graph G has a t-secluded independent set of size k when the problem is parameterized by
k + t [14]. In this extended abstract, we show that the situation changes when the secluded
subgraph we are looking for is required to be connected, in which case we are able to obtain
positive results that apply to many properties Π. In fact, connectivity is central in recently
studied variants of secluded subgraphs, like Secluded Path [2, 9] and Secluded Steiner
Tree [6]. However, in these problems the boundary measure is the closed neighborhood
of the desired path or the steiner tree, connecting a given set of vertices. The following
formal definition describes the problem that we study in this extended abstract, Connected
Secluded Π-Subgraph. For generality, we define a weighted problem.

Input: A graph G, a weight function ω : V (G)→ Z>0, a nonnegative integer t and a positive
integer w.

Task: Decide whether G contains a connected t-secluded induced subgraph H with
ω(V (H)) ≥ w, satisfying Π.

Connected Secluded Π-Subgraph

Observe that Connected Secluded Π-Subgraph remains NP-complete for all hered-
itary nontrivial graph properties Π, following the results of Yannakakis [15]. It can be also
seen that Connected Secluded Π-Subgraph parameterized by w is W[1]-hard even for
unit weights, if it is W[1]-hard with parameter k to decide whether G has a connected
induced subgraph on at least k vertices, satisfying Π (see, e.g., [5, 13]).

It is thus more interesting to consider parameterization by t. We consider Connected
Secluded Π-Subgraph for all graph properties Π that are characterized by finite sets F
of forbidden induced subgraphs and refer to this variant of the problem as Connected
Secluded F-Free Subgraph. We show that the problem is fixed parameter tractable
when parameterized by t by proving the following theorem.

I Theorem 1. Connected Secluded F-Free Subgraph can be solved in time 222O(t log t)

·
nO(1).

In this extended abstract, we only sketch the proofs and omit some of them due to space
constraints.
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2 Preliminaries

We consider only finite undirected graphs. We use n to denote the number of vertices and
m the number of edges of the considered graphs unless it creates confusion. A graph G is
identified by its vertex set V (G) and edge set E(G). For U ⊆ V (G), we write G[U ] to denote
the subgraph of G induced by U . We write G − U to denote the graph G[V (G) \ U ]; for a
single-element U = {u}, we write G−u. A set of vertices U is connected if G[U ] is a connected
graph. For a vertex v, we denote by NG(v) the (open) neighborhood of v in G, i.e., the set
of vertices that are adjacent to v in G. For a set U ⊆ V (G), NG(U) = (∪v∈U NG(v)) \ U .
We denote by NG[v] = NG(v) ∪ {v} the closed neighborhood of v; respectively, NG[U ] =
∪v∈U NG[v]). The degree of a vertex v is dG(v) = |NG(v)|. A set of vertices S ⊂ V (G) of a
connected graph G is a separator if G− S is disconnected. A vertex v is a cut vertex if {v}
is a separator.

A graph property is hereditary if it is preserved under vertex deletion, or equivalently,
under taking induced subgraphs. A graph property is trivial if either the set of graphs
satisfying it, or the set of graphs that do not satisfy it, is finite. Let F be a graph. We
say that a graph G is F -free if G has no induced subgraph isomorphic to F . For a set of
graphs F , a graph G is F-free if G is F -free for every F ∈ F . Let Π be the property of
being F-free. Then, depending on whether F is a finite or an infinite set, we say that Π is
characterized by a finite / infinite set of forbidden induced subgraphs.

We use the recursive understanding technique introduced by Chitnis et al. [3] for graph
problems to solve Connected Secluded Π-Subgraph when Π is defined by forbidden
induced subgraphs or Π is the property to be a forest. This powerful technique is based on
the following idea. Suppose that the input graph has a vertex separator of bounded size that
separates the graph into two sufficiently big parts. Then we solve the problem recursively
for one of the parts and replace this part by an equivalent graph such that the replacement
keeps all essential (partial) solutions of the original part. By such a replacement we obtain a
graph of smaller size. Otherwise, if there is no separator of bounded size separating graphs
into two big parts, then either the graph has bounded size or it is highly connected, and we
exploit these properties. We need the following notions and results from Chitnis et al. [3].

Let G be a graph. A pair (A, B), where A, B ⊆ V (G) and A∪B = V (G), is a separation
of G of order |A ∩ B| if G has no edge uv with u ∈ A \ B and v ∈ B \ A, i.e., A ∩ B is an
(A, B)-separator. Let q and k be nonnegative integers. A graph G is (q,k)-unbreakable if
for every separation (A, B) of G of order at most k, |A \B| ≤ q or |B \A| ≤ q. Combining
Lemmas 19, 20 and 21 of [3], we obtain the following.

I Lemma 2 ([3]). Let q and k be nonnegative integers. There is an algorithm with running
time 2O(min{q,k} log(q+k)) · n3 log n that, for a graph G, either finds a separation (A, B) of
order at most k such that |A \ B| > q and |B \ A| > q, or correctly reports that G is
((2q + 1)q · 2k, k)-unbreakable.

We conclude this section by noting that the following variant of Connected Secluded
Π-Subgraph is FPT when parameterized by k + t. We will rely on this result in the
subsequent sections, however we believe that it is also of interest on its own.

Input: A graph G, coloring c : V (G)→ N, a weight function ω : V (G)→ Z≥0 and nonnegat-
ive integers k, t and w.

Task: Decide whether G contains a connected t-secluded induced subgraph H such that
(H, c′), where c′(v) = c|V (H)(v), satisfies Π, |V (H)| = k and ω(V (H)) ≥ w.

Connected Secluded Colored Π-Subgraph of Exact Size

IPEC 2017



18:4 Finding Connected Secluded Subgraphs

We say that a mapping c : V (G)→ N is a coloring of G; note that we do not demand a
coloring to be proper. Analogously, we say that Π is a property of colored graphs if Π is a
property on pairs (G, c), where G is a graph and c is a coloring. Notice that if some vertices
of the input graph have labels, then we can assign to each label (or a combination of labels if
a vertex can have several labels) a specific color and assign some color to unlabeled vertices.
Then we can redefine a considered graph property with the conditions imposed by labels
as a property of colored graphs. Observe that we allow zero weights. Our next theorem
presents two possible running times for the mentioned cases. The latter running times will
be useful when k � t.

I Theorem 3. If property Π can be recognized in time f(n), then Connected Secluded
Colored Π-Subgraph of Exact Size can be solved both in time 2k+t · f(k) · nO(1), and
in time 2O(min{k,t} log(k+t)) · f(k) · nO(1).

In particular, the theorem implies that if Π can be recognized in polynomial time, then
Connected Secluded Colored Π-Subgraph of Exact Size can be solved both in
time 2k+t · nO(1), and in time 2O(min{k,t} log(k+t)) · nO(1).

3 Solving Connected Secluded F-Free Subgraph

In this section we prove Theorem 1. Throughout this section, we assume that we are given
a fixed finite set F of graphs.

Recall that to apply the recursive understanding technique introduced by Chitnis et
al. [3], we should be able to recurse when the input graph contains a separator of bounded
size that separates the graph into two sufficiently big parts. To do this, we have to combine
partial solutions in both parts. A danger in our case is that a partial solution in one part
might contain a subgraph of a graph in F . We have to avoid creating subgraphs belonging
to F when we combine partial solutions. To achieve this goal, we need some definitions and
auxiliary combinatorial results.

Let p be a nonnegative integer. A pair (G, x), where G is a graph and x = (x1, . . . , xp)
is a p-tuple of distinct vertices of G, is called a p-boundaried graph or simply a boundaried
graph. Respectively, x = (x1, . . . , xp) is a boundary. Note that a boundary is an ordered
set. Hence, two p-boundaried graphs that differ only by the order of the vertices in theirs
boundaries are distinct. Observe also that a boundary could be empty. We say that (G, x) is
a properly p-boundaried graph if each component of G has at least one vertex of the boundary.
Slightly abusing notation, we may say that G is a (p-) boundaried graph assuming that a
boundary is given.

Two p-boundaried graphs (G1, x(1)) and (G2, x(2)), where x(h) = (x(h)
1 , . . . , x

(h)
p ) for

h = 1, 2, are isomorphic if there is an isomorphism of G1 to G2 that maps each x
(1)
i to x

(2)
i

for i ∈ {1, . . . , p}. We say that (G1, x(1)) and (G2, x(2)) are boundary-compatible if for any
distinct i, j ∈ {1, . . . , p}, x

(1)
i x

(1)
j ∈ E(G1) if and only if x

(2)
i x

(2)
j ∈ E(G2).

Let (G1, x(1)) and (G2, x(2)) be boundary-compatible p-boundaried graphs and let x(h) =
(x(h)

1 , . . . , x
(h)
p ) for h = 1, 2. We define the boundary sum (G1, x(1))⊕b (G2, x(2)) (or simply

G1 ⊕b G2) as the (non-boundaried) graph obtained by taking vertex disjoint copies of G1
and G2 and identifying x

(1)
i and x

(2)
i for each i ∈ {1, . . . , p}.

Let G be a graph and let y = (y1, . . . , yp) be a p-tuple of vertices of G. For an s-
boundaried graph (H, x) with the boundary x = (x1, . . . , xs) and pairwise distinct i1, . . . , is ∈
{1, . . . , p}, we say that H is an induced boundaried subgraph of G with respect to (yi1 , . . . , yis

)
if G contains an induced subgraph H ′ isomorphic to H such that the corresponding isomorph-
ism of H to H ′ maps xj to yij

for j ∈ {1, . . . , s} and V (H ′) ∩ {y1, . . . , yp} = {yi1 , . . . , yis
}.



P.A. Golovach, P. Heggernes, P. Lima, and P. Montealegre 18:5

We construct the set of boundaried graphs Fb as follows. For each F ∈ F , each separation
(A, B) of F and each p = |A ∩ B|-tuple x of the vertices of (A ∩ B), we include (F [A], x)
in Fb unless it already contains an isomorphic boundaried graph. We say that two properly
p-boundaried graphs (G1, x(1)) and (G2, x(2)), where x(h) = (x(h)

1 , . . . , x
(h)
p ) for h = 1, 2, are

equivalent (with respect to Fb) if
(i) (G1, x(1)) and (G2, x(2)) are boundary-compatible,
(ii) for any i, j ∈ {1, . . . , p}, x

(1)
i and x

(1)
j are in the same component of G1 if and only if

x
(2)
i and x

(2)
j are in the same component of G2,

(iii) for any pairwise distinct i1, . . . , is ∈ {1, . . . , p}, G1 contains an s-boundaried induced
subgraph H ∈ Fb with respect to the s-tuple (x(1)

i1
, . . . , x

(1)
is

) if and only if H is an
induced subgraph of G2 with respect to the s-tuple (x(2)

i1
, . . . , x

(2)
is

).
It is straightforward to verify that the introduced relation is indeed an equivalence relation
on the set of properly p-boundaried graphs. The following property of the equivalence with
respect to Fb is crucial for our algorithm.

I Lemma 4. Let (G, x), (H1, y(1)) and (H2, y(2)) be boundary-compatible p-boundaried
graphs, x = (x1, . . . , xp) and y(h) = (y(h)

1 , . . . , y
(h)
p ) for h = 1, 2. If (H1, y(1)) and (H2, y(2))

are equivalent with respect to Fb, then (G, x)⊕b (H1, y(1)) is F-free if and only if (G, x)⊕b

(H2, y(2)) is F-free.

It also should be noted that the equivalence of two properly p-boundaried graphs can be
checked in polynomial time.

For each nonegative integer p, we consider a set Gp of properly p-boundaried graphs
obtained by picking a graph with minimum number of vertices in each equivalence class.
We show that the size of Gp and the size of each graph in the set is upper bounded by some
functions of p, and this set can be constructed in time that depends only on p assuming that
Fb is fixed.

I Lemma 5. For every positive integer p, |Gp| = 2O(p2), and for every H ∈ G′p, |V (H)| =
pO(1), where the constants hidden in the O-notations depend on F only. Moreover, for every
p-boundaried graph G, the number of p-boundaried graphs in Gp that are compatible with G

is 2O(p log p).

Consider now the class C of p-boundaried graphs, such that a p-boundaried graph
(G, (x1, . . . , xp}) ∈ C if and only if it holds that for every component H of G−{x1, . . . , xp},
NG(V (H)) = {x1, . . . , xp}. We consider our equivalence relation with respect to Fb on C
and define G′p as follows. In each equivalence class, we select a graph (G, (x1, . . . , xp}) ∈ C
such that both the number of components of G−{x1, . . . , xp} is minimum and the number of
vertices of G is minimum subject to the first condition, and then include it in G′p. Similarly
to Lemma 5 we show the following.

I Lemma 6. For every positive integer p, |G′p| = 2O(p2), and for each H ∈ Gp, |V (H)| =
pO(1), and the constants hidden in the O-notations depend on F only. Moreover, for any
p-boundaried graph G, the number of p-boundaried graphs in G′p that are compatible with G

is pO(1).

Lemmas 5 and 6 immediately imply that Gp and G′p can be constructed by brute force.

I Lemma 7. The sets Gp and G′p can be constructed in time 2pO(1) .

To apply the recursive understanding technique, we also have to solve a special variant of
Connected Secluded Π-Subgraph tailored for recursion. First, we define the following
auxiliary problem for a positive integer w.

IPEC 2017



18:6 Finding Connected Secluded Subgraphs

Input: A graph G, sets I, O, B ⊆ V (G) such that I ∩O = ∅ and I ∩B = ∅, a weight function
ω : V (G)→ Z≥0 and a nonnegative integer t.

Task: Find a t-secluded F-free induced connected subgraph H of G of maximum weight or
weight at least w such that I ⊆ V (H), O ⊆ V (G) \ V (H) and NG(V (H)) ⊆ B and
output ∅ if such a subgraph does not exist.

Maximum or w-Weighted Connected Secluded F-Free Subgraph

Notice that Maximum or w-Weighted Connected Secluded F-Free Subgraph
is an optimization problem and a solution is either an induced subgraph H of maximum
weight or of weight at least w, or ∅. Observe also that we allow zero weights for technical
reasons.

We recurse if we can separate graphs by a separator of bounded size into two big parts
and we use the vertices of the separator to combine partial solutions in both parts. This
leads us to the following problem. Let (G, I, O, B, ω, t) be an instance of Maximum or
w-Weighted Connected Secluded F-Free Subgraph and let T ⊆ V (G) be a set
of border terminals. We say that an instance (G′, I ′, O′, B′, ω′, t′) is obtained by a border
complementation if there is a partition (X, Y, Z) of T (some sets could be empty), where
X = {x1, . . . , xp}, such that Y = ∅ if X = ∅, I ∩ T ⊆ X, O ∩ T ⊆ Y ∪ Z and Y ⊆ B,
and there is a p-boundaried graph (H, y) ∈ Gp such that (H, y) and (G, (x1, . . . , xp)) are
boundary-compatible, and the following holds:
(i) G′ is obtained from (G, (x1, . . . , xp))⊕b (H, y) (we keep the notation X = {x1, . . . , xp}

for the set of vertices obtained by the identification in the boundary sum) by adding
edges joining every vertex of V (H) with every vertex of Y ,

(ii) I ′ = I ∪ V (H),
(iii) O′ = O ∪ Y ∪ Z,
(iv) B′ = B \X,
(v) ω′(v) = ω(v) for v ∈ V (G) and ω′(v) = 0 for v ∈ V (H) \X,
(vi) t′ ≤ t.
We also say that (G′, I ′, O′, B′, w′, t′) is a border complementation of (G, I, O, B, w, t) with
respect to (X = {x1, . . . , xp}, Y, Z, H). We say that (X = {x1, . . . , xp}, Y, Z, H) is feasible if
it holds that Y = ∅ if X = ∅, I ∩ T ⊆ X, O ∩ T ⊆ Y ∪Z and Y ⊆ B, and the p-boundaried
graph H ∈ Gp and (G, (x1, . . . , xp)) are boundary-compatible.

Input: A graph G, sets I, O, B ⊆ V (G) such that I ∩O = ∅ and I ∩B = ∅, a weight function
ω : V (G)→ Z≥0, a nonnegative integer t, and a set T ⊆ V (G) of border terminals of
size at most 2t.

Task: Output a solution for each instance (G′, I ′, O′, B′, w′, t′) of Maximum or w-
Weighted Connected Secluded F-Free Subgraph that can be obtained from
(G, I, O, B, w, t) by a border complementation distinct from the border complement-
ation with respect to (∅, ∅, T, ∅), and for the border complementation with respect
to (∅, ∅, T, ∅) output a nonempty solution if it has weight at least w and output ∅
otherwise.

Bordered Maximum or w-Weighted Connected Secluded F-Free Subgraph

Two instances (G1, I1, O1, B1, ω1, t, T ) and (G2, I2, O2, B2, ω2, t, T ) of Bordered Max-
imum or w-Weighted Connected Secluded F-Free Subgraph (note that t and T

are the same) are said to be equivalent if
(i) T ∩ I1 = T ∩ I2, T ∩O1 = T ∩O2 and T ∩B1 = T ∩B2,
(ii) for the border complementations (G′1, I ′1, O′1, B′1, ω′1, t′) and (G′2, I ′2, O′2, B′2, ω′2, t′) of the

instances (G1, I1, O1, B1, ω1, t′) and (G2, I2, O2, B2, ω2, t′) respectively of Maximum or
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w-Weighted Connected Secluded F-Free Subgraph with respect to every feas-
ible (X = {x1, . . . , xp}, Y, Z, H) and t′ ≤ t, it holds that
(a) if (G′1, I ′1, O′1, B′1, ω′1, t′) has a nonempty solution R1, then (G′2, I ′2, O′2, B′2, ω′2, t′) has

a nonempty solution R2 with w′2(V (R2)) ≥ min{ω′1(V (R1)), w} and, vice versa,
(b) if (G′2, I ′2, O′2, B′2, ω′2, t′) has a nonempty solution R2, then (G′1, I ′1, O′1, B′1, ω′1, t′)

has a nonempty solution R1 with ω′1(V (R1)) ≥ min{ω′2(V (R2)), w}.
Strictly speaking, if (G1, I1, O1, B1, ω1, t, T ) and (G2, I2, O2, B2, ω2, t, T ) are equivalent, then
a solution of the first problem is not necessarily a solution of the second. Nevertheless,
Bordered Maximum or w-Weighted Connected Secluded F-Free Subgraph is
an auxiliary problem and in the end we use it to solve an instance (G, ω, t, w) of Connec-
ted Secluded F-Free Subgraph by calling the algorithm for Bordered Maximum
or w-Weighted Connected Secluded F-Free Subgraph for (G, ∅, ∅, V (G), ω, t, ∅).
Clearly, (G, ω, t, w) is a yes-instance if and only if a solution for the corresponding instance
of Bordered Maximum or w-Weighted Connected Secluded F-Free Subgraph
contains a connected subgraph R with ω(V (R)) ≥ w. It allows us to not distinguish equival-
ent instances of Bordered Maximum or w-Weighted Connected Secluded F-Free
Subgraph and their solutions.

3.1 High connectivity phase
In this section we solve Bordered Maximum or w-Weighted Connected Secluded
F-Free Subgraph for (q, t)-unbreakable graphs. The following lemma shows that we
can separately lists all graphs R in a solution of Bordered Maximum or w-Weighted
Connected Secluded F-Free Subgraph with |V (R)∩V (G)| ≤ q and all graphs R with
|V (G) \ V (R)| ≤ q + t.

I Lemma 8. Let (G, I, O, B, ω, t, T ) be an instance of Bordered Maximum or
w-Weighted Connected Secluded F-Free Subgraph where G is a (q, t)-unbreakable
graph for a positive integer q. Then for each nonempty graph R in a solution of Bordered
Maximum or w-Weighted Connected Secluded F-Free Subgraph, either |V (R)∩
V (G)| ≤ q or |V (G) \ V (R)| ≤ q + t.

To list R with |V (R)∩V (G)| ≤ q, we use Theorem 3. To list R with |V (G)\V (R)| ≤ q+t,
we use important separators defined by Marx in [12]. The main observation in this second
case is that if |V (G) \V (R)| ≤ q + t, then there is a hitting set S of size at most q + t for all
copies of graphs of F that lies outside R in the corresponding graph. Moreover, hitting sets
of size at most q + t can be enumerated in FPT time. Then we can use important separators
between the closed neighborhood of I and S ∪O to find R. It gives us the following crucial
lemma.

I Lemma 9. Bordered Maximum or w-Weighted Connected Secluded F-Free
Subgraph for (q, t)-unbreakable graphs can be solved in time 2(q+t log(q+t))) ·nO(1) if the sets
Gp for p ≤ 2t are given.

3.2 The FPT algorithm for Connected Secluded F-Free Subgraph
In this section we construct an FPT algorithm for Connected Secluded F-Free Sub-
graph parameterized by t. We do this by solving Bordered Maximum or w-Weighted
Connected Secluded F-Free Subgraph in FPT-time for general case.

I Lemma 10. Bordered Maximum or w-Weighted Connected Secluded F-Free
Subgraph can be solved in time 222O(t log t)

· nO(1).

IPEC 2017



18:8 Finding Connected Secluded Subgraphs

Sketch of the Proof. Given F , we construct the set Fb. Then we use Lemma 7 to construct
the sets Gp for p ∈ {0, . . . , t} in time 2tO(1) .

By Lemma 5, there is a constant c that depends only on F such that for every nonnegative
p and for any p-boundaried graph G, there are at most 2cp log p p-boundaried graphs in Gp

that are compatible with G and there are at most pc p-boundaried graphs in G′p that are
compatible with G. We define

q = 2((t+1)t32t2c2t log(2t)+2t) · 2((t + 1)t32t2c2t log(2t) + 2t)ctc + (t + 1)t32t2c2t log(2t) + 2t. (1)

The choice of q will become clear later in the proof. Notice that q = 22O(t log t) .
Consider an instance (G, I, O, B, ω, t, T ) of Bordered Maximum or w-Weighted

Connected Secluded F-Free Subgraph.
We use the algorithm from Lemma 2 for G. This algorithm in time 22O(t log t) ·nO(1) either

finds a separation (U, W ) of G of order at most t such that |U \W | > q and |W \ U | > q

or correctly reports that G is ((2q + 1)q · 2t, t)-unbreakable. In the latter case we solve
the problem using Lemma 9 in time 222O(t log t)

· nO(1). Assume from now that there is a
separation (U, W ) of order at most t such that |U \W | > q and |W \ U | > q.

Recall that |T | ≤ 2t. Then |T ∩ (U \W )| ≤ t or |T ∩ (W \ U)| ≤ t. Assume without
loss of generality that |T ∩ (W \ U)| ≤ t. Let G̃ = G[W ], Ĩ = I ∩W , Õ = O ∩W , ω̃ is the
restriction of ω to W , and define T̃ = (T ∩W ) ∪ (U ∩W ). Since |U ∩W | ≤ t, |T̃ | ≤ 2t.

If |W | ≤ (2q + 1)q · 2t, then we solve Bordered Maximum or w-Weighted Con-
nected Secluded F-Free Subgraph for the instance (G̃, Ĩ, Õ, B̃, ω̃, t, T̃ ) by brute force
in time 222O(t log t)

trying all possible subset of W and at most t + 1 values of 0 ≤ t′ ≤ t.
Otherwise, we solve (G̃, Ĩ, Õ, B̃, ω̃, t, T̃ ) recursively. Let R be the set of nonempty induced
subgraphs R that are included in the obtained solution for (G̃, Ĩ, Õ, B̃, ω̃, t, T̃ ).

For R ∈ R, define SR to be the set of vertices of W \ V (R) that are adjacent to the
vertices of R in the graph obtained by the border complementation for which R is a solution
of the corresponding instance of Maximum or w-Weighted Connected Secluded F-
Free Subgraph. Note that |SR| ≤ t. If R 6= ∅, then let S = T̃ ∪R∈R SR, and S = T̃ if
R = ∅. Since Maximum or w-Weighted Connected Secluded F-Free Subgraph
is solved for at most t + 1 of values of t′ ≤ t, at most 32t three-partitions (X, Y, Z) of T̃

and at most 2c2t log(2t) choices of a p-boundaried graph H ∈ Fb for p = |X|, we have that
|R| ≤ (t + 1)32t2c2t log(2t). Taking into account that |T ′| ≤ 2t,

|S| ≤ (t + 1)t32t2c2t log(2t) + 2t. (2)

Let B̂ = (B ∩ U) ∪ (B ∩ S). We claim that the instances (G, I, O, B, ω, t, T ) and
(G, I, O, B̂, ω, t, T ) of Bordered Maximum or w-Weighted Connected Secluded
F-Free Subgraph are equivalent.

Since, (G, I, O, B, ω, t, T ) and (G, I, O, B̂, ω, t, T ) of Bordered Maximum or
w-Weighted Connected Secluded F-Free Subgraph are equivalent, we can consider
(G, I, O, B̂, ω, t, T ). Now we apply some reduction rules that produce equivalent instances
of Bordered Maximum or w-Weighted Connected Secluded F-Free Subgraph
or report that we have no solution. The ultimate aim of these rules is to reduce the size of
G.

Let Q be a component of G[W ]−S. Notice that for any nonempty graph R in a solution
of (G, I, O, B̂, w, t, T ), either V (Q) ⊆ V (R) or V (Q) ∩ V (R) = ∅, because NG[W ](V (R)) ⊆
S. Moreover, if V (Q) ∩ V (R) = ∅, then NG[W ][V (Q)] ∩ V (R) = ∅. Notice also that if
v ∈ NG[W ](V (Q)) is a vertex of R, then V (Q) ⊆ V (R). These observation are crucial for
the following reduction rules.
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I Reduction Rule 3.1. For a component Q of G[W ]−S do the following in the given order:
if NG[W ][V (Q)] ∩ I 6= ∅ and V (Q) ∩O 6= ∅, then return ∅ and stop,
if NG[W ][V (Q)] ∩ I 6= ∅, then set I = I ∪ V (Q),
if V (Q) ∩O 6= ∅, then set O = O ∪NG[W ][V (Q)].

The rule is applied to each component Q exactly once. Notice that after application of
the rule, for every component Q of G[W ]− S, we have that either V (Q) ⊆ I or V (Q) ⊆ O

or V (Q) ∩ (I ∪O ∪ B̂) = ∅.
Suppose that Q1 and Q2 are components of G[W ] − S such that NG[W ](V (Q1)) =

NG[W ](V (Q2)) and |NG[W ](V (Q1))| = |NG[W ](V (Q2))| > t. Then if V (Q1) ⊆ V (R)
for a nonempty graph R in a solution of (G, I, O, B̂, ω, t, T ), then at least one vertex of
NG[W ](V (Q1)) is in R as R have at most t neighbors outside R. This gives the next rule.

I Reduction Rule 3.2. For components Q1 and Q2 of G[W ]−S such that NG[W ](V (Q1)) =
NG[W ](V (Q2)) and |NG[W ](V (Q1))| = |NG[W ](V (Q2))| > t do the following in the given
order:

if (V (Q1) ∪ V (Q2)) ∩ I 6= ∅ and (V (Q1) ∪ V (Q2)) ∩O 6= ∅, then return ∅ and stop,
if (V (Q1) ∪ V (Q2)) ∩ I 6= ∅, then set I = I ∪ (V (Q1) ∪ V (Q2)),
if (V (Q1) ∪ V (Q2)) ∩O 6= ∅, then set O = O ∪NG[W ][V (Q1) ∪ V (Q2)].

We apply the rule for all pairs of components Q1 and Q2 with NG[W ](V (Q1)) =
NG[W ](V (Q2)) and |NG[W ](V (Q1))| = |NG[W ](V (Q2))| > t, and for each pair the rule is
applied once.

If V (Q) ⊆ O for a component Q of G[W ]− S, then NG[W ](V (Q)) ⊆ O. It immediately
implies that the vertices of Q are irrelevant and can be removed.

I Reduction Rule 3.3. If there is a component Q of G[W ]−S such that NG[W ](V (Q)) ⊆ O,
then set G = G− V (Q), W = W \ V (Q) and O = O \ V (Q).

Notice that for each component Q, we have that either V (Q) ⊆ I or V (Q) ⊆ W \ (I ∪
O ∪ B̂).

To define the remaining rules, we construct the sets G′p for p ∈ {0, . . . , |S|} in time
22O(t log t) using Lemma 7.

Let Q be a component of G[W ]− S and let NG[W ](V (Q)) = {x1, . . . , xp}. Let G′ be the
graph obtained from G by the deletion of the vertices of V (Q) and let x = (x1, . . . , xp). Let
(H, y) be a connected p-boundaried graph of the same weight as G[NG[W ][V (Q)]]. Then by
Lemma 4, we have that the instance of Bordered Maximum or w-Weighted Connec-
ted Secluded F-Free Subgraph obtained from (G, I, O, B̂, ω, t, T ) by the replacement
of G by (G′, x) ⊕b (H, y) is equivalent to (G, I, O, B̂, ω, t, T ). We use it in the remaining
reduction rules.

Suppose again that Q1 and Q2 are components of G[W ]−S such that NG[W ](V (Q1)) =
NG[W ](V (Q2)) and |NG[W ](V (Q1))| = |NG[W ](V (Q2))| > t. Then, as we already noticed, if
V (Q1)∪V (Q2) ⊆ V (R) for a nonempty graph R in a solution of (G, I, O, B̂, ω, t, T ), then at
least one vertex of NG[W ](V (Q1)) is in R. It means that if we are constructing a solution R,
then the restriction of the size of the neighborhood of R ensures the connectivity between
Q1 and Q2 if we decide to include these components in R. Together with Lemma 4 this
shows that the following rule is safe.

I Reduction Rule 3.4. Let L = {x1, . . . , xp} ⊆ S, p > t, and let x = (x1, . . . , xp). Let
also Q1, . . . , Qr,r ≥ 1, be the components of G[W ] − S with NG[W ](V (Qi)) = L for all i ∈
{1, . . . , r}. Let Q = G[∪r

i=1NG[W ][V (Qi)]] and w′ =
∑r

i=1 ω(V (Qi)). Find a p-boundaried
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graph (H, y) ∈ G′p that is equivalent to (Q, x) with respect to Fb and denote by A the set of
nonboundary vertices of H. Then do the following.

Delete the vertices of V (Q1), . . . , V (Qr) from G and denote the obtained graph G′.
Set G = (G′, x)⊕b (H, y) and W = (W \ ∪r

i=1V (Qi)) ∪A.
Select arbitrarily u ∈ A and modify ω as follows:

keep the weight same for every v ∈ V (G′) including the boundary vertices x1, . . . , xp,
set ω(v) = 0 for v ∈ A \ {u},
set ω(u) = w′.

If V (Q1) ⊆ I, then set I = I \ (∪r
i=1V (Qi)) ∪A.

The rule is applied exactly once for each inclusion maximal sets of components {Q1, . . . ,

Qr} having the same neighborhood of size at least t + 1.
We cannot apply this trick if we have several components Q1, . . . , Qr of G[W ]− S with

the same neighborhood NG[W ](V (Qi)) if |NG[W ](V (Qi))| ≤ t. Now it can happen that there
are i, j ∈ {1, . . . , r} such that V (Qi) ⊆ V (R) and NG[W ][V (Qj)] ∩ V (R) = ∅ for R in a
solution of (G, I, O, B̂, ω, t, T ). But if NG[W ][V (Qj)] ∩ V (R) = ∅ , then by the connectivity
of R and the fact that G[W ]− S does not contain border terminals, we have that R = Qi.
Notice that I = ∅ in this case and, in particular, it means that R is a solution for an instance
of Maximum or w-Weighted Connected Secluded F-Free Subgraph obtained by
the border complementation with respect to (∅, ∅, T, ∅). Recall that we output R in this
case only if its weight is at least w. Still, we can modify Reduction Rule 3.4 for the case
when there are components Q of G[W ] − S such that V (Q) ⊆ I. Notice that if there are
components Q0, . . . , Qr of G[W ]− S with the same neighborhood and V (Q0) ⊆ I, then for
any nonempty R in a solution of (G, I, O, B̂, ω, t, T ), either R = Q0 or ∪r

i=0V (Qi) ⊆ V (R).
Applying Lemma 4, we obtain that the following rule is safe.

I Reduction Rule 3.5. Let L = {x1, . . . , xp} ⊆ S, p ≤ t, and let x = (x1, . . . , xp). Let
also Q0, . . . , Qr,r ≥ 0, be the components of G[W ] − S with NG[W ](V (Qi)) = L for all i ∈
{0, . . . , r} such that V (Q0) ⊆ I. Let Q = G[∪r

i=1NG[W ][V (Qi)]] and w′ =
∑r

i=1 ω(V (Qi)).
Find a p-boundaried graph (H0, y) ∈ G′p that is equivalent to (Q0, x) with respect to Fb

and denote by A0 the set of nonboundary vertices of H0, and find a p-boundaried graph
(H, y) ∈ G′p that is equivalent to (Q, x) with respect to Fb and denote by A the set of
nonboundary vertices of H. Then do the following.

Delete the vertices of V (Q0), . . . , V (Qr) from G and denote the obtained graph G′.
Set G = (((G′, x)⊕b (H0, y)), y)⊕b (H, y) and W = (W \ ∪r

i=0V (Qi)) ∪A0 ∪A.
Select arbitrarily u ∈ A0 and v ∈ A and modify ω as follows:

keep the weight same for every z ∈ V (G′) including the boundary vertices x1, . . . , xp,
set ω(z) = 0 for z ∈ (A0 \ {u}) ∪ (A \ {v}),
set ω(u) = ω(V (Q0)) and ω(v) = w′.

If V (Qi) ⊆ I for some i ∈ {1, . . . , r}, then set I = I \ (∪r
i=1V (Qi)) ∪A.

Assume now that we have an inclusion maximal set of components {Q1, . . . ,Qr} of
G[W ] − S with the same neighborhoods NG[W ] = {x1, . . . , xp} such that the p-boundaried
graphs (G[NG[W ][V (Qi)]], (x1, . . . , xp)) and (G[NG[W ][V (Qj)]], (x1, . . . , xp)) are equivalent
with respect to Fb for each i, j ∈ {1, . . . , p}. Suppose also that V (Qi) ∩ I = ∅ for i ∈
{1, . . . , r}. Let ω(V (Q1)) ≥ ω(V (Qi)) for every i ∈ {1, . . . , r}. Recall that if R is a nonempty
graph in a solution, then either R = Qi for some i ∈ {1, . . . , r} or ∪r

i=1V (Qi) ⊆ V (R). Recall
also that R is a solution for the instance of Maximum or w-Weighted Connected
Secluded F-Free Subgraph obtained by a border complementation with respect to
(∅, ∅, T, ∅) and we output it only if ω(V (R)) ≥ w. Since all (G[NG[W ][V (Qi)]], (x1, . . . , xp))
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are equivalent, we can assume that if R = Qi, then i = 1, because Q1 has maximum weight.
Then by Lemma 4, our final reduction rule is safe.

I Reduction Rule 3.6. Let L = {x1, . . . , xp} ⊆ S, p ≤ t, and let x = (x1, . . . , xp). Let
also Q0, . . . , Qr,r ≥ 0, be the components of G[W ] − S with NG[W ](V (Qi)) = L for all
i ∈ {0, . . . , r} such that ω(V (Q0)) ≥ ω(V (Qi)) for every i ∈ {1, . . . , r} and the p-boundaried
graphs (G[NG[W ][V (Qi)]], (x1, . . . , xp)) are pairwise equivalent with respect to Fb for i ∈
{0, . . . , r}. Let Q = G[∪r

i=1NG[W ][V (Qi)]] and w′ = min{w − 1,
∑r

i=1 ω(V (Qi))}. Find a
p-boundaried graph (H0, y) ∈ G′p that is equivalent to (Q0, x) with respect to Fb and denote
by A0 the set of nonboundary vertices of H0, and find a p-boundaried graph (H, y) ∈ G′p that
is equivalent to (Q, x) with respect to Fb and denote by A the set of nonboundary vertices
of H. Then do the following.

Delete the vertices of V (Q0), . . . , V (Qr) from G and denote the obtained graph G′.
Set G = (((G′, x)⊕b (H0, y)), y)⊕b (H, y) and W = (W \ ∪r

i=0V (Qi)) ∪A0 ∪A.
Select arbitrarily u ∈ A0 and v ∈ A and modify ω as follows:

keep the weight same for every z ∈ V (G′) including the boundary vertices x1, . . . , xp,
set ω(z) = 0 for z ∈ (A0 \ {u}) ∪ (A \ {v}),
set ω(u) = ω(V (Q0)) and ω(v) = w′.

The Reduction Rule 3.6 is applied for each inclusion maximal sets of components
{Q0, . . . , Qr} satisfying the conditions of the rule such that Reduction Rule 3.5 was not
applied to these components before.

Denote by (G∗, I∗, O∗, B∗, ω∗, t, T ) the instance of Bordered Maximum or w-Weight-
ed Connected Secluded F-Free Subgraph obtained from (G, I, O, B̂, ω, t, T ) by Re-
duction Rules 3.1-3.6. Notice that all modifications were made for G[W ]. Denote by W ∗

the set of vertices of the graph obtained from the initial G[W ] by the rules. Observe that
there are at most 2|S| subsets L of S such that there is a component Q of G[W ] − S with
NG[W ](V (Q)) = L. If |L| > t, then all Q with NG[W ](V (Q)) = L are replaced by one
graph by Reduction Rule 3.4 and the number of vertices of this graph is at most |L|c by
Lemma 5 and the definition of c. If |L| ≤ t, then we either apply Reduction Rule 3.5 for
all Q with NG[W ](V (Q)) = L and replace these components by two graph with at most
|L|c vertices or we apply Reduction Rule 3.6. For the latter case, observe that there are
at most tc partitions of the components Q with NG[W ](V (Q)) = L into equivalence classes
with respect to Fb by Lemma 5. Then we replace each class by two graphs with at most
|L|c vertices. Taking into account the vertices of S, we obtain the following upper bound for
the size of W ∗: |W ∗| ≤ 2|S|2|S|ctc + |S|. By (1) and (2), |W ∗| ≤ q. Recall that |W \U | > q.
Therefore, |V (G∗)| < |V (G)|. We use it and solve Bordered Maximum or w-Weighted
Connected Secluded F-Free Subgraph for (G∗, I∗, O∗, B∗, ω∗, t, T ) recursively.

Following the general scheme from [3], we show that the total running time is 222O(t log t)

·
nO(1). J

It remains to observe that Lemma 10 immediately implies Theorem 1.

4 Concluding remarks

In addition to our general result from the previous section, we are also able to show that
Connected Secluded Π-Subgraph is FPT parameterized by t, when Π is defined by an
infinite set of forbidden induced subgraphs, namely, the set of all cycles. In other words,
a graph has the property Π considered if it is a forest. Using the recursive understanding
technique, we proved that the problem can be solved in time 22O(t log t) · nO(1). We believe
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that the same approach can be used for other graph properties Π as well. Nevertheless, the
drawback of applying the recursive understanding technique is that we get double or even
triple-exponential dependence on the parameter in our FPT algorithms. It is natural to ask
whether we can do better for some properties Π. This can in fact be done when Π is the
property of being a complete graph, a star, a path or a d-regular graph.

Finally, we conclude by briefly touching upon the kernelization question. For Con-
nected Secluded Π-Subgraph, we hardly can hope to obtain polynomial kernels as
it could be easily proved by applying the results of Bodlaender et al. [1] that, unless
NP ⊆ coNP /poly, Connected Secluded Π-Subgraph has no polynomial kernel when
parameterized by t if Connected Secluded Π-Subgraph is NP-complete. Nevertheless,
Connected Secluded Π-Subgraph can have a polynomial Turing kernel. In particular,
we are able to show that Connected Secluded Π-Subgraph has a polynomial Turing
kernel if Π is the property of being a star.
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