
A Relational Algebra for Streaming Tables Living
in a Temporal Database World
Fabio Grandi1, Federica Mandreoli2, Riccardo Martoglia3, and
Wilma Penzo4

1 DISI – University of Bologna, Bologna, Italy
fabio.grandi@unibo.it

2 FIM – University of Modena e Reggio Emilia, Modena, Italy
federica.mandreoli@unimo.it

3 FIM – University of Modena e Reggio Emilia, Modena, Italy
riccardo.martoglia@unimo.it

4 DISI – University of Bologna, Bologna, Italy
wilma.penzo@unibo.it

Abstract
The recently introduced streaming table concept, a fully native representation of streaming data
inside a DBMS, enabled modern data-intensive applications with one-time queries (OTQs) and
continuous queries (CQs) capabilities on both streaming and standard relational tables. In this
paper, we fully acknowledge the temporal nature of streaming tables and we propose to go one
step further and integrate them in a temporal DBMS context, where time management is native.
Our aim is to break the traditional barrier between the streaming and the temporal worlds,
offering complete interoperability between streams and temporal data. To this end, we present a
continuous temporal algebra supporting both OTQs and CQs seamlessly on streaming, standard
and temporal relational tables. We further show how the transition from continuous to one-time
semantics can be managed by defining suitable translation rules, which can also be used as a
basis for the implementation of the proposed continuous algebra in a temporal DBMS.

1998 ACM Subject Classification H.2.1 Data Models, H.2.3 Query Languages

Keywords and phrases Continuous queries, Data streams, Relational algebra, Temporal DB

Digital Object Identifier 10.4230/LIPIcs.TIME.2017.15

1 Introduction

Modern data-intensive applications, including for instance advanced surveillance (e.g., finan-
cial market enforcement), monitoring applications (e.g., air quality monitoring, Intelligent
Transportation Systems - ITSs), military applications (e.g., platoon tracking), network applic-
ations (e.g., intrusion detection), more and more often require an increasingly wider range of
data management capabilities in order to be fully supported. First of all, they need to manage
very large quantities of continuously streaming data over which complex continuous queries
(CQs) have to be efficiently executed. Unlike typical applications relying on Data Stream
Management Systems (DSMSs) [23], such as sensor-data analysis and geospatial services, not
only needs the most recent data to be retained and managed, but the whole incoming streams
have to be stored as historical data in order to make them fully persistent and available
to future analysis. Moreover, there is the need to be able to easily perform everything we
are accustomed to do in a traditional Data Base Management Systems (DBMSs) context,
including one-time queries (OTQs) also involving standard relational data, and possibly in a

© Fabio Grandi, Federica Mandreoli, Riccardo Martoglia, and Wilma Penzo;
licensed under Creative Commons License CC-BY

24th International Symposium on Temporal Representation and Reasoning (TIME 2017).
Editors: Sven Schewe, Thomas Schneider, and Jef Wijsen; Article No. 15; pp. 15:1–15:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.TIME.2017.15
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


15:2 A Relational Algebra for Streaming Tables

temporal DBMS context, allowing for complex temporal analytics and management of data
versioning.

Being able to query recent, historical and non-temporal relational data by means of
both CQs and OTQs in a uniform and powerful way, and with the expressive power of
standard RDBMS’s languages and algebras, is certainly a very strong requirement. The
very diversified and lively panorama of data management systems, including streaming
extensions to traditional DBMSs (e.g., [9, 10, 21]), big data processing engines, big data
stores and stream processing frameworks (e.g., [7, 22]), is still trying to fully address it.
One first step towards this objective has been performed in [6], where we proposed a fully
native representation of streaming data into a DBMS. The introduction of a new kind of
table, called the streaming table, allowed us to offer a persistent structure managing both
historical and streaming data in a way completely transparent to users. Streaming tables
can also be straightforwardly involved in OTQs and CQs, possibly together with standard
relational tables, thus successfully merging the two worlds of RDBMSs and streaming data
management.

Heading further in this direction, in this paper we aim at breaking another barrier: the
one currently present between streaming and temporal data management. Even if streaming
data is inherently temporal in nature, current systems and research proposals seem unable to
build on this: on the one hand, temporal RDBMSs are not able to deal with streams, on the
other hand current DSMSs and stream processing frameworks only provide limited temporal
querying possibilities or do not deal with versioned data at all [7, 22]. By fully acknowledging
the temporal nature of streaming data, we propose to integrate streaming tables in a temporal
context where time management is native. Our final aim is to offer temporal RDBMSs’
querying capabilities and data versioning even on streaming data, without overturning the
common understanding of streaming data and CQs. In this way, data can be easily managed
and queried by benefitting from the best of the relational, streaming and temporal worlds.

In this paper, we lay the semantic foundation for our objective by introducing a continuous
temporal algebra for streaming, temporal, and standard tables. The proposed algebra,
denoted as CT A , extends with windowing operators a temporal algebra T A with well-
defined semantics. Window operators take streaming tables as input and produce data
snapshots at subsequent validity time points. Continuous and one-time queries are specified
as algebraic expressions over the three different kinds of tables. In particular, OTQs can be
formulated as T A expressions and their semantics relies on the traditional T A definition. CQs
can be formulated as CT A expressions over standard and temporal tables and windowing
expressions on streaming tables, and their semantics relies on a sampling operator that
evaluates continuous temporal expressions at the required time points. In this way, we
introduce a sort of on-demand semantics, where the CQs are executed when query results are
needed and required data are available. This approach is highly flexible in that it allows to
combine in a unified framework several continuous query features proposed in the literature
(e.g., real time and historical analytics, backward and forward sliding windows, tumbling and
hopping windows) but for which a well-founded semantics and full implementation agenda is
still lacking, and to interoperate streaming data with non-temporal data and archival data
stored in temporal tables in a consistent way.

As an application example in the context of financial market surveillance, we consider
tracking of insider trading activities, that is the buying or selling of a security (e.g., stock
options) while in possession of nonpublic material information (e.g., up/downgrade by a rating
agency, unexpected revisions to earning results or projections, mergers and acquisitions news)
about the security [17]. Since insider trading undermines investor confidence in the fairness



F. Grandi, F. Mandreoli, R. Martoglia, and W. Penzo 15:3

and integrity of the financial markets, control bodies like the SEC have the detection and
prosecution of insider trading violations as one of their market surveillance and enforcement
priorities. Whereas early (i.e., when the material information is not yet publicly available)
detection of insider trading patterns could allow to prevent frauds [13], their a posteriori
(i.e., when the material information is of public domain) verification is most important for
triggering and pursuing prosecution of illegal activities. Assume that option trading data are
available through the streaming table OPTION_TRADES, with schema

OPTION_TRADES(OPTION,STOCK,CLASS,STRIKE,EXPIR,CONTRACTS|T)

automatically fed by the stock market information system, containing data concerning the
negotiated option, the underlying stock, the trade timestamp (i.e., the implicit attribute
T defined with a granularity of one second), the option class (call or put), strike price and
expiration, and the number of contracts traded. Further, assume that relevant news are
selected by several sources (e.g., press releases and financial news stories) and stored in a
temporal table NEWS, with schema

NEWS(STOCK,TYPE,SOURCE|T)

containing information about the publication date (i.e., the implicit attribute T defined with
a granularity of one day), the mentioned stock, the news type and source. In order to trigger
an investigation procedure, an anomalous trading volume of an option, preceding by at most
one week the public release of some relevant news concerning the underlying stock, needs to
be identified. As anomalous volume, we consider a daily trading volume ten times higher than
the average daily volume over the past month. Following our proposal, the suspect stock-day
pairs deserving further investigations could be easily retrieved via a continuous query running
at the beginning of each trading day and performing the temporal join between the relevant
time windows of the streaming table OPTION_TRADES and the standard table NEWS. Notice
that such a detection query could not be executed in a “classical” stream management system,
because, when the windows used for computing volumes are evaluated, the relevant news
have not been published yet. Hence, stream data must be stored in a streaming table for
our purpose, and time windows evaluated in a delayed mode (i.e., when all relevant news
will be available) as actually supported by the CQ on-demand semantics. The temporal join
involved in the query will produce temporally consistent solutions over the past time window
outputs of the streaming table OPTION_TRADES and the temporal table NEWS.

After revising the notion of streaming table (Sec. 2), this paper provides the following
contributions:

it introduces the continuous temporal algebra CT A supporting both OTQs and CQs
seamlessly on streaming, standard and temporal relational tables (Sec. 3 and Sec. 4);
it proposes a correct translation of the continuous temporal model presented so far into
the temporal model where continuous queries are transformed into standard temporal
queries, making it possible to instantiate the framework in the context of a standard
temporal RDBMS (Sec. 6).

The paper is complemented by Sec. 5, expressing the reference example in the CT A algebra
and Sec. 7, comparing our contribution with the state of the art and drawing conclusions.

2 Preliminaries

The continuous temporal data model we propose relies on a multi-temporal relational model
[16], where temporal and non-temporal standard tables coexist, extended with streaming
tables. In this Section we provide some preliminaries for its specification by reviewing the
notion of streaming table, first introduced in [6].

TIME 2017



15:4 A Relational Algebra for Streaming Tables

First of all, we assume a discrete, ordered and unbounded time domain T = {0, 1, 2, . . . ,∞}
composed of chronons [18], where 0 stands for the earliest time. A chronon is a non-
decomposable time interval of fixed unit duration used to represent time instants in the
discrete model. We further assume that T has the semantics of valid time [18]. In order to
represent a duration of time, we assume time spans [18] belong to a domain I composed of
all possible multiples of a chronon duration (including the unbounded value ∞).

As far as the temporal model is concerned, a temporal relation R with explicit schema
R(A1, . . . , An), with Ai ∈ A (1 ≤ i ≤ n) where A is the set of attribute names, is represented
as R(A1, . . . , An|T ) where T is the implicit timestamp attribute with domain T . If r is a
tuple from R then r.Ai denotes the value of Ai in r and T (r) denotes the tuple timestamp.
Moreover, given any time instant t ∈ T , we denote with Rt the content of R at time t. Notice
that we assume here an abstract temporal database, according to the terminology introduced
in [11], to be used as a representation-independent data model. As far as non-temporal tables
are concerned, we assume they are virtually converted to temporal tables to be interoperated
with temporal tables and streaming tables by using a suitable temporal conversion map [8].
In particular, we assume each non-temporal table R to be virtually converted to a temporal
table R′ = {(r, τ) | r ∈ R, τ ∈ T }.

As far as streams are concerned, we adopt the definition of continuous data stream (or
simply stream) provided in [3], that is a potentially infinite stream of timestamped relational
tuples having a fixed schema. A streaming table [6] is a relational table where streaming data
enter and turn historical by remaining stored for a user-defined long period, ideally forever.
Any streaming table inherits the temporal nature of the data it stores. Specifically, it is an
event table [26, Ch. 16], that is a special kind of temporal table that stores event data and
their occurrence time, for a limited time span named historical period. As time goes by, we
assume the oldest data exiting the historical period are subject to vacuuming [26, Ch. 23].

I Definition 1 (Streaming table). A streaming table S with explicit schema S(A1, . . . , An)
and historical period hp ∈ I is an event table, denoted as Shp, with schema S(A1, . . . , An|T ),
where T is the implicit timestamp attribute. The content of Shp at the time instant t ≤ now
(where now represents current time), i.e. Sthp, is the set of tuples such that the timestamp
of each tuple s satisfies T (s) ≥ max(t − hp, 0). If positive, t − hp represents the chronon
preceding t by a time span of hp chronons. A streaming table is subject to continuous writes
in timestamp order, that is for any s1 and s2 in Sthp, T (s1) < T (s2) iff s1 arrived before s2.

For ease of notation, in the following, whenever possible, we will use S in place of Shp. In
practice, in order to implement this insertion semantics, systems cope with out-of-order and
skewed inputs. Interested readers can refer to [27] for an in-depth discussion of this aspect.
In this paper we assume an input manager that guarantees in-order tuple arrival.

In the following, let R be the set of all temporal tables and S be the set of all streaming
tables. Notice that S ⊆ R, as streaming tables are a special kind of temporal tables (one
effect of the insertion semantics is that timestamps in a streaming table are always bounded
by the current time now, whereas temporal tables may also contain timestamps greater than
now to represent proactively inserted future data).

3 Querying streaming tables with OTQs: the temporal algebra T A

In OTQs a streaming table is dealt with as a standard (event) table and it undergoes queries
expressed in a relational algebra T A with the following temporal operators: selection σT ,
projection πT , Cartesian product ×T , union ∪T , difference −T , and grouping ϑT . Each of



F. Grandi, F. Mandreoli, R. Martoglia, and W. Penzo 15:5

Table 1 T A operator semantics.

Operator Signature Operator semantics

Selection σT : R×P → R σT
p (R) := {(r, τ) | (r, τ) ∈ R ∧ p(r)}

Projection πT : R× 2A →R πT
B(R) := {(r.B, τ) | (r, τ) ∈ R}

Cart. prod. ×T : R×R → R R1 ×T R2 := {(r1 ◦ r2, τ) | (r1, τ) ∈ R1 ∧ (r2, τ) ∈ R2}
Union ∪T : R×R → R R1 ∪T R2 := {(r, τ) | (r, τ) ∈ R1 ∨ (r, τ) ∈ R2}

Difference −T : R×R → R R1 −T R2 := {(r, τ) | (r, τ) ∈ R1 ∧ (r, τ) /∈ R2}
Grouping ϑT : R× 2A × 2F →R Bϑ

T
F (R) := {(r.B ◦ Z, τ) | (r, τ) ∈ R∧

rg = {(r′, τ) ∈ R | r′.B = r.B} ∧ Z = (f1(rg), . . . , fh(rg))}
Extend ε : R×A → R εU (R) := {(r ◦ U, τ) | (r, τ) ∈ R ∧ U = τ}
Timeslice τ : R× T → R τt(R) := {(r, τ) | (r, τ) ∈ R ∧ τ = t}

these temporal operators is a generalization of a standard relational operator where the
T -superscript does not appear (derived operators, like the join ./T , can also be considered as
usual). The definition of these operators is borrowed from [12] and, thus, T A supports a
sequenced semantics in terms of extended snapshot reducibility. To this purpose, in order to
support operators with predicates and functions that reference the timestamp, the additional
extend operator εU copies the timestamp T to the additional attribute U . Notice that τt is
an “extended” timeslice operator that maintains the timestamps, such that its result is still
a temporal relation representing the snapshot valid at time t. Non temporal operators may
be needed to express non-sequenced parts of queries (e.g., to join data belonging to different
snapshots).

The semantics of the temporal algebra operators is shown in Table 1, where if (r, τ) is a
tuple of a temporal relation with explicit schema R(X) we consider r (with schema X) its
explicit part and τ the tuple timestamp, P is the set of all well-defined predicates p over
the explicit attributes X of R, B ⊂ X is a subset of schema attributes, F = {f1, . . . , fk}
is a set of aggregation functions, and ◦ is a tuple concatenation operator. Notice that the
Cartesian product applied to at least one streaming table returns a streaming table, the
union operator returns a streaming table when both operands are streaming tables and the
difference operator returns a streaming table when the first operand is a streaming table.

We assume readers are familiar with the syntax and semantics of relational queries1 and
we only provide a concise yet informal semantics of OTQs.

I Definition 2 (Semantics of one-time queries over streaming and temporal tables). Given a
T A expression Q = ET A (S1, . . . , Sn, R1, . . . , Rm), over n streaming tables S1, . . . , Sn, with
n ≥ 1, and m temporal tables R1, . . . , Rm, with m ≥ 0, its semantics is the result of the
semantics of the involved temporal operators for which snapshot reducibility holds, that is
for each t ∈ T : τt(Q) = ET A (τt(S1), . . . , τt(Sn), τt(R1), . . . , τt(Rm)).

4 Querying streaming tables with CQs: the continuous temporal
algebra CT A

As we have mentioned, streaming tables can also be involved in CQs. A continuous query
Qc is a query that is issued once, and then logically runs continuously until terminated by
the user. Any streaming table S referenced in a continuous query must be accessed through

1 Interested readers can refer to [2] for an in-depth study.

TIME 2017



15:6 A Relational Algebra for Streaming Tables

a sliding window w that specifies the boundaries of the range of tuples in S to be used for
query evaluation. The continuous temporal algebra CT A we propose extends the set of
windowing operators usually adopted in the streaming context [24], by generalizing their
semantics to generate and operate on, possibly through aggregation, sequences of windows
instead of single windows. Thus, CT A extends the temporal algebra T A (T A ⊆ CT A ) with
the introduction of such generalized windowing operators.

For ease of notation, we start introducing some utility operators. The definitions of
CT A operators follow.

4.1 Utility operators
The following operators provide useful transformations of streaming tables.

I Definition 3 (Substreaming). The substreaming operator Sub : S × T 2 → S restricts a
streaming table S ∈ S to only tuples such that their timestamp belongs to an interval [t1, t2]:

Sub[t1,t2](S) := {(s, τ) | (s, τ) ∈ S ∧ t1 ≤ τ ≤ t2}.

For instance, the expression Sub[2016-01-01 00:00:00, 2016-12-31 23:59:59](OPTION_TRADES) builds
from OPTION_TRADES a streaming table containing the trades executed in 2016 only.

I Definition 4 (Streaming Table Partition). The partitioning operator ζ : S × 2A → 2S
partitions the streaming table S ∈ S into a set of streaming tables containing the tuples of S
grouped by their attributes in B (as for the SQL group by mechanism, a partition is created
for each combination of the values of the attributes B1, . . . , Bk in B):

ζB(S) := {S′ | (s, τ) ∈ S ∧ S′ = {(s′, τ ′) | (s′, τ ′) ∈ S ∧ s′.B = s.B} }.

For instance, the expression ζCLASS(OPTION_TRADES), partitioning OPTION_TRADES with
respect to the values of CLASS, evaluates to a set containing two streaming tables, one
containing all the trades on call-type options and the other containing all the trades on
put-type options present in OPTION_TRADES.

4.2 CT A operators
In order to support continuous queries over streaming tables, CT A introduces two classes of
operators: the former includes sliding window operators, the latter includes window flattening
and aggregation operators. For the sake of clarity, we give an intuition of these two classes
of operators that work in a complementary fashion: sliding window operators generate a
sequence of portions of a given streaming table S according to a sliding window specification,
thus resulting into a sequence of windows over S; window flattening operators and window
aggregation operators reduce the result of a sliding window operator to a streaming table.
Both classes of operators include one standard and one partitioned version of each operator.

4.3 Sliding window operators
In accordance with commonly adopted definitions of sliding windows [24], sliding window
operators in CT A are time-based and count-based. Standard sliding window operators apply
to a streaming table S and generate a temporal relation of streaming tables, each made of
portions of S. More precisely, such a temporal relation is a streaming table, thus resulting in
a streaming table of streaming tables (we denote by S∗ the set of all possible streaming tables
of streaming tables). Definitions of (backward and/or forward) standard sliding window
operators are provided below.



F. Grandi, F. Mandreoli, R. Martoglia, and W. Penzo 15:7

I Definition 5 (Time-based Sliding Window). The time-based sliding window operator
wtime : S × I2 → S∗ over a streaming table S ∈ S creates a streaming table of streaming
tables with a window size of duration ω1 ≥ 0 before and ω2 ≥ 0 after the timestamps around
which it is computed:

wtime
[ω1,ω2](S) := {(S′, τ) |S′ = Sub[τ−ω1,τ+ω2](S)}.

For instance, the expression wtime
[1week,0](OPTION_TRADES) defines a streaming table whose

tuples, for each timestamp τ , are in turn streaming tables extracted from OPTION_TRADES
by restricting it to the 1-week wide time window preceding τ .

I Definition 6 (Count-based Sliding Window). The count-based sliding window operator
wcount : S × N2 → S∗ over a streaming table S ∈ S creates a streaming table of streaming
tables with a window containing the closest n1 ≥ 0 tuples valid before and the closest n2 ≥ 0
tuples valid after the timestamps around which it is computed:

wcount
[n1,n2](S) := {(S′, τ) |S′ = Sub[t1,t2](S), |Sub[t1,τ−1](S′)| = n1, |Sub[τ+1,t2](S′)| = n2}.

In the definition of (S′, τ) above, in case |Sub[t1+1,τ−1](S′)| < n1 but |Sub[t1,τ−1](S′)| =
n′1 > n1, we assume n′1 − n1 tuples all valid at t1 are, as customary in the streaming context,
non-deterministically chosen and removed from S′. Similarly, in case |Sub[τ+1,t2−1](S′)| <
n2 but |Sub[τ+1,t2](S′)| = n′2 > n2, we assume n′2 − n2 tuples all valid at t2 are non-
deterministically chosen and removed from S′. For instance, the expression wcount

[1,1] (OPTION_
TRADES) defines a streaming table whose tuples, for each timestamp τ , are in turn streaming
tables extracted from OPTION_TRADES and containing one tuple immediately preceding τ ,
the tuples valid at τ (if they exist), and one tuple immediately following τ .

The partitioned version of each sliding window operator applies to a streaming table S
and generates a set of streaming tables of streaming tables, resulting from the application of
the corresponding standard sliding window operator to each streaming table obtained by the
partition of S according to a given set of attributes B. The operators’ definitions follow.

I Definition 7 (Time-based Partitioned Window). The time-based partitioned sliding window
operator W time : S × 2A×I2 → 2S∗ over a streaming table S ∈ S creates a set (of streaming
tables of streaming tables) composed of the time-based sliding windows (with a window size
of duration ω1 ≥ 0 before and ω2 ≥ 0 after the timestamps around which it is computed)
computed over the streaming tables into which S is partitioned according to the attributes
in B:

W time,B
[ω1,ω2] (S) := {wtime

[ω1,ω2](S′) |S′ ∈ ζB(S)}.

For instance, the expression W time,OPTION
[0,1hour] (OPTION_TRADES), involving a time-based parti-

tioned window, defines a set of streaming tables, each one corresponding to a different option,
composed of the streaming tables whose tuples timestamped with τ are the streaming tables
containing the trades involving that option negotiated in the hour that follows τ .

IDefinition 8 (Count-based Partitioned Window). The count-based partitioned sliding window
operatorW count : S×2A×N2 → 2S∗ over a streaming table S ∈ S creates a set (of streaming
tables of streaming tables) composed of the count-based sliding window (with a window
containing the closest n1 ≥ 0 tuples valid before and the closest n2 ≥ 0 tuples valid after the
timestamps around which it is computed) computed over the streaming tables into which S
is partitioned according to the attributes in B:

W count,B
[n1,n2] (S) := {wcount

[n1,n2](S′) |S′ ∈ ζB(S)}.

TIME 2017



15:8 A Relational Algebra for Streaming Tables

For instance, the expression W count,STOCK
[10,0] (OPTION_TRADES), involving a count-based par-

titioned window definition, denotes a set of streaming tables, each for a different stock,
composed of the streaming tables whose tuples timestamped with τ are the streaming tables
containing the 10 most recent option trades preceding τ concerning that stock.

4.4 Window flattening operators
Window flattening operators allow for normalizing a streaming table (or a set of streaming
tables) of streaming tables resulting from a time-based or a count-based sliding window
operator to a flat streaming table. As for sliding window operators, the window flattening
operator is introduced both in its standard and in its partitioned version.

I Definition 9 (Window Flattening). The window flattening operator ϕ : S∗ → S over a
streaming table of streaming tables w creates a streaming table composed of the tuples
belonging to the streaming tables in w valid at the time at which the flattening is computed:

ϕ(w) := {(εU (s), τ) | (S, τ) ∈ w ∧ s ∈ S}.

For instance, the expression ϕ(wtime
[1hour,0](OPTION_TRADES)), involving a window flattening

operator, builds a streaming table whose tuples with timestamp τ are all the tuples belonging
to the streaming table wtime

[1hour,0](OPTION_TRADES) valid at τ , that is belonging to the 1-hour
wide time window of OPTION_TRADES preceding τ . Such tuples come out all timestamped with
τ in the result but preserve the value of the original timestamp they had in OPTION_TRADES
converted into an explicit attribute U .

I Definition 10 (Partitioned Window Flattening). The partitioned window flattening operator
Φ : 2S∗ → S over a set of streaming tables of streaming tables W creates a streaming table
composed of the tuples belonging to the streaming tables in w ∈ W valid at the time at
which the flattening is computed:

Φ(w) := {(εU (s), τ) |w ∈W ∧ (S, τ) ∈ w ∧ s ∈ S}.

For instance, the expression Φ(W count,OPTION,CLASS
[4,0] (OPTION_TRADES)), involving a parti-

tioned flattening operator, retrieves the data necessary to display, for each time point and
for each stock option, a book with the five latest put trades and the five latest call trades.

4.5 Window aggregation operators
Window aggregation operators are defined to compute aggregate data over time-based or
count-based sliding windows, according to a set of aggregation functions F . As for operators
above, both standard and partitioned versions of the window aggregation operator are
provided.

I Definition 11 (Window Aggregation). The sliding window aggregation operator ϑ : S∗ ×
2F → S over a streaming table of streaming tables w creates a streaming table having as
attributes the values of the aggregates in F = {f1, . . . , fh} calculated over the streaming
table in w valid at the time at which the aggregation is computed:

ϑF (w) := {(Z, τ) | (S, τ) ∈ w ∧ Z = (f1(S), . . . , fh(S))}.

The window aggregation operator ϑ can be used in queries for computing aggregate data
over time-based or count-based sliding windows. For each time point τ , aggregates can



F. Grandi, F. Mandreoli, R. Martoglia, and W. Penzo 15:9

Table 2 CT A operators combinations.

α ω legal CT A expressions involving windows

ϕ | ϑ wtime | wcount ϕ(wtime
[ω1,ω2](S)), ϕ(wcount

[n1,n2](S)), ϑF (wtime
[ω1,ω2](S)), ϑF (wcount

[n1,n2](S))
Φ | Θ W time |W count Φ(W time,B

[ω1,ω2](S)), Φ(W count,B
[n1,n2] (S)), BΘF (W time,B

[ω1,ω2](S)), BΘF (W count,B
[n1,n2] (S))

be computed over the timestamped tuples belonging to the streaming table S in w valid
at time τ ; aggregate functions MIN, MAX, COUNT (and SUM, AVG if numeric), FIRST-VALUE,
LAST-VALUE, NTH-VALUE(n), can be used on the explicit attributes of S, whereas aggregate
functions FIRST, LAST, DURATION can be used on the timestamps of S. For instance, the
expression ϑDURATION(wcount

[9,0] (OPTION_TRADES)) returns, for each time point, the width of
the time window containing the 10 most recent option trades.

I Definition 12 (Partitioned Window Aggregation). The partitioned sliding window aggrega-
tion operator Θ : 2S∗ × 2A × 2F → S over a set of streaming tables of streaming tables W
creates a streaming table having as attributes the grouping attributes in B and the values of
the aggregates in F = {f1, . . . , fh} calculated over the streaming tables w belonging to W
valid at the time at which the aggregation is computed:

BΘF (W ) := {(S.B ◦ Z, τ) |w ∈W ∧ (S, τ) ∈ w ∧ Z = (f1(S), . . . , fh(S))} .

The partitioned window aggregation operator Θ can be used in queries for computing
aggregate data over partitioned time-based or count based sliding windows. Also in this
case, aggregate functions acting on explicit attributes or timestamps can be used. For
instance, the expression EXPIRΘCOUNT(OPTION)(EXPIRW

time
[0.5hour,0.5hour](OPTION_TRADES)),

at each timepoint and for each expiration date, returns the number of options with that
expiration date traded in a 1-hour wide time window centered around the timepoint.

Notice that the four types of sliding window operators (wtime, wcount, W time, W count) can
be freely declared in querying streaming tables but they can be used in an algebraic expression
only in combination with either a window flattening operator (ϕ, Φ) or a window aggregation
operator (ϑ, Θ), which always produce a streaming table. Formally, a windowing expression
applied to a streaming table S is of the form α(ω(S)) where the possible combinations
are shown in Table 2. Notice that, standard (resp., partitioned) sliding window operators
can only be combined with their stardard (resp., partitioned) window flattening or window
aggregation counterparts. These constraints ensure that the value of continuous expressions
augmenting T A is always a streaming table, so that the resulting continuous algebra CT A is
closed with respect to (streaming and) temporal tables.

4.6 Supporting continuous queries
In order to support continuous queries, a sampling operator is formally introduced to evaluate
an algebraic expression expressed in the continuous temporal algebra CT A at the required
time points. In line with many CQ specification syntaxes (e.g. [3]), we assume a continuous
query is always equipped with a slide parameter sl representing the query evaluation period,
and with a further optional alignment parameter a specifying the position of the evaluation
point within the evaluation period. Moreover, we also consider a delay parameter δ specifying
that the evaluation of the query at time t has actually to be executed at time t+ δ. The slide
parameter can be either a user-supplied time span or the special parameter REALTIME, that
means that the query is re-evaluated as new tuples arrive. The alignment value is expressed
as a period of time to be counted from the beginning of the time granules representing the

TIME 2017



15:10 A Relational Algebra for Streaming Tables

evaluation periods (and is ignored in case sl=REALTIME). Parameters sl, a and δ used for
sampling CT A expressions allow to generalize the usage of the so-called tumbling windows
(and hopping windows) for producing continuous query results.

I Definition 13 (Sampling Operator). At execution time t, the sampling operator ξ : CT A ×
T × I4 → S, with an historical period parameter hp, a sliding parameter sl, an alignment
parameter a, causes the evaluation of the continuous algebra expression E ∈ CT A at time
points t0, t1, . . . , tk ≤ t only, where ti = (d t−hp−asl e + i) · sl + a. If a delay parameter δ is
specified, it forces the evaluation of the expression E to be actually executed at time t+ δ:

ξt,δhp,sl,a(E) :=
k:tk≤t⋃
i=0

τti(Et+δ) .

For example, if sl=“1 day”, the continuous execution must produce one result per day: if
the alignment parameter is a=“30 minutes”, the results are produced each day at “00:30” in
the morning, whereas if the alignment parameter is a=“16 hours”, the results are produced
each day at 4 p.m.. Notice that different results are produced with respect to the desired
alignment, since time windows are defined with reference to the execution times, which
depend on the alignment. For instance, assuming daily trading hours range from 9 a.m. to 4
p.m., the sliding window wtime

[1day,0](OPTION_TRADES) executed via a sampling with sl=“1 day”
and a=“6 hours” includes all the trades executed the day before (from 9 a.m. to 4 p.m.) to
contribute to a result produced daily at 6 a.m., but if it were executed with a=“12 hours”
it would include all the trades executed in the afternoon of the day before (from noon to 4
p.m.) and in the morning of the current day (from 9 a.m. to noon) to contribute to a result
produced daily at noon.

The delay parameter, when specified, ensures that the evaluation of the expression E
valid at time t is actually computed at time t + δ: in general, the results (both valid at
time t) computed at time t and at time t+ δ may differ as some required contents of the
temporal relations may not be available at time t yet, or even because their contents may
have been retroactively changed after t (and also tuples in the streaming tables might be
inserted with a little delay with respect to their validity, e.g., to enforce the right timestamp
order). Consider, for instance, our example of insider trading detection that, in order to
produce one result per trading day, needs to compare the trading volumes evaluated using
the streaming data valid on a 1-month window preceding the execution time and on a 1-day
window following the execution time (to this purpose, it would be sufficient to delay the
execution at the end of the day). However, it also needs to join such volumes with the news
concerning the same stocks published within one week. Since we can assume relevant news
are selected and inserted by human analysts, we should also consider that they are likely
inserted into the NEWS table retroactively, with the delay of some days with respect to their
publication date. Hence, we should reasonably allow for a delay of, say, 10-15 days in the
execution of the CQ in order to have all the relevant news available, otherwise the result of
the join would always be empty and the insider trading cases could not be detected.

Notice that, when the streaming tables involved are defined at a finer time granularity
than sl (e.g., sl=“1 hour” but new tuples can be inserted into the streaming tables at every
second), the values of E are usually defined for many more time points than required by
the query. Hence, the sampling operator can be used to exactly specify the query execution
timepoints of interest. This is also the reason for which we said in Sec. 2 that non-temporal
tables (appearing in the expression E) are considered virtually converted into temporal tables
that contain an infinite number of tuples: only the tuples timestamped with one of the
timepoints of interest have actually to be generated.



F. Grandi, F. Mandreoli, R. Martoglia, and W. Penzo 15:11

According to the generally accepted definition of continuous query semantics [15], we
define the semantics of a continuous query Qc,δhp,sl,a denoted by an algebraic expression E in
the continuous temporal algebra CT A to be equal to the sampling of E at the time points
specified by the slide parameter sl and the alignment parameter a.

I Definition 14 (Semantics of continuous queries over streaming and standard tables). Let
ECT A = ET A(α1(ω1(S1)), . . . , αn(ωn(Sn)), R1, . . . , Rm) be an algebraic expression in CT A
over n streaming tables S1, . . . , Sn, with n ≥ 1 , and m temporal tables R1, . . . , Rm, with
m ≥ 0, where ET A is an expression in T A, and αi and ωi, i = 1, . . . , n, are window
aggregation/flattening and sliding window operators, respectively.

The result at time t of the continuous query Qc,δhp,sl,a with historical period parameter hp,
slide parameter sl, alignment parameter a and delay parameter δ, expressed by ECT A is the
streaming table with historical period hp given by the sampling ξt,δhp,sl,a(ECT A ) of ECT A at
the time points specified by sl with alignment a, and evaluation delayed by δ, until t.

It is worth noting that, as the CQ semantics is founded on the sampling operator, we actually
implement a CQ on-demand semantics that produce at the execution query time successive
query evaluations at past query points, thus in a delayed mode (also when δ=0). Moreover,
the semantics of joining streaming tables and temporal and standard tables as specified in
the algebraic expression ET A refers to the standard temporal semantics. In this way, we
implement different kinds of joining semantics according to the involved tables. For instance,
when temporal tables are involved, the joining results will be temporally consistent according
to the required time points in the past. When, instead, standard tables are involved, the
joining semantics allow users to “interoperate” current data with past streamed data.

5 Example reprise

In order to express the query solving our insider trading detection example problem presented
in Sec. 1, the following partitioned sliding windows need to be defined:

WD = W time,STOCK
[0,1day] (OPTION_TRADES), WM = W time,STOCK

[1month,0] (OPTION_TRADES) .

The former is a 1-day wide sliding windows following the evaluation time, partitioned
according to the STOCK values. The latter is a 1-month wide sliding windows preceding the
evaluation time, partitioned according to the STOCK values. Then, for our convenience, we can
define the following streaming table expressions involving partitioned window aggregation:

SD = STOCKΘSUM(CONTRACTS)(WD), SM = STOCKΘSUM(CONTRACTS)(WM )

(implying the computation of the total number of contracts executed, for each timepoint, in
the time windows WD and WM , respectively) to be used in the definition of the algebraic
expression that follows:

E = [εU (SD) ./SD.STOCK=NEWS.STOCK∧(NEWS.U−SD.U)<1week πSTOCK,U (εU (NEWS))]
./TSD.STOCK=SM .STOCK∧SD.SUM(CONTRACTS)>10·SM .SUM(CONTRACTS)/30 SM .

The square brackets enclose a non-temporal join that embodies the non-sequenced part of
the query, which is necessary to interoperate the tuples valid at time t of the streaming table
SD with the tuples of the NEWS relation valid at a time no later than 1 week with respect to
t. To this purpose, the timestamping attributes of SD and NEWS have to be made explicit
via the extension operator ε to be referenced in the join predicate. Such join predicate also
contains a conjunct imposing the equality of the STOCK value. The result is a streaming table

TIME 2017



15:12 A Relational Algebra for Streaming Tables

whose timestamps are derived from SD (the timestamp of NEWS has been projected out before
executing the non-temporal join) and correspond to the execution time of the sliding window
WD. Once the expression in square brackets has been computed, a temporal join (on the
streaming table timestamps) can be executed between the non-temporal join outcome and
the streaming table SM . The join predicate involves the equality of the STOCK value and the
relationship between the results of the SUM(CONTRACTS) partitioned aggregates computed
with Θ over SM and SD. In particular, the former (representing a daily volume) has to be
greater than 10 times the value of the latter (representing the total volume computed over
the preceding month) divided by 30 (yielding the average daily volume computed over the
preceding month), in order to trigger an insider trading investigation. The continuous query
result is finally given by the expression

ξ
now,15day
1day,0 (πTSTOCK(E)),

where the required sampling operator has been added, which causes the expression E to be
evaluated (with a delay of 15 days to allow the NEWS table to be populated with relevant
data) to produce a result each day at midnight containing the stocks suspect of illegal insider
trading activity occurred on that day. The result is a temporal table with schema (STOCK|T ).

6 Translating CQs into OTQs (with Implementation on the Horizon)

In this section we propose a translation of the continuous temporal model presented so
far into a new temporal model where continuous queries are transformed into temporal
one-time queries. Furthermore, whereas the continuous model has been defined as an abstract
temporal model (point-based), the new model is intended to be a concrete temporal model
(interval-based) [11] amenable to implementation. In particular, the new temporal model can
be implemented on a traditional relational DBMS following similar directions as presented in
[12]. In fact, our final aim is to build comprehensive support for the continuous temporal
model through a mixed stratum/built-in approach that relies on the full potentialities of an
industrial-strength relational engine, extended with novel functionalities.

For the intended translation, the source algebra is therefore CT A and the target algebra
is the standard temporal algebra T A that includes the operators shown in Tab. 1 but made
to work on relations employing interval-timestamping, according to an extended sequenced
semantics [12], in order to enforce snapshot equivalence. Although working on an interval-
based concrete temporal model, the target algebra represents indeed a point-based query
language (in the sense of [28]) and, thus, its implementation on a traditional DBMS does
not require enforcement of change preservation (e.g., via adjustment, alignment and scaling
techniques as proposed in [12]). For ease of presentation, hereinafter, with a little abuse of
notation, when we need to distinguish the same concept at the two different levels, we will
use the superscript CT A to denote tables and algebraic operators in the continuous temporal
model and the superscript T A to denote the corresponding concepts in the target model.

The main issue for our goal is to mimic in a static context the behavior of CT A windowing
operators, which are evaluated on user-specified time intervals and operate on the contents
of the involved streaming tables at the evaluation instants. To this end, we first translate
each streaming table SCT A with schema S(X|T ) at the continuous level into an interval-
based streaming table ST A with schema S(X,T |T ′), where the event occurrence time T
associated to tuples is made explicit and T ′ is an implicit interval attribute that records tuple
validity, that is [st,∞], where st is the time when the tuple s enters the system (without
transaction-time support, it is worth noting that st can be approximated with s(T )). Each



F. Grandi, F. Mandreoli, R. Martoglia, and W. Penzo 15:13

Table 3 Semantics of the windowing operators at the target level, T A .

Substreaming operator
Sub[t1,t2](S)T A := σT

t1≤S.T≤t2 (S)
Sliding window operators
tsetwtime

[ω1,ω2](S)T A :=
⋃

t∈tset
τt(Sub[t−ω1,t+ω2](S)T A )

tsetwcount
[n1,n2](S)T A :=

⋃
t∈tset

τt({s | s ∈ S′ = Sub[t1,t2](S),
|Sub[t1,t](S′)T A | = n1, |Sub[t,t2](S′)T A | = n2})

Window flattening operators
ϕ(S)T A := S

Φ(tsetW time,B
[ω1,ω2] (S))T A := tsetwtime

[ω1,ω2](S)T A

Φ(tsetW count,B
[n1,n2] (S))T A := tsetwcount

[n1,n2](S)T A

Window aggregation operators
ϑF (S)T A := (∅ϑT

F (S))T A

BΘF (tsetW time,B
[ω1,ω2] (S))T A := (Bϑ

T
F (tsetwtime

[ω1,ω2](S)))T A

BΘF (tsetW count,B
[n1,n2] (S))T A := (Bϑ

T
F (tsetwcount

[n1,n2](S)))T A

temporal relation R(X|T ) in CT A is translated into a relation R(X|T ′) in T A , by coalescing
the timestamps of value-equivalent tuples in RCT A into maximal intervals to be used as
timestamps in RT A . Non temporal relations are converted into temporal relations whose
tuples are timestamped with a [0,∞] validity interval in T A .

Then, in Tab. 3 we define the semantics of the continuous operators introduced in
Subsection 4.2 defined through T A operators2. Notice that, unlike their counterpart at the
CT A level, sliding window operators at the T A level require a set of time instants tset to be
evaluated and the flattening operator ΦT A simply undoes the effects of partitioning. It is
worth stressing that, thanks to the translation rules of Tab. 3, any legal CT A expression can
be evaluated via T A operators working on streaming tables only. In particular, there is no
need for implementing (sets of) streaming tables of streaming tables as formally introduced
in the definitions of CT A operators in Sec. 4.

Finally, we define the sampling operator at the T A level and show that the results of the
two sampling operators, the one defined at the CT A level and the other one defined at the
T A level, are equivalent (i.e., they provide the same results for the same continuous query).

I Definition 15 (Sampling OperatorT A ). At execution time t, the evaluation delayed by δ
of a continuous query E = ET A(α1(ω1(S1)), . . . , αn(ωn(Sn)), R1, . . . , Rm) ∈ CT A , with an
historical parameter hp, slide parameter sl and alignment parameter a, at the T A level is
defined by the sampling operator ξT A : T A × T × I4 → ST A as follows:

ξt,δhp,sl,a(E)T A := ET A((α1(tsetω1(St+δ1 )))T A , . . . , (αn(tsetωn(St+δn )))T A , Rt+δ1 , . . . , Rt+δm )

where tset is the evaluation time instant set: tset = {t′ | t′ ≤ t ∧ t′ = (d t−hp−asl e+ i) · sl +
a for some i ∈ N}.

I Theorem 16. Given the continuous query E = ET A(α1(ω1(S1)), . . . , αn(ωn(Sn)), R1, . . . ,

Rm) ∈ CT A , with slide parameter sl and alignment parameter a, then, for each execution

2 To be rigorous, the definition of wcount
[n1,n2], involving constraints on the cardinality of the results of

Sub, is not expressible with T A operators only. However, we can augment T A with an operator
directly evaluating wcount

[n1,n2], which can be easily and efficiently implemented by exploiting the ordering
of timestamps in a streaming table.

TIME 2017



15:14 A Relational Algebra for Streaming Tables

time t with delay δ:

ξt,δsl,a(E)CT A = ξt,δsl,a(E)T A

Proof. For the sake of simplicity, we assume δ = 0 and replace each Rt and St in the operator
semantics with R and S, respectively (the proof can be straightforwardly adapted to the
case when δ > 0). First, notice that:

ξt,δsl,a(E)CT A = (
k:tk≤t⋃
i=0

τti(ET A(α1(ω1(S1)), . . . , αn(ωn(Sn)), R1, . . . , Rm)))CT A

= (ET A(
k:tk≤t⋃
i=0

τti(α1(ω1(S1))), . . . ,
k:tk≤t⋃
i=0

τti(αn(ωn(Sn))), R1, . . . , Rm))CT A

Therefore, if we show that
⋃k:tk≤t
i=0 τti(αj(ωj(Sj))CT A )) = (αj(tsetωj(Sj)))T A , then

ET A(
k:tk≤t⋃
i=0

τti(α1(ω1(S1))), . . . ,
k:tk≤t⋃
i=0

τti(αn(ωn(Sn))), R1, . . . , Rm))CT A

= ET A((α1(tsetω1(S1)))T A , . . . , (αn(tsetωn(Sn)))T A , R1, . . . , Rm)

and ξt,δsl,a(E)CT A = ξt,δsl,a(E)T A .
To this end, as far as αj(ωj(Sj)) is concerned, all possible operator combinations should be

considered. For the sake of brevity, in the following we will consider only the case when αj =
ϑF and ωj = wtime

[ω1,ω2], but all the other combinations can be managed in a similar way. Given
ϑF (wtime

[ω1,ω2](Sj)), in the following we will show that s ∈
⋃k:tk≤t
i=0 τti(ϑF (wtime

[ω1,ω2](Sj))CT A ) iff
s ∈ ξt,δsl,a(E)T A . Let s ∈

⋃k:tk≤t
i=0 τti(ϑF (wtime

[ω1,ω2](Sj))CT A ), then s = (X, ti) ∈ τti(ϑF (wtime
[ω1,ω2]

(Sj))CT A ) for some i. Being s ∈ τti(ϑF (w)CT A ), where w = wtime
[ω1,ω2](Sj)), then s ∈

τti(ϑF (w)CT A ) iff t = (X, ti), where X = (f1(S), . . . , fh(S)) and (S, τ) ∈ w. This means
that S = Sub[ti−ω1,ti+ω2](Sj)CT A = {(s, τ) | (s, τ) ∈ Sj , (ti − ω1) ≤ τ ≤ (ti + ω2)}. Hence,
(s, τ) ∈ Sub[ti−ω1,ti+ω2](Sj)CT A iff (s, τ, ti) ∈ τti(Sub[ti−ω1,ti+ω2](Sj)T A ). As ti ∈ tset, it
follows that:

(s, τ, ti) ∈
⋃

t∈tset
τt(Sub[t−ω1,t+ω2](Sj)T A ) =tset wtime

[ω1,ω2](Sj)T A

From S = τti(Sub[ti−ω1,ti+ω2](Sj)T A ) and X = (f1(S), . . . , fh(S)), it follows that (X, ti) ∈
∅ϑ
T
F (Sj)T A , which is equivalent to say that (X, ti) ∈ (ϑF (wtime

[ω1,ω2](Sj))T A . J

Therefore, thanks to the above theorem, we can safely translate each continuous query in
CT A into an equivalent expression in T A and execute it on a static relational engine. In
fact, the above theorem ensures that the semantics of execution is preserved.

7 Related works and concluding remarks

DSMSs [1, 3] natively support CQs over continuous unbounded streams of data according to
windows where only the most recent data is retained. In CQL [3] and SyncSQL [14] streams
are transformed into instantaneous/syncronized relations that are manipulated through
relational operators, and then transformed back to streams. In this paper we proved that it
is possible to exploit the full potential of a native representation of temporal data to query



F. Grandi, F. Mandreoli, R. Martoglia, and W. Penzo 15:15

streaming data seamlessly, thus overcoming the transformation overhead of stream-relation-
stream approaches like [3, 14]. In line with this approach, recent research proposals extend
traditional DBMSs’ query model and language towards streaming query capabilities [10, 20].
However, these works present extensions to SQL through query examples and do not offer a
formal algebraic framework for a clear specification of query operators.

With regard to algebras for querying streaming data, in [19] snapshot-reducible algebraic
operators are implemented on ad-hoc data structures for state maintenance under a time-
interval approach. This approach does not integrate with the theoretical and practical
solutions proposed for the development of a robust temporal database technology, including
[12] which presents a proposal for the implementation of a standard temporal algebra in an
off-the-shelf DBMS, supporting a sequenced semantics that guarantees extended snapshot
reducibility. As to CT A operators, we proved this fundamental requirement by showing how
CT A expressions can be translated into equivalent expressions in the temporal algebra T A .

An additional note concerns the semantics of ad-hoc proposals of temporal operators
that often proves to be ambiguous as to timestamp management. A consensus is not shared
among existing approaches. For instance, the timestamps of tuples resulting from a windowed
join can be either the minimum of the two original timestamp values [1, 24], or the most
recent one [4], or the time instant at which the join is executed [5]. Operators in T A undergo
a precise and commonly adopted temporal semantics [12]. Further, in [3, 19] windowing
operators overwrite the original timestamp of tuples with a new timestamp corresponding to
the window evaluation time instant. CT A operators maintain instead both this information
and the original tuple timestamp, thus not losing relevant information.

A further property featured by CT A is the capability of defining “forward” windows,
thus opening to the possibility of evaluating queries (possibly in an approximated way) by
referring tuples that will be observed after a given time instance, as proposed for SQL:2011
[29] (e.g., SQLStream Blaze3 considers them in its query syntax specifications but does
not provide an implementation). Moreover, both in SQL:2011 and proposed stream query
languages, sliding windows can only be used, via aggregation operators, to produce results in
the target list of a query, whereas CT A allows us to use them everywhere (e.g., in a selection
predicate as in our running example). To the authors’ knowledge, these features are not
covered by any existing approach dealing with streaming data.

From a system perspective, existing stream processing frameworks (e.g., Apache Flink [7]
and Samza [22]) provide SQL extensions to deal with streaming data but they do not expose
a clear and unambiguous semantics of query operators through an algebra definition. In
general, DSMSs and stream processing frameworks [7, 22] do not support queries involving
both streaming and relational data changing over time, since their data and query models do
not include temporal semantics and versioning. On the other hand, much work has been
devoted to extending DBMSs towards a flexible and efficient management of temporal data
[25]. However, quite surprisingly considering the temporal nature of streaming data, no
built-in streaming functionalities are provided in these systems.

Following the first step provided by the streaming table concept introduced in [6], in this
paper we presented a temporal algebra extended with windowing and aggregation operators
supporting both OTQs and CQs on streaming, standard and temporal relational data. In
our future work, we plan to explore algebraic optimization issues and indexing techniques to
efficiently support the implementation of CT A operators in a temporal DBMS.

3 http://sqlstream.com

TIME 2017

http://sqlstream.com


15:16 A Relational Algebra for Streaming Tables

References
1 Daniel J. Abadi, Donald Carney, Ugur Çetintemel, Mitch Cherniack, Christian Convey,

Sangdon Lee, Michael Stonebraker, Nesime Tatbul, and Stanley B. Zdonik. Aurora: a new
model and architecture for data stream management. VLDB J., 12(2):120–139, 2003.

2 Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of Databases. Addison-
Wesley, 1995.

3 Arvind Arasu, Shivnath Babu, and Jennifer Widom. The CQL continuous query language:
semantic foundations and query execution. VLDB J., 15(2):121–142, 2006.

4 Ahmed M. Ayad and Jeffrey F. Naughton. Static Optimization of Conjunctive Queries with
Sliding Windows over Infinite Streams. In Proc of ACM SIGMOD, pages 419–430, 2004.

5 Brian Babcock, Shivnath Babu, Mayur Datar, Rajeev Motwani, and Jennifer Widom. Mod-
els and Issues in Data Stream Systems. In Proc. of ACM PODS, pages 1–16, 2002.

6 Luca Carafoli, Federica Mandreoli, Riccardo Martoglia, and Wilma Penzo. Streaming
Tables: Native Support to Streaming Data in DBMSs. IEEE Trans. on Systems, Man, and
Cybernetics: Systems, pages 1–15, 2017.

7 Paris Carbone, Asterios Katsifodimos, Stephan Ewen, Volker Markl, Seif Haridi, and Kostas
Tzoumas. Apache Flink™: Stream and Batch Processing in a Single Engine. IEEE Data
Eng. Bull., 38(4):28–38, 2015.

8 Cristina De Castro, Fabio Grandi, and Maria Rita Scalas. Semantic interoperability of
multitemporal relational databases. In Proceedings of the 12th International Conference on
the Entity-Relationship Approach, pages 463–474. Springer-Verlag, 1993.

9 Ugur Cetintemel, Jiang Du, Tim Kraska, Samuel Madden, David Maier, John Meehan,
Andrew Pavlo, Michael Stonebraker, Erik Sutherland, Nesime Tatbul, Kristin Tufte, Hao
Wang, and Stanley Zdonik. S-Store: A Streaming NewSQL System for Big Velocity Ap-
plications. Proc. VLDB, 7(13):1633–1636, August 2014.

10 Qiming Chen and Meichun Hsu. Cut-and-Rewind: Extending Query Engine for Continuous
Stream Analytics. In A. Hameurlain, J. Kueng, R. Wagner, A. Cuzzocrea, and U. Dayal,
editors, TLDKS XXI, volume 9260 of LNCS, pages 94–114. Springer, 2015.

11 Jan Chomicki. Temporal query languages: A survey. In Proceedings of the First Interna-
tional Conference on Temporal Logic, pages 506–534. Springer-Verlag, 1994.

12 Anton Dignös, Michael H. Böhlen, Johann Gamper, and Christian S. Jensen. Extending
the Kernel of a Relational DBMS with Comprehensive Support for Sequenced Temporal
Queries. ACM Trans. Database Syst., 41(4):26:1–26:46, 2016.

13 Steve Donoho. Early detection of insider trading in option markets. In Proc. of the ACM
KDD, pages 420–429. ACM, 2004.

14 Thanaa M. Ghanem, Ahmed K. Elmagarmid, Per-ake Larson, and Walid G. Aref. Sup-
porting Views in Data Stream Management Systems. ACM Trans. Database Syst., 35(1):1,
2010.

15 Lukasz Golab and M. Tamer Özsu. Update-Pattern-Aware Modeling and Processing of
Continuous Queries. In Proc. of ACM SIGMOD, pages 658–669, 2005.

16 Fabio Grandi. Temporal interoperability in Multi+Temporal databases. J. Database
Manag., 9(1):14–23, 1998.

17 Insider Trading. https://www.sec.gov/fast-answers/answersinsiderhtm.html.
18 Christian S. Jensen, Curtis E. Dyreson, Michael H. Böhlen, James Clifford, Ramez Elmasri,

Shashi K. Gadia, Fabio Grandi, Patrick J. Hayes, Sushil Jajodia, Wolfgang Käfer, Nick
Kline, Nikos A. Lorentzos, Yannis G. Mitsopoulos, Angelo Montanari, Daniel A. Nonen,
Elisa Peressi, Barbara Pernici, John F. Roddick, Nandlal L. Sarda, Maria Rita Scalas, Arie
Segev, Richard T. Snodgrass, Michael D. Soo, Abdullah Uz Tansel, Paolo Tiberio, and
Gio Wiederhold. The consensus glossary of temporal database concepts – february 1998

https://www.sec.gov/fast-answers/answersinsiderhtm.html


F. Grandi, F. Mandreoli, R. Martoglia, and W. Penzo 15:17

version. In O. Etzion, S Jajodia, and S. Sripada, editors, Temporal Databases: Research
and Practice, pages 367–405. Springer-Verlag, 1998.

19 Jürgen Krämer and Bernhard Seeger. Semantics and Implementation of Continuous Sliding
Window Queries over Data Streams. ACM Trans. Database Syst., 34(1):4, 2009.

20 Nikolay Laptev, Barzan Mozafari, Hani Mousavi, Hetal Thakkar, Haixun Wang, Kai Zeng,
and Carlo Zaniolo. Extending relational query languages for data streams. In Minos
Garofalakis, Johannes Gehrke, and Rajeev Rastogi, editors, Data Stream Management:
Processing High-Speed Data Streams, pages 361–386. Springer Berlin Heidelberg, 2016.

21 Erietta Liarou, Stratos Idreos, Stefan Manegold, and Martin Kersten. Enhanced stream
processing in a dbms kernel. In Proc. of EDBT, pages 501–512, 2013.

22 Yi Pan Milinda Pathirage, Julian Hyde and Beth Plale. SamzaSQL: Scalable fast data
management with streaming SQL. In Proc. of IEEE IPDP Symposium Workshops, pages
1627–1636. IEEE Computer Society, 2016.

23 Emanuele Panigati, Fabio A. Schreiber, and Carlo Zaniolo. Data streams and data stream
management systems and languages. In Francesco Colace, Massimo De Santo, Vincenzo
Moscato, Antonio Picariello, Fabio A. Schreiber, and Letizia Tanca, editors, Data Manage-
ment in Pervasive Systems, pages 93–111. Springer, 2015.

24 Kostas Patroumpas and Timos Sellis. Window specification over data streams. In Current
Trends in Database Technology – EDBT 2006 Workshops, pages 445–464, 2006.

25 Dušan Petkovic. Temporal data in relational database systems: A comparison. In Álvaro
Rocha, Ana Maria Correia, Hojjat Adeli, Luis Paulo Reis, and Marcelo Mendonça Teixeira,
editors, New Advances in Information Systems and Technologies, pages 13–23. Springer,
2016.

26 Richard T. Snodgrass, editor. The TSQL2 Temporal Query Language. Kluwer, 1995.
27 Utkarsh Srivastava and Jennifer Widom. Flexible Time Management in Data Stream

Systems. In Proc. of ACM PODS, pages 263–274, 2004.
28 David Toman. Point vs. interval-based query languages for temporal databases. In Proc.

of ACM PODS, pages 58–67. ACM Press, 1996.
29 Fred Zemke. What’s new in SQL:2011. SIGMOD Rec., 41(1):67–73, April 2012.

TIME 2017


	Introduction
	Preliminaries
	Querying streaming tables with OTQs: the temporal algebra TA 
	Querying streaming tables with CQs: the continuous temporal algebra CTA 
	Utility operators
	CTA operators
	Sliding window operators
	Window flattening operators
	Window aggregation operators
	Supporting continuous queries

	Example reprise
	Translating CQs into OTQs (with Implementation on the Horizon)
	Related works and concluding remarks

