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Abstract
We survey recent results on the development of efficient algorithms for the quantitative analysis
of business processes modeled as workflow Petri nets. The algorithms can be applied to any
workflow net, but have polynomial runtime in the free-choice case.
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1 Introduction

Workflow Petri nets are a successful formalism for the representation and formal analysis of
business processes. They are also much used as a formal back-end for different notations
like BPMN (Business Process Modeling Notation), EPC (Event-driven Process Chain), or
UML Activity Diagrams [1, 2, 5]. In this note we assume that the reader is familiar with
basic Petri net terms: place, transition, token, marking, and the firing rule, that is, the rule
that determines whether a transition is enabled at a marking, and how the marking changes
when the transition fires.

In a nutshell, a workflow Petri net is just a Petri net with a distinguished initial place and
a distinguished final place. These places induce distinguished initial and final markings, which
contain a token in the initial/final place and no tokens elsewhere. In a well-designed workflow,
every marking reachable from the initial marking enables some firing sequence leading to the
final marking, a property known as soundness [1]. In particular, sound workflow nets are
both deadlock-free and livelock-free.

Workflow Petri nets can be analyzed by constructing their reachability graph (which has
the reachable markings as nodes, and the steps allowed by the firing rule as edges), and
applying model-checking techniques, see e.g. [16, 23]. However, this approach suffers from
the well-known state-explosion problem: Even if reachable markings put at most one token
in every place, a workflow net with n places can still have Θ(2n) reachable markings. For
simple qualitative properties, like soundness, the state-explosion problem can be handled very
effectively by tools like LoLA [22, 16]. However, the problem becomes acute for workflows
enriched with data, time, and/or probabilities.

Since 2013 my co-authors and I have addressed this question by developing novel analysis
algorithms that can be applied to general workflow nets, but provide strong runtime guarantees
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for special classes. The rationale for this approach is that workflow Petri nets modeling real-
life business processes tend to have a simpler structure than those found in other application
areas, like the analysis of distributed algorithms, concurrent programs, or biological processes.
In particular, it has been repeatedly observed that many of these workflow nets are free-
choice [6]. For example, Workflow Graphs, a simple but effective business process formalism
[1, 17, 18, 13], can be translated into free-choice workflow Petri nets, and 1386 of the 1958
workflow nets in the most popular benchmark suite in the literature are free-choice workflow
nets [16]. So our goal is to design analysis algorithms that are applicable to arbitrary workflow
nets, and provide a better runtime guarantee in the free-choice case. Typically, our algorithms
have exponential worst-case complexity in the general case (which is unavoidable due to
NP-hardness or PSPACE-hardness results), but polynomial complexity in the free-choice
case.

A Petri net is free-choice if every pair of places has either the same set of output transitions
or disjoint sets of output transitions. The consequence is that for every reachable marking,
if some output transition of a place can fire, then all output transitions can fire, that is,
the net can freely choose which output transition to fire. While free-choice Petri nets have
a rich theory, almost all results concerning them are about the basic Petri net model, and
do not apply to Petri nets enriched with data, time, or probabilities. In a series of papers,
my co-authors and I have developed novel analysis techniques that overcome this problem.
In the rest of the note we summarize this work. We first consider our work on reduction
algorithms, and then our last paper on decomposition-based algorithms.

I Remark. Some of our results are formulated in terms of deterministic negotiation diagrams.
In a nutshell, negotiation diagrams, introduced in [11], are workflow Petri nets that can
be decomposed into communicating sequential Petri nets, a feature that makes them more
amenable to theoretical study. A classical theorem of net theory shows that the connection
between sound deterministic negotiation diagrams and sound free-choice workflow Petri nets
is very tight: There are simple, polynomially computable translations between these two
formalisms, which moreover only incur in a linear blow up. More details can be found in [7].

2 Reduction techniques

Reduction algorithms are a very efficient analysis technique for Petri nets and other business
modeling formalisms, like EPCs and AND-XOR graphs (see for instance [21, 3, 9, 24]). A
reduction algorithm consists of (a) a set of reduction rules, whose application allows one to
simplify the workflow while preserving important properties, and (b) an algorithmic policy
for selecting the next rule to be applied. The algorithm applies the rules exhaustively until
it reaches an irreducible workflow net. For certain classes of nets and certain properties, the
rules can be complete: They can reduce all workflows in the class satisfying the property,
and only them, to some unique canonical workflow. Typically, this canonical workflow is
the workflow consisting of one single transition with the initial and final places as only
input and output place. If the policy followed by the algorithm is guaranteed to reach
the canonical workflow, then the reduction algorithm becomes a decision algorithm for
the property. Moreover, the algorithm decides the property without having to explore the
reachability graph of the net at all.

A set of rules for free-choice Petri nets (not necessarily workflow nets) was presented in
[6]. The rules preserve liveness and boundedness, two important properties of Petri nets,
and are shown to be complete. In [3] these rules were applied to free-choice workflow Petri
nets, and shown to be complete for the soundness property. This leads to a polynomial-time
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decision procedure for soundness of free-choice workflow nets, in sharp contrast with the
PSPACE-hardness of deciding soundness for general workflow nets1. However, the rules of [6]
have two problems. First, as shown in [13], they do not preserve properties concerning data
or timing information. Moreover, as shown in [6], one of the rules is not correct for arbitrary
workflow nets. More precisely, applying the rule to a sound, non-free-choice workflow net can
make it unsound. In [13] we present a new set of surprisingly simple rules that overcomes
these shortcomings. The rules can be applied to Petri nets in which tokens carry data. For
example, a token in a certain place can be labeled with a natural number. Transitions collect
a tuple of data from their input places, and apply a transformer to them, yielding a tuple of
data that is sent to the output places.

The rules not only preserve soundness/unsoundness, but also the input/output relation
of the workflow. This is the relation that assigns to every initial marking the set of final
markings reachable from it (observe that initial markings differ only on the value of the
token in the initial final place, and final markings on the value of the token in the final place).
Therefore, the rules can be applied to decide any property of the input/output relation, and,
by suitable reductions, other properties like the worst-case execution time of a given workflow.
The rules also solve the second problem: contrary to the original rules, they can be applied
to arbitrary workflow nets. Finally, the rules are still complete for free-choice workflow nets,
in the sense that they reduce every sound free-choice workflow net to a workflow net with
only one transition, but the same input/output relation.

The definitive description of the reduction algorithm, whose correctness proof and com-
plexity analysis are rather complex, is given in [8], an extended and corrected version of
[11, 12], which is currently under review. The algorithm completely reduces sound free-choice
workflow nets by means of a sequence of rule applications of length at most cubic in the
number of places and transitions of the net (in experiments the actual number of rule
applications only grows linearly in the size of the net). Further, the sequence of reductions
can be found in polynomial time. In [14] we apply this reduction algorithm to the problem
of computing the expected cost of a workflow. For this, we define probabilistic workflow nets
with costs, and enhance the reduction rules of [13] so that they preserve the expected cost.
Using the results of [8] we prove that the expected cost of a free-choice workflow net can be
computed in polynomial time.

3 Decomposition-based techniques

Our most recent work is presented in [15]. This paper generalizes the results of [13, 14].
It presents the most versatile analysis algorithm for free-choice workflow nets designed so
far, among those that avoid the construction of the reachability graph. In particular, the
reduction-based algorithms of [13, 14] can be recast as special cases of this general algorithm.
The algorithm can be instantiated to solve problems about the time needed to execute a
workflow, and also about its cost2. More precisely, the generic algorithm yields polynomial
algorithms for the computation of the worst-case and the best-case execution time, and
for the worst-case, best-case, and expected cost. It also provides a good algorithm for the
computation of the expected time, although in this case the algorithm is not polynomial.

1 The exact complexity depends on the specifics of the workflow model, for instance whether the workflow
Petri net is assumed to be 1-safe or not.

2 Notice the difference between time and cost: while the cost of executing two concurrent transitions is
the sum of the costs, the time is the maximum of the times.
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This is however to be expected, since the problem of deciding if the expected time exceeds a
given bound is NP-complete, even for acyclic free-choice workflow nets [4].

The paper extends the classical lattice-based formalism for the static analysis of sequential
flow-graphs, as presented for example in [20], to workflow Petri nets. A flow-graph consists of
a set of nodes, modeling program points, and a set of edges, modeling program instructions,
like assignments or guards. In the lattice-based approach one (i) defines a lattice D of
dataflow informations corresponding to the possible results of the analysis to be conducted,
(ii) assigns semantic transformers [[a]] : D → D to each action a of the flow-graph, (iii) assigns
to a path a1 · · · an of the flow graph the functional composition [[an]] ◦ · · · ◦ [[a1]] of the
transformers, and (iv) defines the result of the analysis as the “Merge Over all Paths”, i.e.,
the join of the transformers of all execution paths, usually called the MOP-solution or just
the MOP of the dataflow problem. So performing an analysis amounts to computing the
MOP of the flow-graph for the given lattice and the given transformers.

Katoen et al. have recently shown in [19, 10] that in order to adequately deal with
quantitative analyses of concurrent systems one needs a semantics that distinguishes between
the inherent nondeterminism of each sequential process, and the nondeterminism introduced
by concurrency (the choice of the process that should perform the next step). Following
these ideas, we introduce a semantics in which the latter is resolved by an external scheduler,
and define the MOP for a given scheduler. The result of a dataflow analysis is then given
by the infimum or supremum, depending on the application, of the MOPs for all possible
schedulers.

In [15] we define the class of Mazurkiewicz-invariant frameworks. Loosely speaking, a
framework is Mazurkiewicz-invariant if two executions of the workflow net that differ only
in the order of execution of concurrent transitions have the same transformer. We prove
a theorem showing a first important property of sound free-choice workflow nets, namely
that the MOP is independent of the scheduler for Mazurkiewicz-invariant frameworks. This
allows to compute the result of the analysis by fixing a scheduler, and computing the MOP
for it. The main contribution of the paper is a method to compute the MOP of a framework
for a sound free-choice workflow net. This is achieved by proving a novel and very powerful
decomposition theorem showing that a sound free-choice workflow net is composed of smaller
workflow subnets which are also sound. The algorithm iteratively identifies these subnets,
computes their MOP, and replaces the complete subnet by one single transition with the
same MOP.

Since the algorithm is generic, its complexity depends on the choice of the lattice and
the transformers. However, we obtain a “concurrency-for-free” result: The runtime of the
algorithm for computing the MOP for a sound free-choice workflow net is within a polynomial
factor of the runtime for computing the MOP of a sequential flow-graph. Notice that this is
the case even though the reachability graph of the workflow net – which can be seen as the
sequential flow-graph equivalent to it – can be exponentially larger than the net itself.

The generic algorithm is more general than the reduction-based algorithms. More precisely,
for every reduction-based algorithm, there is an instance of the generic algorithm with at
most the same complexity. Further, using the generic algorithm we can solve in polynomial
time quantitative problems for which no reduction algorithm existed so far. An example
is the computation of the maximal number of tokens of a reachable marking of a sound
free-choice workflow net. As shown in [4], the maximal number of tokens corresponds to
the minimal number of resources that guarantee successful completion of the workflow, and
is therefore an important parameter. Our generic decomposition-based algorithm can be
instantiated to compute the maximal number of tokens in polynomial time3.

3 This research, conducted with Philipp Meyer and Hagen Völzer, is still unpublished.
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