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Abstract
Lubiw showed that several variants of Graph Isomorphism are NP-complete, where the solutions
are required to satisfy certain additional constraints [12]. One of these, called Isomorphism
With Restrictions, is to decide for two given graphs X1 = (V,E1) and X2 = (V,E2) and a
subset R ⊆ V × V of forbidden pairs whether there is an isomorphism π from X1 to X2 such
that iπ 6= j for all (i, j) ∈ R. We prove that this problem and several of its generalizations are in
fact in FPT:

The problem of deciding whether there is an isomorphism between two graphs that moves
k vertices and satisfies Lubiw-style constraints is in FPT, with k and |R| as parameters. The
problem remains in FPT even if a CNF of such constraints is allowed. As a consequence of
the main result it follows that the problem to decide whether there is an isomorphism that
moves exactly k vertices is in FPT. This solves a question left open in [1].
When the number of moved vertices is unrestricted, finding isomorphisms that satisfy a CNF
of Lubiw-style constraints is in FPTGI.
Checking if there is an isomorphism between two graphs that has complexity t is also in FPT
with t as parameter, where the complexity of a permutation π is the Cayley measure defined
as the minimum number t such that π can be expressed as a product of t transpositions.
We consider a more general problem in which the vertex set of a graph X is partitioned into
Red and Blue, and we are interested in an automorphism that stabilizes Red and Blue and
moves exactly k vertices in Blue, where k is the parameter. This problem was introduced
in [5], and in [1] we showed that it is W[1]-hard even with color classes of size 4 inside Red.
Now, for color classes of size at most 3 inside Red, we show the problem is in FPT.

In the non-parameterized setting, all these problems are NP-complete. Also, they all generalize
in several ways the problem to decide whether there is an isomorphism between two graphs that
moves at most k vertices, shown to be in FPT by Schweitzer [13].
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1 Introduction

The Graph Isomorphism problem (GI) consists in deciding whether two given input graphs
are isomorphic, i.e., whether there is a bijection between the vertex sets of the two graphs
that preserves the adjacency relation. It is an intensively researched algorithmic problem for
over four decades, culminating in Babai’s recent quasi-polynomial time algorithm [2].

There is also considerable work on the parameterized complexity of GI. For example,
already in 1980 it was shown [7] that GI, parameterized by color class size, is fixed-parameter
tractable (FPT). It is also known that GI, parameterized by the eigenvalue multiplicity of
the input graph, is in FPT [3]. More recently, GI, parameterized by the treewidth of the
input graph, is shown to be in FPT [11].

In a different line of research, Lubiw [12] has considered the complexity of GI with
additional constraints on the isomorphism. Exploring the connections between GI and the
NP-complete problems, Lubiw defined the following version of GI.
Isomorphism With Restrictions: Given two graphs X1 = (V1, E1) and X2 = (V2, E2)

and a set of forbidden pairs R ⊆ V1 × V2, decide whether there is an isomorphism π

from X1 to X2 such that iπ 6= j for all (i, j) ∈ R.
When X1 = X2, the problem is to check if there is an automorphism that satisfies these
restrictions. Lubiw showed that the special case of testing for fixed-point-free automorphisms
is NP-complete. Klavík et al. recently reexamined Isomorphism With Restrictions [10].
They show that it remains NP-complete when restricted to graph classes for which GI is
as hard as for general graphs. Conversely, they show that it can be solved in polynomial
time for several graph classes for which the isomorphism problem is known to be solvable
in polynomial time by combinatorial algorithms, e.g. planar graphs and bounded treewidth
graphs. However, they also show that the problem remains NP-complete for bounded color
class graphs, where an efficient group theoretic isomorphism algorithm is known.

A different kind of constrained isomorphism problem was introduced by Schweitzer [13].
The weight (or support size) of a permutation π ∈ Sym(V ) is |{i ∈ V | iπ 6= i}|. Schweitzer
showed that the problem of testing if there is an isomorphism π of weight at most k between
two n-vertex input graphs in the same vertex set can be solved in time kO(k) poly(n). Hence,
the problem is in FPT with k as parameter. Schweitzer’s algorithm exploits interesting
properties of the structure of an isomorphism π. Based on Lubiw’s reductions [12], it is not
hard to see that the problem is NP-complete when k is not treated as parameter.

In this paper we consider the problem of finding isomorphisms with additional constraints
in the parameterized setting. In our main result we formulate a graph isomorphism/automor-
phism problem with additional constraints that generalizes Lubiw’s setting as follows. For a
graph X = (V,E), let π ∈ Aut(X) be an automorphism of X. We say that a permutation
π ∈ Sym(V ) satisfies a formula F over the variables in Var(V ) = {xu,v | u, v ∈ V } if F is
satisfied by the assignment that has xu,v = 1 if and only if uπ = v. For example, the
conjunction

∧
u∈V ¬xuu expresses the condition that π is fixed-point-free. We define:

Exact-CNF-GI: Given two graphs X1 = (V,E1) and X2 = (V,E2), a CNF formula F over
Var(V ), and k ∈ N, decide whether there is an isomorphism from X1 to X2 that has
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weight exactly k and satisfies F . The parameter is |F |+ k, where |F | is the number of
variables used in F .

In Section 4, we first give an FPT algorithm for Exact-CNF-GA, the automorphism
version of this problem. The algorithm uses an orbit shrinking technique that allows us to
transform the input graph into a graph with bounded color classes, preserving the existence
of an exact weight k automorphism that satisfies the formula F. The bounded color class
version is easy to solve using color coding; see Section 3 for details. Building on this, we
show that Exact-CNF-GI is also in FPT. In particular, this allows us to efficiently find
isomorphisms of weight exactly k, a problem left open in [1], and extends Schweitzer’s result
mentioned above to the exact case. In our earlier paper [1] we have shown that the problem of
exact weight k automorphism is in FPT using a simpler orbit shrinking technique which does
not work for exact weight k isomorphisms. In this paper, we use some extra group-theoretic
machinery to obtain a more versatile orbit shrinking.

In Section 5, we consider the problem of computing graph isomorphisms of complexity
exactly t: The complexity of a permutation π ∈ Sym(V ) is the minimum number of
transpositions whose product is π. Checking for automorphisms or isomorphisms of complexity
exactly t is NP-complete in the non-parameterized setting. We show that the problem is
in FPT with t as parameter. Again, the “at most t” version of this problem was already
shown to be in FPT by Schweitzer [13] as part of his algorithmic strategy to solve the weight
at most k problem. Our results in Sections 4 and 5 also hold for hypergraphs when the
maximum hyperedge size is taken as additional parameter.

In Section 6, we examine a different restriction on the automorphisms being searched for.
Consider graphs X = (V,E) with vertex set partitioned into Red and Blue. The Colored
Graph Automorphism problem (defined in [5]; we denote it Col-GA), is to check if X has
an automorphism that respects the partition and moves exactly k Blue vertices. We showed
in [1] that this problem is W[1]-hard. In our hardness proof the orbits of the vertices in the
Red part of the graph have size at most 4, while the ones for the Blue vertices have size 2.
We show here that this cannot be restricted any further: If the input graph has Red further
partitioned into color classes of size at most 3 each, then the problem to test whether there is
an automorphism moving exactly k Blue vertices can be solved in FPT (with parameter k).
The Blue part of the graph remains unconstrained. Observe that Schweitzer’s problem [13]
coincides with the special case of this problem where there are no Red vertices. This implies
that the non-parameterized version of Col-GA is NP-complete (even when X has only Blue
vertices). Similarly, finding weight k automorphisms of a hypergraph reduces to Col-GA by
taking the incidence graph, where the original vertices become Blue and the vertices for
hyperedges are Red; note that this yields another special case, where both Red and Blue
induce the empty graph, respectively.

2 Preliminaries

We use standard permutation group terminology, see e.g. [4]. Given a permutation σ ∈
Sym(V ), its support is supp(σ) = {u ∈ V | uσ 6= u} and its (Hamming) weight is |supp(σ)|.
The complexity of σ (sometimes called its Cayley weight) is the minimum number t such that
σ can be written as the product of t transpositions.

Let G ≤ Sym(V ) and π ∈ Sym(V ); this includes the case π = id. A permutation
σ ∈ Gπ \ {id} has minimal complexity in Gπ if for every way to express σ as the product of
a minimum number of transpositions σ = τ1 · · · τcompl(σ) and every i ∈ {2, . . . , compl(σ)} it
holds that τi · · · τcompl(σ) /∈ Gπ. The following lemma observes that every element of Gπ can
be decomposed into minimal-complexity factors.
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I Lemma 2.1 [1, Lemma 2.2]. Let Gπ be a coset of a permutation group G and let σ ∈
Gπ \ {id}. Then for some ` ≥ 1 there are σ1, . . . , σ`−1 ∈ G with minimal complexity in G

and σ` ∈ Gπ with minimal complexity in Gπ such that σ = σ1 · · ·σ` and supp(σi) ⊆ supp(σ)
for each i ∈ {1, . . . , `}.

An action of a permutation group G ≤ Sym(V ) on a set V ′ is a group homomorphism
h : G → Sym(V ′); we denote the image of G under h by G(V ′). For u ∈ V , we denote
its stabilizer by Gu = {π ∈ G | uπ = u}. For U ⊆ V , we denote its pointwise stabilizer
by G[U ] = {π ∈ G | ∀u ∈ U : uπ = u} and its setwise stabilizer by G{U} = {π ∈ G | Uπ = U}.
For S ⊆ P(V ), we let GS = {π ∈ G | ∀U ∈ S : Uπ = U}.

A hypergraph X = (V,E) consists of a vertex set V and a hyperedge set E ⊆ P(V ). Graphs
are the special case where |e| = 2 for all e ∈ E. The degree of a vertex v ∈ V is |{e ∈ E |v ∈ e}|.
A (vertex) coloring of X is a partition of V into color classes C = (C1, . . . , Cm). The color
classes C are b-bounded if |Ci| ≤ b for all i ∈ [m]. An isomorphism between two hypergraphs
X = (V,E) and X ′ = (V ′, E′) (with color classes C = (C1, . . . , Cm) and C′ = (C ′1, . . . , C ′m)) is
a bijection π : V → V ′ such that E′ =

{
{π(v)|v ∈ e}

∣∣e ∈ E} (and C ′i =
{
π(v)

∣∣v ∈ Ci}). The
isomorphisms from X to X ′ form a coset that we denote by Iso(X,X ′). The automorphisms
of a hypergraph X are the isomorphisms from X to itself; they form a group which we denote
by Aut(X).

3 Bounded color class size

To show that Exact-CNF-GA for hypergraphs with b-bounded color classes can be solved
in FPT, we recall our algorithm for exact weight k automorphisms of bounded color class
hypergraphs [1] and show how it can be adapted to the additional constraints given by the
input formula.

IDefinition 3.1. LetX = (V,E) be a hypergraph with color class set C = {C1, . . . , Cm}.
(a) For a subset C′ ⊆ C, we say that a color-preserving permutation π ∈ Sym(V ) C′-satisfies

a CNF formula F over Var(V ) if every clause of F contains a literal xu,v or ¬xu,v with
u ∈

⋃
C′ that is satisfied by π.

(b) For a color-preserving permutation π ∈ Sym(V ), let C[π] = {Ci ∈ C | ∃v ∈ Ci : vπ 6= v}
be the subset of color classes that intersect supp(π). For a subset C′ ⊆ C[π], we define
the permutation πC′ ∈ Sym(V ) as

πC′(v) =
{
vπ, if v ∈

⋃
C′,

v, if v 6∈
⋃
C′.

Note that πC[π] = π.
(c) A color-preserving automorphism σ 6= id of X is said to be color-class-minimal, if for

every set C′ with ∅ ( C′ ( C[σ], the permutation σC′ is not in Aut(X).

I Lemma 3.2. Let X = (V,E) be a hypergraph with color class set C = {C1, C2, . . . , Cm}.
For ∅ 6= C′ ⊆ C and a CNF formula F over Var(V ), the following statements are equivalent:

There is a nontrivial automorphism σ of X with C[σ] = C′ that satisfies F.
C′ can be partitioned into C1, . . . , C` and F (seen as a set of clauses) can be partitioned into
CNF formulas F0, . . . , F` such that F0 is (C \C′)-satisfied by id and for each i ∈ {1, . . . , `}
there is a color-class-minimal automorphism σi of X with C[σi] = Ci that Ci-satisfies Fi.

Moreover, the automorphisms σ and σi can be chosen to satisfy σi = σCi for 1 ≤ i ≤ `,
respectively.



V. Arvind, J. Köbler, S. Kuhnert, and J. Torán 2:5

In [1] an algorithm is presented that, when given a hypergraph X on vertex set V with
b-bounded color classes and k ∈ N, computes all color-class-minimal automorphisms of X
that have weight exactly k in O

(
(kb!)O(k2) poly(N)

)
time. We use it as a building block for

the following algorithm (see line 5).

Algorithm 1 Color-Exact-CNF-HGAb(X, C, k, F )

1 Input: A hypergraph X = (V,E) with b-bounded color classes C = {C1, . . . , Cm},
a parameter k ∈ N, and a CNF formula F over Var(V )

2 Output: A color-preserving automorphism σ of X with |supp(σ)| = k that satisfies F,
or ⊥ if none exists

3 A0 = {id}
4 for i ∈ {1, . . . , k} do
5 Ai ← {σ ∈ Aut(X) | σ is color-class-minimal and has weight i} // see [1]
6 for h ∈ HC,k do // HC,k is the perfect family of hash functions h : C → [k] from [6]
7 for ` ∈ {1, . . . , k}, h′ : [k]→ [`] do
8 for (k1, . . . , k`) ∈ {0, . . . , k}` with

∑
`
i=1ki = k do

9 for each partition of the clauses of F into F0, . . . , F` do
10 if ∀i ∈ {1, . . . , `} : ∃σi ∈ Aki : supp(σi) ⊆

⋃
(h′ ◦ h)−1(i) and Fi is

C[σi]-satisfied by σi, and F0 is (C \
⋃
`
i=1C[σi])-satisfied by id then

11 return σ = σ1 · · ·σ`
12 return ⊥

I Theorem 3.3. Given a hypergraph X = (V,E) with b-bounded color classes C, a CNF for-
mula F over Var(V ), and k ∈ N, the algorithm Color-Exact-CNF-HGAb(X, C, k, F ) computes a
color-preserving automorphism σ of X of weight k that satisfies F in (kb!)O(k2)kO(|F |) poly(N)
time (where N is the size of X), or determines that none exists.

Proof. If the algorithm returns σ = σ1 · · ·σ`, we know σi ∈ Aki
and supp(σi) ⊆

⋃
(h′◦h)−1(i).

As these sets are disjoint, we have |supp(σ)| =
∑`
i=1|supp(σi)| = k, and Lemma 3.2 implies

that σ satisfies F.
We next show that the algorithm does not return ⊥ if there is an automorphism π of X

that has weight k and satisfies F. By Lemma 3.2, we can partition C[π] into C1, . . . , C` and
the clauses of F into F0 . . . , F` such that F0 is (C \ C[π])-satisfied by id and, for 1 ≤ i ≤ `,
the permutation πi = πCi is a color-class-minimal automorphism of X that C[πi]-satisfies F .
Now consider the iteration of the loop where h is injective on C[π]; such an h must exist as it
is chosen from a perfect hash family. Now let h′ : [k]→ [`] be a function with h′

(
h(C)

)
= i

if C ∈ C[πi]; such an h′ exists because h is injective on C[π]. In the loop iterations where
h′ and the partition of F into F0 . . . , F` is considered, the condition on line 10 is true (at
least) with σi = πi, so the algorithm does not return ⊥.

Line 5 can be implemented by using the algorithm ColoredAutk,b(X) from [1] which
runs in O

(
(kb!)O(k2) poly(N)

)
time, and this also bounds |Ai|. As |C| ≤ n, the perfect hash

family HC,k has size 2O(k) log2 n, and can also be computed in this time. The inner loops
take at most kk, kk and (k + 1)|F | iterations, respectively. Together, this yields a runtime of
(kb!)O(k2)kO(|F |) poly(N). J

4 Exact weight

In this section, we show that finding isomorphisms that have an exactly prescribed weight
and satisfy a CNF formula is fixed parameter tractable. In fact, we show that this is true
even for hypergraphs, when the maximum hyperedge size d is taken as additional parameter.
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Exact-CNF-HGI: Given two hypergraphs X1 = (V,E1) and X2 = (V,E2) with hyperedge
size bounded by d, a CNF formula F over Var(V ), and k ∈ N, decide whether there is an
isomorphism from X1 to X2 of weight k that satisfies F . The parameter is |F |+ k + d.

Our approach is to reduce Exact-CNF-HGI to Exact-CNF-HGA (the analogous
problem for automorphisms), which we solve first.

We require some permutation group theory definitions. Let G ≤ Sym(V ) be a permutation
group. The group G partitions V into orbits: V = Ω1 ∪ Ω2 · · · ∪ Ωr. On each orbit Ωi,
the group G acts transitively. A subset ∆ ⊆ Ωi is a block of the group G if for all π ∈ G
either ∆π = ∆ or ∆π ∩∆ = ∅. Clearly, Ωi is itself a block, and so are all singleton sets.
These are trivial blocks. Other blocks are nontrivial. If G has no nontrivial blocks it is
primitive. If G is not primitive, we can partition Ωi into blocks Ωi = ∆1∪∆2∪· · ·∪∆s, where
each ∆j is a maximal nontrivial block. Then the group G acts primitively on the block system
{∆1,∆2, . . . ,∆s}. In this action, a permutation π ∈ G maps ∆i to ∆π

i = {uπ | u ∈ ∆i}.
The following two theorems imply that every primitive group on a sufficiently large set V

contains the alternating group Alt(V ) = {π ∈ Sym(G) | compl(π) is even}.

I Theorem 4.1 [4, Theorem 3.3A]. Suppose G ≤ Sym(V ) is a primitive subgroup of Sym(V ).
If G contains an element π such that |supp(π)| = 3 then G contains Alt(V ). If G contains
an element π such that |supp(π)| = 2 then G = Sym(V ).

I Theorem 4.2 [4, Theorem 3.3D]. If G ≤ Sym(V ) is primitive with G /∈ {Alt(V ), Sym(V )}
and contains an element π such that |supp(π)| = m (for some m ≥ 4) then |V | ≤ (m− 1)2m.

The following lemma implies that the alternating group in a large orbit survives fixing
vertices in a smaller orbit.

I Lemma 4.3. Let G ≤ Sym(Ω1 ∪ Ω2) be a permutation group such that Ω1 is an orbit
of G, and |Ω1| ≥ 5. Recall that G(Ωi) denotes the image of G under its action on Ωi.
Suppose G(Ω1) ∈ {Alt(Ω1), Sym(Ω1)} and |G(Ω1)| > |G(Ω2)|. Then for some subgroup H of
G(Ω2), the group G contains the product group Alt(Ω1) ×H. In particular, the pointwise
stabilizer G[Ω2] contains the subgroup Alt(Ω1)× {id}.

The effect of fixing vertices of some orbit on other orbits of the same size depends on
how the group relates these orbits to each other.

I Definition 4.4. Two orbits Ω1 and Ω2 of a permutation group G ≤ Sym(V ) are linked if
there is a group isomorphism σ : G(Ω1)→ G(Ω2) with G(Ω1∪Ω2) =

{
(ϕ, σ(ϕ))

∣∣ϕ ∈ G(Ω1)
}
.

(This happens if and only if both G(Ω1) and G(Ω2) are isomorphic to G(Ω1 ∪ Ω2).)

We next show that two large orbits where the group action includes the alternating group
are (nearly) independent unless they are linked.

I Lemma 4.5. Suppose G ≤ Sym(V ) where V = Ω1 ∪ Ω2 is its orbit partition such that
|Ωi| ≥ 5 and G(Ωi) ∈ {Alt(Ωi), Sym(Ωi)} for i = 1, 2. Then either Ω1 and Ω2 are linked
in G, or G contains Alt(Ω1)×Alt(Ω2).

The last ingredient for our algorithm is the observation that when there are two linked
orbits where the group action includes the alternating group, fixing a vertex in one orbit is
equivalent to fixing some vertex of the other orbit.

I Lemma 4.6 [4, Theorem 5.2A]. Let n = |V | > 9. Suppose G is a subgroup of Alt(V )
of index strictly less than

(
n
2
)
. Then, for some point u ∈ V , the group G is the pointwise

stabilizer subgroup Alt(V )u.
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I Corollary 4.7. Let Ω1 and Ω2 be two linked orbits of a permutation group G ≤ Sym(V )
with Alt(Ω1) ≤ G(Ω1) and |Ω1| = |Ω2| > 9. Then for each u ∈ Ω1 there is a v ∈ Ω2 such
that Gu = Gv.

Algorithm 2 Exact-CNF-HGAd(X, k, F )

1 Input: A hypergraph X with hyperedge size bounded by d, a parameter k and a formula F
2 Output: An automorphism σ of X with |supp(σ)| = k that satisfies F , or ⊥ if none exists
3 T ← the vertices of X that are mentioned in F
4 G←

〈{
σ ∈ Aut(X)

∣∣ σ has minimal complexity in Aut(X) and |supp(σ)| ≤ k
}〉

// see [1, Algorithm 3]
5 b← k

2 · max{(k − 1)2k, |T |+ k, 9}
6 while G contains an orbit of size more than b do
7 repeat
8 O ← the set of all G-orbits
9 for Ω ∈ O do

10 B(Ω)← a maximal block system of Ω in G
11 if ∃∆ ∈ B(Ω) : |∆| > k

2 or |B(Ω)| > (k − 1)2k ∧Alt
(
B(Ω)

)
� G

(
B(Ω)

)
then

12 G← GB(Ω) // the setwise stabilizer of all ∆ ∈ B(Ω)
13 until G remains unchanged
14 choose Ωmax ∈ O such that |B(Ωmax)| ≥ |B(Ω)| for all Ω ∈ O
15 if |B(Ωmax)| > max{(k − 1)2k, |T |+ k, 9} then
16 H ← G[T ] // the pointwise stabilizer of T
17 ΩH ← the largest H-orbit that is contained in Ωmax
18 BH ←

{
∆ ∈ B(Ωmax)

∣∣∆ ⊆ ΩH
}

19 choose ∆ ∈ BH
20 G← G{∆} // the setwise stabilizer of ∆
21 O ← the set of all G-orbits
22 return Color-Exact-CNF-HGAb(X,O, k, F ) // see Algorithm 1

I Theorem 4.8. Algorithm 2 solves Exact-CNF-HGA in time
(
d(kk+ |F |)!

)O(k2) poly(N).

Proof sketch. Suppose there is some π ∈ Aut(X) of weight exactly k that satisfies F . By
Lemma 2.1, the automorphism π can be decomposed as a product of minimal-complexity
automorphisms of weight at most k, which implies π ∈ G after line 4. To show that whenever
the algorithm shrinks G, some weight k automorphism of X that satisfies F survives, we
first consider the shrinking in line 12: If Ω is an orbit with |∆| > k/2 for some (and thus all)
∆ ∈ B(Ω), then no block of Ω is moved by π. If |B(Ω)| > (k − 1)2k and G

(
B(Ω)

)
does not

contain Alt
(
B(Ω)

)
, then Theorems 4.1 and 4.2 imply that π setwise stabilizes all ∆ ∈ B(Ω)

and thus survives the shrinking. The other shrinking of G, which occurs in line 20, can only
happen if Alt

(
B(Ωmax)

)
≤ G

(
B(Ωmax)

)
. Let T =

⋃
Ω∈O{∆ ∈ B(Ω) |∆ ∩ T 6= ∅} be the set

of all blocks with vertices from T and let R = GT be the setwise stabilizer of these blocks.
Note that H ≤ R ≤ G. Using Lemmas 4.3 and 4.5 and Corollary 4.7, it can be shown that a
sufficiently large part of Alt

(
B(Ωmax)

)
survives in R and also in H.

I Claim. BH is a maximal block system for the orbit ΩH in H. Moreover, |BH | > k and
Alt(BH) ≤ H(BH).

Building on this, it can be shown that when G and ∆ are as in line 20, then for any π ∈ G
of weight k that satisfies F , there is a π′ ∈ G{∆} of weight k that satisfies F . J
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2:8 Finding Constrained Small Weight Isomorphisms in FPT

We now turn to Exact-CNF-HGI. Given a formula F over Var(V ) and ψ ∈ Sym(V ),
let ψ(F ) denote the formula obtained from F by replacing each variable xuv by xuψ(v).

I Lemma 4.9. A product σ = ϕπ ∈ Sym(V ) satisfies a formula F over Var(V ) if and only
if ϕ satisfies π−1(F ).

Algorithm 3 Exact-CNF-HGId(X1, X2, k, F )

1 Input: Two hypergraphs X1 and X2 on vertex set V with hyperedge size bounded by d,
a parameter k ∈ N and a CNF formula F over Var(V )

2 Output: An isomorphism σ from X1 to X2 with |supp(σ)| = k that satisfies F ,
or ⊥ if none exists

3 π ← some isomorphism from X1 to X2 with |supp(π)| ≤ k // see [1, Theorem 3.8]
4 for U ⊆ supp(π) do // we will force u /∈ supp(ϕπ) for u ∈ U
5 for M ⊆ supp(π) \ U do // we will force u ∈ supp(ϕ) ∩ supp(ϕπ) for u ∈M
6 I ← supp(π) \ (U ∪M) // we will force u /∈ supp(ϕ) for u ∈ I
7 F ′ ← π−1(F ) ∧

∧
u∈U xuπ−1(u) ∧

∧
u∈M (¬xuπ−1(u) ∧ ¬xu,u) ∧

∧
u∈I xuu

8 k′ ← k − |I|+ |U |
9 ϕ← Exact-CNF-HGAd(X1, k

′, F ′) // see Algorithm 2
10 if ϕ 6= ⊥ then return σ = ϕπ

11 return ⊥

I Theorem 4.10. Algorithm 3 solves Exact-CNF-HGI in time
(
d(kk+|F |)!

)O(k2) poly(N).

Proof. Suppose Algorithm 3 returns a permutation σ = ϕπ. Then π is an isomorphism
from X1 to X2 and ϕ is an automorphism of X1 that satisfies F ′ and has weight k′. As
ϕ satisfies π−1(F ), Lemma 4.9 implies that σ satisfies F . The additional literals in F ′ ensure
supp(σ) = (supp(ϕ) \ U) ∪ I and thus

∣∣supp(σ)
∣∣ = k′ − |U |+ |I| = k.

Now suppose there is an isomorphism σ from X1 to X2 that satisfies F and has weight k.
Let π be the isomorphism computed on line 3. Then ϕ = σπ−1 is an automorphism
of X1; it satisfies π−1(F ) by Lemma 4.9. In the iteration of the loops where U =

{
u ∈

supp(π)∩supp(ϕ)
∣∣uϕπ = u

}
andM =

(
supp(π)∩supp(ϕ)

)
\U , it holds that ϕ has weight k′

and satisfies F ′. Thus Exact-CNF-HGAd(X1, k
′, F ′) does not return ⊥.

The isomorphism π can be found in (dk)O(k2) poly(N) time [1, Theorem 3.8]. The loops
have at most 3k iterations, and Exact-CNF-HGAd takes

(
d(kk + |F |)!

)O(k2) poly(N) time. J

5 Exact complexity

The complexity of a permutation π ∈ Sym(V ) can be bounded by functions of its weight:∣∣supp(π)
∣∣− 1 ≤ compl(π) ≤ 2 ·

∣∣supp(π)
∣∣. However, there is no direct functional dependence

between these two parameters. And while the algorithms of Sections 3 and 4 can be modified
to find isomorphisms of exactly prescribed complexity, we give an independent and more
efficient algorithm in this section.

The main ingredient is an analysis of decompositions σ = σ1 · · ·σ` of σ ∈ Sym(V )
into σi ∈ Sym(V ) \ {id} (for 1 ≤ i ≤ `) with compl(σ) =

∑`
i=1 compl(σi); we call such

decompositions complexity-additive. For example, the decomposition into complexity-minimal
permutations provided by Lemma 2.1 is complexity-additive.

For a sequence of permutations σ1, . . . , σ` ∈ Sym(V ) and a coloring c : V → [k], its colored
cycle graph CGc(σ1, . . . , σ`) is the incidence graph between

⋃`
i=1 supp(σi) and the σi-orbits



V. Arvind, J. Köbler, S. Kuhnert, and J. Torán 2:9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 101 2

3

1 3

Figure 1 The colored cycle graph CGid
(
(1, 2, 3)(5, 6, 7), (3, 4), (3, 5)(8, 9, 10)

)
; the colors are

depicted next to the vertices.

of size at least 2, i.e., the cycles of σi, for 1 ≤ i ≤ `. We call the former primal vertices and
the latter cycle-vertices. Each primal vertex v ∈ V is colored by c(v), and each cycle-vertex
that corresponds to a cycle of σi is colored by i. (Note that a vertex of this graph is a
cycle-vertex if and only if it has odd distance to some leaf.) See Figure 1 for an example.

I Lemma 5.1. Let σ ∈ Sym(V ), let σ = σ1 · · ·σ` be a complexity-additive decomposition,
and let c : V → [k] be a coloring. Then CGc(σ1, . . . , σ`) is a forest.

A cycle pattern P is a colored cycle graph CGc(σ1, . . . , σ`) where all primal vertices have
different colors. A complexity-additive decomposition σ′ = σ′1 · · ·σ′` of a permutation σ′ ∈
Sym(V ) weakly matches P if there is a coloring c′ : V → [k] and a surjective color-preserving
homomorphism ϕ from CGc′(σ′1, . . . , σ′`) to P where ϕ(u) = ϕ(v) for u 6= v implies that
u and v are both primal vertices and belong to different σ′-orbits.

I Lemma 5.2. For any t ∈ N, there is a set Pt of tO(t) cycle patterns such that a permuta-
tion σ ∈ Sym(V ) has complexity t if and only if it has a complexity-additive decomposition
σ = σ1 · · ·σ` that weakly matches a pattern in Pt. Moreover, Pt can be computed in tO(t) time.

For a pattern P , let Pi denote the subgraph of P induced by the cycle-vertices of color i
and their neighbors. A permutation σ ∈ Sym(V ) and a coloring c : V → [k] realize color i
of P if there is an isomorphism ϕ from CGc(σ) to Pi that preserves colors of primal vertices.

Algorithm 4 Exact-Complexity-HGId(X, Y, t)

1 Input: Two hypergraphs X and Y on vertex set V with hyperedge size bounded by d,
and t ∈ N

2 Output: An isomorphism σ from X to Y with compl(σ) = t, or ⊥ if none exists
3 A←

{
σ ∈ Aut(X)

∣∣ σ has minimal complexity in Aut(X) and |supp(σ)| ≤ 2t
}

// see [1, Algorithm 3]
4 if X = Y then I ← A else
5 I ←

{
σ ∈ Iso(X,Y )

∣∣ σ has minimal complexity in Iso(X,Y ) and |supp(σ)| ≤ 2t
}

// see [1, Algorithm 2]
6 for P ∈ Pt do // see Lemma 5.2
7 k ← the number of primal vertices in P
8 `← the number of colors of cycle-vertices in P
9 for h ∈ HV,k do // HV,k is the perfect family of hash functions h : V → [k] from [6]

10 if there are σ1, . . . , σ`−1 ∈ A and σ` ∈ I s.t. (σi, h) realize color i of P then
11 return σ = σ1 · · ·σ`
12 return ⊥

I Theorem 5.3. Given two hypergraphs X and Y of hyperedge size at most d and t ∈ N,
the algorithm Exact-Complexity-HGId(X,Y, t) finds σ ∈ Iso(X,Y ) with compl(σ) = t (or
determines that there is none) in O

(
(dt)O(t2) poly(N)

)
time.

IPEC 2017
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Proof. Suppose there is some σ ∈ Iso(X,Y ) with compl(σ) = t. Lemma 2.1 gives the
complexity-additive decomposition σ = σ1 · · ·σ` into minimal-complexity permutations
σ1, . . . , σ`−1 ∈ Aut(X) and σ` ∈ Iso(X,Y ); all of them have complexity at most t. By the
correctness of the algorithms from [1], we have σ1, . . . , σ`−1 ∈ A and σ` ∈ I. As HV,k is a
perfect hash family, it contains some function h whose restriction to supp(σ) is injective.
Then CGh(σ1, . . . , σ`) is isomorphic to some P ∈ Pt by Lemma 5.2. Thus (σi, h) realize
color i of P , for 1 ≤ i ≤ `, so the algorithm does not return ⊥.

Now suppose that the algorithm returns σ = σ1 · · ·σ` with σ1, . . . , σ`−1 ∈ A ⊆ Aut(X)
and σ` ∈ I ⊆ Iso(X,Y ). This clearly implies σ ∈ Iso(X,Y ). To show compl(σ) = t, we
observe that the algorithm only returns σ if there is a pattern P ∈ Pt whose cycle-vertices
have ` colors and which contains k primal vertices such that there is a hash function h ∈ HV,k
with the property that σi and h realize color i of P , for i ∈ [`]. In particular, there is an
isomorphism ϕi from CGh(σi) to Pi that preserves colors of primal vertices. As the primal
vertices of P all have different colors and as P is a forest by Lemma 5.1, it follows that the
decomposition σ = σ1 · · ·σ` is complexity-additive. Now consider the function ϕ =

⋃`
i=1 ϕi;

it is well-defined, as v ∈ supp(ϕi) ∩ supp(ϕj) implies ϕi(v) = ϕj(v) because P contains only
one primal vertex of color h(v). It is surjective, as every vertex of P occurs in at least
one Pi. It is a homomorphism from Pσ = CGh(σ1, . . . , σ`) to P , as every edge occurs in the
support of one of the isomorphisms ϕi. Also, ϕ(u) = ϕ(v) for u 6= v implies that u and v
are in different connected components of Pσ, as P is a forest; consequently u and v are in
different orbits of σ. Thus σ = σ1 · · ·σ` weakly matches P . By Lemma 5.2 it follows that
compl(σ) = t.

It remains to analyze the runtime. The algorithms used to compute A and I each
take O

(
(dt)O(t2) poly(N)

)
time [1]. The pattern set Pt can be computed in tO(t) time by

Lemma 5.2. As k ≤ 2t, the perfect hash family HV,k has size 2O(t) log2 n. As ` ≤ t, this gives
a total runtime of O

(
(dt)O(t2) poly(N)

)
. J

6 Colored Graph Automorphism

In [1] we showed that the following parameterized version of Graph Automorphism is
W[1]-hard. It was first defined in [5] and is a generalization of the problem studied by
Schweitzer [13].

Col-GA: Given a graph X with its vertex set partitioned as Red∪Blue, and a parameter k,
decide if there is a partition-preserving automorphism that moves exactly k Blue vertices.

For an automorphism π ∈ Aut(X), we will refer to the number of Blue vertices moved
by π as the Blue weight of π. In this section, we show that Col-GA is in FPT when
restricted to colored graphs where the color classes inside Red have size at most 3.

Given an input instance X = (V,E) with vertex partition V = Red ∪Blue such that
Red is refined into color classes of size at most 3 each, our algorithm proceeds as follows.

Step 1: color-refinement. X already comes with a color classification of vertices (Red and
Blue, and within Red color classes of size at most 3 each; within Blue there may be
color classes of arbitrary size). The color refinement procedure keeps refining the coloring
in steps until no further refinement of the vertex color classes is possible. In a refinement
step, if two vertices have identical colors but differently colored neighborhoods (with the
multiplicities of colors counted), then these vertices get new different colors.
At the end of this refinement, each color class C induces a regular graph X[C], and each
pair (C,D) of color classes induces a semiregular bipartite graph X[C,D].
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Step 2: local complementation. We complement the graph induced by a color class if this
reduces the number of its edges; this does not change the automorphism group of X.
Similarly, we complement the induced bipartite graph between two color classes if this
reduces the number of its edges.
Now each color class within Red induces the empty graph. Similarly, for b ∈ {2, 3}, the
bipartite graph between any two color classes of size b is empty or a perfect matching.
(Note that this does not necessarily hold for b ≥ 4.) Color refinement for graphs of color
class size at most 3 has been used in earlier work [8, 9].
Let C ⊆ Red and D ⊆ Blue be color classes after Step 1. Because of the complementa-
tions we have applied, |C| = 1 implies that X[C,D] is empty, and if |C| ∈ {2, 3} then
X[C,D] is either empty or the degree of each D-vertex in X[C,D] is 1.

Step 3: fix vertices that cannot move. For a color class C ⊆ Red whose elements have
more than k Blue neighbors, give different new colors to each vertex in C (because
of Step 2, each non-isolated Red vertex is in a color class with more than one vertex).
Afterwards, rerun Steps 1 and 2 so we again have a stable coloring.
Fixing the vertices in C does not lose any automorphism of X that has Blue-weight at
most k. Indeed, as every Blue vertex has at most one neighbor in C, any automorphism
that moves some v ∈ C has to move all (more than k) Blue neighbors of v.

Step 4: remove edges in the red part. We already observed that each color class in Red
induces the empty graph. Let X be the graph whose vertices are the color classes in Red,
where two of them are adjacent iff there is a perfect matching between them in X. For
each b ∈ {1, 2, 3}, the color classes in Red of size b get partitioned into components of X .
We consider each connected component C of X that consists of more than one color class.
Let X ′ be the subgraph of X induced by vertices in

⋃
C and their neighbors in Blue.

Because of Step 3, the graph X ′ has color class size at most 3k, so we can compute its
automorphism group H = Aut(X ′) in 2O(k2) poly(N) time [7]. We distinguish several
cases based on the action of H on an arbitrary color class C ∈ C:
Case 1: If H(C) is not transitive, we split the color class C into the orbits of H(C) and

start over with Step 1.
Case 2: If H(C) = Sym(C), we drop all vertices in

(⋃
C
)
\ C from X. And for each

color class D within Blue that has neighbors in at least one C ′ ∈ C, we replace the
edges between a vertex u ∈ D and

⋃
C by the single edge (u, v), where v is the vertex

in C that is reachable via the matching edges from the neighbor of u in C ′.
Case 3: If H(C) is generated by a 3-cycle (v1v2v3), we first proceed as in Case 2.

Additionally, we add directed edges within each color class D within Blue that now
has neighbors in C. Let Di ⊆ D be the neighbors of vi. We add directed edges from
all vertices in Di to all vertices in D(i+1) mod 3 and color these directed edges by C.

After this step, there are no edges induced on the Red part of X. Moreover, we have not
changed the automorphisms on the induced subgraph, so the modified graph X still has
the same automorphism group as before.

Step 5: turn red vertices into hyperedges. We encode X as a hypergraph X ′ = (Blue ∪
New, E′) in which each vertex in Red is encoded as a hyperedge on the vertex set
Blue∪New. Let New = {vC |C ⊆ Red is a color class}. Let v ∈ C ⊆ Red be any red
vertex. We encode v as the hyperedge ev =

{
vC
}
∪
{
u ∈ Blue

∣∣ (v, u) ∈ E(X)
}
.

In the hypergraph X ′ we give distinct colors to each vertex in New in order to ensure
that each color class {vC,1, vC,2, vC,3} in Red is preserved by the automorphisms of X ′.
Clearly, there is a 1-1 correspondence between the color-preserving automorphisms of X
and those of X ′. Note that the hyperedges of X ′ have size bounded by k + 1, as each
Red vertex in X has at most k Blue neighbors after Step 3.

IPEC 2017
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Step 6: bounded hyperedge size automorphism. We seek a weight k automorphism of X ′
using the algorithm of [1, Corollary 6.4];1 this is possible in dO(k)2O(k2) poly(N) time.

This algorithm gives us the following.

I Theorem 6.1. The above algorithm solves Col-GA when the Red part of the input graph
is refined into color classes of size at most 3. It runs in dO(k)2O(k2) poly(N) time.

Acknowledgements. We thank the anonymous referees for their valuable comments.
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