
An Improved Fixed-Parameter Algorithm for
One-Page Crossing Minimization
Yasuaki Kobayashi1, Hiromu Ohtsuka2, and Hisao Tamaki3

1 Kyoto University, Kyoto, Japan
kobayashi@iip.ist.i.kyoto-u.ac.jp

2 Meiji University, Kanagawa, Japan
ohtsuka_yumecs.meiji.ac.jp

3 Meiji University, Kanagawa, Japan
tamaki@cs.meiji.ac.jp

Abstract
Book embedding is one of the most well-known graph drawing models and is extensively studied
in the literature. The special case where the number of pages is one is of particular interest: an
embedding in this case has a natural circular representation useful for visualization and graphs
that can be embedded in one page without crossings form an important graph class, namely that
of outerplanar graphs.

In this paper, we consider the problem of minimizing the number of crossings in a one-page
book embedding, which we call one-page crossing minimization. Here, we are given a graph G
with n vertices together with a non-negative integer k and are asked whether G can be embedded
into a single page with at most k crossings. Bannister and Eppstein (GD 2014) showed that
this problem is fixed-parameter tractable. Their algorithm is derived through the application of
Courcelle’s theorem (on graph properties definable in the monadic second-order logic of graphs)
and runs in f(L)n time, where L = 2O(k2) is the length of the formula defining the property that
the one-page crossing number is at most k and f is a computable function without any known
upper bound expressible as an elementary function. We give an explicit dynamic programming
algorithm with a drastically improved running time of 2O(k log k)n.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.2 Graph
Theory

Keywords and phrases Book Embedding, Fixed-Parameter Tractability, Graph Drawing, Tree-
width

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.25

1 Introduction

In book embeddings, a graph is drawn in such a way that the vertices are aligned on a straight
line, called the spine, as distinct points and each edge is drawn as a semicircle in a half plane
defined by the spine. We call this half plane a page. In general, multiple pages are required
to draw a graph without introducing any edge crossings, where a crossing is defined by a pair
of edges that has a non-empty intersection distinct from their end vertices. The minimum
number of pages we need to draw a graph without edge crossings, called page number or book
thickness, is extensively studied in the literature (e.g. [3, 23]). The problem of computing
page number is known to be NP-hard. More precisely, deciding if a given graph can be drawn
in two pages without any crossing is NP-complete [7].

An optimization problem with an objective function different from the crossing number
has also been studied. In this problem, given a graph G and a small integer p, the objective

© Yasuaki Kobayashi, Hiromu Ohtsuka, and Hisao Tamaki;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 25; pp. 25:1–25:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


25:2 An Improved Fixed-Parameter Algorithm for One-Page Crossing Minimization

Figure 1 A one-page drawing and a circular drawing of a graph.

is to minimize the total number of crossings in a drawing of G with at most p pages.
This optimization problem is known as p-page crossing minimization and is introduced by
Shahrokhi et al. [20]. Since the problem of deciding whether the page number of a graph
is at most two is NP-complete [7], two-page crossing minimization is NP-hard. Indeed, the
simplest case of one-page crossing minimization is already interesting. One-page crossing
number is studied under various names such as circular crossing number, convex crossing
number, and outerplanar crossing number. See [15] for example. In circular drawings, each
vertex is placed on the circumference of a circular disk and each edge is drawn inside of
the disk as a straight line segment. A one-page drawing may be turned into a circular
drawing by topologically mapping the spine into a circle, identifying the positive and negative
infinities, and mapping the half-plane into the disc enclosed by the circle. (See Figure 1, for
an example). This mapping clearly preserves crossings.

One-page drawing (and hence circular drawing) with fewer crossings is important in
several fields. This drawing style is frequently studied in the graph drawing community.
Some well-known graph drawing software such as Graphviz1 and yFiles2 can produce good
circular drawings. Blin et al. [4] suggested to use one-page crossing number for computing a
similarity of mRNA sequences that have some secondary structures. In their paper, they
asked for a fast algorithm to compute a one-page drawing with the fewest crossings.

Unfortunately, the problem of computing one-page crossing number is NP-hard as shown
by Masuda et al. [18]. There are some results for special graph classes [12, 13] and some
heuristics [2, 17, 21]. Bannister and Eppstein [1] tackled this problem from the perspective
of parameterized complexity. They showed that the treewidth of graphs with at most k
crossings is O(

√
k) and that the graph property of having at most k crossings can be defined

by a formula of length L = 2O(k2) in monadic second-order logic of graphs. These results are
sufficient for the application of Courcelle’s theorem [8, 9] to obtain an f(L)n time algorithm
for deciding if the one-page crossing number of a given graph is at most k, where n is
the number of vertices and f is a computable function without any known upper bound
expressible as an elementary function [11].

This situation is in contrast to that in the related research area of layered graph drawings,
where vertices are placed on h parallel lines and each edge is drawn as a straight line segment
between two adjacent parallel lines. Dujmović et al. [10] gave an explicit 2O(h+k)3

n time
dynamic programming algorithm based on path-decompositions to decide if a given graph
has h-layer drawing with at most k crossings.

In this paper, we give an explicit tree decomposition based dynamic programming
algorithm for one-page crossing minimization.

1 http://www.graphviz.org/
2 https://www.yworks.com/

http://www.graphviz.org/
https://www.yworks.com/


Y. Kobayashi, H. Ohtsuka, and H. Tamaki 25:3

I Theorem 1. There is an algorithm which, given a graph G and a non-negative integer
k, decides whether G has a one-page drawing with at most k crossings in 2O(k log k)n time,
where n is the number of vertices of G. Moreover, if the answer is affirmative, the algorithm
produces an optimal one-page drawing within the same running time.

We would like to mention that this and the algorithm of Bannister and Eppstein [1] run
in linear time, which generalize linear time algorithms recognizing and drawing outerplanar
graphs [19, 22].

We borrow two tools from Bannister and Eppstein [1]. One is the upper bound on the
treewidth of a graph of one-page crossing number k mentioned above. The other is the
concept of “crossing diagrams” which are used to classify YES-instances of the decision
problem. For each such diagram, they construct a formula of length kO(1) for recognizing
YES-instances conforming to the diagram and then take a disjunction of the formulas for all
the diagrams. There are 2O(k2) crossing diagrams and therefore the total formula length is
2O(k2). We use a similar structure, which we call a “sketch”, in our dynamic programming
algorithm and obtain an upper bound of 2O(k log k) on the number of sketches through a
similar but indeed somewhat finer analysis (see the proof of Lemma 14). We, however, remark
that there is a fundamental difference between crossing diagrams and sketches. A crossing
diagram represents a “type” of YES-instances and, for each fixed type, we need to examine
each given instance for acceptance by a formula or an algorithm. On the other hand, a sketch
is a succinct summary of a drawing of a subgraph. We define the “validity” of a sketch in
such a way that a valid sketch of the entire graph is an immediate certificate for the positive
answer to the instance and the validity of sketches can be efficiently determined by dynamic
programming on a tree decomposition. We also remark that such a succinct representation
is made possible by our observation on one-page drawings of biconnected graphs, which we
call the chain lemma (see Section 2).

2 Preliminaries

Let G be a graph. The set of vertices of G is denoted by V (G) and the set of edges of G
by E(G). For each v ∈ V (G), NG(v) denotes the set of neighbors of v in G: NG(v) = {u ∈
V (G) | {u, v} ∈ E(G)}. For X ⊆ V (G), G[X] denotes the subgraph of G induced by X and
NG(X) = (

⋃
v∈X NG(v)) denotes the set of neighbors of X.

As we have mentioned, a one-page drawing and a circular drawing are equivalent for our
purposes. Therefore, we will work on circular drawings, and whenever we refer to drawings,
we always refer to circular drawings. For a drawing D of G, we write cr(D) to denote the
number of crossings in D. The one-page crossing number cr1(G) of G is the minimum integer
k such that G has a circular drawing of k crossings.

LetD be a drawing ofG. We write V (D) and E(D) to denote V (G) and E(G), respectively.
We denote by cycle(D) the cycle on V (D) induced by the circle on which the vertices are
drawn: two vertices are adjacent to each other in cycle(D) if they are consecutively placed on
this circle. As special cases, if V (D) is empty then cycle(D) is an empty graph; if V (D) is a
singleton, then cycle(D) is a self-loop; if |V (D)| = 2, then cycle(D) is a multigraph consisting
of two parallel edges between the two vertices. Note that D is essentially determined by
V (D), E(D), and cycle(D). For X ⊆ V (D), we denote by D|X the subdrawing of D induced
by X, that is, the drawing obtained from D by deleting all vertices in V (D)\X. An extension
of D is a drawing obtained by adding some vertices and edges to D.

I Definition 2. A tree decomposition of G is a tree T where each t ∈ V (T ) is associated
with Xt ⊆ V (G), called a bag, such that

IPEC 2017



25:4 An Improved Fixed-Parameter Algorithm for One-Page Crossing Minimization

⋃
t∈V (T ) Xt = V (G),

for each {u, v} ∈ E(G), there is t ∈ V (T ) with {u, v} ⊆ Xt, and
for each u ∈ V (G), the subgraph of T induced by {t ∈ V (T ) : u ∈ Xt} is connected.

The width of a tree decomposition (T, {Xt : t ∈ V (T )}) is the maximum size of a bag minus
one. The treewidth of G is the minimum integer w such that G has a tree decomposition of
width w.

To distinguish between vertices of G and those of T , we call the vertices of T nodes. We
assume, in the rest of the paper, that tree decompositions are rooted. For a node t ∈ V (T ),
we define Vt =

⋃
t′∈V (Tt) Xt′ , where Tt is the subtree of T rooted at t.

I Definition 3. A tree decomposition T is nice if for each node t of T , exactly one of the
following conditions is satisfied.

t is a leaf of T with Xt = ∅,
t has exactly one child t′ with Xt = Xt′ \ {v} for some v ∈ Xt′ ,
t has exactly one child t′ with Xt = Xt′ ∪ {v} for some v /∈ Xt′ , or
t has exactly two children t1 and t2 with Xt = Xt1 = Xt2 .

We respectively call nodes that satisfy the above conditions, leaf nodes, forget nodes, introduce
nodes, and join nodes.

I Lemma 4 ([16]). Suppose we are given a graph G and its tree decomposition of width w.
Then, there is a nice tree decomposition of G of width at most w such that it has O(wn)
nodes, where n is the number of vertices of G. Moreover, such a nice tree decomposition can
be computed in O(w2n) time.

The following lemma is a well-known characterization of crossing-free drawings.

I Lemma 5 (Theorem 2.5 in [3]). For every graph G, cr1(G) = 0 if and only if G is
outerplanar.

Since every outerplanar graph has treewidth at most 2, we immediately have an upper
bound on the treewidth with respect to its one-page crossing number: tw(G) = O(cr1(G)).
Bannister and Eppstein [1] gave a tighter bound.

I Lemma 6 (Lemma 5 in [1]). For every graph G, tw(G) = O(
√

cr1(G)).

The following simple lemma is used in some previous results (see [1], for example).

I Lemma 7. Let G1, G2, . . . , Gt be the biconnected components of G. Then, cr1(G) =∑
1≤i≤t cr1(Gi).

Owing to this lemma, we will henceforth assume that the given graph is biconnected. We
prove below a lemma crucial in exploiting the biconnectivity in our algorithm. This lemma
generalizes the Hamiltonicity of biconnected outerplanar graphs with at least three vertices
[6].

Let D be a drawing of G. A path in G is a chain in D if it is also a path in cycle(D).
We say that a vertex is chained in D if it is an internal vertex of a chain.

I Lemma 8 (Chain lemma). Let G be a biconnected graph with at least three vertices and let
D be a drawing of G. Then every vertex not incident to any crossing edge in D is chained
in D.



Y. Kobayashi, H. Ohtsuka, and H. Tamaki 25:5

Proof. Let u be a vertex of G not incident to any crossing edge. Let v1 and v2 be the two
neighbors of u in cycle(D). As G is biconnected, u has at least two neighbors in G. If u has
no neighbor distinct from both v1 and v2, we are done. Suppose otherwise: u has a neighbor
x with x /∈ {v1, v2}. Let P1 and P2 be internally disjoint paths between v1 and v2, which
exist since G is biconnected. Since {u, x} is not a crossing edge, one of the path, say P1,
contains u and the other one, say P2, contains x. Suppose P1 does not go through edge
{v1, u}. Let y be the vertex adjacent to u on the subpath of P1 between v1 and u. Then,
the edge {y, u} must cross an edge in P2, contradicting the assumption that u is not incident
to a crossing edge. Hence P1 must go through edge {v1, u}. A symmetric argument shows
that P1 also goes through {v2, u}. Therefore, u is chained in D. J

3 Colored drawings and sketches

In our dynamic programming algorithm, for each node t of a given tree decomposition, we
enumerate structures we call “sketches" which succinctly describe drawings of G[Vt]. To
establish recurrences among sketches, it turns out necessary for the drawings described by
sketches to carry some information on our plan on how to extend those drawings to the final
drawing of G.

We use colors on vertices, black, white, and gray, to represent this information. A colored
drawing of graph H is a triple (D,B,W ) where B and W are disjoint subsets of V (H) and
D is a drawing of H, such that every vertex incident to a crossing edge in D belongs to B.
We call the vertices in B black, those in W white, and all others gray. If C is the colored
drawing (D,B,W ), then we write V (C), E(C), and cycle(C) to denote V (D), E(D), and
cycle(D), respectively. We use B(C) and W (C) to denote the set of black vertices and the
set of white vertices of C, respectively. For U ⊆ V (C), we write C|U to denote the colored
drawing (D|U,B ∩ U,W ∩ U).

In the above definition, both ends of a crossing edge must be black in a colored drawing,
but not vice versa: a black vertex is not necessarily incident to any crossing edge. A vertex
being black rather indicates our plan that it can be incident to any crossing edges in the
extension of the drawing of a subgraph of G into the drawing of the entire G. We need some
more definitions to explain the intention of the other two colors.

Let C be a colored drawing. We say that C respects X ⊆ V (C) if V (C) = B(C)∪W (C)∪X
and W (C) ∩X = ∅. Note that if C respects X then every vertex in X is either black or
gray, while every vertex not in X is either black or white. We will often consider a colored
drawing of an induced subgraph G[U ] of the given graph G, where U is accompanied with
a boundary X of U , a subset of U such that NG(U \X) ⊆ X. In those situations, we will
require each colored drawing of U to respect X. This ensures that there is no edge between
white vertices in U and the vertices in V (G) \ U . Thus, white vertices will never be adjacent
to vertices introduced in the extensions.

Let C and C ′ be colored drawings of graphs H and H ′ respectively, such that |V (H)| =
|V (H ′)|. A bijection φ : V (H) → V (H ′) is an isomorphism from C to C ′ if it is an
isomorphism from H to H ′ (u, v ∈ V (H) are adjacent to each other in H if and only if φ(u)
and φ(v) are adjacent to each other in H ′), is an isomorphism of cycle(C) to cycle(C ′), and
preserves the coloring (φ(B) = B′, and φ(W ) = W ′). Suppose V (H) and V (H ′) intersect
each other and let X ⊆ V (H) ∩ V (H ′). We call an isomorphism φ from C to C ′ an X-
isomorphism if φ fixes each vertex of x ∈ X, that is, φ(x) = x. If there is an isomorphism
(X-isomorphism) from C to C ′, then we say C and C ′ are isomorphic (X-isomorphic) to
each other and that each of them is an isomorph (X-isomorph) of each other.

IPEC 2017



25:6 An Improved Fixed-Parameter Algorithm for One-Page Crossing Minimization

Let C be a colored drawing. We say that C is well-formed if every white vertex of C
is chained in C. It will turn out in Section 4 that to inductively construct drawings of G
(which we are assuming is biconnected), it suffices to consider only well-formed drawings.

We now define “sketches” which describe colored drawings. Let C be a well-formed
colored drawing. A chain in C is white if every vertex in the chain is white. The contraction
of C is the colored drawing obtained from C by contracting each maximal white chain into a
single white vertex (which inherits all neighbors from the vertices of the chain). Let us note
that the contraction of C is unique up to isomorphism. The contraction of C is well-formed
since we are assuming that C is well-formed. Moreover, the contraction operation preserves
crossings: it does not introduce any new crossings or, since the vertices contracted are white
(and hence are not incident any crossing edges), does not remove any crossings. We say that
C is contracted if it does not contain any white chain with at least two vertices and hence is
the contraction of itself.

Let X be a vertex set. A sketch on X is a well-formed and contracted colored drawing that
respects X. Let C be a well-formed colored drawing of graph H that respects some vertex
set X ⊆ V (H). Let S be a sketch on X. We say that S describes C if S is X-isomorphic to
the contraction of C.

4 Recurrences

In this section, we fix a nice tree decomposition T of G, and use the notation Xt and Vt,
where t is a node of T , introduced in Section 2.

We say that a sketch S on Xt is valid for Vt if there is a well-formed colored drawing C
of G[Vt] that respects Xt and is described by S. For brevity, we say a sketch on t to mean a
sketch on Xt and also say that a sketch is valid on t, or simply valid if t is clear from the
context, to mean that it is valid for Vt.

Our dynamic programming algorithm enumerates, for each t, all valid sketches on t that
are small in the sense defined later. In the following lemmas, we establish recurrences that
can be used to inductively decide if a given sketch on t is valid, based on the validity of
sketches on t′ for child nodes t′ of t.

Leaf node
I Observation 9. Let t be a leaf node of T . Then, the empty sketch (D∅, ∅, ∅) on Xt = ∅,
where D∅ is an empty drawing, is valid.

Forget node
Let t be a forget node in T and t′ the unique child of t. Let v ∈ Vt′ be the vertex forgotten:
Xt = Xt′ \ {v}. Let S be a sketch on Xt and S′ a sketch on Xt′ . We say that S is the parent
of S′ if either
F1 v ∈ B(S′) and S = S′ or
F2 v 6∈ B(S′), v is chained in S′, and S is the contraction of the colored drawing obtained

from S′ by changing the color of v from gray to white (which is well-formed since v is
chained).

We say that S′ is a child of S if S is the parent of S′. Note that the parent of a sketch
on Xt′ is unique if one exists, while a sketch on Xt may have any number of children: zero,
one, or more.



Y. Kobayashi, H. Ohtsuka, and H. Tamaki 25:7

Figure 2 The figure shows an example of a sketch on a forget node t. The top figure depicts a
sketch on Xt and the bottom figures depict some of its children. Here, Xt = {a, b, c, d, e, f, g} and
v ∈ Xt′ \ Xt is the vertex forgotten.

I Lemma 10. Let t be a forget node and t′ its unique child node. Then, a sketch on t is
valid if and only if it has a child that is valid on t′.

Proof. Let v the vertex forgotten at node t: Xt = Xt′ \ {v}.
Let S be a valid sketch on t. Let C denote the well-formed colored drawing of G[Vt] that

respects Xt and is described by S. Since v ∈ Vt \ Xt and C respects Xt, we have either
v ∈ B(C) or v ∈W (C).

Suppose first that v ∈ B(C). Then, since sketch S describes C, we have v ∈ B(S). Then,
S is a sketch on t′ and, by Case F1, it is a child of S itself. Moreover, as W (C) ∩Xt′ =
W (C) ∩ (Xt ∪ {v}) = W (C) ∩Xt = ∅, C respects Xt′ as well. Since S is a sketch on t′ and
describes a colored drawing C for G[Vt′ ] = G[Vt] that respects Xt′ , it is valid on t′. Therefore,
we are done in this case.

Suppose next that v ∈ W (C). Let C ′ be the colored drawing of G[Vt′ ] = G[Vt] that
is identical to C except that the color of v is gray instead of white. Since every white
vertex of C ′ is chained as it is chained in C, C ′ is well-formed. Since W (C ′) ∩ Xt′ =
(W (C) \ {v}) ∩ (Xt ∪ {v}) = W (C) ∩Xt = ∅, C ′ respects Xt′ . Let S′ be the sketch on Xt′

that describes C ′, which is unique up to Xt′-isomorphisms. Then, as v /∈ B(C ′) and the
Xt′ -isomorphism from S′ to the contraction of C ′ fixes v ∈ Xt′ , we have v 6∈ B(S′). Since v
is white in C and C is well-formed, v is chained in C and hence in C ′. As v is gray in C ′ the
contraction of C ′ keeps v chained in S′. Therefore, Case F2 applies and we obtain the parent
S′′ of S′ by turning the gray vertex v white and then contracting the result. We may view
the relationship between C and S′′ as follows: we first turn the color of v in C from white to
gray and contract the result C ′ to obtain S′ through an Xt′-isomorphism; then, we turn v
white and further contract the result into S′′. The contraction of C in one step gives us an
Xt-isomorph of S′′ which, since S describes C by assumption, is an Xt-isomorph of S as well.
As S′′ is the parent of S′ and is Xt-isomorphic to S, S has a child that is Xt′ -isomorphic to
S′. Since S′ describes C ′, this child of S is valid and we are done in this case as well.

For the converse, suppose that S has a valid child S′. Let C ′ be a well-formed colored
drawing of G[Vt′ ] that respects Xt′ and is described by S′. First suppose v ∈ B(C ′). Since
v ∈ Xt′ , the Xt′-isomorphism from S′ to the contraction of C ′ fixes v. Therefore, we have
v ∈ B(S′). Case F1 applies and we have S = S′. Since S describes C ′ and C ′ respects
Xt ⊆ Xt′ , S is valid on t and we are done in this case.

IPEC 2017



25:8 An Improved Fixed-Parameter Algorithm for One-Page Crossing Minimization

Figure 3 The figures show an example of sketches on an introduce node t. The bottom figure
depicts a sketch on Xt′ and the top figures depict some of its parents. Here, Xt = {a, b, c, d, e, f, g, v}
and v ∈ Xt \ Xt′ is the vertex introduced.

So suppose that v /∈ B(C ′). Then we have v /∈ B(S′) and Case F2 must apply since S′ is
a child of S. Let C be the colored drawing of G[Vt] = G[Vt′ ] which is identical to C ′ except
that the color of v is turned white from gray. Since v is chained in S′ by the condition of
Case F2 and the Xt′ -isomorphism from S′ to the contraction of C ′ fixes v, v is chained in C ′
and hence in C. We may obtain an Xt-isomorph of S from C by turning the color of v gray,
contracting the result C ′ into an Xt′-isomorph of S′, turning the color of v back to white,
and then contracting the result. Since v is chained in C, we may perform the contraction in
one step, which shows that S describes C and hence is valid on t. J

Introduce node
Let t be an introduce node in T and t′ the unique child of t. Let v ∈ Xt be the vertex
introduced: Xt = Xt′ ∪ {v}. Let S be a sketch on Xt and S′ a sketch on Xt′ . We say that
S′ is the child of S if either
1. |Xt| = 1 and S′ is an unique empty sketch, or
2. |Xt| > 1, S′ = S|Vt′ , and neither of the two vertices in Ncycle(S)(v), which are not

necessarily distinct, are white in S.
Note that Vt′ = Vt \ {v} and hence S′ is obtained from S by removing v. We say that S is a
parent of S′ if S′ is the child of S. Note that the child of a sketch on Xt is unique up to
isomorphism if one exists, while a sketch on Xt′ may have more than one parent in general.

I Lemma 11. Let t be an introduce node and t′ a unique child of t. A sketch S on t is valid
if and only if it has a child that is valid on t′.

Proof. Let v be the vertex introduced in t: Xt = Xt′ ∪ {v}. We only prove the case 2, since
the case 1 is straightforward.

Suppose that S is a valid sketch on t such that |Xt| > 1. Let C be a well-formed colored
drawing of G[Vt] that respects Xt and is described by S. Since v ∈ Xt and C respects Xt,
v is either black or gray in C. Let C ′ = C|Vt′ . Since Vt = Vt′ ∪ {v}, C ′ is obtained from
C by removing v. Let u be a vertex adjacent to v in cycle(C). If u ∈ W (C) then u must
be chained in C since C is well-formed. But this is a contradiction, since v 6∈ Vt′ has no
neighbor in W (C) = W (C ′) ⊆ Vt′ \ Xt′ . Therefore, we conclude that neither of the two
vertices in Ncycle(C)(v) are white in C. Since the contraction of C does not change this local



Y. Kobayashi, H. Ohtsuka, and H. Tamaki 25:9

structure around v, the vertices in Ncycle(C)(v) correspond to those in Ncycle(S)(v) through
the Xt-isomorphism from S to the contraction of C. Therefore, S satisfies the condition for
having a child. Let S′ be the child of S. Since C and C ′ have the same set of maximal white
chains, the Xt-isomorphism from S to the contraction of C gives an Xt′-isomorphism from
S′ to the contraction of C ′, when restricted to V (S′) = V (S) \ {v}. Therefore, S′ is valid.

For the converse, suppose S has a child S′ that is valid on t′. Let C ′ be a well-formed
colored drawing of G[Vt′ ] that respects Xt′ and is described by S′. Let v1 and v2 be the two
vertices in Ncycle(S)(v). Each of v1 and v2 is either black or gray in S, since S has a child.
Since S respects Xt and v ∈ Xt, v is also either black or gray. Since v1 and v2 are adjacent
to each other in cycle(S′), the Xt′-isomorphism from S′ to the contraction of C ′ maps v1
and v2 to vertices v′1 and v′2 of C ′ that are either black or gray in C ′ and are adjacent to
each other in cycle(C ′). Let D be the drawing of G[Vt] obtained from the drawing of C ′ by
adding v between v′1 and v′2. Let C = (D,B,W (C ′)), where B = B(C ′) ∪ {v} if v ∈ B(S)
and B = B(C ′) otherwise.

We claim that C is a colored drawing. To see this, let e and f be edges of G[Vt] that
cross each other in D. If neither e nor f is incident to v, then the crossing is in C ′ and
hence all the ends of e and f are black in C ′ and hence in C. So suppose one of e and f ,
say e, is incident with v. Let u1 be the other end of e and let u2 and u3 be the ends of f .
For i = 1, 2, 3, ui has a vertex u′i in S′ corresponding to ui: the Xt′-isomorphism from S′

to the contraction of C ′ maps u′i to either ui or the contraction of a white maximal chain
containing ui. Since e and f cross each other in C, the edge between v and u′1 and the edge
between u′2 and u′3 must cross each other in S. As sketch S is a colored drawing, v, u′1, u′2,
and u′3 are black in S. By the definition of C, v is in C. Moreover, from the definition of the
contraction, we see that u1, u2, and u3 must be black in C ′ and hence in C. Therefore, C
satisfies the condition for being a colored drawing. C is well-formed, since every white vertex
in C is a white vertex in C ′ and therefore is chained in C ′ and hence in C.

Since C ′ is obtained from C by removing v and neither of the two vertices in Ncycle(C)(v)
are white, C is contracted in the same way as C ′ is contracted into an Xt′-isomorph of S′,
resulting in an Xt-isomorph of S. Therefore S describes C and hence is valid. J

Join Node
Let t be a join node with child nodes t1 and t2. From the definition of join node, we have
Xt = Xt1 = Xt2 and (Vt1 \Xt) ∩ (Vt2 \Xt) = ∅. We may assume that neither Vt1 \Xt nor
Vt2 \Xt is empty and hence |Vt| ≥ 3.

Let S be a sketch on t. Let S1 and S2 be sketches on t1 and t2, respectively. We say that
S is the parent of the pair (S1, S2) if
1. V (S1) \Xt and V (S2) \Xt partition V (S) \Xt,
2. there is no edge in E(S) between V (S1) \Xt and V (S2) \Xt,
3. S1 = S|V (S1), and
4. S2 = S|V (S2).

I Lemma 12. Let t be a join node with child nodes t1 and t2. A sketch S on t is valid if
and only if there are valid sketches S1 on t1 and S2 on t2 such that S is the parent of the
pair (S1, S2).

Proof. Suppose first that S is a valid sketch on t. Let C be a well-formed colored drawing of
G[Vt] that respects Xt and is described by S. Let Ci = C|Vti for i = 1, 2. Then, for i = 1, 2,
Ci is well-formed, since each white vertex v ∈ Ci is chained in C and, since v ∈ Vti

\Xt, NG(v)

IPEC 2017



25:10 An Improved Fixed-Parameter Algorithm for One-Page Crossing Minimization

Figure 4 The figures show an example of a sketch on a join node t. The top figure depicts a
sketch on Xt and the bottom figures depict a pair of sketches whose parent is the sketch in the top
figure. Here, Xt = {a, b, c, d, e, f, g}.

are in Vti
, is chained in Ci as well. Moreover, for i = 1, 2, Ci respects Xti

. To confirm this,
fix i. Since W (C)∩Xt = ∅ as C respects Xt, we have W (Ci)∩Xti = (W (C)∩Vti)∩Xt = ∅.
We also have V (Ci) = B(Ci)∪W (Ci)∪Xti

, since V (Ci) = V (C)∩ Vti
, B(Ci) = B(C)∩ Vti

,
and W (Ci) = W (C) ∩ Vti . Therefore, Ci respects Xti .

Observe that each chain in C is either entirely contained in C1 or entirely contained
in C2, as there is no edge of G between Vt1 \ Xt and Vt2 \ Xt. Therefore, the partition
(Vt1 \ Xt, Vt2 \ Xt) of Vt \ Xt induces a partition (R1, R2) of V (S) \ Xt through the Xt-
isomorphism from S to the contraction of C. There is no edge in E(S) between R1 and R2,
since such an edge would correspond to an edge between Vt1 \Xt and Vt2 \Xt, contradicting
the definition of a join node. Therefore, S is the parent of the pair (S1, S2), where Si for
i = 1, 2 is defined by Si = S|(Ri ∪Xt). The contraction of C to an Xt-isomorph of S induces
the contraction of Ci to an Xt-isomorph of Si, for i = 1, 2. Therefore, Si describes Ci and
hence is valid, for i = 1, 2.

For the converse, suppose S is the parent of a pair (S1, S2) where Si is a valid sketch on
ti, for i = 1, 2. For i = 1, 2, let Ci be a well-formed colored drawing of G[Vti ] that respects
Xti

and is described by Si. We combine C1 and C2 into a colored drawing C of G[Vt] as
follows. We take the sketch S and replace each vertex v ∈ V (S) as follows. If v ∈ Xt then
we keep v as it is. If v ∈ B(S1) \Xt, then we replace v by the vertex of C1 to which v is
mapped by the Xt-isomorphism from S1 to the contraction of C1; the case v ∈ B(S2) \Xt is
similar. If v ∈W (S1), then we replace v by the maximal white chain of C1, the contraction
of which v is mapped to by the Xt-isomorphism from S1 to the contraction of C1; the case
v ∈W (S2) is similar. We let the resulting colored drawing be C. All edges of the drawing
except for those in the maximal white chains correspond to edges in S and edges in white
chains are not crossing. Therefore, every vertex incident to a crossing edge is colored black
in C as it is in S and hence C is indeed a colored drawing. That C respects Xt is trivial. To
see that C is well-formed, let w be a white vertex of C. Then, either w corresponds to a
white vertex of S or w is in a white chain that corresponds to a white vertex of S. Since this
white vertex in S is chained since S is well-formed, w is chained in C. Finally, combining
the contractions of Ci into Xt-isomorphs of Si for i = 1, 2, we get the contraction of C into
an Xt-isomorph of S. Therefore, S describes C and hence is valid. J



Y. Kobayashi, H. Ohtsuka, and H. Tamaki 25:11

5 Algorithm

By Lemma 7, we can solve our problem independently for each biconnected component of
G. Moreover, the biconnected components can be computed in linear time [14]. When the
treewidth of G is larger than c

√
k for some constant c > 0, by Lemma 6, we can conclude

cr1(G) > k. Thus, in the following, we can assume that the given graph G is biconnected
and its treewidth is at most c

√
k. Applying the algorithm of Bodlaender et al. [5], we can

obtain a tree decomposition of G whose width is O(
√
k) in 2O(

√
k)n time and its nice tree

decomposition by Lemma 4.
We say that a sketch is small if it has at most 4k black vertices and contains at most

k crossings. Our dynamic programming algorithms inductively enumerates the set of all
valid sketches on t that are small, for each node t of the nice tree decomposition, using
the recurrences established in the previous section. The dynamic programming table for t
contains one representative sketch from each Xt-isomorphism class. It is straightforward
to verify that, to decide if a small sketch on t is valid or not, only small sketches on child
node(s) of t need to be examined. Thus, the computation gives us the set of all small and
valid sketches on the root of the tree decomposition. Therefore, the proof of the correctness
of our algorithm lies in showing the following lemma.

I Lemma 13. G has a drawing with at most k crossings if and only if there is a small sketch
on ∅ that is valid for V (G).

Proof. Suppose first that there is a small sketch S on ∅ that is valid for V (G). Then, since
S is valid, there is a colored drawing C of G described by S. The number of crossings of C
is equal to the number of crossings in S and is at most k.

For the converse, suppose that G has a drawing with at most k crossings. Turn this
drawing into a colored drawing C of G by making the ends of all crossing edges black and all
other vertices white. We have at most 4k black vertices and C respects ∅. Moreover, C is
well-formed by the chain lemma (Lemma 8). Contracting C (with respect to boundary ∅),
we obtain a small sketch on ∅ that describes C and hence is valid for V (G). J

For the running time, we prove the following:

I Lemma 14. For each t ∈ V (T ), the number of small sketches on t, counting one from
each Xt-isomorphism class, is 2O(k log k).

Proof. The number of non-isomorphic graphs with p vertices and q edges is upper bounded
by p2q. For such a graph, the number of different colorings is at most 3p, and the number
of different drawings is at most (p− 1)!. Observe that every small sketch of p vertices has
2p+ k − 3 edges. This follows from the fact that we can obtain an outerplanar drawing by
removing at most k edges from an arbitrary small sketch. Since the color of the two vertices
in Ncycle(S)(v) for every white vertex v in an arbitrary sketch S is either black or gray, the
number of white vertices is at most 4k +O(

√
k). Therefore, each small sketch has at most

8k+O(
√
k) vertices and at most 17k+O(

√
k) edges, and hence the number of such drawings

is 2O(k log k). J

References
1 M. J. Bannister and D. Eppstein. Crossing minimization for 1-page and 2-page drawings

of graphs with bounded treewidth. In Proc. of GD 2014, pages 210–221. Springer, 2014.
2 M. Baur and U. Brandes. Crossing reduction in circular layouts. WG, 3353:332–343, 2004.

IPEC 2017



25:12 An Improved Fixed-Parameter Algorithm for One-Page Crossing Minimization

3 F. Bernhart and P. C. Kainen. The book thickness of a graph. Journal of Combinatorial
Theory, Series B, 27(3):320–331, 1979.

4 G. Blin, G. Fertin, D. Hermelin, and S. Vialette. Fixed-parameter algorithms for pro-
tein similarity search under mRNA structure constraints. Journal of Discrete Algorithms,
6(4):618–626, 2008.

5 H. L. Bodlaender, P. G. Drange, M. S. Dregi, F. V. Fomin, D. Lokshtanov, and M. Pilipczuk.
A ckn 5-Approximation Algorithm for Treewidth. SIAM Journal on Computing, 45(2):317–
378, 2016.

6 G. Chartrand and F. Harary. Planar Permutation Graphs. Annales de l’I.H.P. Probabilités
et statistiques, 3(4):433–438, 1967.

7 F. R. K. Chung, F. Thomson Leighton, and A. L. Rosenberg. Embedding graphs in books:
a layout problem with applications to VLSI design. SIAM Journal on Algebraic Discrete
Methods, 8(1):33–58, 1987.

8 B. Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.
Information and computation, 85(1):12–75, 1990.

9 B. Courcelle and M. Mosbah. Monadic second-order evaluations on tree-decomposable
graphs. Theoretical Computer Science, 109(1):49–82, 1993.

10 V. Dujmović, M. R. Fellows, M. Kitching, G. Liotta, C. McCartin, N. Nishimura, P. Ragde,
F. Rosamond, S. Whitesides, and D. R. Wood. On the parameterized complexity of layered
graph drawing. Algorithmica, 52(2):267–292, 2008.

11 M. Frick and M. Grohe. The complexity of first-order and monadic second-order logic
revisited. Annals of Pure and Applied Logic, 130(1):3–31, 2004.

12 R. Fulek, H. He, O. Sỳkora, and I. Vrt’o. Outerplanar crossing numbers of 3-row meshes,
Halin graphs and complete p-partite graphs. SOFSEM 2005: Theory and Practice of
Computer Science, pages 376–379, 2005.

13 H. He, A. Sălăgean, and E. Mäkinen. One-and two-page crossing numbers for some types
of graphs. International Journal of Computer Mathematics, 87(8):1667–1679, 2010.

14 J. Hopcroft and R. Tarjan. Algorithm 447: efficient algorithms for graph manipulation.
Communications of the ACM, 16(6):372–378, 1973.

15 P. C. Kainen. The book thickness of a graph II. Congressus Numerantium, 71:121–132,
1990.

16 T. Kloks. Treewidth: computations and approximations, volume 842. Springer Science &
Business Media, 1994.

17 E. Mäkinen. On circular layouts. International Journal of Computer Mathematics, 24(1):29–
37, 1988.

18 S. Masuda, T. Kashiwabara, K. Nakajima, and T. Fujisawa. On the NP-completeness of
a computer network layout problem. In Proceedings of the 1987 IEEE International Symp.
on Circuits and Systems, pages 292–295, 1987.

19 S. L. Mitchell. Linear algorithms to recognize outerplanar and maximal outerplanar graphs.
Information Processing Letters, 9(5):229–232, 1979.

20 F. Shahrokhi, O. Sỳkora, L. A. Székely, and I. Vrt’o. Book embeddings and crossing
numbers. In International Workshop on Graph-Theoretic Concepts in Computer Science,
pages 256–268. Springer, 1994.

21 J. M. Six and I. G. Tollis. Circular drawings of biconnected graphs. In ALENEX, volume 99,
pages 57–73. Springer, 1999.

22 M. M. Sysło. Characterizations of outerplanar graphs. Discrete Mathematics, 26(1):47–53,
1979.

23 M. Yannakakis. Embedding planar graphs in four pages. Journal of Computer and System
Sciences, 38(1):36–67, 1989.


	Introduction
	Preliminaries
	Colored drawings and sketches
	Recurrences
	Algorithm

