
An Output Sensitive Algorithm for Maximal
Clique Enumeration in Sparse Graphs
George Manoussakis

LRI-CNRS, Université Paris Sud, Université Paris Saclay, France
george@lri.fr

Abstract
The degeneracy of a graph G is the smallest integer k such that every subgraph of G contains
a vertex of degree at most k. Given an n-order k-degenerate graph G, we present an algorithm
for enumerating all its maximal cliques. Assuming that α is the number of maximal cliques of
G, our algorithm has setup time O(n(k2 + s(k+ 1))) and enumeration time αO((k+ 1)f(k+ 1))
where s(k + 1) (resp. f(k + 1)) is the preprocessing time (resp. enumeration time) for maximal
clique enumeration in a general (k + 1)-order graph. This is the first output sensitive algorithm
whose enumeration time depends only on the degeneracy of the graph.

1998 ACM Subject Classification G.2.2 Graph Theory, Graph Algorithms

Keywords and phrases Enumeration algorithms, maximal cliques, k-degenerate graphs

Digital Object Identifier 10.4230/LIPIcs.IPEC.2017.27

1 Introduction

Degeneracy, introduced by Lick et al. [12], is a common measure of the sparseness of a
graph and is closely related to other sparsity measures such as arboricity and thickness.
Degenerate graphs often appear in practice. For instance, the World Wide Web graph,
citation networks, and collaboration graphs have low arboricity, and therefore have low
degeneracy [18]. Furthermore, planar graphs have degeneracy at most five [12] and the
Barabàsi-Albert model of preferential attachment [9], frequently used as a model for social
networks, produces graphs with bounded degeneracy.

Cliques are complete subgraphs of a graph. The problem of listing all maximal cliques in
general and k-degenerate graphs has been extensively studied. We can essentially distinguish
between two families of algorithms. On one side, worst-case output size algorithms have been
proposed. Their complexities match the maximal number of maximal cliques one can find
in the considered graphs. For instance, Tomita et al. [16] propose an algorithm enumerating
all maximal cliques of a general n-order graph in time O(3n/3). This is worst-case output
size optimal in general graphs as for instance the Moon-Moser graphs have Θ(3n/3) cliques
[3, 15]. Thus, even printing the cliques of these graphs would require at least Ω(3n/3)
time. Similarly, for k-degenerate graphs, Eppstein et al. [8] prove a O((n − k)3k/3) bound
on the maximal number of maximal cliques and then show an algorithm running in time
O(k(n − k)3k/3). The two algorithms described above rely on ideas of the Bron-Kerbosch
algorithm [2]. These results are summarized in the first three rows of Table 1. This table is
largely inspired by the one provided by Conte et al. [7].

Another family is the one of polynomial delay output sensitive algorithms. Their time
complexities can be divided into a preprocessing phase followed by an enumeration phase.
During the enumeration phase, maximal cliques of the graph are outputted with polynomial
delay: the wait between the output of two maximal cliques is bounded by some polynomial

© George Manoussakis;
licensed under Creative Commons License CC-BY

12th International Symposium on Parameterized and Exact Computation (IPEC 2017).
Editors: Daniel Lokshtanov and Naomi Nishimura; Article No. 27; pp. 27:1–27:8

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.IPEC.2017.27
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

27:2 An Output Sensitive Algorithm for Maximal Clique Enumeration in Sparse Graphs

Table 1 Bounds for maximal clique enumeration where q − 1 ≤ k ≤ ∆ ≤ n − 1. + : these
are polynomial time delay algorithms. Their delay is equal to their enumeration time divided by
the number of maximal cliques α. The space bounds do not include the space needed to store the
graph.

Algorithm Setup Enumeration Space

Bron-Kerbosch [2] O(m) unbounded O(n+ q∆)
Tomita et al. [16] O(m) O(3n/3) O(n+ q∆)
Eppstein et al. [8] O(m) O(k(n− k)3k/3) O(n+ k∆)

Johnson et al. [11]+ O(mn) αO(mn) O(αn)
Tsukiyama et al. [17]+ O(n2) αO((n2 −m)n) O(n2)

Chiba et al. [5]+ O(m) αO(mk) O(m)
Makino et al. [13]+ O(mn) αO(∆4) O(m)
Chang et al. [4]+ O(m) αO(∆h3) O(m)

Makino et al. [13]+ O(n2) αO(n2.37) O(n2)
Comin et al. [6]+ O(n5.37) αO(n2.09) O(n4.27)
Conte et al. [7]+ O(m logO(1) (m+ n)) αO(qd(∆ + qd) logO(1)(m+ n)) O(q)
Conte et al. [7]+ O(m logO(1) (m+ n)) αO(min{mk, qk∆} logO(1) (m+ n)) O(k)

∆ = max degree k = degeneracy q = maximum clique size
α = number of maximal cliques
h = smallest integer such that |{v ∈ V : |N(v)| ≥ h}|, where k ≤ h ≤ ∆.

in the parameters of the graph. For example, the algorithm of Johnson et al. [11] has
setup time O(mn) and polynomial time delay O(mn). Thus, after the setup phase, this
algorithm requires αO(mn) time, α being the number of maximal cliques, to output all the
maximal cliques of the graph. It is output sensitive since the enumeration time depends on
the number of maximal cliques of the graph. All the algorithms that fall into this category
are listed in the last nine rows of Table 1. For these specific algorithms, the time delay is
equal to the enumeration time divided by α, the number of maximal cliques.

Our contribution. Given a k-degenerate graph, we present an output sensitive algorithm
with setup time O(n(k2 + s(k + 1))) and enumeration time αO((k + 1)f(k + 1)), where
s(k + 1) (resp. f(k + 1)) is the preprocessing time (resp. enumeration time) for maximal
clique enumeration in a general (k + 1)-order graph. For example, using the algorithm of
Makino et al. [13] which has setup time O((k+1)2) and enumeration time O((k+1)2.37) for
a (k+1)-order graph, our algorithm has setup time O(n(k2+(k+1)2)) and enumeration time
αO((k + 1)(k + 1)2.37). Since in a (k + 1)-order graph all the graph parameters (number of
edges and vertices, the maximum degree, the clique size, etc.) are bounded by some function
of k, our algorithm will always have enumeration time depending only on the degeneracy
of the graph, whatever output sensitive algorithm of Table 1 we use. This is the first such
algorithm.

On the downside, we were not able to prove that our algorithm has polynomial time
delay. It also requires that the maximum cliques be stored. Thus, since the maximal cliques
of a k-degenerate graph are of size at most k + 1, our algorithm needs O((k + 1)α) space,
besides the space needed to store the graph (in our case, the graph can be stored using
adjacency lists). Further improvements are discussed in the conclusion.

G. Manoussakis 27:3

The organization of the document is as follows. In Section 2 we introduce some notations
and definitions. In Section 3 we prove basic results. These results are used in Section 4 to
prove the correctness and time complexity of Algorithm 1, which is the main contribution
of the paper.

2 Definitions

2.1 Graph terminologies
We consider graphs of the form G = (V,E) which are simple, undirected, connected, with
n vertices and m edges. We assume that they are stored in memory using adjacency lists.
If X ⊂ V , the subgraph of G induced by X is denoted by G[X]. The vertex set of G
will be denoted by V (G). The set N(x) is called the open neighborhood of the vertex x

and consists of the vertex adjacent to x in G. The closed neighborhood of x is defined as
N [x] = N(x) ∪ x. Given an ordering v1, ..., vn of the vertices of G, Vi is the set of vertices
following vi including itself in this ordering, that is, the set {vi, vi+1, ..., vn}. By Gi we
denote the induced subgraph G[N [vi] ∩ Vi]. A graph is k-degenerate if there is an ordering
v1, ..., vn of its vertices such that for all i, 1 ≤ i ≤ n, |N(vi) ∩ Vi| ≤ k. The degeneracy
ordering can be computed in O(m) time [1]. Given a graph G we will denote by σG its
degeneracy ordering and if x ∈ V (G) then σG(x) will be the ranking of x in σG.

2.2 Word terminologies
Let Σ be an alphabet, that is, a non-empty finite set of symbols. Let a string s be any finite
sequence of symbols from Σ; s will be a substring of a string t if there exists strings u and
v such that t = usv. If u or v is not empty then s is a proper substring of t. It will be a
suffix of t if there exists a string u such that t = us. If u is not empty, s is called a proper
suffix of t.

3 Basic results

When not specified, we always assume that, given a k-degenerate graph G, we have its
degeneracy ordering, denoted by σG. When referring to an ordering of the vertices, we
always refer to σG. The family of subgraphs Gi, i ∈ [n] described in Section 2.1 will always
be constructed following the degeneracy ordering of G. Thus, these graphs have at most
k + 1 vertices, since in a degeneracy ordering v1, ..., vn of the vertices of G, the inequality
|N [vi] ∩ Vi| ≤ k + 1 holds.

We want to show in this section that, roughly, given some k-degenerate graph G, it is
enough to compute all the maximal cliques of the induced subgraphs Gi, i ∈ [n] to get all
the maximal cliques of G. We first start by proving that the induced subgraphs Gi, i ∈ [n]
can be easily computed. To prove that we first introduce a special adjacency structure, in
the following definition.

I Definition 1. Let G = (V,E) be a k-degenerate graph. Assume that G is given by the
adjacency lists for each vertex. The degenerate adjacency list of a vertex x ∈ V is its
adjacency list in which every vertex that has lower ranking that x in σG has been deleted.

I Lemma 2. The degenerate adjacency lists of a n-order k-degenerate graph G can be
computed in time O(m).

IPEC 2017

27:4 An Output Sensitive Algorithm for Maximal Clique Enumeration in Sparse Graphs

Proof. Compute the degeneracy ordering σG of G. As described before this can be done
in O(m) time. Assume that we have the adjacency lists of G. Let x ∈ V and let dx be its
degree. In time O(dx) remove all vertices from its adjacency lists that have lower ranking
in σG. Repeat the procedure for all the vertices of the graph. This is done in total time
O(m). J

I Lemma 3. Given a k-degenerate graph G, there is an algorithm constructing the induced
subgraphs Gi, i ∈ [n] in time O(nk2) and O(m) space.

Proof. Compute the degenerate adjacency lists ofG. This is done in timeO(m) by Lemma 2.
Observe first that the vertex set of graph Gi, i ∈ [n] corresponds to i-th vertex of σG plus all
the vertices of its degenerate adjacency list. Thus it only remains to show how to compute the
adjacency lists of each of these graphs. We proceed as follows. For every vertex x ∈ V (Gi),
go through its degenerate adjacency list and remove vertices which are not in the vertex set
V (Gi). Observe that this can be done in O(k) by coloring the vertices of V (Gi) blue and
removing non blue vertices from the degenerate adjacency list of x. This procedure takes
time O(k2) for each graph Gi, i ∈ [n], thus in total, we need time O(nk2 +m) = O(nk2), as
m = O(nk). J

Now that we have seen how the induced subgraphs Gi, i ∈ [n] can be constructed, we
want to characterize their maximal cliques with respect to the maximal cliques of the graph.
We show in the next two lemmas that the maximal cliques of graphs Gi, i ∈ [n] which are
not maximal in G can be easily described.

I Lemma 4. Let G be a k-degenerate graph, σG its degeneracy ordering, and let K be a
maximal clique of an induced subgraph Gi, i ∈ [n]. Clique K is not a maximal clique of G if
and only if there exists a maximal clique C of G which is an induced subgraph of a Gj with
j < i and such that K is a strict induced subgraph of C.

Proof. Let σG be the degeneracy ordering of G. Assume that K is a maximal clique of
an induced graph Gi for i = 1, ..., n − k but is not a maximal clique of G. Observe that
vi ∈ V (K) since, by definition, vi is connected to all the vertices of V (Gi)\vi. Since Ki is a
clique which is not maximal, then there exists a set A of vertices such that A ∩ V (K) = ∅
and the graph induced on V (K)∪A is a maximal clique of G. Let vj be the vertex of A with
lower ranking in σG. We have that σG(vj) < σG(vi) since vj is connected to vi but does
not appear in V (Gi). (It does not appear otherwise A ∩ V (K) 6= ∅). Let C be the maximal
clique induced on V (K) ∪ A. Clique C is an induced subgraph of Gj with j < i. Observe
that K does not have vj in its vertex set. Therefore K is a strict induced subgraph of C.

Conversely, assume that K is a maximal clique of Gi and C a maximal clique of Gj , j < i

such that K is an induced subgraph of C. Since K is a strict induced subgraph of a maximal
clique of G then K cannot be a maximal clique of G. J

I Corollary 5. Let G be a k-degenerate graph and let K be a maximal clique of an induced
subgraph Gi, i ∈ [n] such that K is not maximal in G. Let C be a maximal clique of G which
is a subgraph of some graph Gj , j < i and such that K is a subgraph of C. Let W (K) and
W (C) be the words obtained from the vertices of cliques K and C which have been ordered
following σG. Then W (K) is a proper suffix of W (C).

Proof. Observe first that by Lemma 4, clique C is well defined. Since K is a strict subgraph
of C then V (K) ⊂ V (C). Recall that by definition, graph Gi = G[N [vi] ∩ Vi] where vi
is the i-th vertex of the degeneracy ordering. Observe that since vi is the vertex of V (K)

G. Manoussakis 27:5

with smallest ranking in σG then vi appears first in W (K). We also have that vi ∈ V (C).
Assume now by contradiction that W (K) is not a proper suffix of W (C). This implies that
there exists at least a vertex x ∈ V (C)\V (K) that appears after vertex vi in W (C). If that
was not the case then W (K) would have been a proper suffix of W (C). This implies that
vertex x appears after vertex vi in σG. Observe now that x is connected to all the vertices
of K since x ∈ V (C) and V (K) ⊂ V (C). Thus G[V (K) ∪ {x}] is a maximal clique of Gi,
which is a contradiction by maximality of K. J

To conclude the section, we prove some additional results regarding the maximal cliques
of graphs Gi, i ∈ [n], in the next three lemmas.

I Lemma 6. Let G be a k-degenerate graph. Every clique which is maximal in some subgraph
Gi, i ∈ [n] is not maximal in any subgraph Gj with j 6= i.

Proof. Let K be a maximal clique of some subgraph Gi, i ∈ [n]. Assume by contradiction
that there exists a j ∈ [n] with j 6= i such that K is maximal in Gj . Assume first that i < j.
Since vertex vi is connected to all the vertices of graph Gi then necessarily vi ∈ V (K) or K
is not maximal in Gi. Since we assumed i < j then vi /∈ V (Gj). This implies that K cannot
be a subgraph of Gj , which gives a contradiction in that case. Thus assume now that j < i.
The proof is similar. Vertex vj which is connected to all the vertices of Gj does not belong
to graph Gi. Since K is maximal in Gi and since vj /∈ V (K) then K cannot be maximal in
Gj . J

I Lemma 7. Let G be a k-degenerate graph, σG its degeneracy ordering. Every maximal
clique of G is a subgraph of exactly one graph Gi, i ∈ [n].

Proof. let K be some maximal clique of G. We first prove that K is a subgraph of at least
a subgraph Gi, i ∈ [n]. Let x ∈ V (K) be the vertex of K which has minimum ranking in
σG. Observe now that clique K is subgraph of graph GσG(x). The fact that clique K is a
subgraph of at most a graph Gi, i ∈ [n] is a consequence of Lemma 6. J

I Lemma 8. Let G be a k-degenerate graph. Let Gi, i ∈ [n] be the family of induced
subgraphs as defined in Section 2.1 and constructed in Lemma 3. Let α denote the number
of maximal cliques of G and αi the number of maximal cliques of graph Gi. We have that
n∑
j=1

αj ≤ α(k + 1).

Proof. Let maxi denotes the number of maximal cliques of Gi, i ∈ [n] which are maximal
in G and Nmaxi the number of maximal cliques of Gi, i ∈ [n] which are not maximal in
G. We have that αi = maxi + Nmaxi. By Lemma 7, every maximal clique of G is a
subgraph of exactly one graph Gi, i ∈ [n]. This implies that

∑n
j=1 maxj = α. Let X be the

set of cliques which are maximal in some graph Gi, i ∈ [n] but not maximal in G and let
x ∈ X. By Lemma 5, the word obtained from the vertices of x which have been ordered
following σG is a proper suffix of the word obtained from ordering the vertices, following σG,
of some maximal clique of G. This implies that X is of size at most kα since a maximum
clique of a k-degenerate has at most k + 1 vertices and that a word with k + 1 letters
has at most k proper suffixes. To conclude the proof, Lemma 6 implies that clique x is
maximal in an unique graph Gi, i ∈ [n] which implies that

∑n
j=1 Nmaxj ≤ kα. Thus in

total
∑n
j=1 αj ≤ α+ αk = α(k + 1). J

IPEC 2017

27:6 An Output Sensitive Algorithm for Maximal Clique Enumeration in Sparse Graphs

Algorithm 1:
Data: A graph G.
Result: All the maximal cliques of G.

1 Compute k the degeneracy of G and σG.
2 Construct the graphs Gi, i ∈ [n].
3 Initialize T an empty generalized suffix tree.
4 for j = 1 to n do
5 Compute all maximal cliques of graph Gj .
6 for every maximal clique K of graph Gj do
7 Order the vertices of K following σG
8 Search for K in T .
9 if there is a match then

10 Reject it.
11 else
12 Insert the proper suffixes of K in T .
13 Output K.

4 Algorithm for maximal clique enumeration

Before we describe the algorithm, we introduce suffix trees. We need a data structure to
store the proper suffixes of all maximal cliques. Given a word of size n, we can construct a
suffix tree containing all its suffixes in space and time O(n), see [14, 18, 19]. For a set of
words X = {x1, x2, ..., xr}, it is possible to construct a generalized suffix tree containing all
the suffixes of the words in X, in an online fashion, in space and time O(

∑r
i=1 |xi|), see [10,

chapter 6] and [18] for instance.
The outline of the algorithm is the following. We start by computing the induced sub-

graphs Gi, i ∈ [n]. Then we consider each such subgraph, starting from G1 up to Gn. We
find all its maximal cliques and try to find them in a generalized suffix tree. If there is a
match, the clique is rejected, otherwise it is outputted and its proper suffixes are inserted
into the generalized suffix tree. The procedure is described in Algorithm 1. Its correctness
is proved in Theorem 9 and its time complexity in Theorem 10.

I Theorem 9. Given a k-degenerate graph G, Algorithm 1 outputs exactly all its maximal
cliques, without duplication.

Proof. By Lemma 7, every maximal clique of the graph is a subgraph of exactly one graph
Gi, i ∈ [n]. Thus, every maximal clique K of the graph is considered exactly once in Line 6
of the algorithm. If K is matched in the generalized suffix tree at Line 7 then the vertices of
K ordered following σG form a proper suffix of some clique of the graph. This contradicts
the fact that K is maximal in G. Thus, every maximal clique is outputted exactly once.
Moreover, all the proper suffixes of all the maximal cliques are stored in the generalized tree.
By Corollary 5 the word obtained from a maximal clique in some graph Gi, i ∈ [n] which is
not maximal in G form a proper suffix of the world obtained from some maximal clique of
G. Thus, all such cliques will be rejected in Line 9 of Algorithm 1. In conclusion, we proved
that only the maximum cliques of G are outputted, without duplication. J

G. Manoussakis 27:7

I Theorem 10. Given a k-degenerate graph G, Algorithm 1 has setup time O(n(k2 + s(k+
1))) and enumeration time αO((k + 1)f(k + 1)) where α is the number of maximal cliques
of G and s(k + 1) (resp. f(k + 1)) is the preprocessing time (resp. enumeration time) of
maximal clique enumeration in a general (k + 1)-order graph.

Proof. Computing the degeneracy of G in Line 1 is done in O(m) time. Constructing the
graphs Gi, i ∈ [n] in Line 2 is done in O(nk2), by Lemma 3. To compute all the maximal
cliques of every graph Gi, i ∈ [n], we can use any output sensitive algorithm of Table 1.
The chosen algorithm has preprocessing time s(|V (Gi)|) = O(s(k + 1)) and enumeration
time f(|V (Gi)|) = O(f(k + 1)) for each graph Gi, i ∈ [n] since these graphs have at most
k + 1 vertices. We first preprocess every such graph Gi in total time O(n ∗ s(k + 1)).
Thus the preprocessing phase takes time O(nk2 + m + n ∗ s(k + 1)) = O(n(k2 + s(k +
1))). Then we enumerate all the maximal cliques of the graphs Gi, i ∈ [n] in total time
(
∑n
j=1 αj) ∗ O(f(k + 1)) where αj is the number of maximal cliques of graph Gj . By

Lemma 8,
∑n
j=1 αj ≤ (k + 1)α. Thus enumerating all the maximal cliques of the graphs

Gi, i ∈ [n] takes total time αO((k+1)f(k+1)). Searching and inserting the generated cliques
in the suffix tree takes total time αO((k+1)2). In conclusion, Algorithm 1 has preprocessing
time O(n(k2 + s(k + 1))) and enumeration time αO((k + 1)f(k + 1)), as claimed. J

5 Conclusion

We presented the first output sensitive algorithm for maximal clique enumeration whose
enumeration time depends only on the degeneracy of the graph. We were not able to prove
that it has polynomial time delay. Our intuition is that in its current state, our algorithm
has time delay O(kα). Thus, we first ask whether this is true or not and if yes, if there is
a way to modify our approach as to get a polynomial time delay. The second question that
we ask is whether or not we can improve the space complexity. In its current state, our
algorithm requires that the maximal cliques be stored. Can we modify our approach as to
avoid that?

References
1 V. Batagelj and M. Zaversnik. An O(m) algorithm for cores decomposition of networks.

CoRR, cs.DS/0310049, 2003. URL: http://arxiv.org/abs/cs.DS/0310049.
2 C. Bron and J. Kerbosch. Algorithm 457: Finding all cliques of an undirected graph.

Commun. ACM, 16(9):575–577, 1973. doi:10.1145/362342.362367.
3 F. Cazals and C. Karande. A note on the problem of reporting maximal cliques. Theoretical

Computer Science, 407(1-3):564–568, 2008.
4 L. Chang, J. X. Yu, and L. Qin. Fast maximal cliques enumeration in sparse graphs.

Algorithmica, 66(1):173–186, 2013.
5 N. Chiba and T. Nishizeki. Arboricity and subgraph listing algorithms. SIAM Journal on

Computing, 14(1):210–223, 1985.
6 C. Comin and R. Rizzi. An improved upper bound on maximal clique listing via rectangular

fast matrix multiplication. arXiv preprint arXiv:1506.01082, 2015.
7 A. Conte, R. Grossi, A. Marino, and L. Versari. Sublinear-space bounded-delay enumeration

for massive network analytics: Maximal cliques. In 43rd International Colloquium on
Automata, Languages, and Programming (ICALP 2016), volume 148, pages 1–148, 2016.

8 David Eppstein, Maarten Löffler, and Darren Strash. Listing all maximal cliques in large
sparse real-world graphs. ACM Journal of Experimental Algorithmics, 18, 2013. doi:
10.1145/2543629.

IPEC 2017

http://arxiv.org/abs/cs.DS/0310049
http://dx.doi.org/10.1145/362342.362367
http://dx.doi.org/10.1145/2543629
http://dx.doi.org/10.1145/2543629

27:8 An Output Sensitive Algorithm for Maximal Clique Enumeration in Sparse Graphs

9 M. Farach. Optimal suffix tree construction with large alphabets. In Proceedings of the 38th
Annual Symposium on Foundations of Computer Science, FOCS ’97, pages 137–, Washing-
ton, DC, USA, 1997. IEEE Computer Society. URL: http://dl.acm.org/citation.cfm?
id=795663.796326.

10 D. Gusfield. Algorithms on strings, trees and sequences: computer science and computa-
tional biology. Cambridge University Press, 1997.

11 David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. On generating
all maximal independent sets. Inf. Process. Lett., 27(3):119–123, 1988. doi:10.1016/
0020-0190(88)90065-8.

12 D. R. Lick and A. T. White. d-degenerate graphs. Canad. J. Math., 22:1082–1096, 1970.
URL: http://www.smc.math.ca/cjm/v22/p1082.

13 K. Makino and T. Uno. New algorithms for enumerating all maximal cliques. In Scand-
inavian Workshop on Algorithm Theory, pages 260–272. Springer, 2004.

14 Edward M. McCreight. A space-economical suffix tree construction algorithm. J. ACM,
23(2):262–272, 1976. doi:10.1145/321941.321946.

15 J. W Moon and L. Moser. On cliques in graphs. Israel journal of Mathematics, 3(1):23–28,
1965.

16 Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. The worst-case time complexity
for generating all maximal cliques and computational experiments. Theor. Comput. Sci.,
363(1):28–42, 2006. doi:10.1016/j.tcs.2006.06.015.

17 S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa. A new algorithm for generating all
the maximal independent sets. SIAM Journal on Computing, 6(3):505–517, 1977.

18 Esko Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260, 1995.
doi:10.1007/BF01206331.

19 Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching
and Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973, pages 1–11. IEEE
Computer Society, 1973. doi:10.1109/SWAT.1973.13.

http://dl.acm.org/citation.cfm?id=795663.796326
http://dl.acm.org/citation.cfm?id=795663.796326
http://dx.doi.org/10.1016/0020-0190(88)90065-8
http://dx.doi.org/10.1016/0020-0190(88)90065-8
http://www.smc.math.ca/cjm/v22/p1082
http://dx.doi.org/10.1145/321941.321946
http://dx.doi.org/10.1016/j.tcs.2006.06.015
http://dx.doi.org/10.1007/BF01206331
http://dx.doi.org/10.1109/SWAT.1973.13

	Introduction
	Definitions
	Graph terminologies
	Word terminologies

	Basic results
	Algorithm for maximal clique enumeration
	Conclusion

