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Abstract
Cost-parity games are a fundamental tool in system design for the analysis of reactive and dis-
tributed systems that recently have received a lot of attention from the formal methods research
community. They allow to reason about the time delay on the requests granted by systems, with
a bounded consumption of resources, in their executions.

In this paper, we contribute to research on Cost-parity games by combining them with hier-
archical systems, a successful method for the succinct representation of models. We show that
determining the winner of a Hierarchical Cost-parity Game is PSpace-complete, thus match-
ing the complexity of the proper special case of Hierarchical Parity Games. This shows that
reasoning about temporal delay can be addressed at a free cost in terms of complexity.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases Parity Games, Cost-Parity Games, Hierarchical Systems, System Veri-
fication

Digital Object Identifier 10.4230/LIPIcs.TIME.2017.6

1 Introduction

In formal system design and verification [11, 12, 20, 26], Parity Games represent a fundamental
machinery for the automatic synthesis and verification of concurrent and reactive systems [5,
6, 7, 21, 22]. The determinacy and the memorylessness of parity games is crucial in various
theoretical areas useful in formal verification, among which we mention automata theory,
temporal and modal logics, and monadic second-order logics. For instance, the emptiness
problem of alternating tree automata [14] as well as model checking and satisfiability in
modal µ-calculus [18] can be reduced to deciding the winner of a parity game. In particular,
model checking µ-calculus is equivalent via linear time reduction to this problem [13].

As pointed out in [15, 23, 24], the parity winning condition corresponds to a qualitative
request-response condition [17]: Player 0 wins a play of infinite duration if all but finitely
many odd colors (which we think of as requests) are followed by larger even colors (which we
think of as responses). In this setting, there is no bound on the wait time, i.e., the number
of steps that elapse between a request and its first response in the play. On the other hand,
in many applications, it is important to bound the wait time. In the last decade, many
papers have focused on quantitative aspects, in particular boundedness requirements, of
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formal verification [1, 19, 10], including parity games [10, 15, 23, 24]. In [19], the authors
introduce Prompt LTL, an extension of standard LTL [25] with the prompt-eventually
operator Fp: a finite system satisfies a Prompt LTL formula ϕ iff there is a bound on the wait
time for all the prompt-eventually subformulas of ϕ in all the computations of the system.
The automata-theoretic counterpart of the Fp operator has been investigated in [1]. Parity
games extended with promptness requirements, the so-called finitary parity games, have been
studied in [10]. The finitary parity condition [10] extends the parity condition by additionally
requiring the existence (along the given play) of a bound k such that almost every odd
color is answered within at most k steps. Surprisingly, finitary parity games are solvable in
polynomial time, and thus simpler than parity games (according to the state-of-the-art). A
meaningful generalization of finitary games is represented by the class of parity games with
costs [15] (in the following, referred as cost-parity games). In such games, transitions are
labeled by non-negative integers (costs). The cost of traversing a transition can be used to
model resource consumption. The goal of Player 0 consists then in ensuring the underlying
parity condition by using bounded resources: a play is winning for Player 0 if there is a bound
k such that almost every odd color is followed by a larger even color that is reached with
cost at most k. On the other hand, Player 1’s goal is to exhaust the resources by making the
cost unbounded. Note that Player 1’s objective is not an ω-regular property, and in general,
Player 1 needs infinite memory to win such games. However, cost-parity games enjoy some
nice properties: Player 0 has memoryless winning strategies and determining the winner
lies in NP ∩ coNP. This upper bound has been recently improved to UP ∩ coUP in [24],
proving thus that the increased expressiveness with respect to parity conditions comes at a
free cost in terms of complexity.

In the recent years, many other quantitative extensions of parity games have been
introduced. Among them we would like to mention Mean-Payoff Parity Games [9], whose
winning condition is a combination of a parity and a mean-payoff objective, and Energy
Parity Games [8]. These last ones are played over weighted arenas, and the winning condition
extends the parity condition by additionally requiring that the sum of the weights along a
play (interpreted as level of energy, or resource usage) remains always positive.

A well-known issue in formal verification is that the translation of a high-level description
of a system into a formal model, typically given by a finite-state machine (FSM), often
involves an exponential blow-up in the size of the FSM, thus affecting the efficiency of
the analysis procedures both in theory and practice. Several sources of this blow-up have
been identified in the literature. A well-studied one is the ability of components in the
system to work in parallel and communicating with each other, possibly using variables. The
impact of the concurrent setting on analysis problems is well-known: it costs an exponential,
leading to the so called state-explosion problem. Another source of the blow-up in the
translation of systems into FSMs is that in high-level sequential programming, one can
specify components only once and then can reuse them in different contexts, leading to
modularity and succinct system representation. A smart way to represent such modularity is
by means of hierarchical FSM, where some of the states of the FSM are boxes (superstates)
which correspond to nested FSMs (the reused components). The naive approach to model
checking such systems is to ‘flatten’ them by repeatedly substituting references to sub-
structures with copies of them. This results in a flat FSM whose size is exponential in
the nesting depth of the hierarchical system. However, differently from the concurrent
setting, a wiser approach avoiding flattening, for the case of model checking against temporal
logics like LTL, CTL and the more expressive modal µ-calculus, is beneficial in terms of
complexity [3, 4, 5, 16]. Parity games have also been investigated under the hierarchical
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setting. In [5], Aminof et al. prove that deciding the winner in a Hierarchical Parity Game
(HPG) is a Pspace-complete problem. The technique used in [5] is based on the observation
that even though a sub-arena may appear in different contexts, it is possible to extract
information about the sub-arena that is independent of the context in which it appears.

In this paper, we further investigate the power of hierarchical representation by introdu-
cing and studying Cost-parity Games over Hierarchical Systems (HCPG). As main result,
we establish that the problem of solving HCPG is Pspace-complete, which matches the
complexity of the proper special case of hierarchical parity games (HPG). The proposed
approach for solving the considered problem generalizes in a non-trivial and sophisticated
manner the one exploited in [5] for solving HPG, and is based on the notion of summary
function for a memoryless strategy σ of Player 0 in a given sub-arena. Such a function
records in a finite and efficient way the overall behavior of all the finite plays of σ leading to
exit states of the sub-arena with respect to requests and responses, by finitely abstracting the
set of associated costs and delays. The algorithm for solving HCPG then solves a sequence
of flat cost-parity games obtained by replacing sub-arenas by simple gadgets (depending only
on the set of colors and exit states of the sub-arena) that implement the summary functions.

The sequel of the paper is structured as follows. In Section 2, we first recall the framework
of cost-parity games. Then, we introduce hierarchical cost-parity games and describe our
solution approach in Section 3. Finally, we give few conclusions and future work directions
in Section 4. Due to space constraints, some proofs are omitted.

2 Preliminaries

Let N be the set of natural numbers. For all i, j ∈ N, with i ≤ j, [i, j] denotes the set of
natural numbers h such that i ≤ h ≤ j. We fix a non-empty finite set C of natural numbers
of the form [0, j] for some j ∈ N, which represents the set of colors for the given cost-parity
winning condition. We denote by Ce and Co the sets of even and odd colors in C, respectively.
We assume that the maximal color j in C, denoted by Cmax

o , is odd.
For an alphabet Σ, and a non-empty finite or infinite word w over Σ, we denote by |w|

the length of w (we set |w| =∞ if w is infinite). Moreover, for all i, j ≥ 1, with i ≤ j, w(i)
is the i-th letter of w, while w[i, j] denotes the finite subword of w given by w(i) · · ·w(j),
and wi the prefix of w from position i, i.e., the word w(i)w(i+ 1) . . ..

2.1 Cost-Parity Games
We recall the framework of Cost-parity games [15] which are two-player turn-based games
played on finite graphs equipped with a Cost-parity winning condition. In such a setting,
Player 0 wins a play of infinite duration if there is a bound ` ∈ N such that almost all odd
colors (which we think of as requests) are followed by larger even colors (which we think of
as responses) that are reached with cost at most `.

A state-transition graph or FSM is a tuple 〈S,R, in〉 consisting of a finite set S of states,
a transition relation R ⊆ S × S, and an initial state in ∈ S. For a state s ∈ S, we write
R(s) = {s′ ∈ S | (s, s′) ∈ R} for the set of successors of s. A path in the FSM is a non-empty
finite or infinite word π over S such that π(i+ 1) ∈ R(π(i)) for all i ∈ [1, |π| − 1].

An arena is a tuple A = 〈S, S0, S1,R, in〉 consisting of an FSM 〈S,R, in〉 and a partition
{S0, S1} of S into the states of Player 0 (drawn as circles) and the states of Player 1 (drawn
as rectangles). A play of a game over A proceeds by moving a token on the states of A,
starting at some state. If the token is placed on a state s ∈ S0 (resp., s ∈ S1), then the play
ends if s has no successors (we call such a state a terminal state); otherwise, Player 0 (resp.,
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Player 1) chooses a successor s′ of s and moves the token to s′. Formally, a play of A is a
maximal path of A, i.e., a path π in the underlying FSM such that either π is infinite, or π
is finite and ends at a terminal state.

Let p ∈ {0, 1} and SNp be the set of non-terminal states of Player p. A strategy for Player p
is a mapping σ : S∗ · SNp 7→ S assigning to each non-empty sequence of states w · s ∈ S∗ · SNp
leading to a non-terminal state s of Player p, a successor of s. A play π is consistent with the
strategy σ if for all k ∈ [1, |π| − 1] such that π(k) ∈ SNp , it holds that π(k + 1) = σ(π[1, k]).
The strategy σ is memoryless if its output does not depend on the whole prefix of the play,
but only on the last position, i.e, if for all w · s ∈ S∗ · SNp , σ(w · s) = σ(s). We can thus
represent a memoryless strategy as a mapping σ : SNp → S.

A (zero-sum) game is a pair 〈A,Win〉 consisting of an arena A = 〈S, S0, S1,R, in〉 and a
subset Win of infinite plays which are winning for Player 0. An infinite play π is winning for
Player 1 if it is not winning for Player 0. A finite play π is winning for Player p if π ends at a
state of the opponent Player 1− p. A strategy σ for Player p is winning from a state s if all
the plays π starting from s which are consistent with the strategy σ are winning for Player p.
In such a case, we say that state s is winning for Player p. A game is determined if for each
state s, s is winning for one of the players. Note that since for all strategies σ0 and σ1 of
Player 0 and Player 1, respectively, there is a unique play starting from s which is consistent
with both σ0 and σ1, in (zero-sum) games, a state s cannot be winning for both the players.
Solving a game consists in checking whether the initial state is winning for Player 0.

Cost-parity winning conditions

We, now, recall the class of Cost-parity winning conditions. A Cost-parity arena G =
〈A,Cost,Ω〉 over the set C of colors consists of an arena A = 〈S,S0,S1,R, in〉, a transition-
labeling Cost : R 7→ {0, 1} (cost function), and a coloring mapping Ω : S 7→ C assigning to
each state a color in C. Note that according to [15], the definition of transition-labelling only
allows cost 0 or 1 on a transition. Having arbitrary costs in N would not change our results, as
we are interested in boundedness questions only. We extend the transition-labeling to a cost
function Cost over paths π obtained by counting the number of increment transitions (i.e.,
1-labeled transitions) traversed along the path, i.e., Cost(π) =

∑i=|π|
i=2 Cost(π(i − 1), π(i)).

Note that Cost(π) ∈ N ∪ {∞}.
The pair (Cost,Ω) induces a winning condition for Player 0, where the occurrence of an

odd color along a play π is interpreted as a request, for which there has to be a response later
on the play by a higher even color. Formally, let π be a finite or infinite path of A. A request
in π is a position k along π such that π(k) has odd color. For an odd color c, a c-request in
π is a request k in π such that Ω(π(k)) = c. Moreover, we define Ans(c) = {c′ ∈ Ce | c′ ≥ c},
i.e., the set of even colors that answers a request of color c. For a request k in π, let rk be the
smallest position k′ ≥ k that answers to request k, i.e., such that Ω(π(k′)) ∈ Ans(Ω(π(k))),
if such positions k′ exist, and let rk = |π| otherwise. In the first (resp., second) case, we say
that the request k is answered (resp., unanswered) in π. The delay of the request k in π,
denoted by dl(π, k), then is defined as the cost of the infix of π from the request k to position
rk, i.e., Cost(π[k, rk]) if rk 6=∞, and Cost(πk) otherwise. The cost-parity winning condition
induced by (Cost,Ω), written CostParity(Cost,Ω), is then the set of infinite plays π such
that there is n ≥ 1 and a bound ` ∈ N so that for all requests k in π with k ≥ n, dl(π, k) ≤ `
and the request k is answered in π. Thus, an infinite play π ∈ CostParity(Cost,Ω) iff there
is bound ` such that all but finitely many requests are answered with cost less than `.
Note that CostParity(Cost,Ω) is prefix-independent, i.e., for all infinite plays π and k ≥ 1,
π ∈ CostParity(Cost,Ω) iff πk ∈ CostParity(Cost,Ω). We recall the following known result.
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I Theorem 1 ([15]). Cost-parity games are determined and Player 0 has memoryless
winning strategies from the winning Player 0 states. Moreover, solving a cost-parity game
G = 〈A,Cost,Ω〉 with k colors can be done in time |A|O(k·log k) and in polynomial space.

For technical convenience, we also consider a generalization of cost-parity arenas, called
partial cost-parity arenas, where one considers as additional input a subset Exit of the set of
terminal states, called exit states. Finite plays ending at states in Exit are assumed to be
non-winning for either player and have an undefined value. In this setting, a non-loosing
strategy for Player p from state s is a strategy σ for Player p such that each play starting
from s which is consistent with σ and does not lead to an exit state is winning for Player p.
A non-loosing strategy is a non-loosing strategy for Player 0 from the initial state in. For a
strategy σ for Player 0, an exit play of σ is a finite play starting from in and ending at an exit
state which is consistent with σ. For s ∈ Exit, an s-exit play of σ is an exit play of σ leading
to s. Two partial cost-parity arenas G = 〈A,Cost,Ω,Exit〉 and G′ = 〈A′,Cost′,Ω′,Exit′〉
have the same interface if Exit = Exit′, G and G′ have the same initial state in, and for each
s ∈ {in} ∪ Exit, the colors and the players of state s in G and G′ coincide.

2.2 Hierarchical Cost-Parity Games
A Hierarchical Cost-Parity Game is a cost-parity game played over a (flat) arena induced by
a hierarchical arena. The latter is a standard hierarchical FSM [4] in which the set of nodes
of each of the underlying FSMs is partitioned into nodes belonging to Player 0 and nodes
belonging to Player 1. We refer to the underlying FSMs as modular sub-arenas. Formally, a
hierarchical arena is a tuple V =〈V1, . . . ,Vn〉 of modular sub-arenas, where each Vi is in turn
a tuple of the form 〈Ni,N0

i ,N1
i ,Bi, ini,Exiti,Yi,Ei〉 consisting of the following components:

A finite set Ni of nodes which is partitioned into a set N0
i of nodes of Player 0 and a set N1

i

of nodes of Player 1, and a finite set Bi of boxes. We assume that N1, . . . ,Nn,B1, . . . ,Bn
are pairwise disjoint.
An initial node or entry ini ∈ Ni, 1 and a subset Exiti of Ni called exit-nodes. We assume
that Exit1 = ∅, i.e., the top-level sub-arena V1 has no exits.
An indexing function Yi : Bi → {i + 1, . . . , n} that maps each box b of Vi to an index
Yi(b) > i. The box b represents a reference to the definition of the sub-arena VYi(b).
An edge relation Ei. Each edge in Ei is a pair (u, v) such that: (i) the source u is either
a node of Vi or a pair (b, e), where b is a box of Vi and e is an exit-node of the sub-arena
that b refers to, and (ii) the target v is either a node or a box of Vi.

Define N =
⋃n
i=1 Ni (the set of V-nodes), E =

⋃n
i=1 Ei (the set of V-edges), and Exit =⋃n

i=1 Exiti (the set of V-exit-nodes). In a modular sub-arena, the edges connect nodes and
boxes with one another. Edges entering a box implicitly lead to the unique entry-node of the
sub-arena that the box refers to. On the other hand, an edge exiting a box needs to explicitly
specify the identity of the exit-node among the possible exit-nodes of the sub-arena associated
with that box. The size |Vi| of a modular sub-arena Vi is |Ni| + |Bi| + |Ei|. The size |V|
of V is

∑i=n
i=1 |Vi|. The nesting depth of V is the length of the longest chain i1, i2, . . . , ij of

indices in [1, n] such that a box of Vil is mapped to il+1 for all l ∈ [1, j − 1]. Note that the
fact that boxes of a sub-arena can only refer to sub-arenas with a greater index implies that
the nesting depth of V is finite. Such a restriction does not exist in the recursive setting [2].

1 We assume a single entry for each sub-arena. Multiple entries can be handled by duplicating sub-arenas.

TIME 2017



6:6 Hierarchical Cost-Parity Games

A Hierarchical Cost-Parity Arena (HCPA, for short) over C is a tuple H = 〈V,Cost,Ω〉
consisting of a hierarchical arena V =〈V1, . . . ,Vn〉 equipped with a cost function Cost : E 7→
{0, 1} for the set of V-edges, and a coloring mapping Ω : N 7→ C for the set of V-nodes. We
can associate to H an ordinary cost-parity arena (called its flat expansion) by recursively
substituting each box by a copy of the modular sub-arena it refers to. Since different boxes
can refer to the same sub-arena, nodes may appear in different contexts. In general, a state of
the flat expansion is a vector whose last component is a node, and the remaining components
are boxes that specify the context. Formally, for each modular sub-arena Vi, we inductively
define its flat expansion as the partial Cost-parity arena HFi = 〈Ai,Costi,Ωi,Exiti〉, with
Ai = 〈Si,S0

i ,S1
i ,Ri, ini〉, defined as follows:

The set of states Si is inductively defined as follows: (i) if u is a node in Vi, then u ∈ Si,
and (ii) if b is a box of Vi and s ∈ SYi(b), then (b, s) ∈ Si.
S0
i (resp., S1

i ) is the set of states in Si whose node-component belongs to Player 0 (resp.,
Player 1), and the coloring function Ωi assigns to each state s of Ai, the color Ω(u) of
the node-component u of s.
The transition relation Ri and the cost function Costi are inductively defined as follows.

If (u, v) ∈ Ei and the target v is a node, then (u, v) ∈ Ri and Costi(u, v) =
Cost(u, v). If (u, b) ∈ Ei and the target b is a box, then (u, (b, inYi(b))) ∈ Ri and
Costi(u, (b, inYi(b))) = Cost(u, b).
If b is a box of Vi and (s, s′) ∈ RYi(b), then ((b, s), (b, s′)) ∈ Ri and Costi((b, s), (b, s′)) =
CostYi(b)(s, s′).

Note that since Exit1 = ∅, HF1 is an ordinary Cost-parity arena (i.e., it is not partial), called
the flat expansion of H. Moreover, observe that each state of HF1 is a vector of length at
most the nesting depth d of V , and that the number of states in HF1 can be exponential in d.
Solving the game on the HCPA H consists in checking whether the initial state in1 of the
cost-parity arena HF1 is winning for Player 0.

3 Solving Hierarchical Cost-Parity Games

The naive approach for solving games on HCPA H consisting in applying Theorem 1 on the
flat expansion of H would lead to an exponential space procedure. In this section, we show
that solving hierarchical cost-parity games is Pspace-complete. Our approach is based on
the notion of summary function for a strategy σ of Player 0 in a partial cost-parity arena,
which records in a finite and efficient way the overall behavior of all the exit plays of σ with
respect to requests and responses. The proposed algorithm for solving the game on the given
HCPA H then solves a sequence of partial cost-parity games, obtained by replacing each box
b referring to a sub-arena Vi with simple partial-cost parity arenas (summary-gadget arenas)
having the same interface as the flat expansion HFi of Vi and depending only on the set of
colors and exit states. These gadgets represent the behavior of Player 0 as a choice among
the possible summary functions associated with the non-loosing memoryless strategies in HFi ,
and also take into account the possibility that the game will stay forever in the sub-arena Vi
for the given context b. The rest of this section is organized as follows: in Subsection 3.1,
we introduce the notions of summary and summary-gadget arena, and in Subsection 3.2 we
show how to check that a summary is associated with non-loosing memoryless strategies.
Finally, in Subsection 3.3, we illustrate the proposed algorithm for solving HCPA games.
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3.1 Summaries in partial cost-parity games
In this section, for a given partial cost-parity arena G, we show how to define a finite
abstraction of the set of non-loosing strategies (of Player 0). Such an abstraction is based on
the notion of summary for a strategy σ of Player 0, which is a mapping assigning to each
exit state s a value ranging over a finite set (depending only on the set of colors). Such a
value summarizes the overall behavior of all the s-exit plays of σ with respect to requests and
responses by finitely abstracting the set of associated costs and delays. Then, we associate
to each summary S of G a simple partial-cost parity arena Gad(G,S) – exposing the same
interface as G (the initial state and the set of exit states) – which depends only on the set
of colors and exit states, and is independent of the set of ‘internal’ states in G. The set of
summary-gadget arenas Gad(G,S) such that S is achieved by some non-loosing memoryless
strategy is ‘context-equivalent’ to G, i.e., for each memoryless strategy σ achieving some
summary S, G can be equivalently replaced with Gad(G,S) in any hierarchical context where
G is exploited as a sub-arena and Player 0 chooses strategy σ when entering G. 2

Fix a partial cost-parity arena G = 〈A,Cost,Ω,Exit〉 over the set C of colors, where
A = 〈S,S0,S1,R, in〉 and Exit is the designated set of exit states.

In order to describe the relative merit of colors, we define an ordering �0 over the given
set C of colors by letting c �0 c

′ when c is better for Player 0 than c′. Formally, c �0 c
′

if: either (i) c and c′ are even and c ≥ c′, or (ii) c and c′ are odd and c′ ≥ c, or (iii) c′
is odd and c is even. Moreover, in order to summarize in a finite way cost measures, we
exploit three special symbols, namely, bnd0, bnd1, and unb to denote bounded behavior
with zero-cost, bounded behavior with non-zero cost, and unbounded behavior (cost ∞),
respectively. Additionally, we denote by �b the ordering on {bnd0, bnd1, unb} defined as:
bnd0 �b bnd1 and bnd1 �b unb. Intuitively, bnd0 �b bnd1 and bnd1 �b unb express that
bounded zero-cost is better for Player 0 then non-zero bounded cost, the latter being in turn
better than unbounded cost. Define C̃ = C \ {Cmax

o } and C̃o = (Co \ {Cmax
o }) ∪ {0}.

In order to formalize the notion of summary for a strategy σ of Player 0, we consider
various cost measures with respect to the requests and the responses along the exit plays
of σ. For this, we extend the cost function Cost to (possibly infinite) sets Π of finite
paths. Formally, Cost(Π) is the least upper bound over the costs of the paths in Π, i.e.,
Cost(Π) = sup{Cost(ν) | ν ∈ Π} where sup ∅ = 0. Note that Cost(Π) ∈ N ∪ {∞}. For a
finite path ν of G and an even color ce ∈ Ce, a ce-response in ν is a position k of ν such
that ν(k) ha color ce. For such a response k, the cost of response k in ν is the cost of the
prefix of ν leading to position k, i.e., Cost(ν[1, k]). The ce-response cost of ν, denoted by
ResCost(ν, ce), is the cost Cost(ν[1, k]) of the prefix of ν up to the minimal c′e-response k in
ν for some even color c′e ≥ ce if such c′e-responses exist, and it is 0 otherwise. The maximal
even color of the path ν is the maximal even color visited by ν if ν visits some even color,
and it is 0 otherwise (note that a 0-response cannot answer to any request). We exploit the
following cost measures for the (possibly infinite) set of exit plays of a given strategy σ of
Player 0 leading to a designated exit state.

I Definition 2 (Cost measures of Player 0 strategies). Let s ∈ Exit, σ a strategy of Player 0,
Πs the (possibly empty) set of exit plays of σ leading to s, and ce ∈ Ce an even color.

Cost of σ w.r.t. s, denoted Cost(σ, s): it is Cost(Πs).
Even ce-cost of σ w.r.t. s, denoted Coste(σ, s, ce): it is Cost(Πce), where Πce is the
(possibly empty) set of exit plays in Πs whose maximal even color is at most ce.

2 The formal proof of such a context-equivalence is postponed to Section 3.3.
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ce-response cost of σ w.r.t. s, denoted ResCost(σ, s, ce): it is the least upper bound over
the ce-response costs of the exit plays in Πs, i.e., sup{ResCost(ν, ce) | ν ∈ Πs}.
Request-cost of σ w.r.t. s, denoted ReqCost(σ, s): it is the least upper bound over the
delays associated with the requests along the exit plays in Πs, i.e., sup{dl(ν, k) | ν ∈
Πs and k is a request in ν}.

Note that Coste(σ, s,−) is monotonic in the third argument, i.e., Coste(σ, s, c′e) ≥
Coste(σ, s, ce) for all ce, c

′
e ∈ Ce such that c′e ≥ ce. We, now, introduce the notion of

summary for a strategy σ of Player 0 which records for each exit state s, a value, called exit
value, ranging over a finite set depending only on the set of colors. This value summarizes
the overall behavior of the exit plays of σ leading to s. We distinguish three situations (recall
that Cmax

o = max(C) and Cmax
o is odd):

The best scenario for Player 0 is when there is no exit play of σ leading to s. We represent
this situation by exploiting the special symbol `.
The worst scenario is when the request-cost of σ w.r.t. s is infinite, or there is an s-exit
play of σ having a Cmax

o -request. We use the color Cmax
o to describe this scenario.

If none of the two previous conditions is fulfilled, then the exit value is a sextuple of
elements: (i) the first element summarizes the cost of σ w.r.t. s, (ii) the second element
keeps track of the minimal color w.r.t. �0 over the maximal colors along the s-exit plays of
σ, (iii) the third element represents the maximal odd color associated with an unanswered
request, and (iv) the last three elements in the tuple summarize the overall response
behavior of the s-exit plays of σ.

The formal definition of exit values for a strategy of Player 0 follows.

I Definition 3 (Exit values of Player 0 strategies). Let s ∈ Exit, σ a strategy of Player 0, and
Πs the set of exit plays of σ leading to s. The exit value value(σ, s) of strategy σ w.r.t. s is
defined as follows. If Πs = ∅, then value(σ, s) =`. If instead either ReqCost(σ, s) = ∞ or
there is ν ∈ Πs having a Cmax

o -request, then value(σ, s) = Cmax
o . Otherwise, value(σ, s) =

(valueCost(σ, s), valuepr(σ, s), valueo(σ, s), valueLe (σ, s), valueMe (σ, s), valueRe (σ, s)) ∈ {bnd0,

bnd1, unb} × C̃ × C̃o × Ce × (Ce ∪ {⊥})× Ce, and the following holds:
Cost value valueCost(σ, s): (i) valueCost(σ, s) = unb if Cost(Πs) =∞, (ii) valueCost(σ, s) =
0 if Cost(Πs) = 0, and (iii) valueCost(σ, s) = bnd1 otherwise.
Parity value valuepr(σ, s): it is min�0{c ∈ C | c is the maximal color of some ν ∈ Πs}.
Odd value valueo(σ, s): it is the greatest odd color co ∈ Co such that for some ν ∈ Πs, ν
has an unanswered co-request if such an odd color co exists; otherwise, it is 0.
Even-left value valueLe (σ, s): it is the greatest even color ce ∈ Ce such that ResCost(σ, s, ce)
6=∞ and for each ν ∈ Πs, the maximal even color in ν is at least ce, if such an even color
ce exists; otherwise, it is 0.
Even-middle value valueMe (σ, s): it is the smallest even color ce such that Coste(σ, s, ce) ∈
N \ {0} if such a color ce exists, and valueMe (σ, s) = ⊥ otherwise (⊥ is for ‘undefined’).
Even-right value valueRe (σ, s): it is the greatest even color ce ∈ Ce such that ResCost(σ, s, ce)
6= ∞ and for each c′e ∈ Ce with c′e < ce, Coste(σ, s, c′e) 6= ∞, if such an even color ce
exists; otherwise, it is 0.

Note that for parity winning conditions, the parity value valuepr(σ, s) suffices for summar-
izing the s-exit behavior of strategy σ [5]. For cost-parity winning conditions, we also need to
keep track of the maximal odd color valueo(σ, s) associated with unanswered requests. Note
that valueo(σ, s) �0 valuepr(σ, s), and valueo(σ, s) ≺0 valuepr(σ, s) whenever the maximal
unanswered request is associated with s-exit plays whose maximal color is even. As an
example, let un consider the sub-arena Gco – parametric in the color co – in the figure below:
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Note that all the states are controlled by Player 1. The instances G1 and G3 of Gco have
parity value 1, and odd value 1 and 3, respectively. While by using G1, all the plays starting
from state in are winning for Player 0, the same does not hold by using G3 since in this case,
there are plays where the request 3 is answered in an unbounded way.
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2ρ 0
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1

For what concerns the even values, the even-left value valueLe (σ, s) represents, intuitively,
the maximal even color that the s-exit plays of σ offer for answering – in a bounded way
– to previous requests in an arbitrary context. The even-right value valueRe (σ, s), where
valueRe (σ, s) ≥ valueLe (σ, s), instead represents the maximal even color which may answer to
a request preceding an s-exit play ν of σ in a bounded way: if the maximal even color in
ν is smaller than valueRe (σ, s), then the overall cost of all s-exit plays of σ whose maximal
even color is smaller than valueRe (σ, s) is finite. As an example, let us consider the sub-arena
G′ρ – parametric in the cost ρ of the self-loop on the state with color 2 – in the left part of
the figure above, where all the states are controlled by Player 1. The instances G′0 and G′1 of
G′ρ have even-left value 2, and even-right value 4 and 2, respectively. While for G′0, all the
plays starting from state in are winning for Player 0, the same does not hold for G′1, since
in this case, there are plays where the external request 3 is answered in an unbounded way.
Finally, in order to illustrate the importance of the even-middle value, let us consider the
sub-arena G′′ρ in the right part of the figure above, where again all the states are controlled
by Player 1. The instances G′′0 and G′′1 of G′′ρ have even-left value 2, right-even value 4, and
even-middle value ⊥ and 2, respectively. While for G′′0 , all the plays starting from in are
winning for Player 0, for G′′1 , there are plays where the external request 3 is answered in an
unbounded way. We make the following observations which easily follow from Definition 3.

I Proposition 4. Let σ be a strategy of Player 0 in G and s ∈ Exit such that value(σ, s) =
(f, cpr, co, c

L
e , c

M
e , cRe ). Then:

co �o cpr, cLe ≤ cpr, cLe ≤ cRe , and cMe ∈ [cLe , cRe ] if cMe 6= ⊥.
cMe = ⊥ if f = bnd0, and cMe 6= ⊥ if f = bnd1.
cRe = max(Ce) if f 6= unb, and cRe < max(Ce) if f = unb and cMe = cRe .
cLe = cpr if cpr ∈ Ce and either f 6= unb, or cLe < cRe , or cMe = cRe .

I Definition 5 (Summaries of Player 0 strategies). The set EC of exit values for the set C of
colors is the finite set {`, Cmax

o } ∪ E ′C , where E ′C is the set of tuples (f, cpr, co, c
L
e , c

M
e , cRe ) ∈

{bnd0, bnd1, unb}×C̃×C̃o×Ce×(Ce∪{⊥})×Ce satisfying Conditions (1)–(4) in Proposition 4.
A summary of G is a mapping S : Exit 7→ EC such that for all s ∈ Exit with S(s) =

(f, cpr, co, c
L
e , c

M
e , cRe ), it holds that cLe �0 Ω(in), co �0 Ω(s), and Ω(in) ≤ cRe . The summary
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S(σ) of a strategy σ of Player 0 in G is the summary of G associating to each s ∈ Exit, the
exit value value(σ, s).

For each summary S, we now define a partial-cost parity game Gad(G,S), exposing the
same interface as G and independent of the set of ‘internal’ states in G, such that there is a
unique strategy σS of Player 0 in Gad(G,S). Moreover, σS is non-loosing and the exit values
of σS correspond to the exit values of any strategy of Player 0 in G having S as summary.

I Definition 6 (Summary-Gadget Arena). Let S be a summary of G. Given ex ∈ Exit, we
first define the sub-gadget Gad(G,S, ex) of G for summary S and ex, which is the partial
cost-parity game with set of states Sex ∪ {S, ex} and set of edges Rex, where:

All the states in Sex ∪ {S} are controlled by Player 1, S has color 0 and is the initial
state, ex is the unique exit state, and the color and the player of state ex is as in G.

Moreover, if S(ex) =`, then Sex = ∅, and Rex = ∅. On the opposite side, if S(ex) = Cmax
o ,

then Sex consists of a unique state s having color Cmax
o , and Rex consists of two edges,

one from state S to state s with cost 0, and the other one from s to ex with cost 0 as
well. Otherwise, let S(ex) = (f, cpr, co, c

L
e , c

M
e , cRe ). Then, we distinguish six cases, where

(i) cex is the color of ex, and (ii) do = cpr and de = cLe if co ∈ {0, cpr}, and do = co and
de = max({ce, co + 1}) otherwise, where ce = cLe if cpr ∈ Co, and ce = cpr otherwise. In the
figures illustrating the construction, we assume that ex is controlled by Player 0.

Case f = bnd0

0

S

cex

ex

cL
e0 cpr

0
0

de0 do0
0

In this case, we have cMe = ⊥ and cRe = max(Ce). The sub-gadget Gad(G,S, ex) for this case
is a DAG and is illustrated on the left. Note that the cost of any path from state S to the
exit state ex is 0.

Case f = bnd1

0

S

cex

ex
cM

e
1 0
cL

e0 cpr
ρ

0

de
0 do0

0

In this case, we have that cMe ∈ Ce, cMe ∈ [cLe , cRe ], and CRe = max(Ce). The associated
sub-gadget is a DAG and it is illustrated on the right, where ρ = 0 if cLe < cMe , and ρ = 1
otherwise. Note that the overall cost of all paths from state S to the exit state ex is 1.
Moreover, according to the definition of even-middle value, cMe represents the smallest even
color ce such that the cost of all exit plays leading to ex and having maximal even color ce is
finite and non-null. Additionally, if cLe < cMe , according to the definition of even-left value,
there are exit plays leading to ex whose maximal even color is cLe , and the overall cost of
such exit plays is 0.
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Case f = unb, cM
e = ⊥, and cL

e = cR
e

0

S

cex

ex
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cpr
0

0

de0 do0
0

The sub-gadget Gad(G,S, ex) for this case is illustrated on the left. When f = unb, the overall
cost of all exit plays leading to ex is infinite. This is implemented by a self-loop with cost 1 on
the state having color cRe . Note that for a strategy σ of Player 0 with valueCost(σ, ex) = unb
and valueRe (σ, ex) = cRe , the overall cost of all ex-exit plays having maximal even color at
most cRe maybe finite. However, in this case, cRe < max(Ce) and ResCost(σ, ex, cRe + 2) =∞.
Thus, the self-loop with cost 1 in the sub-gadget above takes into account also these possible
scenarios.

Case f = unb, cM
e = ⊥, and cL

e < cR
e

0

S

cex

ex
cR

e
0 0

1
cL

e0 cpr
0

0

de
0 do0

0

This case is similar to the previous one. The unique difference is that now cLe < cRe . Thus,
the associated sub-gadget – illustrated on the right – summarizes strategies σ of Player 0 for
which, in particular, valueLe (σ, ex) = cLe and there are exit plays leading to ex whose maximal
even color is cLe , and the overall cost of such exit plays is 0.

Case f = unb, cM
e ∈ Ce, and cM

e < cR
e

This case is similar to the previous one, but now cMe ∈ Ce, hence, cMe ∈ [cLe , cRe ]. The
associated sub-gadget is illustrated in the left part of the figure below, where ρ = 0 if
cLe < cMe , and ρ = 1 otherwise.

Case f = unb, cM
e ∈ Ce, and cM

e = cR
e

In this case, we have that cMe ∈ [cLe , cRe ] and cRe < max(Ce). The associated sub-gadget
is illustrated on the right of the figure below, where cR+ = cRe + 2, ρ = 0 if cLe < cMe , and
ρ = 1 otherwise. In this case there is an even color, namely cR+, whose response-cost with
respect to ex is infinite. This is consistent with the fact that for all strategies σ of Player 0
such that valueCost(σ, ex) = unb, valueRe (σ, ex) = cRe , and Coste(σ, ex, cRe ) 6=∞, we have that
ResCoste(σ, ex, cRe + 2) =∞.
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We now define the gadget arena Gad(G,S) for the given summary S, which is intuitively
obtained by merging the sub-gadgets Gad(G,S, ex) for the various exit states ex ∈ Exit and
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by adding the state in. Formally, assuming that Sex ∩ Sex′ = ∅ (i.e., sub-gadgets associated
with distinct exit states share only state S), Gad(G,S) has the same interface as G and
satisfies the following: the set of states of Gad(G,S) is {in,S} ∪ Exit ∪

⋃
ex∈Exit Sex and the

set of transitions is {(in,S)} ∪
⋃

ex∈Exit Rex, where transition (in,S) has cost 0.
I Remark. Note that in a summary-gadget arena Gad(G,S), every state which is not in
{in} ∪ Exit is controlled by Player 1. In particular, there is exactly one strategy of Player 0,
and such a strategy is non-loosing.

By construction, we easily obtain the following result.

I Proposition 7. Let G = 〈A,Cost,Ω,Exit〉 be a partial-cost parity arena, σ a strategy
of Player 0, σS the unique strategy of Player 0 in Gad(G,S(σ)), and s ∈ Exit. Then,
value(σ, s) = value(σS , s). Moreover, if value(σ, s) 6= Cmax

o , the following holds:
Let ν be an s-exit play of σS with maximal even color ce. Then, either (i) Coste(σ, s, ce) ≥
Coste(σS , s, ce), and there is an s-exit play ν′ of σ whose maximal even color is at most
ce, or (ii) Coste(σS , s, ce) =∞, ce < max(Ce), and ResCost(σ, s, ce + 2) =∞.
For each ce ∈ Ce, ResCost(σS , s, ce) =∞ entails that ResCost(σ, s, ce) =∞.

Not all the summaries of G are associated with non-loosing strategies (of Player 0). On
the other hand, checking whether a summary is associated with a non-loosing strategy is not
an easy task since we have to check the fulfillment of unboundedness conditions. However,
we can get around the problem by exploiting monotonicity properties of the cost-parity
winning conditions. We define a reflexive and transitive relation w over the set of summaries.
Intuitively, S w S ′ when S is not worse than S ′ for Player 0. A summary S is then relevant
if S(σ) w S for some non-loosing memoryless strategy σ. As we will see in Section 3.2,
checking whether a summary is relevant can be done in polynomial space.

I Definition 8 (Relevant summaries). Let w be a binary relation over EC defined as follows:
`w ev for all ev ∈ EC ;
ev w Cmax

o for all ev ∈ EC ;
(f, cpr, co, c

L
e , c

M
e , cRe ) w (f̃ , ˜cpr, c̃o, c̃Le ,

˜cMe , c̃Re ) if f �b f̃ , cpr �0 ˜cpr, co �0 c̃o, cLe �0 c̃Le ,
cRe �0 c̃Re , and the following holds:

if cMe 6= ⊥, then either ˜cMe 6= ⊥ and cMe ≥ ˜cMe , or ˜cMe = ⊥ and cMe ≥ c̃Re .

Given two summaries S and S ′ of G, we say that S is not worse than S ′ for Player 0,
written S w S ′, if S(s) w S ′(s) for all s ∈ Exit. A summary S of G is relevant iff there is a
memoryless non-loosing strategy σ in G such that S(σ) w S.

I Remark. The binary relation w over the set of summaries is reflexive and transitive.
Note that if G has no exits, then the unique summary is the empty set, and such a summary

is relevant iff there is a memoryless winning strategy of Player 0 from in. By construction,
we easily obtain the following result, which represents the converse of Proposition 7.

I Proposition 9. Let G = 〈A,Cost,Ω,Exit〉 be a partial-cost parity arena, S a summary
of G, σ a strategy of Player 0 such that S(σ) w S, σS the unique strategy of Player 0 in
Gad(G,S), and s ∈ Exit. Then value(σ, s) w value(σS , s). Moreover, if S(s) 6= Cmax

o , the
following holds:

Let ν be an s-exit play of σ, ce the maximal even color of ν, and Coste(σ, s, ce) = m ∈
N ∪ {∞}. Then, either (i) Coste(σS , s, ce) = m′ where m′ > 0 if m > 0, and m′ =∞ if
m =∞, and there is a s-exit play ν′ of σS whose maximal even color is at most ce, or
(ii) Coste(σ, s, ce) =∞, ce < max(Ce), and ResCost(σS , s, ce + 2) =∞.
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For each ce ∈ Ce, if ResCost(σ, s, ce) =∞, one of the following holds:
either ResCost(σS , s, c′e) =∞ for some even color c′e ≤ ce,
or there is an even color c′e ≤ valueRe (σ, s) < ce such that Coste(σS , s, c′e) =∞.

Note that the set of relevant summaries in G is empty iff there does not exist a memoryless
non-loosing strategy in G. By Theorem 1, checking this condition can be done in polynomial
space. In this case, we associate with G a simple partial cost-parity arena (bad gadget),
where Player 0 always loses.

I Definition 10 (Bad-Gadget Arena). The bad-gadget arena BadGad(G) of G is the partial
cost-parity game having the same interface as G and defined as follows: BadGad(G) has a
unique ‘internal’ state s /∈ {in} ∪Exit, which has color 0 and is controlled by Player 0, and a
unique transition, namely (in, s), which has cost 0.

3.2 Checking relevance of summaries
We reduce the problem of checking summary relevance in partial cost-parity arenas to
verifying the existence of memoryless strategies in cost-parity arenas under a simple imperfect-
information setting. Formally, an observation-based cost-parity arena (OCPA) is a cost-parity
arena G = 〈A,Cost,Ω,Obs〉 equipped with an observability equivalence relation Obs ⊆ S× S
over the set of states. An observation-based memoryless strategy of Player 0 is a memoryless
strategy σ of Player 0 such that, for all non-terminal states s and s′ controlled by Player 0,
(s, s′) ∈ Obs ⇒ (σ(s), σ(s′)) ∈ Obs. The following easily follows.

I Theorem 11. Let G = 〈A,Cost,Ω,Obs〉 be an OCPA. Checking the existence of a winning
observation-based memoryless strategy of Player 0 from the initial state can be done in
polynomial space.

I Theorem 12 (Checking summary relevance). Let G = 〈A,Cost,Ω,Exit〉 be a partial cost-
parity arena over C with A = 〈S, S0, S1,R, in〉 and S a summary of G. Then, one can check
in polynomial space whether S is relevant.

Proof. We build in polynomial time an OCPA GS such that, there is a winning observation-
based memoryless strategy of Player 0 in GS from the initial state iff S is relevant in G. We first
construct a partial OCPA G′ obtained from G by extending every state of G with additional
information which keeps tracks of the maximal even color and the maximal unanswered odd
color visited in the current play-prefix from in and a flag indicating whether such a prefix
has cost zero. Formally, G′ = 〈A′,Cost′,Ω′,Exit′,Obs〉 where A = 〈S′,S′0,S′1,R′, in′〉 and:

S′ = S×Ce×C̃o×{0, 1}, Exit′ = Exit×Ce×C̃o×{0, 1}, in′ = (in, 0, 0, 0), Ω′((s, ce, co, d)) =
Ω(s), and ((s, ce, co, d), (s′, c′e, c′o, d′)) ∈ Obs iff s = s′. Moreover, the player of each state
(s, ce, co, d) is the player of s in G if s /∈ Exit, Player 0 if s ∈ Exit and S(s) =`, and
Player 1 otherwise.
((s, ce, co, d), (s′, c′e, c′o, d′) ∈ E′ iff (i) (s, s′) ∈ E, (ii) c′e = max�0({ce,Ω(s)}), (iii) c′o = 0
if Ω(s′) ∈ Ce and Ω(s′) ≥ co, and co = min�0({co,Ω(s)}) otherwise, and (iv) d′ = 0 if
d = 0 and Cost(s, s′) = 0, and d′ = 1 otherwise;
Cost′((s, ce, co, d), (s′, c′e, c′o, d′)) = Cost(s, s′).

Note that by construction, there is a bijection, denoted by Obs, between the memoryless
strategies σ of Player 0 in G, and the observation-based memoryless strategies of Player 0
in G′. Formally, for each non-terminal state (s, ce, co, d) of G′ controlled by Player 0,
Obs(σ)((s, ce, co, d)) is the unique successor of (s, ce, co, d) having as S-component σ(s).
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For each ex ∈ Exit, let Exit′ex be the set of exit states of G′ having ex as S-component.
The game GS is obtained from G′ by adding for each exit state ex ∈ Exit such that S(ex) /∈
{`, Cmax

o }, a gadget (subgraph) consisting of states controlled by Player 1 that connects
the exit states of G′ in Exit′ex with the initial state in′ = (in, 0, 0, 0), and an additional
terminal state 2 which is controlled by Player 0. If S(ex) =`, then for every strategy σ of
Player 0 in G, S(σ)(ex) =` if S(σ) w S, and our choice (states in Exit′ex are controlled by
Player 0) allows to capture only the non-loosing strategies σ of G for which there is no exit
play leading to ex. On the other hand, if S(ex) = Cmax

o , then for each strategy σ of Player 0
in G, S(σ)(ex) w Cmax

o , and accordingly, states in Exit′ex are controlled by Player 1.
Now, we describe the construction of the gadget for ex when S(ex) /∈ {`, Cmax

o }, i.e., S(ex)
is of the form (f, cpr, co, c

L
e , c

M
e , cRe ) ∈ {bnd0, bnd1, unb} × C̃ × C̃o × Ce × (Ce ∪ {⊥}) × Ce.

Due to space limitations, here we focus only on the case where f = unb and co > cRe . Note
that for each strategy σ of Player 0, it holds that Cost(σ, ex) �b unb. The gadget for this
case is obtained by adding 2 new states controlled by Player 1, namely exe and exRo , a new
terminal state 2 controlled by Player 0, and new transitions. State 2 has color 0, state exe
has the even color co + 1, and state exRo has color 0 if cRe = 0, and the odd color cRe − 1
otherwise. The new transitions have cost 0 and are as follows:

for each s = (ex, c′e, c′o, d) ∈ Exit′ex such that one of the following bad conditions is satisfied,
we add the transition (s,2).

Bad conditions: either (i) max({c′o, c′e}) ≺o cpr, or (ii) c′e < cLe , or (iii) d = 1, cMe = ⊥,
and c′e < cRe , or (iv) d = 1, cMe 6= ⊥, and c′e < cMe .

the transitions (exe, exRo ) and (exRo , in′), and for each s ∈ Exit′ex, the transition (s, exe).

The transitions having as target state 2 are exploited to capture the strategies σ of
Player 0 in G satisfying the following: (i) valuepr(σ, ex) �o cpr, (ii) in each exit play ν of σ
leading to ex, the maximal even color of ν is at least cLe and (iii) if valueMe (σ, ex) 6= ⊥, then
either cMe = ⊥ and valueMe (σ, ex) ≥ cRe , or cMe 6= ⊥ and valueMe (σ, ex) ≥ cMe .

Moreover, given a memoryless strategy σ of Player 0 in G, the chains of transitions (s, exe),
(exe, exRo ) and (exRo , in′) entering the initial state in′, where s ∈ Exit′ex, are responsible of
cycles consistent with Obs(σ) of the form ν · exe · exRo · in′, where ν is an arbitrary exit play
of Obs(σ) leading to some exit state s ∈ Exit′ex. By concatenating these cycles, one obtains
infinite plays consistent with Obs(σ) which are winning for Player 0 iff value(σ, ex) 6= Cmax

o
(the request cost of σ w.r.t. 0 is finite), valueo(σ, ex) �0 co, and valueRe (σ, ex) ≥ cRe .

By construction, for each memoryless strategy σ of Player 0 in G, σ is non-loosing and
S(σ) w S iff Obs(σ) is winning for Player 0 from state in′. Thus, since Obs is a bijection
between the memoryless strategies of Player 0 in G and the observation-based memoryless
strategies of Player 0 in GS , by Theorem 11, Theorem 12 follows. J

3.3 Algorithm for solving games on HCPA
In this section, by exploiting the summary-gadget arena construction of Section 3.1, we
derive a polynomial space algorithm for solving hierarchical cost-parity games. In particular,
we describe an NPspace procedure which solves the considered problem (recall that by
Savitch’s theorem, Pspace =NPspace). The outline of the nondeterministic procedure,
called Algorithm 1, is given in Fig. 1.

Given an HCPA H = 〈V,Cost,Ω〉 with V =〈V1, . . . ,Vn〉, Algorithm 1 proceeds in phases
corresponding to the iterations of the repeat loop. In each phase, the modular sub-arenas of
H are processed in increasing order w.r.t. the hierarchical level, starting with the lowest level
sub-arena Vn which has no boxes, and, therefore, corresponds to its flat expansion HFn . At
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Algorithm 1

Input: H = 〈〈V1, . . . ,Vn〉,Cost,Ω〉
repeat

for i = n downto 1 do
guess Gapp,i ∈ AppSimplify(Vi, gapp,i);
gapp,i(b) = Gapp,Yi(b) for all b ∈ Bi;

if Player 0 wins in Gapp,1 then accepts

Figure 1 NPspace procedure.

step n ≥ i ≥ 1 of the current phase, the algorithm nondeterministically chooses a partial
cost-parity arena Gapp,i from a finite set of partial cost-parity arenas obtained by applying
the operation AppSimplify (approximated simplification) to the modular sub-arena Vi and
the substitution mapping gapp,i. A substitution for a modular sub-arena Vi is a mapping
associating to each box b of Vi with Yi(b) = k, a partial cost-parity arena having the same
interface as the flat expansion HFk of Vk (hence, g(b) has initial state ink and set of exit states
Exitk). In our case, the substitution gapp,i considered by the algorithm at iteration n ≥ i ≥ 1
maps each box b of Vi with the the guessed approximation Gapp,Yi(b) in the previous iteration
Yi(b) of the current phase (recall that Yi(b) > i). The essence of the operation AppSimplify is
to replace each box b of Vi with a copy of the summary-gadget arena of Gapp,Yi(b) associated
with some relevant summary of Gapp,Yi(b). Note that at iteration n, gapp,n is empty and
Gapp,n coincides with HFn . If Player 0 wins in Gapp,1 (recall that the top-level arena V1 has no
exit, hence, Gapp,1 has no exit as well), then the algorithm accepts the input H. Otherwise,
a new phase is started. We now formally define the approximated simplification operation.

I Definition 13 (Approximated simplification). Let H = 〈V,Cost,Ω〉 be an HCPA with
V =〈V1, . . . ,Vn〉, i ∈ [1, n], and g be a substitution for Vi. For a box b of Vi and a relevant
summary S of g(b), we denote by Gadb(g(b),S) the copy of the summary-gadget arena
Gad(g(b),S) associated with g(b) and S obtained by replacing each state s in Gad(g(b),S)
with the copy (b, s). The b-copy BadGadb(g(b)) of the bad-gadget arena BadGad(g(b)) for
g(b) is defined in a similar way. Note that the copies of the states in {ink} ∪ Exitk, where
k = Yi(b), are states in the flat expansion HFi of Vi.

The simplification Simplify(Vi, g, b) of Vi w.r.t. the substitution g and the box b (resp.,
the simplification Simplify(Vi, g, b,S) of Vi w.r.t. the substitution g, the box b, and a relevant
summary S of g(b)) is the partial cost-parity arena obtained from HFi as follows:

all the states in HFi of the form (b, s) which are not in BadGadb(g(b)) (resp, Gadb(g(b),S))
are removed together with the associated transitions, and all the states in BadGadb(g(b))
(resp, Gadb(g(b),S)) are added together with the associated transitions.

An approximated simplification of Vi w.r.t. g is a partial cost-parity arena obtained by
applying for each box b of Vi, the simplification operation w.r.t. g and b if the set of relevant
summaries of g(b) is empty, and the simplification operation w.r.t. g, b, and some relevant
summary Sb of g(b) otherwise. We denote by AppSimplify(Vi, g) the set of approximated
simplifications of Vi w.r.t. g.

Note that the arenas in AppSimplify(Vi, g) can be constructed directly from Vi without
constructing the flat expansion HFi . By Propositions 7 and 9, we deduce that the AppSimplify
operation preserves the set of relevant summaries. In particular, the following holds, where
for a partial cost-parity arena G, RS(G) is the set of relevant summaries in G (we extend the
notation RS to sets of partial cost-parity arenas).
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I Lemma 14. Let H = 〈V,Cost,Ω〉 with V = 〈V1, . . . ,Vn〉 be an HCPA, i ∈ [1, n], and
g a substitution for Vi. Assume that for each box b of Vi, RS(HFYi(b)) = RS(g(b)). Then,
RS(HFi ) = RS(AppSimplify(Vi, g)).

By Lemma 14, we deduce the main result of this paper.

I Theorem 15. Solving hierarchical cost-parity games is Pspace-complete.

4 Conclusion

Cost-parity games represent a powerful machinery for the verification of temporal requirements
that are bounded in time. As in many settings, the representation of systems by means of
cost-parity games is affected by an exponential blow-up in the size of the resulting game.
To overcome this, many techniques exploiting system regularities have been successfully
applied. Among them, hierarchical systems deserve a special mention. In this paper, we
have introduced and investigated the problem of solving cost-parity games over hierarchical
FSMs, showing that the problem is Pspace-complete, thus not harder than solving parity
games over hierarchical models. As future work, we aim to adapt the proposed approach
to all the other winning bounded conditions introduced in [24]. Moreover, it would be
interesting to investigate cost-parity conditions over concurrent game structures, the last one
being a suitable formalism for modelling strategic environments where there is simultaneous
interaction between multiple players. Other relevant research directions include the study of
cost-parity games in the imperfect information setting as well as for infinite-state systems.
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