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Abstract
We present two new data structures for computing values of an n-variate polynomial P of degree
at most d over a finite field of q elements. Assuming that d divides q− 1, our first data structure
relies on (d+ 1)n+2 tabulated values of P to produce the value of P at any of the qn points using
O(nqd2) arithmetic operations in the finite field. Assuming that s divides d and d/s divides q−1,
our second data structure assumes that P satisfies a degree-separability condition and relies on
(d/s+ 1)n+s tabulated values to produce the value of P at any point using O(nqssq) arithmetic
operations. Our data structures are based on generalizing upper-bound constructions due to
Mockenhaupt and Tao (2004), Saraf and Sudan (2008), and Dvir (2009) for Kakeya sets in finite
vector spaces from linear to higher-degree polynomial curves.

As an application we show that the new data structures enable a faster algorithm for com-
puting integer-valued fermionants, a family of self-reducible polynomial functions introduced by
Chandrasekharan and Wiese (2011) that captures numerous fundamental algebraic and combin-
atorial invariants such as the determinant, the permanent, the number of Hamiltonian cycles in a
directed multigraph, as well as certain partition functions of strongly correlated electron systems
in statistical physics. In particular, a corollary of our main theorem for fermionants is that the
permanent of an m×m integer matrix with entries bounded in absolute value by a constant can
be computed in time 2m−Ω

(√
m/ log logm

)
, improving an earlier algorithm of Björklund (2016)

that runs in time 2m−Ω
(√

m/ logm
)
.
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6:2 Generalized Kakeya Sets and Faster Fermionants

1 Introduction

The protagonist of this paper is the following task. We want an efficient representation of an
n-variate degree-d polynomial P over a finite field Fq of order q, that permits us to evaluate
P on arbitrary points a ∈ Fnq . What kind of resource trade-offs can be achieved between
space (for representing P ) and query time (for computing P (a) at a given a)?

The study of data structures that enable fast “polynomial evaluation” queries for mul-
tivariate polynomials was initiated by Kedlaya and Umans [11] for polynomials with bounded
individual variable degrees, motivated by applications to fast polynomial factorization. (For
univariate polynomial evaluation, cf. von zur Gathen and Gerhard [24].) Here we focus on
the case when P has (total) degree d, in particular, when d is less than n.1

We seek data structures consisting of a set K ⊆ Fnq and an associated list ((a, P (a)) : a ∈
K) of evaluations. There are two extremes for such designs. At one extreme, we can set
K = Fnq , put all evaluations in a sorted array, and binary search achieves O(n log q) query
time. At the other extreme, to uniquely identify P we must tabulate Ω(

(
n+d
d

)
) points, as this

is the dimension of the monomial basis. However, when K is this small, we are only aware of
brute-force (nO(d)-time) algorithms to evaluate the polynomial in any other point. Between
these two extremes, we seek constructions for sets K that suffice for evaluating P at any
point outside K in time that scales sub-exponentially in d. Our motivation is to accelerate
the best known algorithms for canonical #P-hard problems (cf. Section 1.2).

1.1 Polynomial evaluation based on generalized Kakeya sets
Let Fq[x] be the ring of polynomials over indeterminates x = (x1, x2, . . . , xn) with coefficients
in Fq. Our first main theorem constructs an explicit set K ⊆ Fnq of cardinality at most
(d+ 1)n+2 which allows for relatively quick evaluation of any degree-d P at all points in Fnq .

I Theorem 1. Let d divide q − 1. There is a set K ⊆ Fnq of size |K| ≤ (d + 1)n+2 along
with functions g1, g2, . . . , g(q−1)(d+1)2 : Fnq → K and scalars γ1, γ2, . . . , γ(q−1)(d+1)2 ∈ Fq such
that for every polynomial P ∈ Fq[x] of degree at most d and every vector a ∈ Fnq ,

P (a) =
(q−1)(d+1)2∑

j=1
γjP (gj(a)) .

I Remark. Let us write M(q) for the time complexity2 of multiplication and division in Fq.
The construction in Theorem 1 is explicit in the sense that (a) there is an algorithm that
in time O(|K|nqM(q)) lists the elements of K; and (b) there is an algorithm that in time
O
(
nqd2M(q)

)
computes the values gj(a) ∈ Fnq and γj ∈ Fq for all j = 1, 2, . . . , (q− 1)(d+ 1)2

when given a ∈ Fnq as input. The quadratic dependence on d has not been optimized.
The size of K can be further reduced for polynomials P satisfying a certain (natural)

restriction which holds for several well-studied polynomials. Suppose we partition the variable
setX = {x1, x2, . . . , xn} intoX = X1∪X2∪· · ·∪Xd such that |X1| = |X2| = · · · = |Xd| = n/d.
Let us say that a degree-d polynomial P ∈ Fq[x] is degree-separable relative to X1, X2, . . . , Xd

if every monomial of P contains one variable from each Xi. Note a degree-separable P is

1 In contrast, Kedlaya and Umans [11] focus on the case n ≤ do(1); cf. [11, Corollaries 4.3, 4.5, and 6.4].
Notational caveat: Kedlaya and Umans use “m” for the number of variables.

2 For example, M(q) = O
(
(log q)1+ε

)
holds for any constant ε > 0; we refer to e.g. von zur Gathen and

Gerhard [24] for sharper bounds.
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in particular both multilinear and homogeneous of degree d. Degree-separability enables a
trade-off between the size of K and the query time for evaluation:

I Theorem 2. Let s divide d and d/s divide q − 1. There is a set K ⊆ Fnq of size
|K| ≤

(
d/s+ 1

)n+s along with g1, g2, . . . , g(q−1)s : Fnq → K and γ1, γ2, . . . , γ(q−1)s ∈ Fq such
that for every degree-separable degree-d P ∈ Fq[x] relative to a fixed partition X1, X2, . . . , Xd

and every vector a ∈ Fnq ,

P (a) =
(q−1)s∑
j=1

γjP (gj(a)) .

I Remark. The construction in Theorem 2 is explicit in the sense that (a) there is an algorithm
that in time O(|K|nqM(q)) lists the elements of K; and (b) there is an algorithm that in time
O(n(q − 1)ssqM(q)) computes the values gj(a) ∈ Fnq and γj ∈ Fq for all j = 1, 2, . . . , (q− 1)s
when given a ∈ Fnq as input.

We need K to contain enough points that “interpolation” at all the other points is possible.
One intuition for designing a small K ⊆ Fnq for polynomial evaluation is that such a set must
enable “localization” of any target polynomial inside the set. At one extreme, we may think
of the simplest non-constant family of polynomials, namely lines. In Euclidean spaces, this
line of thought leads to the study of dimensionality of sets that contain a unit line segment
in every direction, or the Kakeya problem, which has been extensively studied since the 1920s
and the seminal work of Besicovitch [2]. We refer to Wolff [26], Mockenhaupt and Tao [18],
and Dvir [9, 10] for surveys both in the continuous and finite settings. In what follows we
focus on finite vector spaces.

I Definition 3. A Kakeya set (or Besicovitch set) in a vector space of dimension n over Fq
is a subset K ⊆ Fnq together with a function f : Fnq → Fnq such that for every vector a ∈ Fnq
and every scalar τ ∈ Fq it holds that

f(a) + τa ∈ K . (1)

That is, a Kakeya set K has the property that for any possible direction of a line in
Fnq (that is, any nonzero vector a ∈ Fnq ), the set K contains an entire line (through f(a))
with this direction. To support our objective of polynomial evaluations for higher-order
curves than lines, an intuition is now to generalize (1) to polynomials of higher degree in
the indeterminate τ . This is the methodological gist of our main contribution in this paper,
which will be described further in Section 2.

As an illustrative application of our new data structures, we use Theorem 2 to derive a
faster algorithm for computing fermionants, which are a family of self-reducible and degree-
separable polynomials introduced by Chandrasekharan and Wiese [7] to generalize various
fundamental polynomials. We start with a brief introduction to fermionants to motivate
their study from a computational perspective.

1.2 Fermionants

We continue to work over Fq. As usual, Sm is the symmetric group over [m] = {1, 2, . . . ,m}.
We write c(σ) for the number of cycles in a permutation σ ∈ Sm, where each fixed point of σ is

IPEC 2017
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counted as a cycle of length 1. Let A = (aij : i, j ∈ [m]) be anm×m matrix of indeterminates.
The fermionant of A with (indeterminate) parameter t is the (m2 + 1)-variable polynomial

fertA = (−1)m
∑
σ∈Sm

(−t)c(σ)
m∏
i=1

ai,σ(i) . (2)

The fermionant is multilinear and homogeneous of degree m with respect to the variables
{ai,j}, and of degree m with respect to t. Furthermore, note that with respect to {ai,j} the
fermionant is degree-separable under the partition {{aij : j ∈ [m]} : i ∈ [m]}.

The fermionant captures several extensively studied algebraic and combinatorial invariants,
such as the determinant of a matrix

detA = (−1)m
∑
σ∈Sm

(−1)c(σ)
m∏
i=1

ai,σ(i) ,

the permanent of a matrix

perA =
∑
σ∈Sm

m∏
i=1

ai,σ(i) ,

the generating function for directed Hamiltonian cycles

hcA =
∑
σ∈Sm

c(σ)=1

m∏
i=1

ai,σ(i) ,

as well as certain partition functions of strongly correlated electron systems in statistical
physics (see Chandrasekharan and Wiese [7]). It is immediate that the aforementoined
invariants can be obtained as special cases of the fermionant via

detA = fer1A , perA = (−1)m fer−1A , and hcA = (−1)m−1 {t} fertA ,

where in the last equality we write {tk}P for the coefficient of tk in the polynomial P .
The invariants captured by the fermionant have received such substantial attention that

is not possible to discuss the literature exhaustively here. For example, the permanent and
the determinant are central to arithmetic circuit complexity [22] and geometric complexity
theory [15]. Similarly, the numerous symmetries and self-reducibility properties of fermionants
enable their use in e.g. interactive proof systems [5, 16, 25]. We restrict our present discussion
of earlier work mostly to algorithms for the permanent.

Computing the permanent of a given m ×m matrix appears to be an extremely hard
problem. Indeed, the best known general algorithm is over 50 years old, given by Ryser [19]
in 1963, and it uses O(2mm) arithmetic operations. Valiant [23] proved that the permanent
for {0, 1}-matrix inputs is #P-hard, even if the number of ones per row is at most three. In
the more general setting of fermionants, Mertens and Moore [17] showed that the fermionant
is #P-hard for any τ > 2 and ⊕P-hard for τ = 2, even for the adjacency matrices of
planar graphs. For the permanent, no less-than-2m-sized arithmetic circuit is known despite
substantial efforts (for example, it is a prominent open problem in the Art of Computer
Programming [12]).

However, there are faster ways to compute the permanent if we allow random-access
tabulation along with arithmetic operations. Most notably, there are modest speed-ups for
{0, 1}-matrices over the integers. Bax and Franklin [1] gave an 2m−Ω(m1/3/ logm) expected
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time algorithm. Recently, Björklund [3] presented a deterministic 2m−Ω(
√
m/ log q) time

algorithm over any finite field of order q ≥ m2 + 1, by exploiting the self-reducibility of the
permanent. Applying the Chinese Remainder Theorem, he also obtains a 2m−Ω(

√
m/ logm)-

time algorithm for integer matrices with entries whose absolute value is bounded from above
by a constant. There are also faster algorithms for sparse matrices. Cygan and Pilipczuk [8]
gave a 2m−Ω(m/r) time algorithm for matrices with at most r non-zero entries per row.
Very recently, Björklund, Husfeldt, and Lyckberg [4] and Björklund, Kaski, and Koutis [6]
show that if the result is bounded in absolute value by cm for a constant c > 1, then
there are 2m(1−1/cΩ(1))mO(1)-time algorithms for the permanent and the number of directed
Hamiltonian cycles, respectively. Both algorithms work by computing the permanent and the
number of directed Hamiltonian cycles modulo small primes. In particular, the algorithms
over Fp run in time 2m(1−1/pΩ(1)), faster than the algorithms of this paper for small p.

Our main technical result for fermionants is that, given mild technical conditions on the
order of the field, we can compute obtain a faster algorithm over finite fields:

I Theorem 4. There is an algorithm that computes the fermionant fertA ∈ Fq[t] of a given
m×m matrix A with entries in Fq in time 2m−Ω

(√
m/ log log q

)
O(M(q)), provided that q − 1

has a divisor in the interval (1.1 log q, 10 log q), q ≥ m2 + 1, and m = ω
(
log2 q log log q

)
.

The Chinese Remainder Theorem and a uniform variant of the Prime Number Theorem
for arithmetic progressions yield the following corollary for integer-valued fermionants.

I Corollary 5. Let τ be an integer with |τ | ≤ O(m) and let M be a constant. The fermionant
ferτ A can be computed in time 2m−Ω

(√
m/ log logm

)
, for all m×m matrices A with integer

values in [−M,M ].

The idea behind Theorem 4 is to apply our polynomial evaluation results to a self-
reduction for fermionants. Following Björklund’s results for the permanent [3], we show how
to compute a fermionant on an m ×m matrix via 2m−kmO(1) calls to the fermionant on
k × k matrices. Applying Theorem 2, we set k so that it is possible to evaluate the k × k
fermionant polynomial over all points of K in 20.999m time. Once we know the polynomial
on all points in K, we can then evaluate the fermionant on any m×m matrix in time about
2m−Ω(k)mO(1). We show k ≈

√
m/ log log q suffices.

Organisation. In Section 2, we present our generalization of Kakeya sets in finite vector
spaces, together with explicit constructions. Next in Section 3 we prove our main evaluation
theorems, Theorem 1 and Theorem 2. In Section 4 we use the self-reducibility of the
fermionant to prove Theorem 4 and Corollary 5, showing how to compute fermionants faster.

2 Generalized Kakeya sets in finite vector spaces

Here we study the following generalization of Kakeya sets for lines (Definition 3) to higher-
degree polynomial curves:

I Definition 6. A Kakeya set of degree r in a vector space of dimension n over Fq consists
of a set K ⊆ Fnq together with functions f0, f1, . . . , fr−1 : Fnq → Fnq such that for every vector
a ∈ Fnq and every scalar τ ∈ Fq it holds that

F (a, τ) = f0(a) + f1(a)τ + f2(a)τ2 + . . .+ fr−1(a)τ r−1 + aτ r ∈ K . (3)

IPEC 2017
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We say that a construction for Kakeya sets is explicit if
(i) there is an algorithm that outputs K (given q, r, and n) in O

(
|K|nrM(q)

)
time, and

(ii) there is an algorithm that given a ∈ Fnq outputs the values f0(a), f1(a), . . . , fr−1(a) ∈ Fnq
in O

(
nrM(q)

)
time.

The following construction of sparse Kakeya sets of degree r generalizes the design of the
best known Kakeya sets (cf. Mockenhaupt and Tao [18], Saraf and Sudan [20], Dvir [9, §2.4],
Kopparty, Lev, Saraf, and Sudan [13], and Kyureghyan, Müller, and Wang [14]).

I Lemma 7. For every r + 1 that divides q − 1 there is an explicit Kakeya set K ⊆ Fnq of

degree r and size |K| ≤
(
q−1
r+1 + 1

)n+1
.

Proof. We begin with three simple observations. First, since r + 1 divides q − 1, we have
that r + 1 has a multiplicative inverse in Fq.3 Second, for all α, τ ∈ Fq from the Binomial
Theorem we have(

α

r + 1 + τ

)r+1
− τ r+1 =

r−1∑
i=0

(
r + 1
i

)(
α

r + 1

)r+1−i
τ i + ατ r . (4)

Third, since the multiplicative subgroup F×q is cyclic of order q − 1, the subgroup consisting
of (r + 1)th powers of elements of F×q has size exactly q−1

r+1 . Including the zero element, we
observe that |{βr+1 : β ∈ Fq}| = q−1

r+1 + 1.
Let us now define K ⊆ Fnq to consist of all vectors of the form((

α1

r + 1 + τ

)r+1
− τ r+1,

(
α2

r + 1 + τ

)r+1
− τ r+1, . . . ,

(
αn
r + 1 + τ

)r+1
− τ r+1

)
(5)

with α1, α2, . . . , αn, τ ∈ Fq. It follows immediately from (5) and our third observation

that |K| ≤
(
q−1
r+1 + 1

)n+1
. Furthermore, (4) and (5) imply that the generalized Kakeya

property (3) holds when we define the functions fi : Fnq → Fnq for all i = 0, 1, . . . , r − 1 and
a = (α1, α2, . . . , αn) ∈ Fnq by

fi(a) =
((

r + 1
i

)(
α1

r + 1

)r+1−i
,

(
r + 1
i

)(
α2

r + 1

)r+1−i
, . . . ,

(
r + 1
i

)(
αn
r + 1

)r+1−i)
. (6)

It is immediate from the definitions (5) and (6) that the construction is explicit. J

3 Polynomial evaluation

This section proves our two main theorems for polynomial evaluation. The key idea is
Mellin-transform-like sieving (8) enabled by an elementary observation about sums over finite
fields (7) below, which we then extend to an s-fold product form in (12).

Let us start with a homogeneous version of Theorem 1.

3 Indeed, q = pa for a prime p and positive integer a. Note r+ 1 has a multiplicative inverse if and only if
p does not divide r + 1. By assumption we have (r + 1)Q = pa − 1 for an integer Q and thus r + 1 = pb
for an integer b would lead to a contradiction p(bQ− pa−1) = −1.
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I Lemma 8. Let d divide q − 1. There is a set K ⊆ Fnq of size |K| ≤ (d+ 1)n+1 together
with functions g1, g2, . . . , gq−1 : Fnq → K and coefficients γ1, γ2, . . . , γq−1 ∈ Fq such that for
every homogeneous polynomial P ∈ Fq[x] of degree h ≤ d and every vector a ∈ Fnq ,

P (a) =
q−1∑
j=1

γjP (gj(a)) .

Proof. Let d divide q−1. Set r = (q−1)/d−1, and note that r+1 divides q−1. Apply Lemma 7
to obtainK and the functions f0, f1, . . . , fr−1. Let P ∈ Fq[x] be a homogeneous polynomial of
degree h ≤ d over the indeterminates x = (x1, x2, . . . , xn), and let a = (α1, α2, . . . , αn) ∈ Fnq
be an assignment of values to the indeterminates. Our goal is to compute the value P (a) ∈ Fq
using evaluations of P at K. Recalling the function F (a, τ) from (3), we will rely on values
of the composition P (F (a, τ)) for τ ∈ Fq to obtain P (a).

Towards this end, we first observe that

∑
τ∈F×

q

τe =
{
−1 if q − 1 divides e,
0 otherwise.

(7)

To see this, let g be a generator of the multiplicative subgroup F×q . If q − 1 divides e then
τe = 1 for all τ , and thus the sum is |F×q | = q − 1 (modulo the characteristic). Otherwise,
ge 6= 1, and we have

∑
τ∈F×

q
τe =

∑
τ∈F×

q
(gτ)e = ge

∑
τ∈F×

q
τe, so the sum must be 0.

Let t = q − 1− rh and observe that t ≥ 1. We now claim that

P (a) = −
∑
τ∈F×

q

τ tP (F (a, τ)) . (8)

By linearity, it suffices to consider the case when P is a single monomial P = xh1
1 xh2

2 · · ·xhn
n

of degree h = h1 + h2 + . . .+ hn ≤ d. Recalling (3) and (7), we observe that the right-hand
side of (8) expands to

−
∑
τ∈F×

q

τ tP (F (a, τ))

= −
∑
τ∈F×

q

τ q−1−rh
(
τ rhαh1

1 αh2
2 · · ·αhn

n + τ rh−1( · · · )+ τ rh−2( · · · )+ . . .+ τ0( · · · ))
= −

∑
τ∈F×

q

(
τ q−1αh1

1 αh2
2 · · ·αhn

n + τ q−2( · · · )+ τ q−3( · · · )+ . . .+ τ q−1−rh( · · · ))
= αh1

1 αh2
2 · · ·αhn

n

= P (a) .

That is, by multiplying each term by τ t, we ensure that all other terms appearing inside of
P (F (a, τ)) cancel, except for the desired term αh1

1 αh2
2 · · ·αhn

n which is the coefficient of τ rh.
Now let β1, β2, . . . , βq−1 be an enumeration of the elements of F×q . For all j = 1, 2, . . . , q−1,

set gj(a) = F (a, βj) and γj = −βtj . The lemma now follows from (8). J

3.1 Proof of Theorem 1
We are now ready to prove Theorem 1. Our strategy is to interpolate the homogeneous
components of our given polynomial, then apply Lemma 8. Towards this end, let P ∈ Fq[x]

IPEC 2017



6:8 Generalized Kakeya Sets and Faster Fermionants

have degree at most d and let P =
∑d
h=0 Ph where Ph ∈ Fq[x] is either zero or homogeneous

of degree h, for all h = 0, 1, . . . , d. Let ν0, ν1, . . . , νd be any d + 1 distinct elements of Fq.
Recalling the definition of K in (5), let K̂ ⊆ Fnq be the set of all vectors of the form

ν

((
α1

r + 1 + τ

)r+1
− τ r+1,

(
α2

r + 1 + τ

)r+1
− τ r+1, . . . ,

(
αn
r + 1 + τ

)r+1
− τ r+1

)
(9)

where α1, α2, . . . , αn, τ ∈ Fq, and ν ∈ {ν0, ν1, . . . , νd}.
In particular, from (9) and (5) we have that |K̂| ≤ (d+ 1)|K|.
Assuming we have constant-time access to P (a) for all a ∈ K̂, we can access each Ph

at k ∈ K by univariate interpolation over the d + 1 distinct values of ν, via the identity
P (νk) =

∑d
h=0 Ph(k)νh. That is, for h, j = 0, 1, . . . , d, let λhj ∈ Fq be the Lagrange

interpolation coefficients that satisfy Ph(k) =
∑d
j=0 λhjP (νjk) for all k ∈ K. Observe in

particular that the coefficients λhj depend only on ν0, ν1, . . . , νd. With access to values of Ph
at K, given a query a ∈ Fnq we can use Lemma 8 to sieve for Ph(a) for each h = 0, 1, . . . , d.
That is, we have P (a) =

∑d
h=0 Ph(a) = −

∑d
h=0

∑
τ∈F×

q

∑d
j=0 τ

q−1−rhλhjP (νjF (a, τ)). J

3.2 Proof of Theorem 2
Suppose s divides d and d/s divides q − 1. Let X1, X2, . . . , Xd be the partition of variables
for degree-separability. For i = 1, 2, . . . , s, take

Yi = X(i−1)d/s+1 ∪X(i−1)d/s+2 ∪ · · · ∪Xid/s

and observe that |Yi| = n/s for all i. Furthermore, observe that every monomial of a
polynomial P ∈ Fq[x] that is degree-separable relative to X1, X2, . . . , Xd has degree exactly
d/s when restricted to the variables of Yi.

Let us extend the construction in Lemma 7 into an s-fold product form over the partition
Y1, Y2, . . . , Ys. Accordingly, we work with a multivariate polynomial over s indeterminates
τ1, τ2, . . . , τs instead of a univariate polynomial (3) over τ . Let a = (α1, α2, . . . , αn) ∈ Fnq and
let us write aYi

∈ Fns/dq for the restriction of a to coordinates in Yi. Set r = (q − 1)s/d− 1.
Let us write FYi

(aYi
, τi) ∈ Fnq for the vector obtained by applying the construction given by

(3) and (6) to the vector aYi and τi, thereby obtaining a vector of length ns/d indexed by Yi,
followed by padding with 0-entries outside the indices Yi to obtain a vector of length n. Let
us now define the (vector-valued) multivariate polynomial

F (a, τ1, τ2, . . . , τs) = FY1(aY1 , τ1) + FY2(aY2 , τ2) + . . .+ FYs
(aYs

, τs) . (10)

We observe by (3), (6), and (4) that F (a, τ1, τ2, . . . , τs) ranges over all vectors of the form((
α1

r + 1 + τ1

)r+1
− τ r+1

1 ,

(
α2

r + 1 + τ1

)r+1
− τ r+1

1 , . . . ,

(
αn/s

r + 1 + τ1

)r+1
− τ r+1

1 ,(
αn/s+1

r + 1 + τ2

)r+1
− τ r+1

2 ,

(
αn/s+2

r + 1 + τ2

)r+1
− τ r+1

2 , . . . ,

(
α2n/s

r + 1 + τ2

)r+1
− τ r+1

2 ,

· · · ,(
αn−n/s+1

r + 1 + τs

)r+1
− τ r+1

s ,

(
αn−n/s+2

r + 1 + τs

)r+1
− τ r+1

s , . . . ,

(
αn
r + 1 + τs

)r+1
− τ r+1

s

)
(11)

with α1, α2, . . . , αn, τ1, τ2, . . . , τs ∈ Fq. We define K to be the set of all such vectors. By
similar reasoning as in the proof of Theorem 1, note that |K| ≤

(
q−1
r+1 + 1

)n+s
=
(
d
s + 1

)n+s.
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Let t = q − 1 − rd/s and observe that t ≥ 1. From (7) and proceeding analogously as
with the reasoning for (8) in the proof of Theorem 1, we thus have

P (a) = (−1)s
∑

τ1,τ2,...,τs∈F×
q

τ t1τ
t
2 · · · τ tsP (F (a, τ1, τ2, . . . , τs)) . (12)

Let β1, β2, . . . , βq−1 be an enumeration of the elements of F×q . For all j = (j1, j2, . . . , js) ∈
{1, 2, . . . , q − 1}s take

gj(a) = F (a, βj1 , βj2 , . . . , βjs
) and γj = (−1)sβtj1β

t
j2 · · ·β

t
js
.

The theorem now follows from (12). J

4 Fermionants

This section proves our two main theorems for evaluating fermionants. We start by noting that
the fermionant is self-reducible, a result that easily follows from earlier work by Björklund [3],
followed by the proofs of our present main theorems.

4.1 Self-reducibility of the fermionant
This subsection reviews how Björklund’s [3] self-reducibility for permanents can be extended
to fermionants. In essence, his methodology can be used to reduce the task of computing one
fermionant of size m×m to the task of computing 2m−kmO(1) fermionants of size k× k. We
stress that this subsection is provided for ease of exposition only and no claim of originality
is made.

Let r, t, and aij for i, j ∈ [m] be polynomial indeterminates and let F be the coefficient
field. For S ⊆ [m], i, j ∈ S, and ` = 0, 1, . . . ,m, consider the inductively-defined family of
polynomials:

WS
`,i,j(r) =


1 if ` = 0 and i = j;
0 if ` = 0 and i 6= j;∑
u∈S aiurW

S
`−1,u,j(r) if ` ≥ 1.

(13)

The polynomial WS
`,i,j can be viewed as a multivariate generating function for (edge-multisets

of) walks of length ` inside S ⊆ [m] that start at i and end at j, on the complete graph
of m vertices. The degree of each monomial in the indeterminate r is equal to `. The
indeterminates auv track the edges (u, v) traversed by the walk, with degree indicating the
multiplicity, that is, how many times each edge was traversed.

For S ⊆ [m] and i ∈ [m], let us write S≥i = {u ∈ S : i ≤ u}. For S ⊆ [m], i ∈ S, and
` = 0, 1, . . . ,m, introduce the following bivariate polynomial

CSi (r, t) = 1− t
m∑
`=1

W
S≥i

`,i,i (r) . (14)

This polynomial forms a multivariate generating function for (edge-multisets of) closed walks
inside S and “anchored” at i, including the possibility of no walk at all. Here, by “anchored”
at i we mean that the lowest-numbered vertex of the closed walk is i. Let

CS(r, t) =
∏
i∈S

CSi (r, t) . (15)

IPEC 2017
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Let k = 0, 1, . . . ,m. For i, j ∈ [k] and S ⊆ [m] \ [k], introduce the univariate polynomial

ãSi,j(r) = aij +
m−1∑
`=0

∑
u,v∈S

aiuW
S
`,u,vavjr . (16)

This polynomial is a multivariate generating function for representing the (edge-multisets
of) walk segments that traverse [m] so that the first vertex of the segment is i and the last
vertex of the segment is j; the walk can either proceed directly from i to j, or perform a
walk of length ` in S before ending at j. Let us arrange the coefficients ãSi,j(r) into a k × k
matrix ÃS(r).

For a polynomial P in the indeterminate r, let us write
{
rj
}
P for the coefficient (polyno-

mial) of the monomial rj . By the principle of inclusion and exclusion, we have:

I Theorem 9. For all k = 0, 1, . . . ,m, we have the polynomial identity

fertA =
{
rm−k

} ∑
S⊆[m]\[k]

(−1)|S|CS(r, t) fert ÃS(r) . (17)

Observing that the right-hand side of (17) has degree at most m2 in r, and using Lagrange
interpolation together with dynamic programming on the recurrences (13), (14), (15), and
(16), we have:

I Theorem 10. Suppose |F| ≥ m2 + 1 and let k = 0, 1, . . . ,m. Then, there is a value
L = 2m−kmO(1) computable in time polynomial in m, and an algorithm that given as input
a matrix A ∈ Fm×m, τ ∈ F, and an integer j = 1, 2, . . . , L, runs in time mO(1), executes
mO(1) arithmetic operations in F, and outputs a matrix Ãj ∈ Fk×k together with a coefficient
αj ∈ F such that:

ferτ A =
L∑
j=1

αj ferτ Ãj . (18)

In particular, the fermionant ferτ A of a given A ∈ Fm×m at τ ∈ F can be computed in
2mmO(1) time and arithmetic operations in F.

4.2 Proof of Theorem 4
Let A ∈ Fm×mq be given together with τ ∈ Fq. We seek to compute ferτ A and will deploy
the self-reducibility enabled by Theorem 10 towards this end. By assumption we have that
q − 1 has a divisor u with 1.1 log q ≤ u ≤ 10 log q. Since m = ω(log2 q log log q), for all large
enough m we can let k be a multiple of u with

0.98
√
m/ log log q ≤ k ≤ 0.99

√
m/ log log q .

With the objective of applying Theorem 2, take n = k2, d = k, and s = k/u. Observe
that the fermionant (2) of a k × k matrix A at τ ∈ Fq is a degree-separable polynomial P of
degree d over the n variables in A. Furthermore, s divides d and d/s divides q − 1, so the
assumptions of Theorem 2 hold. By Theorem 10 we can evaluate this P at any given point
(that is, for any given k × k matrix) in time 2kkO(1) and operations in Fq. The tabulation of
P for Theorem 2 thus can be done in time

2kkO(1)
(
d

s
+ 1
)n+s

M(q) ≤ 2kkO(1) (u+ 1)0.99m/ log log q+
√
m M(q)

≤ 2kkO(1) (20 log q)0.999m/ log log q M(q)
≤ 20.9999mM(q) .
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Once the tabulation of P is complete, we can use the algorithms in Theorem 2 to query the
2m−kmO(1) fermionants of size k × k required by (18) in time O(n(q − 1)ssM(q)) per query.
Thus, the total time is at most

2m−kqsmO(1)M(q) ≤ 2m−0.98
√
m/ log log q2(log q)0.99

√
m/ log log q/(1.1 log q)mO(1)M(q)

≤ 2m−0.07
√
m/ log log qmO(1)M(q) . J

4.3 Proof of Corollary 5
Here we show how to extend the algorithm to integers, via the Chinese Remainder Theorem.
Let A be an integer matrix of size m×m with entries in [−M,M ] for M = O(1). Let τ be an
integer with |τ | = O(m). By Bertrand’s postulate (e.g. [21, §I.1]) for all large enough m we
can select a prime u with 5 logm ≤ u ≤ 10 logm. Let us study the number of primes p in the
intervalMm2 < p < Mm4 such that u divides p−1. Let us write ϕ for Euler’s totient function
and recall the uniform variant of the Prime Number Theorem for arithmetic progressions [21,
Corollary 8.31]. Namely, there is a constant γ > 0 such that, for any function h(x) tending
to infinity with x, and uniformly for x ≥ 3 and 1 ≤ u ≤ (ln x)2/

(
h(x)2(ln ln x)6), we have

∑
p≤x

p≡1 (mod u)

1 = x

ϕ(u) ln x

(
1 +O

(
1

(ln x)γh(x)

))
. (19)

Here the left-hand side sum in (19) is over all primes p at most x congruent to 1 modulo u.
Since u is prime, we have ϕ(u) = u− 1 = Θ(logm). Thus from (19) we conclude that for

all large enough m there exist at least 2m distinct primes p such that bothMm2 < p < Mm4

and u divides p − 1. With the objective of satisfying the assumptions of Theorem 4, we
conclude u is in the interval (1.1 log p, 10 log p) for these 2m primes p. Indeed, since M is
a constant, for all large enough m we have 1.99 logm ≤ log p ≤ 4.01 logm, which implies
(5/4.01) log p ≤ 5 logm ≤ u ≤ 10 logm ≤ (10/1.99) log p.

From (2) we observe that | ferτ A| ≤ m! ·O(m)mMm < 1
2m

4mM2m. Applying the Chinese
Remainder Theorem together with Theorem 4 on A and τ over Fp for each of the 2m primes
p in turn, we recover ferτ A over the integers, in time 2m−Ω

(√
m/ log logm

)
. J
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