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Abstract
The theory of kernelization can be used to rigorously analyze data reduction for graph coloring
problems. Here, the aim is to reduce a q-Coloring input to an equivalent but smaller input
whose size is provably bounded in terms of structural properties, such as the size of a minimum
vertex cover. In this paper we settle two open problems about data reduction for q-Coloring.
First, we use a recent technique of finding redundant constraints by representing them as low-
degree polynomials, to obtain a kernel of bitsize O(kq−1 log k) for q-Coloring parameterized
by Vertex Cover for any q ≥ 3. This size bound is optimal up to ko(1) factors assum-
ing NP 6⊆ coNP/poly, and improves on the previous-best kernel of size O(kq). Our second result
shows that 3-Coloring does not admit non-trivial sparsification: assuming NP 6⊆ coNP/poly,
the parameterization by the number of vertices n admits no (generalized) kernel of size O(n2−ε)
for any ε > 0. Previously, such a lower bound was only known for coloring with q ≥ 4 colors.
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1 Introduction

The q-Coloring problem asks whether the vertices of a graph can be properly colored using q
colors. It is one of many colorability problems on graphs that have been widely studied.
Since these are often NP-hard, they are good candidates to study from a parameterized
perspective [2, 5]. Here we use additional parameters, other than the size of the input, to
describe the complexity of the problem. In this paper we study preprocessing algorithms
(called kernelizations or kernels) that aim to reduce the size of an input graph in polynomial
time, without changing its colorability status.

The natural choice for a parameter for q-Coloring is the number of colors q. How-
ever, since even 3-Coloring is NP-hard, this parameter does not give interesting results.
Therefore the problem is studied using different parameters, that often try to capture the
complexity of the input graph. For example, Fiala et. al. [6] compared the parameterized
complexity of several coloring problems when parameterized by vertex cover, to the complex-
ity when parameterized by treewidth. Jansen and Kratsch [8] studied graph coloring when
parameterized by a hierarchy of different parameters.
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In this earlier work [8], Jansen and Kratsch provided a kernel for q-Coloring param-
eterized by Vertex Cover with O(kq) vertices that can be encoded in O(kq) bits.
Furthermore they showed that for q ≥ 4, a kernel of bitsize O(kq−1−ε) is unlikely to exist.
Unfortunately, these bounds left a gap of a factor k and it remained unclear whether the
upper or the lower bound had to be strengthened. As our first main result, we close this
gap. We show in Theorem 7 that the kernel for q-Coloring parameterized by Vertex
Cover can be further improved to have O(kq−1) vertices and a bitsize of O(kq−1 log k).
This matches the previously known lower bound up to ko(1) factors.

To obtain this improvement, we use a recent result by the current authors [9] about
the kernelization of constraint satisfaction problems when parameterized by the number of
variables. A non-trivial data reduction can be achieved when the constraints are given by
equalities of low-degree polynomials on boolean variables. The size of the resulting instance
then depends on the maximum degree of the given polynomials. Suppose now we are given
a 3-Coloring instance G with vertex cover S and let I = V (G) \ S be the corresponding
independent set. One can think of each vertex v ∈ I as a constraint of the form “my neighbors
use at most 2 different colors”, such that a remaining color can be used to color v. We write
these constraints as polynomial equalities and apply our previous result to find out which ones
are redundant. Since vertices of the independent set can be colored independently, a vertex
that corresponds to a redundant constraint can be removed from G, without changing the
3-colorability of G. To apply this idea to obtain a kernel for q-Coloring parameterized
by Vertex Cover, the key technical step is to build a polynomial of degree q − 1 that
captures the desired constraint.

Our second main result concerns the parameterization by the number of vertices n.
The current authors showed in earlier work [10] that for a number of graph problems it is
impossible to give a kernel of size O(n2−ε), unless NP ⊆ coNP/poly. This implies that the
number of edges cannot efficiently be reduced to a subquadratic amount without changing
the answer, a task that is also known as sparsification. For example, q-Coloring was
shown to have no non-trivial sparsification for any q ≥ 4, unless NP ⊆ coNP/poly. The
case for q = 3 remained open. One might think that 3-Coloring is so restrictive, that a
3-colorable instance is likely to either be sparse, or have a very specific structure. Exploiting
this structure could then allow for a non-trivial sparsification. In Theorem 12 we show that
this is not the case: 3-Coloring allows no kernel of size O(n2−ε), unless NP ⊆ coNP/poly.

From this bound it follows that the Ω(kq−1−ε) lower bound for the parameterization by
vertex cover also holds for q = 3, since the size of a vertex cover is at most the total number
of vertices in the graph. This completely settles the kernelization complexity of q-Coloring
parameterized by Vertex Cover, up to ko(1) factors.

Related work

Dell and Van Melkebeek showed that d-CNF-Satisfiability with n variables has no kernel
of size O(nd−ε), unless NP ⊆ coNP/poly [4]. Continuing this line of research, precise kernel
lower bounds were shown for a variety of problems. For example, it was shown that Vertex
Cover is unlikely to have a kernel of size O(k2−ε) [4], while a kernel with O(k2) edges and
O(k) vertices is known. Furthermore, the Point-Line cover problem, which asks to cover
a set of n points in the plane with at most k lines, was proven to have a tight kernel lower
bound of size O(k2−ε) [11], assuming NP 6⊆ coNP/poly. Dell and Marx [3] proved polynomial
kernelization lower bounds for several packing problems. They showed how a table structure
can help realize the reduction that is needed for such a lower bound. We will also use this
table structure in this paper.
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2 Preliminaries

To denote the set of numbers 1 to n, we use the following notation: [n] := {i ∈ N | 1 ≤ i ≤ n}.
For x, y ∈ Z we write x ≡2 y to denote that x and y are congruent modulo 2. For a finite set
X and non-negative integer k, let

(
X
k

)
be the collection of all subsets of X of size exactly k.

A graph G has vertex set V (G) and edge set E(G). All graphs considered in this paper
are simple and undirected. For a vertex u ∈ V (G), let NG(u) := {v ∈ V (G) | {u, v} ∈ E(G)}
denote its open neighborhood. Let G[S] for S ⊆ V (G) denote the subgraph of G induced
by S. A vertex cover of a graph G is a set S ⊆ V (G) such that each edge has at least one
endpoint in S (equivalently, V (G) \ S is an independent set in G). A proper q-coloring of G
is a function c : V (G)→ [q] such that for all {u, v} ∈ E(G) : c(u) 6= c(v).

A parameterized problem Q is a subset of Σ∗ × N, where Σ is a finite alphabet. Let
Q,Q′ ⊆ Σ∗ × N be parameterized problems and let h : N→ N be a computable function. A
generalized kernel for Q into Q’ of size h(k) is an algorithm that, on input (x, k) ∈ Σ∗ × N,
takes time polynomial in |x|+ k and outputs an instance (x′, k′) such that:
1. |x′| and k′ are bounded by h(k), and
2. (x′, k′) ∈ Q′ if and only if (x, k) ∈ Q.
The algorithm is a kernel for Q if Q = Q′. It is a polynomial (generalized) kernel if h(k) is
a polynomial. Since a polynomial-time reduction to an equivalent sparse instance yields a
generalized kernel, a lower bound for the size of a generalized kernel can be used to prove
the non-existence of sparsification algorithms.

We use the framework of cross-composition [1] to establish kernelization lower bounds,
requiring the definitions of polynomial equivalence relations and or-cross-compositions. We
repeat them here for completeness:

I Definition 1 (Polynomial equivalence relation, [1, Def. 3.1]). An equivalence relation R
on Σ∗ is called a polynomial equivalence relation if the following conditions hold.

There is an algorithm that, given two strings x, y ∈ Σ∗, decides whether x and y belong
to the same equivalence class in time polynomial in |x|+ |y|.
For any finite set S ⊆ Σ∗ the equivalence relation R partitions the elements of S into a
number of classes that is polynomially bounded in the size of the largest element of S.

I Definition 2 (Cross-composition, [1, Def. 3.3]). Let L ⊆ Σ∗ be a language, let R be
a polynomial equivalence relation on Σ∗, let Q ⊆ Σ∗ × N be a parameterized problem,
and let f : N → N be a function. An or-cross-composition of L into Q (with respect to
R) of cost f(t) is an algorithm that, given t instances x1, x2, . . . , xt ∈ Σ∗ of L belonging
to the same equivalence class of R, takes time polynomial in

∑t
i=1 |xi| and outputs an

instance (y, k) ∈ Σ∗ × N such that:
The parameter k is bounded by O(f(t)·(maxi |xi|)c), where c is some constant independent
of t, and
instance (y, k) ∈ Q if and only if there is an i ∈ [t] such that xi ∈ L.

I Theorem 3 ([1, Theorem 6]). Let L ⊆ Σ∗ be a language, let Q ⊆ Σ∗×N be a parameterized
problem, and let d, ε be positive reals. If L is NP-hard under Karp reductions, has an
or-cross-composition into Q with cost f(t) = t1/d+o(1), where t denotes the number of
instances, and Q has a polynomial (generalized) kernelization with size bound O(kd−ε), then
NP ⊆ coNP/poly.

We will refer to an or-cross-composition of cost f(t) =
√
t log(t) as a degree-2 cross-

composition. By Theorem 3, a degree-2 cross-composition can be used to rule out generalized
kernels of size O(k2−ε).

IPEC 2017
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3 Kernel for q-Coloring parameterized by Vertex Cover

In this section we develop a kernel for q-Coloring parameterized by Vertex Cover.
The main tool is an earlier result [9] on constraint satisfaction problems (CSPs). In the right
conditions, it can be used to reduce the number of constraints without changing the answer.
We recall the required terminology. Define d-Polynomial Root CSP over the integers
modulo 2 as the problem whose input consists of a set L of polynomial equalities over a
set of boolean variables V = {x1, . . . , xn}. Each equality is of the form p(x1, . . . , xn) ≡2 0,
where each polynomial has degree at most d. The question is whether all equalities can be
satisfied by setting the input variables to 0 or 1. The following theorem follows directly from
Theorem 2 together with Claim 3 in [9], where n is the total number of used variables.

I Theorem 4. There is a polynomial-time algorithm that, given an instance (L, V ) of d-
Polynomial root CSP over an efficient field F , outputs L′ ⊆ L with at most nd + 1
constraints such that any 0/1-assignment to V satisfies L′ if and only if it satisfies L.

A field F is efficient if the field operations and Gaussian elimination can be done in polynomial
time in the size of a reasonable input encoding. For our purposes it is only relevant that the
integers modulo 2 form an efficient field.

To apply this machinery, we need to show how the coloring constraints expressed by an
independent set of vertices can be encoded as polynomial equalities. To encode the color of a
vertex vi in this context we will use q boolean variables yi,1, . . . , yi,q, one per possible color.
The variable yi,k is set to true if vertex vi has color k. We now define a choice assignment to
the variables, to express that each vertex gets exactly one color.

I Definition 5. Let {yi,k | i ∈ [n], k ∈ [q]} be a set of boolean variables and let y be the
vector containing all these variables. We say y is given a choice assignment if for all i ∈ [n]:

q∑
k=1

yi,k = 1.

Note that a choice assignment always sets exactly n variables to true. The following
lemma gives a polynomial that can be used to express the constraint that out of exactly q
neighbors of a given vertex u, there are at least two that have the same color. This constraint
has to be satisfied to allow u to be properly q-colored. We will later apply such constraints
to all possible subsets of q neighbors of u to obtain a safe reduction.

I Lemma 6. Let q > 0 be an integer and let yi,k for i ∈ [q], k ∈ [q] be boolean variables.
Then there exists a polynomial p of degree q− 1 such that for any choice assignment to y, we
have p(y) ≡2 0 if and only if there are i, j, k ∈ [q] such that yi,k = yj,k = 1.

Before proving Lemma 6, we give the polynomial p corresponding to q = 3 as an example.

p(y) :=
∑

i1 6=i2∈[3]

2∏
k=1

yik,k = y1,1 ·y2,2 +y1,1 ·y3,2 +y2,1 ·y1,2 +y2,1 ·y3,2 +y3,1 ·y1,2 +y3,1 ·y2,2.

Verify for this example that letting y1,1 = y2,1 = y3,1 = 1 and all other variables be
zero, gives p(y) = 0 ≡2 0. Setting y1,1 = y2,2 = y3,2 = 1 and all other variables to zero,
gives p(y) = 2 ≡2 0. Choosing y1,1 = y2,2 = y3,3 = 1 and all other variables zero, gives
p(y) = 1 ≡2 1, as desired. We now proceed with the general construction.
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Proof of Lemma 6. Define the multivariate polynomial p as

p(y) :=
∑

i1,...,iq−1∈[q]
distinct

q−1∏
k=1

yik,k.

To understand this polynomial and facilitate the remainder of the proof, it is useful to think
of an associated set of variables x1, . . . , xq that take values from [q] and represent a color.
For each color variable xi, the corresponding boolean variables yi,1, . . . , yi,q encode the value
taken by xi. In this notation, each monomial of p corresponds to a permutation of all but
one of the color variables x1, . . . , xq. The monomial evaluates to 1 if the i’th variable in this
permutation has value i for all i ∈ [q − 1], and to 0 otherwise.

We proceed to show that p has the desired properties. It is easy to see the degree of
p is q − 1. It remains to prove the claim on the values of p(y) for choice assignments. So
consider a choice assignment to y, and for each i ∈ [q] let xi := k exactly when yi,k = 1. This
is well-defined as there is exactly one k ∈ [q] such that yi,k = 1. In these terms, we have to
show that p(y) ≡2 0 if and only if there are distinct color variables xi, xj such that xi = xj .

Suppose there do not exist i, j ∈ [q] such that xi = xj , implying that x1, . . . , xq take q
distinct values. For k ∈ [q − 1], let jk be the unique index such that xjk

= k, implying
that yjk,k = 1. Then,

∏q−1
k=1 yjk,k = 1. For any other choice of distinct indices i1, . . . , iq−1 ∈ [q],

there exists m ∈ [q − 1] such that im 6= jm. This implies that yim,m = 0 and thereby∏q−1
k=1 yik,k = 0. Thus, p(y) = 1 ≡2 1.
For the other direction, suppose there exist i, j ∈ [q], such that xi = xj . We do a case

distinction, where we consider the following cases: One color is used at least thrice, or there
exist two colors that are both used more than once, or one color is used more than once and
color q is used, or all colors except color q are used. More formally:

There exist distinct i, j, ` ∈ [q] such that xi = xj = x`. Then p(y) = 0, because there
do not exist distinct i1, . . . , iq−1 ∈ [q] such that xik

= k (and thus yik,k = 1) for all
k ∈ [q − 1]. Hence all monomials of p evaluate to 0 and p(y) = 0.
There exist distinct i, j, i′, j′ ∈ [q] such that xi = xj and xi′ = xj′ . Then p(y) = 0,
because there do not exist distinct i1, . . . , iq−1 ∈ [q] such that xik

= k for all k ∈ [q − 1].
There exist distinct i, j ∈ [q] and there exists ` ∈ [q] such that xi = xj and x` = q. If
xi = xj = q, it is not possible to find distinct i1, . . . , iq−1 ∈ [q] \ {i, j} such that xik

= k

for all k ∈ [q − 1], thereby p(y) = 0. If xi 6= q, it is again not possible to find distinct
i1, . . . , iq−1 ∈ [q] \ {`} such that xik

= k for all k ∈ [q − 1] since xi and xj are equal.
Otherwise, there are distinct i, j ∈ [q] and k ∈ [q − 1] such that xi = xj = k and there
is no ` ∈ [q] such that x` = q. Furthermore, there are no distinct i′, j′ ∈ [q] \ {i, j} such
that xi′ = xj′ . In other words, each value from [q − 1] is assigned to exactly one color
variable, except for the value k which occurs twice. For all c ∈ [q − 1] with c 6= k, let ic
be the unique index such that xic = c and thus yic,c = 1. Then

yi,k ·
q−1∏
c=1
c6=k

yic,c = yj,k ·
q−1∏
c=1
c 6=k

yic,c = 1.

However,
∏q−1

c=1 yic,c = 0 for any other choice of i1, . . . , iq−1. Thereby, p(y) = 2 ≡2 0. J

We now give a kernel for the q-Coloring problem parameterized by the size of a vertex
cover. The problem is defined as follows:

IPEC 2017
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q-Coloring parameterized by Vertex Cover Parameter: |S|
Input: A graph G with a vertex cover S ⊆ V (G).
Question: Does G have a proper q-coloring?

We remark that in settings where no vertex cover of G is known, one can simply apply
the kernelization using a 2-approximate vertex cover for S.

I Theorem 7. For any constant q ≥ 3, q-Coloring parameterized by the size of a ver-
tex cover has a kernel with O(kq−1) vertices, which can be encoded in O(kq−1 log k) bits.
Furthermore, the resulting instance is a subgraph of the original input graph.

Proof. Let input graph G with vertex cover S be given, where |S| = k. For each vertex
v ∈ S, create boolean variables Cv,i for i ∈ [q]. These variables can describe the color of v,
by choosing Cv,i = 1 if v has color i and zero otherwise, which will give them a proper choice
assignment. Let C contain all q · k constructed variables.

For each vertex u ∈ V (G) \ S, for each X ∈
(

NG(u)
q

)
, let Cu,X contain the variables

constructed for set X in NG(u) ⊆ S. Use Lemma 6 to obtain a polynomial pu,X of degree
q − 1, such that for any choice assignment to the variables we have pu,X(Cu,X) ≡2 0 if and
only if there exist i ∈ [q] and v, w ∈ X such that Cv,i = Cw,i = 1.

Let L be the set of created polynomial equalities, thus L := {pu,X(Cu,X) ≡2 0 | u ∈
V (G) \ S ∧X ∈

(
NG(u)

q

)
}. It is easy to see that L is an instance of (q − 1)-Polynomial

root CSP over the integers modulo 2. Use Theorem 4 in order to find L′ ⊆ L with
|L′| ≤ (qk)q−1 + 1, such that a boolean assignment to the variables in C satisfies L′ if and
only if it satisfies L. To obtain the kernel G′, start with graph G[S]. For every equality
pu,X(Cu,X) ≡2 0 ∈ L′, add u to G′ if u is not yet present in G′. Furthermore, connect u to
all vertices in X that u is not already adjacent to. It is easy to see that by this procedure,
G′ is a subgraph of G.

I Claim 8. G′ is q-colorable if and only if G is q-colorable.

Proof. Since G′ is a subgraph of G, graph G′ is q-colorable if G is q-colorable.
For the opposite direction, let c′ be a proper q-coloring of G′. For vertex v ∈ S and color

i ∈ [q], define Cv,i = 1 if c′(v) = i and Cv,i = 0 otherwise. By this definition,
∑q

i=1 Cv,i = 1
for all v, so all variable sets Cu,X are given a choice assignment. We will first show that this
assignment satisfies all equalities in L′. Let pu,X(Cu,X) ≡2 0 ∈ L′. Then u ∈ V (G′) \ S and
u is connected to all vertices in X in G′. Since u is colored by c′, its neighbors do no have
color c′(u), thus c′(u) is unused in the coloring of X. Since |X| = q and we have exactly q
colors, this implies that there exist v, w ∈ X and color i ∈ [q] such that Cv,i = Cw,i = 1. By
Lemma 6, this implies pu,X(Cu,X) ≡2 0 as required.

From the choice of L′ and Theorem 4 it now follows that all equalities in L are satisfied
by this assignment. Let c denote the coloring c′ restricted to the vertices in G[S] = G′[S].
We prove that c can be extended to a proper coloring of G. Since V (G) \S is an independent
set, such an extension is possible if for each vertex v ∈ V (G) \ S there exists a color that is
not used on any vertex of NG(v).

Now assume for a contradiction that c cannot be extended to properly color some vertex u
in V (G) \ S. Then for each color i ∈ [q], there exists a vertex v ∈ NG(u) with c(v) = i (or
else we could use color i for u). Since V (G) \ S is an independent set, NG(u) ⊆ S. Pick
a set X ⊆ NG(u) containing exactly one vertex of each color, thus |X| = q. By Lemma 6,
pu,X(Cu,X) ≡2 1 since there do not exist v, w ∈ X and color i ∈ [q] such that Cv,i = Cw,i = 1.
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But this contradicts the fact that all polynomial equalities in L are satisfied by the given
assignment, since pu,X(Cu,X) ≡2 0 ∈ L. Hence c can be extended to properly color G. J

I Claim 9. G′ has at most O(kq−1) vertices and can be encoded in O(kq−1 log k) bits.

Proof. Theorem 4 guarantees that |L′| ≤ (qk)q−1 + 1 since there are qk boolean variables in
total, and the polynomials have degree q− 1. Thereby, |V (G′)| ≤ k+ (qk)q−1 + 1 = O(kq−1),
since q is a constant. Furthermore, |E(G′)| ≤ |E(G′[S])|+ q · |L′| ≤ k2 + q · ((qk)q−1 + 1) =
O(kq−1). An adjacency list encoding of the graph has size O(|E| log |V | + |V |), which
is O(kq−1 · log kq−1) = O(kq−1 log k) for constant q. J

It is easy to see that the kernel can be computed in polynomial time. Thereby, it follows
from Claims 8 and 9 that we have given a kernel for q-Coloring of bitsize O(kq−1 log k). J

4 Sparsification lower bound for 3-Coloring

In this section we provide a sparsification lower bound for 3-Coloring. We show that
3-Coloring does not have a (generalized) kernel of size O(n2−ε), unless NP ⊆ coNP/poly.
This will also provide a kernel lower bound for 3-Coloring parameterized by vertex cover
size, that matches the upper bound given in the previous section up to ko(1) factors.

For ease of presentation, we will prove the lower bound by giving a degree-2 cross-
composition from a tailor-made problem to 3-List Coloring. The input to 3-List Color-
ing is a graph G together with a function L that assigns to each vertex v a list L(v) ⊆ {1, 2, 3}.
The problem asks whether there exists a proper coloring of G, such that each vertex is
assigned a color from its list. Before presenting the cross-composition, we introduce an
important gadget that will be used. It was constructed by Jaffke and Jansen [7]. The gadget,
which we will call a blocking-gadget, will be used to forbid one specific coloring of a given
vertex set. The following Lemma is a rephrased version of Lemma 15 in [7].

I Lemma 10. There is a polynomial-time algorithm that, given c = (c1, . . . , cm) ∈ [3]m, out-
puts a 3-List-Coloring instance with O(m) vertices called blocking-gadget(c) that contains
distinguished vertices (π1, . . . , πm). A coloring f : {πi | i ∈ [m]} → [3] can be extended to a
proper list coloring of blocking-gadget(c) if and only if f(πi) = ci for some i ∈ [m].

The blocking-gadget can be used to forbid one specific coloring given by the tuple c of
a set of vertices v1, . . . , vm, by adding a blocking-gadget(c) and connecting πi to vi for all
i ∈ [m]. If the color of vi is ci for all i, then the inserted edges prevent all πi to receive the
corresponding color ci, and by Lemma 10 the coloring cannot be extended to the gadget. If
however the color of vi differs from ci for some i, the gadget can be properly colored.

Having presented the gadget we use in our construction, we define the source problem
for the cross-composition. This problem was also used as the starting problem for a cross-
composition in our earlier sparsification lower bound for 4-Coloring [10].

2-3-Coloring with Triangle Split Decomposition [10]
Input: A graph G with a partition of its vertex set into U ∪ V such that G[U ] is an
edgeless graph and G[V ] is a disjoint union of triangles.
Question: Is there a proper 3-coloring c : V (G)→ {1, 2, 3} of G, such that c(u) ∈ {1, 2}
for all u ∈ U? We will refer to such a coloring as a 2-3-coloring of the graph G, since
two colors are used to color U , and three to color V .

IPEC 2017
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I Lemma 11 ([9, Lemma 3]). 2-3-Coloring with Triangle Split Decomposition is
NP-complete.

To establish a quadratic lower bound on the size of generalized kernels, it suffices to give a
degree-2 cross-composition from this special coloring problem into 3-Coloring. Effectively,
we have to show that for any t, one can efficiently embed a series of t size-n instances indexed
as Xi,j for i, j ∈ [

√
t], into a single 3-Coloring instance with O(

√
t · nO(1)) vertices that

acts as the logical or of the inputs. To achieve this composition, a common strategy is to
construct vertex sets Si and Ti of size nO(1) for i ∈ [

√
t], such that the graph induced by

Si ∪ Tj encodes input Xi,j . The fact that the inputs can be partitioned into an independent
set and a collection of triangles facilitates this embedding; we represent the independent set
within sets Si and the triangles in sets Ti. To embed t inputs into a graph on O(

√
t · nO(1))

vertices, each vertex will have incident edges corresponding to many different input instances.
The main issue when trying to find a cross-composition into 3-Coloring, is to ensure that
when there is one 2-3-colorable input graph, the entire graph becomes 3-colorable. This is
difficult, since the neighbors that a vertex in Si has among the many different sets Tj should
not invalidate the coloring. For vertices in some set Tj , we have a similar issue. Our choice of
starting problem ensures that if some combination Si∗ , Tj∗ corresponding to input Xi∗,j∗ has
a 2-3-coloring, then the remaining sets Tj can be safely colored 3, since vertices in Si∗ will
use only two of the available colors. The key insight to ensure that vertices in the remaining
Si can also be colored, is to split them into multiple copies that each have at most one
neighbor in any Tj . There will be at most one vertex in the neighborhood of a copy that
is colored using color 1 or 2, thereby we can always color it using the other available color.
Finally, additional gadgets will ensure that in some Si all these copies get equal colors, and
in some Tj the vertices that correspond to a triangle in the inputs are properly colored as
such. With this intuition, we give the construction.

I Theorem 12. 3-Coloring parameterized by the number of vertices n does not have a
generalized kernel of size O(n2−ε) for any ε > 0, unless NP ⊆ coNP/poly.

Proof. To prove this statement, we give a degree-2 cross-composition from 2-3-Coloring
with triangle split decomposition to 3-List Coloring and then show how to change
this instance into a 3-Coloring instance. We start by defining a polynomial equivalence
relation R on instances of 2-3-Coloring with triangle split decomposition. Let two
instances be equivalent under R, when the sets U have the same size and sets V consist of
the same number of triangles. It is easy to verify that R is a polynomial equivalence relation.

By duplicating one of the inputs several times if needed, we ensure that the number of
inputs to the cross-composition is a square. This increases the number of inputs by at most
a factor four and does not change the value of the or. Therefore, assume we are given t
instances of 2-3-Coloring with Triangle Split Decomposition such that t′ :=

√
t is

integer. Enumerate these instances as Xi,j for i, j ∈ [t′] and let instance Xi,j have graph Gi,j .
For input instance Xi,j , let U and V be such that U is an independent set with |U | = m

and V consists of n vertex-disjoint triangles. Enumerate the vertices in U as u1, . . . , um and
in V as v1, . . . , v3n such that v3k−2, v3k−1, v3k form a triangle for k ∈ [n]. We now create
an instance of the 3-List Coloring problem, consisting of a graph G′ together with a list
function L that assigns a subset of the color palette {1, 2, 3} to each vertex.

Refer to Figure 1 for a sketch of G′.

1. Initialize G′ as the graph containing t′ sets of m · 3n vertices each, called Si for i ∈ [t′].
Label the vertices in each of these sets as si

k,` for i ∈ [t′], k ∈ [3n] and ` ∈ [m]. Define
L(si

k,`) := {1, 2}. The vertices si
1,`, s

i
2,`, . . . , s

i
3n,` together represent a single vertex of
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S

T

s12,1 s13,1

s15,3

t16t14t13t11

(a) Constructed graph G′

v1 v3 v4 v6

v5v2

u1 u2 u3

(b) Instance X1,1

Figure 1 Construction of graph G′ for t′ = 4, m = 3, and n = 2. Edges between vertices in S

and T are shown for instance X1,1. All blocking-gadgets and the vertex sets A and B are left out.

the independent set of an input instance, which is split into copies to ensure that every
copy has at most one neighbor in each cell of T (the bottom row in Figure 1a).

2. Add t′ sets of 3n vertices each, labeled Tj for j ∈ [t′]. Label the vertices in Tj as tjk for
k ∈ [3n] and let L(tjk) := {1, 2, 3}. Vertices tj3k−2, t

j
3k−1, t

j
3k correspond to a triangle in

an input graph. They are not connected, so that we can safely color all vertices that do
not correspond to a 3-colorable input with color 3.

3. Connect vertex si
k,` to vertex tjk if in graph Gi,j vertex u` is connected to vk, for k ∈ [3n]

and ` ∈ [m]. By this construction, the graph Gi,j is isomorphic to the graph obtained
from G′[Si ∪ Tj ] by replacing each triple tj3k−2, t

j
3k−1, t

j
3k by a triangle for k ∈ [n] and

merging all 3n vertices si
k,` in Si that have the same value for ` ∈ [m].

4. Add vertex sets A = {a1, . . . , at′} and B := {b1, . . . , bt′}. These are used to choose indices
i and j such that Gi,j is 3-colorable. Let L(ai) := L(bi) := {1, 2} for all i ∈ [t′].

5. Let c be defined by ci := 2 for all i ∈ [t′]. Add a blocking-gadget(c) to G′. Connect
vertex ai to the distinguished vertex πi of this blocking-gadget for all i ∈ [t′].

6. Let c again be defined by ci := 2 for all i ∈ [t′]. Add a blocking-gadget(c) to G′. Connect
vertex bj to πj for all j ∈ [t′]. Together with the previous step, this ensures that in any
proper list coloring at least one vertex in A and at least one vertex in B has color 1.

7. For every i ∈ [t′], ` ∈ [m], and k ∈ [3n − 1], for every c1, c2 ∈ [2] with c1 6= c2, add a
blocking-gadget((c1, c2, 1)) to G′. Connect si

k,` to π1, si
k+1,` to π2, and ai to π3. This

ensures that when ai has color 1, vertices si
k,` and si

k′,` have the same color for all
k, k′ ∈ [3n].

8. For every j ∈ [t′], k ∈ [n], for every c1, c2, c3 ∈ [3] that are not all pairwise distinct, add a
blocking-gadget((c1, c2, c3, 1)) to G′. Connect tj3k−2 to π1, tj3k−1 to π2, tj3k to π3, and bj

to π4. This construction ensures that if bj is colored 1, all “triangles” in Tj are properly
colored. If bj is colored 2 however, the gadgets add no additional restrictions to the
coloring of vertices in Tj .

This concludes the construction of G′; we proceed with the analysis.

I Claim 13. Let c be a proper 3-list coloring of G′. Then there exists i ∈ [t′] such that for
all ` ∈ [m] and for all k, k′ ∈ [3n] we have c(si

k,`) = c(si
k′,`).

Proof. By the blocking-gadget added in Step 5, there exists i ∈ [t′] such that c(ai) 6= 2.
Since L(ai) = {1, 2}, this implies that c(ai) = 1. We show that i has the required property.

Suppose there exist k, k′ ∈ [3n] and ` ∈ [m] such that c(si
k,`) 6= c(si

k′,`). Then there
must also exist k ∈ [3n − 1] such that c(si

k,`) 6= c(si
k+1,`), or else they would all be

IPEC 2017
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equal. Let (c1, c2, c3) correspond to the coloring of si
k,`,si

k+1,`, and ai as given by c. Then
blocking-gadget((c1, c2, c3)) was added in Step 7 and connected to these three vertices. But
by Lemma 10, it follows that any list-coloring of this blocking-gadget must assign color ci to
some πi for i ∈ [3]. By the way they are connected to si

k,`,si
k+1,` and ai, one edge has two

endpoints of equal color, which is a contradiction. J

We will say a triple of vertices v1, v2, v3 is colorful (under coloring c), if they receive
distinct colors, meaning c(v1) 6= c(v2) 6= c(v3) 6= c(v1).

I Claim 14. Let c be a proper 3-list coloring of G′. Then there exists j ∈ [t′] such that for
all k ∈ [n] the triple tj3k, t

j
3k−1, t

j
3k−2 is colorful.

Proof. By the blocking-gadget added in Step 6, there exists j ∈ [t′] such that c(bj) 6= 2.
Since L(bj) = {1, 2}, this implies that c(bj) = 1. We show that j has the desired property.

Suppose there exists k ∈ [n], such that tj3k, t
j
3k−1, and t

j
3k−2 are not a colorful triple. Let

(c1, c2, c3, c4) ∈ [3]4 correspond to the coloring given to tj3k, t
j
3k−1, t

j
3k−1, and bj . In Step 8,

blocking-gadget((c1, c2, c3, c4)) was added, together with connections to these four vertices.
But by Lemma 10, any list-coloring of this blocking-gadget must assign color ci to some πi

for i ∈ [4]. By the way they are connected to tj3k, t
j
3k−1, t

j
3k−2, and bj , one edge has two

endpoints of equal color, which is a contradiction. J

I Claim 15. The graph G′ is 3-list colorable ⇔ some input instance Xi∗j∗ is 2-3-colorable.

Proof. (⇒) Suppose we are given a 3-list coloring c of G′. By Lemmas 13 and 14 there
exist integers i∗ and j∗ ∈ [t′] such that for all ` ∈ [m] and for all k, k′ ∈ [3n] we have
c(si∗

k,`) = c(si∗

k′,`) and furthermore for all k ∈ [n] the triple tj
∗

3k, t
j∗

3k−1, t
j∗

3k−2 is colorful. We
show that this implies that Gi∗,j∗ has a valid 2-3-coloring c′, which we define as follows. Let
c′(u`) := c(si∗

1,`) for ` ∈ [m] and let c′(vk) := c(tj
∗

k ) for k ∈ [3n]. It remains to verify that c′
is a valid coloring of Gi∗,j∗ . For any edge {u`, vk} ∈ E(Gi∗,j∗) with ` ∈ [m], k ∈ [3n], the
endpoints receive different colors since

c′(vk) = c(tj
∗

k ) 6= c(si∗

k,`) = c(si∗

1,`) = c′(u`).

For an edge {vk, v
′
k} ∈ Gi∗,j∗ , its coloring corresponds to the coloring of tj

∗

k and tj
∗

k′ , which
are colored differently by choice of j∗ in Lemma 14. Furthermore, u` is always colored with
color 1 or 2 as L(si∗

1,`) = {1, 2}. Thereby, c′ is a proper 2-3-coloring of Gi∗,j∗ .
(⇐) Suppose c is a 2-3-coloring of Gi∗,j∗ , such that the U -partite set of Gi∗,j∗ is colored

using only the colors 1 and 2. We will construct a 3-list coloring c′ for graph G′. For ` ∈ [m]
let c′(si∗

k,`) := c(u`) for all k ∈ [3n]. For k ∈ [3n] let c′(tj
∗

k ) := c(vk). For j 6= j∗ and k ∈ [3n]
let c′(tjk) := 3. For i 6= i∗ ∈ [t′], k ∈ [3n] and ` ∈ [m], pick c′(si

k,`) ∈ {1, 2} \ {c′(t
j∗

k )}. Let
c′(ai∗) := 1 and let c′(bj∗) := 1. For i 6= i∗ let c′(ai) := 2, similarly for j 6= j∗ let c′(bj) := 2.
Before coloring the vertices in blocking-gadgets, we will show that c′ is proper on G′[S ∪ T ].
This will imply that the coloring defined so far is proper, as vertices in A and B only connect
to blocking-gadgets.

Note that all edges in G′[S ∪ T ] go from S to T . Consider an edge {s, t} for s ∈ S, t ∈ T .
Since c′(s) 6= 3, if t ∈ Tj for j 6= j∗ ∈ [t′], it follows immediately that c′(s) 6= c′(t).
Furthermore, if s ∈ Si for i 6= i∗ ∈ [t′], c′(s) 6= c′(t) by the definition of c′(s). Otherwise,
s ∈ Si∗ and t ∈ Tj∗ and there exist {u, v} ∈ E(Gi∗,j∗) such that c′(s) = c(u) and c′(t) = c(v).
Since c is a proper coloring, it follows that c′(s) 6= c′(t).

To complete the proof, extend c′ to also properly color all blocking-gadgets. This is
possible for the blocking-gadgets added in Steps 5 and 6, since c′(ai∗) = 1 and c′(bj∗) = 1.
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Furthermore we show that this is possible for all blocking-gadgets introduced in Step 7. A
blocking-gadget((c1, c2, c3)) introduced in Step 7 either has π3 connected to ai for i 6= i∗

with c′(ai) = 2 6= c3, or it is connected to ai∗ and in this case the vertices si∗

k,` and si∗

k+1,`

are assigned equal colors and thus at least one of them has a coloring different from the
coloring given by c1 and c2 as these colors are distinct. Thus, the colors that are forbidden
on vertices πi by the connections to the rest of the graph, do not correspond to (c1, c2, c3)
and c′ can be extended to color the entire blocking-gadget by Lemma 10.

Similarly, coloring c′ can be extended to blocking-gadgets(c) added in Step 8, as either
π4 in the gadget is connected to bj for j 6= j∗ and c(bj) = 2 6= c4, or the three vertices from
T connected to this gadget are colored with three different colors. J

The claim above shows that we have given a cross-composition into 3-List Coloring.
To obtain an instance of 3-Coloring, we add a triangle consisting of vertices {C1, C2, C3}
to the graph. We connect a vertex v in G′ to Ci if i /∈ L(v) for i ∈ [3]. This graph now has
a proper 3-coloring if and only if the original graph had a proper 3-list coloring. Thus, by
Claim 15, the resulting 3-Coloring instance acts as the logical or of the inputs.

It remains to bound the number of vertices of G′. In Step 1 we add |S| = m · 3n · t′
vertices and in Step 2 we add another |T | = 3n · t′ vertices. Then in Step 4 we add
|A|+ |B| = 2t′ additional vertices. The two blocking-gadgets added in Steps 5 and 6 each
have size O(t′). The blocking-gadgets added in Step 7 have constant size, and we add six
of them for each i ∈ [t′], ` ∈ [m], k ∈ [3n − 1], thus adding O(t′ ·m · n) vertices. Similarly,
the blocking-gadgets added in Step 8 have constant size, and we add a constant number
of them for each j ∈ [t′], ` ∈ [n], thus adding O(t′ · n) vertices. This gives a total of
O(t′ · n ·m) = O(

√
t · (maxi,j |Xi,j |)O(1)) vertices. Theorem 12 now follows from Theorem 3

and Lemma 11. J

The set of all vertices of a graph is always a valid vertex cover for that graph. Thereby,
it follows from Theorem 12 that the lower bound also holds when parameterized by vertex
cover. In [8, Theorem 3], it was shown that for any q ≥ 4, q-Coloring parameterized by
vertex cover does not have a generalized kernel of size O(kq−1−ε), unless NP ⊆ coNP/poly.
Combining these results gives a lower bound for q-Coloring that matches the kernel size
presented in the first section.

I Corollary 16. For any q ≥ 3, q-Coloring parameterized by vertex cover does not have a
generalized kernel of bitsize O(kq−1−ε) for any ε > 0, unless NP ⊆ coNP/poly.

5 Conclusion

We have given a kernel for q-Coloring parameterized by Vertex Cover with O(kq−1)
vertices and bitsize O(kq−1 log k), improving on the previously known kernel by almost a
factor k. Furthermore, 3-Coloring when parameterized by the number of vertices has
no kernel of size O(n2−ε), unless NP ⊆ coNP/poly. It was already known that for q ≥ 4,
q-Coloring parameterized by Vertex Cover was unlikely to yield a kernel of size
O(kq−1−ε). Combining these results allows us to give the same lower bound for q = 3, under
the assumption that NP 6⊆ coNP/poly. Thereby we have provided an upper and lower bound
on the kernel size of q-Coloring parameterized by Vertex Cover for any q ≥ 3, that
match up to ko(1) factors.

It is easy to see that the kernel lower bounds also hold for q-List Coloring, where every
vertex v in the graph has a list L(v) ⊆ [q] of allowed colors. Furthermore, we can also apply
our kernel, by first reducing an instance of q-List Coloring to an instance of q-Coloring
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using q additional vertices, and adding these q vertices to the vertex cover of the graph. This
only changes the size of the obtained kernel by a constant factor.

In this paper we gave a first example where applying the known results for sparsification
of CSPs gives an improved kernel for a graph problem. It would be interesting to see if this
technique can be applied to obtain smaller kernels for other graph problems as well. To
apply this idea, one needs to first identify which constraints should be modeled. When the
constraints are found, they need to be written as equalities of low-degree polynomials over
a suitably chosen field. This requires the clever construction of polynomials that have a
sufficiently low degree, in order to obtain a good bound on the kernel size.

Another direction for future research consists of obtaining optimal kernel bounds for q-
Coloring with different structural parameters. For example, one could look at q-Coloring
parameterized by a modulator to a cograph. This parameterization admits a polynomial
kernel [8, Corollary 3], but tight bounds are not known.
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